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w 1. Introduction 

In this paper we investigate the existence of closed geodesics on non-compact  
Riemannian manifolds. In w 2 we show that there do not exist any restrictions on 
homotopy  or homology groups, implying the existence of closed geodesics with 
respect to all Riemannian metrics, which are independent of the dimension of 
the manifold. In w 3 we give an answer to the question in the case of non- 
compact  surfaces. We show that the only surfaces which may have no closed 
geodesics are the plane and the cylinder, and that there are infinitely many 
closed geodesics on all non-compact  surfaces with the exception of these two 
and the M6bius strip. We also investigate the existence of closed geodesics 
without self-intersections. In w 4 we place geometric restrictions on the complete 
Riemannian manifold. We show that the existence of a compact  convex set 
which is not homotopically trivial implies the existence of a closed geodesic. 
Then we use this theorem to prove that a complete non-contractible Rieman- 
nian manifold with non-negative sectional curvature outside a compact  set has 
a closed geodesic. 

The present paper contains the main results of the author 's  thesis at the 
University of Bonn. 

w 2. Examples 

In this section we will discuss examples of complete Riemannian manifolds 
without closed geodesics. A trivial example is a Euclidean space. A theorem of 
Gromoll  and Meyer [-6] says that there are no closed geodesics on complete 
Riemannian manifolds of positive curvature (but geodesic loops may exist). 
Gromoll  and Meyer also prove in their paper  that manifolds satisfying this 
curvature condition are necessarily homeomorphic  to IR". Examples with non- 
trivial fundamental group are surfaces of revolution of funnel type (e.g. z (x2+ y2) 
=1). 
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It is possible to construct examples with arbitrary complicated homotopy  
and homology groups. Let M be an arbitrary manifold. Then there exists a 
complete Riemannian metric on IR x M without closed geodesics as we now 
want to show. 

Let g* be a complete Riemannian metric on M. On IR x M we define a 
metric as follows: 

(X,Y):=xy+erg*(X*,Y*); X=(x,X*), Y=(y,Y*)~T(r,p)(IR• ). 

The Riemannian metric ( , ) is complete. 
Let c(t)=(r(t),u(t)) be a geodesic on IR x M. We will prove that the function 

r(t) has no maximum which implies that there are no closed geodesics on IR 
x M .  

Suppose that t' is a maximum of r(t). Let (U, (ul, . . . ,  u")) be local coordinates 
around u(t') and let (g'k) be the local representation of g* in U. In the local 
coordinates ( ~  x U, (id, u 1 . . . . .  un)) the Riemannian metric ( , ) has the following 
form: 

g O 0  ~ l~ 

g~o = 0 for i-> 1, 

gik =erg*k for i,k>l. 

The Christoffel symbols in the differential equation for r(t) are 

F0~ for k > 0 ,  
e r 

r~~ for i,k_>l. 

The differential equation for r(t) is 

~(t)+ ~ Fi~ 
i , j>=l  

o r  

e r 
J~(t)-~ 2 g*ui( t)~lj(t)=O" 

~- i,j>= l 

This can be written as 

e r 

(t) = 5 g * (a (t), a (t)). 

fi(t')#=0 because ~(t')=0. Thus ~(t ' )>0 which implies that t' is not a maximum 
- a contradicition. 

Remark.  In the two-dimensional case the only counter-examples which we 
obtain as above are N x S 1 and IR 2. We shall see in the next section that there 
are no more surfaces without closed geodesics. 

In higher dimensions it is necessary to place geometric and topological 
restrictions on the Riemannian manifold. This will be done in w 4. 
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A question which we do not discuss in this paper is whether some topological 
restrictions depending on the dimension of the manifold imply the existence 
of a closed geodesic for all Riemannian metrics. 

w 3. Closed Geodesics on Complete Surfaces 

The main result of this section is Theorem (3.2). We first prove a lemma. 

3.1. Lemma.  Le t  M be a non-compact surface without boundary which is neither 
homeomorphic to the plane nor to the cylinder. Then there is a compact set K in M 

with the fol lowing properties: 

(i) There is a closed curve in K which is not f ree ly  homotopic to a curve outside 
K.  

(ii) I f  M is not homeomorphic to the twice punctured plane, then it is possible 
to choose the curve in (i) without self-intersections. 

(iii) I f  M is not homeomorphic to the MObius strip, then there are infinitely 
many curves as in (i) which are not f ree ly  homotopic to each other or to coverings 
o f  each other. 

(iv) I f  M is not homeomorphic to an open set in the plane or in the projective 
plane, then it is possible to choose the curves in (iii) without self-intersections. 

Proo f  (1) In this step we prove (iv). We will use some facts about normal  forms 
of compact  surfaces with boundary which can be found in [1] or [8]. 

We consider a sequence of compact  subsets of M 

M I ~ M 2 ~ . . . ~ M n c . . .  

which are surfaces with boundary, satisfying M,  = ~/ ,  + i and M = U M,.  There 

is a surface M z in the sequence which is neither homeomorphic  to the disk with 
q holes nor to the projective plane with q holes. If M z is orientable, then it is 
homeomorphic  to the normal form 

a 1 b 1 a~ 1 b~ i ... ahbha~ 1 b~ 1 cl hi c~ 1 ... cq hq c~ 1 

In the non-orientable case M l is homeomorphic  to the normal form 

a la  I ... akakc lh  Ic~ 1 ... c lh ic -~ l .  

If k > 2 ,  it is possible to make a handle out of two cross caps [8, p. 139, Fig. 72]. 
In other words the normal form is homeomorphic  to 

al  bt  a~ 1 b~ l a3a 3 ... akakc 1 h 1 c~ 1 . . .  cqhqc; 1 

If k = 2, it is homeomorphic  to 

a 1 b la~ 1 bl cl hi c [  1... cqhqc~ 1. 



252 G. Thorbergsson 

In M~ we define curves K ,  for all n > 1 as follows: If M~ is orientable or non- 
orientable with k>2 ,  then it has an handle a i b i a ~ t b ~  i . . . .  On this handle we 
choose K,, as a curve without self-intersections which winds n-times around the 
handle and is homotopic  to b~ a 71. If M~ is non-orientable with k = 2, then in a 
similar way we let K~ wind n-times without self-intersections around the Klein 

- ~  (Ballmann uses such curves in bottle a ~ b l a ~ b i . . ,  and be homotopic  to b~a i . 
[2].) We choose the compact  set K as M z. 

We now want to prove that the curves K ,  satisfy the claims in the lemma. I.e. 
b,ta 1 i and (b"~all)  z are not freely homotopic  as curves in M if n # m ,  / > 1 ;  and 
that the curve b~ a i- 1 is not freely homotopic  to a curve outside M~ for all n. 

- -  m - -  1 ) /  Assume that .~,w*--h"r,-~.-~t~ and K m ~ : - ( b i a  ~ are freely homotopic.  Then 
there is a surface M m in the sequence M1 c ... c M , ~ . . . ,  containing the whole 
homotopy  between K* and K*~. It is not difficult to see that M m can be 
obtained by identification of edges in a polygon in such a way that a~ and b i 
correspond to edges [10]. Instead of the edges corresponding to one of the 
boundary components of M m we can remove a small disk from the interior of 
the polygon. By expanding this disk to the boundary of the polygon one sees 
that M,~ is homotopy  equivalent to a graph. The fundamental group of a graph 
is free [8, w so it follows that ~z~(Mm) is free and, further, that {a~,b~} can be 
extended to a set of free generators. If K* and K,*~ are freely homotopic,  then the 
elements b]a-[ i and (b]'a 11)l are conjugate in 7ci(Mm) [8, w That  implies the 
existence of a relation in the g r o u p - a  contradiction. 

Assume now that b] a~- x is freely homotopic  to a curve d outside M~ for some 
n. As above the whole homotopy  is contained in some M m for m >  I. Again we 
represent M,~ as a polygon. In that polygon d is freely homotopic  to an edge 
path neither containing a~ nor b~. The contradiction now follows as above. 

(2) In this step we prove (iii). Because we have already proved (iv), we can 
restrict ourselves to open sets in the plane or in the projective plane. As above 
we choose a sequence M1 c .,. c M ,  ~ ... of compact  surfaces with the properties 
that M,  ~ M,  + 1; that all connected components of M -  M,  are non-compact  for 
all n > 1 and that M = ~ M,.  There is a surface M k in the sequence such that it 

n > l  

and all the following surfaces are homeomorphic  to the disk with at least two 
holes or to the projective plane with at least two holes. If q is the number  of 
boundary components of M k and M k is orientable (resp. non-orientable), then 
the fundamental group of M k is generated by e~,.. . ,  eq with the relation e l - . . . . eq  
=1  (resp. a,e  i . . . . .  eq with the relation a a e ~ . . . . . e q = l ) .  This shows that the 
fundamental group is freely generated by el, ..., eq_ i (q >2)  (resp. a,e~,  . . . ,  eq_ 1 
(q > 2)). We consider the curves e] e 2 (resp. a" el) for all n > 1. These curves satisfy 
the claim of the lemma with K as M k as we now want to prove. Suppose that 
e]e 2 and (el'e2) z are freely homotopic.  The homotopy  is contained in a surface 
Mm for m > n .  The curves e~e 2 become (d l . . . d~)" (d~+l . . . d s ) ,  l < r < s ,  if the 
fundamental group of M,, is freely generated by d i , . . . ,  d, (the indices chosen in a 
proper way). Here we have used the fact that the connected components of M 
- M ,  are non-compact  to see that e~ and e 2 do not become trivial in the 
fundamental group of M m. The free homotopy  between e~ e 2 and (eTe2) z implies 
the existence of a non-trivial relation in the fundamental group of M m which is 
f r e e -  a contradiction. (The proof  in the non-orientable case is exactly the same.) 



Closed Geodesics on Non-Compact Riemannian Manifolds 253 

(3) It is left to prove the existence of one curve without self-intersections, 
satisfying the claim in part  (ii) of the lemma, if the surface is the M/Sbius strip or 
one of the surfaces we dealt with in (2) with the exception of the twice punctured 
plane. As above we choose a sequence of compact  surfaces exhausting M. In the 
normal form of M k, for some large k, we choose our curve in the non-orientable 
case as a (see (2)). In the orientable case M k is a disk with at least three holes. In 
that case we let our curve go once around exactly two of the holes. [] 

We now come to the main result of this section. 

3.2. Theorem. Let M be a non-compact surface with a complete Riemannian metric 
which is neither homeomorphic to the plane nor to the cylinder. 

(i) Then there is a closed geodesic on M. 

(ii) I f  M is not the twice punctured plane, then there is a closed geodesic 
without self-intersections on M. 

(iii) I f  M is not the Mgbius strip, then there are infinitely many closed 
geodesics on M. 

(iv) I f  M is not a subset of the plane or of the projective plane, then there are 
infinitely many closed geodesics without self-intersections on M. 

Remark.  In [10] stability and instability of closed geodesics are defined and 
discussed. There it is proved that most  of the closed geodesics in Theorem (3.2) 
are unstable. 

Proof (1) We first prove the existence of closed geodesics in (i) and (iii) which are 
the cases where the closed geodesics may have self-intersections. According to 
Lemma (3.1) there exist a compact  set K and a closed curve c in K which is not 
freely homotopic  to a curve outside K. We define the set 

C := {p~M]d(p, K) < L(c)}. 

C is compact  and every curve which is freely homotopic  to c and shorter than c 
is completely contained in C. 

We set a :=E(c)  and 7. '=the infimum of the injectivity radius on C. 7 > 0  
because C is compact. Further let k be an even number  such that 4a/k<72. For  
a curve e: S t --* C with E(e)<a  which is freely homotopic  to c we have 

d ( e ( t ) , e ( t + 2 ) ) < L ( e  [ t , t + 2 ] ) < V ~ 2 2 E ( e ) < 7 .  

This implies that there is a unique minimal geodesic segment connecting e(t) 

and e ( t + ~ ) .  We defineD~e(resp. D2e) a s t h e c u r v e w h i c h o n e o b t a i n s f r o m e ,  if 

part  of e between e ( ; )  and e((l+2)/k)is  replaced by the minimal geodesic the 

connecting the two points for all even l (resp. for all odd l). Die  and D2e are 
freely homotopic  to c and shorter than c, so that they are also contained in C. 
Therefore we can define De:= D 2 (D 1 e). 
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D is defined on the set F of piecewise differentiable curves e: $1--* C which 
are freely homotopic to c and have less energy than c. D maps F into F because 
E(De)<E(e)<? and e and De are freely homotopic  for every eeF. D" E--->E is 
continuous in the compact-open topology. Further E(De)=E(e) if and only if e 
is a closed geodesic. 

We consider the sequence {D"c} of closed broken geodesics in C. 
(D"c)l[1/k,(l+2)/k] is a geodesic segment for all n and all odd l. F rom the 
compactness of C and the continuity of the exponential mapping it follows that 
there is a converging subsequence of {(O"c)l[l/k,(l+2)/k]} for all odd/.  This 
implies the existence of a subsequence {D"~c} which converges to a broken 
geodesic d:S1--,C. The sequence {E(D"c)} is decreasing and > 0  and has 
consequently a limit point. This and the continuity of E on the set of broken 
geodesics implies: 

E (D d) = E (D lira O "k c) = E (lim D "k + 1 c) = lira E (D "~ + 1 c) 

= lim E (D "k c) = E (d). 

E(Dd)=E(d) implies that d is a closed geodesic, d is freely homotopic  to c, so 
that the existence of the closed geodesics in (i) and (iii) follows from Lemma  
(3.1). 

(2) We now want to prove (ii) and (iv); i.e. we want to find the closed 
geodesics without self-intersections. For  that purpose we modify the defor- 
mation D in (1) (see the Appendix in [7]). As in (1) we can find with help of 
Lemma (3.1) a compact  set K and a closed curve c without self-intersections 
which is not freely homotopic  to a curve outside K. It is not difficult to prove 
that c can be chosen as a broken geodesic [10, p. 24]. We define C as in (1) and 
~:=E(c).  The modified deformation will only be defined on the set F' of closed 
broken geodesics in C with energy < o- which can be approximated by closed 
curves without self-intersections and which are freely homotopic  to c. 

Let ? and k be as in (1). Let eeF'. Let Din, O<m<__(k/2), be the deformation 
which replaces the segment el[(2m-2)/k,2m/k] of the curve e by the unique 
minimal geodesic c~ joining e((2m-2)/k) and e(2m/k) and leaves the rest of the 
curve e*,=el[2m/k,l+(2m-2)/k] unchanged, if c~ and e* have no points in 
common. If ~ and e* have common points, we let Dr, replace parts of e* by 
corresponding parts of e in such a way that Dine will be an element of F'. D~e 
for (k/2)< m < k is defined just as in the case rn < (k/2), except that we first replace 
e L [(2 m - 1)/k, (2 m + 1)/k] by a g e  o desic segment instead of el [(2 m - 2)/k, 2 re~k]. 

We now define De..=D k . . . . .  Die. 
It is easy to see that e and / )  e are freely homotopic  and that E(D e) <= E(e) with 

equality sign if and only if e is a closed geodesic./)  c is an element in F', so we 
can define/52c and by induction we define c,:=D"c. The sequence {c,} satisfies 
lira E(Dc,)=limE(c,) which implies that lim E(Dc,)=lim E(c,) (D is the defor- 
mation in (1)). F rom [2] or [7, (A.1.3)] it now follows that {c,} has a 
converging subsequence with limit d which must be a closed geodesic because of 
the continuity of D and the energy function on the set of broken geodesics (see the 
end of (1)). It  is left to prove that d has no self-intersections. This follows from 
the fact that M is two-dimensional. If  d has some transversal self-intersection, 
then every curve in a small neighbourhood of d in the compact-open topology 
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must also have transversal self-intersections which is not the case for the whole 
sequence {cn} converging to d. [] 

Remark. Examples of higher dimensional complete Riemannian manifolds 
where the methods of this section still work can be found in [-10]. 

w 4. Closed Geodesics and Convex Sets 

We have seen in w that there are no purely homological or homotopical 
conditions implying the existence of closed geodesics which do not depend on 
the dimension of the manifold. In this section we therefore investigate the 
existence of closed geodesics under (intrinsic) geometric restrictions on complete 
non-compact Riemannian manifolds. In [4, p. 144] and [113 conditions on the 
second fundamental form of an embedding are given which ensure the existence 
of a closed geodesic. If the soul of a Riemannian manifold of non-negative 
sectional curvature is not a point, then it follows from the Theorem of Fet and 
Lusternik that it has a closed geodesic. We shall generalize this in Theorem (4.3). 

We begin with a definition. 

4.1. Definition. Let M be a complete Riemannian manifold. 
(i) A non-void set S in M is called strongly convex, if for any p,q~S there is a 

unique minimal geodesic joining p and q with image in S. A non-void set K in 
M is called convex, if the sets B~(p)(p)c~ K are strongly convex for all peK.  (r(p) is 
the radius of convexity which depends continuously on p [-5, p. 162]. 
B~ (p):= {q ~ Mid(p, q) < r}.) 

(ii) A non-void set K in M is called totally convex, if for any p, q e K  and any 
geodesic segment c joining p and q, we have that the image of c lies in K. 

Remark. Our definition of "convex" and "strongly convex" is different from [5], 
but nearly the same as in [3]. 

4.2. Theorem. Let M be a complete Riemannian manifold, let K ~ M be compact 
and convex. I f  there is an i > 0  such that ni(K)~O, then there is a closed geodesic 
in M. 

We will use this theorem and methods from the paper [3] by Cheeger and 
Gromoll  to prove the following theorem. 

4.3. Theorem. Let M be a complete non-contractible Riemannian manifold with 
non-negative sectional curvature outside some compact set. Then there is a closed 
geodesic in M. 

Remark. The above theorems generalize the Theorem of Fet and Lusternik 
(which says that there exists a closed geodesic on every compact Riemannian 
manifold). Note that Theorem (4.2) is more general than (4.3) (an example which 
shows this is the hyperboloid of revolution). Our proof of Theorem (4.2) is 
simpler than the proofs of the Fet-Lusternik Theorem known to us. 

Proof of Theorem (4.2). Let i > 0  be the smallest integer with ni(K)+O. Let 
F: (I i, OP)~ (K ,p )  represent a non-trivial element of n~(K). We can assume 
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that F is differentiable. F induces in a natural way a map f :  
(i ~ 1, ~?i i- ~)_~ (C(S ~, M),p) which is continuous in the compact-open topology 
of C(S1,M). Let a:=sup{E(f(x)) lxcI  i 1}, 27: = m i n i m u m  of the radius of 
convexity in K and let k be an even number satisfying 4a/k<72. Then we have 
d(c(t),c(t+(2/k))<V for curves in K with E(c)<a. It is therefore possible to 
define the deformation D on the set of curves c: S ~ ~ K  with E(c)<a exactly as 
in part  (1) of Theorem (3.2). Dc lies in K because of the convexity of K. So it is 
possible to define D"c by induction. We define 

~,= lim (max {E(D"f(x) ) lx~I  ~- 1}). 
n~co  

~ > 0  because otherwise there would be an n0>0  with the property that 
L(D"~ is smaller than the minimum of the radius of injectivity on K 
for all xaI  ~-~. Then it would be possible to deform f into a map g: 
(1 i 1,0Ii-1)-~(K,p)c(C(S1,M),p) which is homotopically trivial because 
n~_ ~ (K)=  0. If f is freely homotopic  to a constant map, then the same is true for 
F. Thus ~ > 0. 

Put c,'.=D"f(x,) where X n E I  i 1 satisfies 

E (D" + lf(x,)) = max {E (D" + lf(x))lx ~I i-1 }. 

We have lim E(D c, )= lim E(G ) = ft. It follows from the fact that the G are broken 
geodesics with corners at the same place in the domain of definition, the 
compactness of K and the continuity of the exponential map that a subsequence 
{%} converges to a broken geodesic d with E(d)= ft. 

E (D d) = E (D lim cn, ) = E (lim D c,,) = lira E (D c,,) 

=fi=E(d). 

E(Dd)=E(d) implies that d is a closed geodesic. [] 

Proof of Theorem (4.3). Let c: [0, + oo)--,M be a geodesic ray with II~(t)ll = 1. ( A  
geodesic c: [0, + o o ) ~ M  is called a geodesic ray, if c[[tl,t2~ is a minimal 
geodesic joining c(t 0 and c(t2) for any 0 < t l < t 2 < + o o .  On complete non- 
compact  Riemannian manifolds every point has at least one geodesic ray 
emanating from it.) We define Bt(c):= U Bs-t(c(s)). Let H~(c) be the compliment 
of Bt(c ). s>t 

(1) Let C be a compact set which contains every point of M with negative 
sectional curvature. In this step we prove that there is a t o > 0  such that Cc~Bto(C) 
~ l Z f .  

We first prove that (~ B , (c )=~ .  Assume that q ~  Bt(c). Then we have for 
t > 0  

every t ' >  0 and every ~ > 0 a t ' >  t' with B~(q)c~ B t , ,  t, (c(t"))~ ~. This implies that 

d(q, c(t)) < d(q, c(t")) + d(c(t"), c(t)) 

<e +(t"--t') +(t-- t")=~ + t--t'  
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for all t> t" .  Thus we have d(q, c ( t ) ) - t <  - t ' + e  for all t> t" .  On the other hand 
t=d(c(O), c( t ) )<d(c(O),q)+d(q,c( t ) )  for all t>0 .  I.e. d ( q , c ( t ) ) - t > - d ( c ( O ) , q )  
for all t > 0 - a contradiction. 

Suppose that Cc~Bt (c )=~  for all t>0 .  Then we have a decreasing sequence 

{Cc~Bt(c) } of non-void closed subsets of C with ~ ( C c ~ B t ( c ) ) = ~ - a  con- 
tradiction with the compactness of C. 

(2) We now prove that the compliment Ht(c) of Bt(c ) is totally convex for 
t > t  o. 

Suppose that Ht~(c ) is not totally convex for some t l > t  o. Then there is a 
geodesic Co: [0 ,1 ] - - ,M which leaves Ht~(c ) and comes back. There exists a 
t2> h with the property that Co([O, 1 ] ) c ~ B t _ t l ( c ( t ) ) ~  for all t > t  2. Further 
there is for every t > t  2 an sty(0, 1) such that d(co(S~),c(t))=d(c(t),Co([O , 1])). Let 
c~ be the minimal geodesic joining c(t) and Co(St). Let rt~[O , 1) be smaller than s t 
and have the property that Co fit) ~ (?Bt- t l (c(t)) and c o ((rt, st) ) c B t_ t l (c (t)). Let c~ 
be a minimal geodesic joining c(t) and Co(rt). Define do=C] [rt, st]. 

The argument we are now going to use is due to Cheeger and Gromol l  [3]. 
As l imL(c~)= +oo and L(do)<L(co) , it is possible to choose t so big that 

L(c~) +L(d2)>L(c~).  (Co is not necessarily a minimal geodesic.) We can therefore 
use the Theorem of Toponogov to compare the triangle (c0,t ca ,t c2 )t which is 
contained in the ball B~_tl(c(t)) of non-negative sectional curvature with a 
triangle in the Euclidean plane. Let e (resp. c~*) be the angle between c~ and c~ in 
M (resp. in the Euclidean plane). Then we have from the Theorem of Topo- 
nogov that ~* < c~ = ~/2. From the Law of Cosines we have 

cos ~* = L(c~ + L(c~)2 - L(c~)2 

2 L(do) L(d2) 

_ i [(L(c~) + L(c[))(L(c~) - L(c~)) ~ L(c%)]. 
2L(4) t 

From (L(c~) -  L(ctO)< 0, lim (L(d2)+ L(c[))= + oo and L(do)<L(c0) it follows that 
cos ~*<  0 for big t and thus ~*>  r e / 2 - a  contradiction. 

(3) In this last step we prove the existence of a compact  totally convex set K 
with 7h(K):#0 for some i>0 .  Then the claim of the theorem follows from (4.2). 

For  that purpose we show that there is a family {Ktl t > 0} of compact  totally 
convex sets with M = 0 Kt and K t ~K~ for t <s.  M is not contractible so that 
there exists a homotopically non-trivial map f:  (1 ~, 0 I  ~) ~ (M, p) for some i > 0  [9, 
p. 405, Cor. 24]. The image of f is contained in K t for t big enough. 7c~(Kt):#O 
because f is of course homotopical ly trivial in M if it is it in K t. 

So we have only to find the family {Kt}. Let p be an arbitrary point in M, G 
the set of all geodesic rays with arc length parameter  which emanate from p. We 
have for every c a t~>0 such that Ht(c ) is totally convex for every t > t  c 

Set Kt:= ('~ Ht~+t(c ) for t>O. Every K t is totally convex because the in- 
c~G 

tersection of totally convex sets is totally convex. Further every K t is compact  
because the existence of an unbounded sequence {p.} in some K s would imply 
that the sequence of minimal geodesics {Cpp.} clusters around a geodesic ray 
which must be completely contained in K s . This obviously contradicts the 
construction of K~. M =  ~ K  t because the balls Bt(p) are contained in Ht(c ) for 
all c~G. [] 
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