On the Integral Representation in Convex Noncompact Sets of Tight Measures

Gerhard Winkler

Mathematisches Institut der Universität München, Theresienstr. 39, D-8000 München 2, Federal Republic of Germany

1. Introduction

We prove a representation theorem of the Choquet type. Let (X, t) be a topological space and H a weakly closed – not necessarily compact – bounded convex set of nonnegative tight Borel measures on X. For $\mu \in H$ there is a probability measure p on the set ex H of extreme points of H with barycenter μ . The problem is, what "barycenter" means. In [8] Weizsäcker essentially proves the existence of a probability measure p such that

$$\mu(A) = \int_{\operatorname{ex} H} v(A) \, dp$$

for every Baire subset A of X. If X is completely regular and Souslin, this result can easily be obtained from [4], ex. 5.10, if it is Polish, from a remark in [5], § 3.

It is natural to ask for a representing measure p such that the formula holds for every Borel set or even for every μ -measurable set A (compare [8], 5.2). Even in the case where X is compact there does not seem to be a simple way from the results mentioned above to the answer of this question. In this paper we give a positive answer by proving the desired result directly.

2. Preliminaries

If A is a set and \mathscr{F} a set of real functions on A, then $\sigma(\mathscr{F})$ denotes the σ -algebra generated on A by \mathscr{F} . If $B \subset A$, then 1_B is the characteristic function of B on A, and if f is a function on A, then f | B is the restriction of f on B. If \mathscr{C} is a system of subsets of A, then we define $B \cap \mathscr{C} := \{B \cap C : C \in \mathscr{C}\}$. If C is a convex subset of a linear space, then $x \in C$ will be called extreme point, iff there do not exist distinct points $y, z \in C$ with x = 1/2(y+z). Ex C is the set of extreme points of C.

Let (X, t) be a topological space. $\mathscr{C}(X, t)$ denotes the set of bounded continuous functions on $X, \mathfrak{B}_0(X, t) := \sigma(\mathscr{C}(X, t)) (\mathfrak{B}(X, t))$ the σ -algebra of Baire (Borel) sets and $\mathscr{B}_0(X, t) (\mathscr{B}(X, t))$ the set of real bounded $\mathfrak{B}_0(X, t) (\mathfrak{B}(X, t))$ -measurable

Mathematische

© by Springer-Verlag 1978

functions on X. A nonnegative measure μ on $\mathfrak{B}(X, t)$ is said to be tight iff, for every $\varepsilon > 0$ there is a compact set $K \subseteq X$ such that $\mu(X - K) < \varepsilon$. The set of bounded tight measures on X will be denoted by $\mathscr{M}_+(X, t)$. If $f \in \mathscr{B}(X, t)$ and $\mu \in \mathscr{M}_+(X, t)$, then the integral $\int_{\mathcal{I}} f d\mu$ is denoted by $\mu(f)$; f' is the mapping $v \mapsto v(f)$ on $\mathscr{M}_+(X, t)$. If (X, t) is

the set of bounded lower semicontinuous functions on X.

Throughout the paper subsets M of $\mathcal{M}_+(X, t)$ will be endowed with the weak topology $v(M, \mathcal{I}(X, t))$, the smallest topology for which every function f'|M with $f \in \mathcal{I}(X, t)$ is lower semicontinuous.

3.

We now formulate the main result:

Theorem. Suppose that (X, t) is a topological space and H a convex and weakly closed set of tight measures with $\sup \{v(X): v \in H\} < \infty$. Then for every $\mu \in H$ there is a probability measure p on the σ -algebra $\sigma(\{f' | ex H: f \in \mathscr{B}(X, t)\})$ on the set of extreme points of H such that

$$\mu(f) = \int_{e \times H} \nu(f) \, dp \quad \text{for every } f \in \mathscr{B}(X, t). \tag{1}$$

This result can be extended to a wider class of functions. A function on X is called μ -measurable, iff it is measurable with respect to the μ -completion of $\mathfrak{B}(X, t)$.

Corollary. In the theorem bounded μ -measurable functions f on X can be substituted for the functions $f \in \mathscr{B}(X, t)$.

Before we give the proofs, we recall some well known facts. Let *E* be a real locally convex linear space and $K \subseteq E$ a convex compact subset with the relative topology *s*. A measure $p \in \mathcal{M}_+(K, s)$ represents $x \in E$, which is denoted by x = r(p), iff $x'x = \int_K x' dp$ for every $x' \in E'$, the topological dual of *E*. If *p* is a probability measure, this is equivalent to $a(x) = \int_K a dp$ for every lower semicontinuous function on *K* which is affine (i.e. if $c \in (0, 1)$ and $y, z \in K$, then f(cy + (1 - c)z) = cf(y) + (1 - c)f(z)) ([6], 9.7). On $\mathcal{M}_+(K, s)$ the Choquet ordering is defined by p < q iff $p(f) \le q(f)$ for every $f \in \mathcal{C}(K, s)$ which is convex (substitute " \le " for " = " in the definition of affine). This ordering is inductive. A convenient reference for Choquet theory is [1].

Suppose now that X is compact. $\mathscr{C}(X, t)$ with the norm of uniform convergence is a Banach space. We define the linear space of signed measures $\mathscr{M}(X, t) :=$ $\mathscr{M}_+(X, t) - \mathscr{M}_+(X, t)$. By the Riesz representation theorem $\mathscr{M}(X, t)$ can be identified with $\mathscr{C}(X, t)'$ and is locally convex in the weak*-topology. On $\mathscr{M}_+(X, t)$ the weak*-topology coincides with $v(\mathscr{M}_+(X, t), \mathscr{I}(X, t))$ ([7], Th. 8.1). Thus H is a convex weak*-compact subset of $\mathscr{M}(X, t)$ and Choquet theory can be applied.

For this compact case we reformulate the notions of barycenter and Choquet ordering in a way which is more convenient in our special situation. First, we define

$$\mathscr{B}_{0}^{\vee}(H) := \{ (\bigvee_{i \leq n} (f'_{i} + c_{i}) | H : f_{i} \in \mathscr{B}_{0}(X, t); c_{i} \in \mathbb{R}; i = 1, ..., n; n \in \mathbb{N} \}.$$

Lemma. Suppose (X, t) to be compact and let $\mu \in \mathcal{M}_+(X, t)$ and $p, q \in \mathcal{M}_+(H, v(H, \mathcal{I}(X, t)))$. Then:

a) If $f \in \mathscr{B}(X, t)$, then f'|H is measurable with respect to $\mathfrak{B}(H, v(H, \mathscr{I}(X, t)))$. b) $\mu = r(p)$ if and only if

$$\mu(f) = \int_{H} \nu(f) \, dp \quad \text{for every } f \in \mathscr{B}(X, t). \tag{2}$$

c)
$$p \prec q$$
 if and only if $p(b) \leq q(b)$ for every $b \in \mathscr{B}_0^{\vee}(H)$.

Proof. Define the sets

$$\mathcal{H} := \{ f \in \mathcal{B}(X, t) \colon f' | H \text{ is Borel measurable} \},$$
$$\mathcal{H}' := \{ f \in \mathcal{B}(X, t) \colon \mu(f) = \int_{H} \nu(f) \, dp \}.$$

According to the definition of the weak topology $(1_A)'$ is lower semicontinuous on H for every $A \in t$. Hence $1_A \in \mathcal{H}$ and if $\mu = r(p)$, then $1_A \in \mathcal{H}'$ too. Since \mathcal{H} and \mathcal{H}' are closed under bounded sequential convergence, this implies $\mathcal{B}(X, t) \subset \mathcal{H}$ and $\mathcal{B}(X, t) \subset \mathcal{H}'$ ([3], § 0). Thus we have proved a) and the nontrivial implication of b).

 $\mathscr{B}_0(X, t)$ is the smallest class of bounded functions on X which contains $\mathscr{C}(X, t)$ and is closed under bounded sequential convergence ([2], ex. 56.9). By applying this argument for each $i \leq n$ separately, we see that $p(b) \leq q(b)$ holds for every b of the form

$$b = \bigvee_{i \le n} (f_i' + c_i) | H$$

with $c_i \in \mathbb{R}$ and $f_i \in \mathscr{B}_0(X, t)$ if and only if it holds for every b with $f_i \in \mathscr{C}(X, t)$. The latter condition is equivalent to $p \prec q$ by [1], I.1.3.

Proof of the Theorem. I. First we assume (X, t) to be compact.

1. *H* is a convex weak*-compact subset of $\mathcal{M}(X, t)$. Choquet's theorem ([1], I.4.8) provides the existence of a probability measure $q \in \mathcal{M}_+(H)$ (we omit the topology) which represents μ and is maximal in the Choquet ordering. By the lemma, (2) holds for *q*. If $M \subset \mathcal{M}_+(X, t)$ define

 $\mathfrak{W}(M) := \sigma(\{f'|M: f \in \mathscr{B}(X, t)\}).$

We will show that q(W) = 0 for every $W \in \mathfrak{W}(H)$ with $W \cap ex H = \emptyset$. Hence the outer measure of $q | \mathfrak{W}(H)$ induces a probability measure p on $\mathfrak{W}(ex H)$ for which (1) holds.

2. Let $W \in \mathfrak{W}(H)$ be disjoint from ex H. It is easily verified that

 $\mathfrak{W}(H) = \bigcup \{ \sigma(\{f' | H: f \in \mathcal{F}\}) : \mathcal{F} \subset \mathcal{B}(X, t) \text{ countable} \}.$

Hence there is a countable family $\mathscr{F} \subset \mathscr{B}(X, t)$ such that

 $W \in \sigma(\{f' | H: f \in \mathscr{F}\}).$

By use of Lusin's theorem ([2], ex. 68.5) a sequence of mutually disjoint compact sets $(K_n: n \in \mathbb{N})$ in X can be constructed which has the following properties:

(a)
$$\mu(X - \bigcup_{n \in \mathbb{N}} K_n) = 0;$$

(b) $f | K_n \in \mathscr{C}(K_n, K_n \cap t)$ for every $f \in \mathscr{F}$ and $n \in \mathbb{N}$.

This is already done in [8], proof of Satz 1.

3. We define

$$X_1 := \bigcup_{n \in \mathbb{N}} K_n, \quad t_0 := X_1 \cap t.$$

 t_1 denotes the topology on X_1 characterised by: $G \in t_1$ iff $G \cap K_n \in K_n \cap t$ for every $n \in \mathbb{N}$.

 (X_1, t_1) is a locally compact σ -compact space. Furthermore

 $\mathfrak{B}(X_1,t_0) = \mathfrak{B}(X_1,t_1)$

and the sets $\mathcal{M}_+(X_1, t_0)$ and $\mathcal{M}_+(X_1, t_1)$ are equal.

Define (X_2, t_2) to be the Alexandrov compactification of (X_1, t_1) ,

$$\begin{aligned} \mathcal{M}_{X_1}(X,t) &:= \{ v \in \mathcal{M}_+(X,t) \colon v(X-X_1) = 0 \}, \\ \mathcal{M}_{X_1}(X_2,t_2) &:= \{ v \in \mathcal{M}_+(X_2,t_2) \colon v(X_2-X_1) = 0 \} \end{aligned}$$

and i: $X_1 \rightarrow X_2$ the natural embedding.

By a well known lemma ([4], 5.3) the mappings

$$\begin{split} \iota_1 \colon \mathcal{M}_{X_1}(X, t) &\to \mathcal{M}_+(X_1, t_0), \qquad \nu \mapsto \nu | \mathfrak{B}(X_1, t_0), \\ \iota_2 \colon \mathcal{M}_+(X_1, t_1) &\to \mathcal{M}_{X_1}(X_2, t_2), \qquad \nu \mapsto \nu \circ i^{-1} \end{split}$$

are homeomorphisms.

Further we define

$$\iota := \iota_2 \circ \iota_1, \quad H_0 := H \cap \mathcal{M}_{X_1}(X, t), \quad H_2 := \iota H_0,$$

 \overline{H}_2 the closure of H_2 in $\mathcal{M}_+(X_2, t_2)$,

$$\mathfrak{A} := \sigma(\{f' | H: f \in \mathscr{B}(X, t), f | K_n \in \mathscr{C}(K_n, K_n \cap t) \text{ for every } n \in \mathbb{N}\})$$

and state some properties:

- (c) H_0 , H_2 and \bar{H}_2 are convex; \bar{H}_2 is compact.
- (d) ex $H_0 = ex H \cap \mathcal{M}_{X_1}(X, t), H_2 = \bar{H_2} \cap \mathcal{M}_{X_1}(X_2, t_2),$ ex $H_2 = ex \bar{H_2} \cap \mathcal{M}_{X_1}(X_2, t_2).$
- (e) $\iota \exp H_0 = \exp H_2$.

(f) $\iota^{-1}(\mathfrak{B}_0(\bar{H}_2)) = \mathfrak{A} \cap H_0 \supset \mathfrak{B}_0(H) \cap H_0; \ \iota^{-1}|H_2: H_2 \rightarrow H_0$ is continuous. We prove (c)–(f).

(c) The convexity of the sets is clear. \overline{H}_2 is bounded and closed in the weak*-topology, hence compact.

(d) If $v \in ex H \cap H_0$, then $v \in ex H_0$. Conversely, let $v \in ex H_0$ and $v_1, v_2 \in H$ with $v = 1/2(v_1 + v_2)$. $v(X - X_1) = 0$ implies $v_i(X - X_1) = 0$ for i = 1, 2, hence $v_i \in H_0$, $v = v_1 = v_2$ and $v \in ex H$.

Integral Representation of Tight Measures

As H_0 is relatively closed in $\mathcal{M}_{X_1}(X, t)$ and ι_1 is a homeomorphism, H_1 is closed with respect to $v(\mathcal{M}_+(X_1, t_0), \mathcal{I}(X_1, t_0))$, hence with respect to the finer topology $v(\mathcal{M}_+(X_1, t_1), \mathcal{I}(X_1, t_1))$. Since ι_2 is a homeomorphism too, H_2 is relatively closed in $\mathcal{M}_{X_1}(X_2, t_2)$ which means

$$H_2 = \overline{H}_2 \cap \mathcal{M}_{X_1}(X_2, t_2).$$

From this the last equation follows exactly like the first one.

(e) holds, since i is affine and injective.

(f) We recall that H and $\bar{H_2}$ are compact. By use of the Stone-Weierstraß theorem we find

$$\mathfrak{B}_0(H) = \sigma(\{f' | H: f \in \mathscr{C}(X, t)\}), \quad \mathfrak{B}_0(\tilde{H}_2) = \sigma(\{f' | \tilde{H}_2: f \in \mathscr{C}(X_2, t_2)\}).$$

Hence $\mathfrak{B}_0(H) \cap H_0 \subset \mathfrak{A} \cap H_0$ and

$$\mathfrak{A} \cap H_0 = \iota^{-1}(\sigma(\{f' | \bar{H}_2: f \in \mathscr{B}(X_2, t_2), f | K_n \in \mathscr{C}(K_n, K_n \cap t_2) \text{ for every } n \in \mathbb{N}\}))$$
$$= \iota^{-1}(\mathfrak{B}_0(\bar{H}_2)).$$

 $\iota^{-1}|H_2$ is continuous because of

$$v(H_1, \mathscr{I}(X_1, t_0)) \subset v(H_1, \mathscr{I}(X_1, t_1)).$$

4. The relation

$$0 = \mu(X - X_1) = \int_H v(X - X_1) \, dq$$

implies $q(H-H_0)=0$. Because of this and (f) a probability measure is defined by

$$\overline{q}(B) := q(\iota^{-1}(B))$$
 for every $B \in \mathfrak{B}_0(H_2)$.

We denote the unique tight extension of \bar{q} to $\mathfrak{B}(\bar{H}_2)$ by \bar{q} as well and show that it is maximal in the Choquet ordering. Suppose $\bar{m} \in \mathcal{M}_+(\bar{H}_2)$ with $\bar{q} \prec \bar{m}$. The compact sets K_n being closed and open in X_2 , we have $X_1 \in \mathfrak{B}_0(X_2, t_2)$ which implies

$$(\mathbf{1}_{X_2-X_1})' \in \mathfrak{B}_0^{\vee}(\bar{H}_2) \cap (-\mathfrak{B}_0^{\vee}(\bar{H}_2)),$$

hence

$$\int_{\bar{H}_2} (1_{X_2 - X_1})' d\bar{m} = \int_{\bar{H}_2} (1_{X_2 - X_1})' d\bar{q}$$

which means $\bar{m}(\bar{H}_2 - H_2) = 0$.

In (f) we showed that i^{-1} is continuous on H_2 ; thus a tight measure *m* is defined on *H* by

$$m(B) := \overline{m}(\iota(B \cap H_0))$$
 for every $B \in \mathfrak{B}(H)$.

If $f \in \mathscr{B}_0(X, t)$ let $\overline{f} \in \mathscr{B}_0(X_2, t_2)$ be an extension of $f | X_1$. Suppose $f_1, \ldots, f_n \in \mathscr{B}_0(X, t)$ and $c_1, \ldots, c_n \in \mathbb{R}$. By part c) of the lemma

$$\int_{\bar{H}_2} \bigvee_{i \leq n} (\bar{f}'_i + c_i) \, d\bar{q} \leq \int_{\bar{H}_2} \bigvee_{i \leq n} (\bar{f}'_i + c_i) \, d\bar{m},$$

hence

$$\int_{H} \bigvee_{i \leq n} (f'_i + c_i) dq \leq \int_{H} \bigvee_{i \leq n} (f'_i + c_i) dm.$$

By the lemma this is equivalent to $q \prec m$. By hypothesis q is maximal which implies q = m, hence $\bar{q} = \bar{m}$. Thus \bar{q} is maximal.

5. If $W \in \mathfrak{W}(H)$ is disjoint from ex H we have $W \cap ex H_0 = \emptyset$ by (d) and $\iota(W \cap H_0) \cap ex \overline{H_2} = \emptyset$ by (d) and (e). From the construction of X_1 and t_1 follows $W \in \mathfrak{A}$, hence $\iota(W \cap H_0) \in \mathfrak{B}_0(\overline{H_2})$ by (f). The maximal measure \overline{q} vanishes on every Baire set disjoint from ex $\overline{H_2}$ ([1], p.38), especially $\overline{q}(\iota(W \cap H_0)) = 0$ which implies q(W) = 0.

This completes the proof in the compact case.

II. Now we consider an arbitrary topological space.

1. As μ is tight there is a sequence of mutually disjoint compact sets $(K_n: n \in \mathbb{N})$ in X such that

$$X_1 := \bigcup_{n \in \mathbb{N}} K_n$$

has measure $\mu(X)$. Exactly like in part I we can construct the compact space (X_2, t_2) , the mapping *i* and the set H_2 such that (c), (d) and (e) keep valid. Again we have $X_1 \cap \mathfrak{B}(X, t) = X_1 \cap \mathfrak{B}(X_2, t_2)$, hence

(g) $\iota \mathfrak{W}(\operatorname{ex} H_0) = \mathfrak{W}(\operatorname{ex} H_2).$

According to part I, for $\iota \mu \in \overline{H}_2$ there is a probability measure \overline{p} on $\mathfrak{W}(\operatorname{ex} H_2)$ for which

$$\iota \mu(A) = \int_{\operatorname{ex} H_2} \nu(A) \, d\bar{p} \quad \text{for every } A \in \mathfrak{B}(X_2, t_2).$$

 $\iota \mu(X_2 - X_1) = 0$ implies

$$1 = \bar{p}(\{v \in \exp(\bar{H}_2) : v(X_2 - X_1) = 0\}) = \bar{p}(\exp(\bar{H}_2)).$$

Using (g) we define the image measure $\overline{p} \circ \iota$ on $\mathfrak{W}(ex H_0)$ and denote its canonical extension to $\mathfrak{W}(ex H)$ by p. If $A \in \mathfrak{B}(X, t)$, then

$$\mu(A) = \iota \mu(A \cap X_1) = \int_{\operatorname{ex} H_2} v(A \cap X_1) d\bar{p} = \int_{\operatorname{ex} H} v(A) dp.$$

Hence (1) holds and the theorem is proved.

Proof of the Corollary. Let f be a bounded μ -measurable function on X. There are $g \in \mathscr{B}(X,t)$ and $N \in \mathfrak{B}(X,t)$ with f|X-N=g|X-N and $\mu(N)=0$. From

$$\int_{e \times H} v(N) \, dp = \mu(N) = 0$$

follows

 $p(\{v \in ex H: v(N) > 0\}) = 0.$

We denote this null-set by M. f' is defined on ex H - M (and can be trivially extended to ex H) and equal to g' there. Thus

$$\mu(f) = \mu(g) = \int_{\operatorname{ex} H-M} v(g) \, dp = \int_{\operatorname{ex} H-M} v(f) \, dp = \int_{\operatorname{ex} H} v(f) \, dp.$$

This completes the proof.

4. Remarks

1. The proof yields a stronger result as stated in the theorem: There is a tight probability measure q on the Borel sets of H such that (2) holds for q and $q|\sigma(\{f'|H: f \in \mathfrak{B}(X, t)\})$ induces p by outer measure construction.

2. Our final remark concerns uniqueness of representing measures. We introduce

$$\mathcal{M} := \{ q \in \mathcal{M}_+(H) : \text{ there is } \lambda \in \mathcal{M}_+(X, t) \text{ such that} \\ \lambda(f) = \int_H \nu(f) \, dq \text{ for every } f \in \mathcal{B}(X, t) \}$$

and

$$\mathscr{B}^{\vee}(H) := (\bigvee_{i \leq n} (f'_i + c_i) | H: f_i \in \mathscr{B}(X, t); c_i \in \mathbb{R}; i = 1, \dots, n; n \in \mathbb{N} \}.$$

On \mathcal{M} an inductive ordering is defined by

 $p \prec q$ iff $p(b) \leq q(b)$ for every $b \in \mathscr{B}^{\vee}(H)$.

If X is compact, then it is equivalent to the Choquet ordering. In (\mathcal{M}, \prec) we can prove analoga of the classical uniqueness theorems, e.g. [1], II.3.6 ([9], p. 62).

I am indebted to Prof. Kellerer for a simplification in the proof of the theorem and to H. v. Weizsäcker for several discussions.

References

- 1. Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Berlin-Heidelberg-New York: Springer 1971
- 2. Berberian, S.K.: Measure and Integration. New York: Chelsea 1970
- 3. Blumenthal, R.M., and Getoor, R.K.: Marcov Processes and Potential Theory. New York: Academic Press 1968
- 4. Bourbaki, N.: Intégration, Chapitre IX. Paris: Hermann 1969
- 5. Edgar, G.A.: Extremal Integral Representations. J. functional Analysis 23, 145-161 (1976)
- 6. Phelps, R.R.: Lectures on Choquet's Theorem. New York: Van Nostrand 1966
- 7. Topsøe, F.: Topology and Measure. Lecture Notes in Mathematics 133. Berlin-Heidelberg-New York: Springer 1970
- Weizsäcker, H. v.: Der Satz von Choquet-Bishop-de Leeuw für konvexe nicht kompakte Mengen straffer Maße über beliebigen Grundräumen. Math. Z. 142, 161–165 (1975)
- Winkler, G.: Über die Integraldarstellung in konvexen nicht kompakten Mengen straffer Maße. Thesis, Universität München