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1. Introduction

We prove a representation theorem of the Choquet type. Let (X, t) be a topological
space and H a weakly closed — not necessarily compact —bounded convex set of
nonnegative tight Borel measures on X. For ueH there is a probability measure p
on the set ex H of extreme points of H with barycenter yu. The problem is, what
“barycenter” means. In [8] Weizsdcker essentially proves the existence of a
probability measure p such that

pA)= [ v(4)dp

exH

for every Baire subset 4 of X. If X 1s completely regular and Souslin, this result can
easily be obtained from [4], ex.5.10, if it is Polish, from a remark in [5], § 3.

It is natural to ask for a representing measure p such that the formula holds for
every Borel set or even for every p-measurable set 4 (compare [ 8], 5.2). Even in the
case where X is compact there does not seem to be a simple way from the results
mentioned above to the answer of this question. In this paper we give a positive
answer by proving the desired result directly.

2. Preliminaries

If A is a set and Z a set of real functions on A4, then o(%) denotes the g-algebra
generated on 4 by Z. If B< A, then 1, is the characteristic function of B on 4, and if
fis afunction on 4, then f'| B is the restriction of f on B. If € is a system of subsets of
A, then we define BN%:={Bn C: Ce¥}. If Cis a convex subset of a linear space,
then xe C will be called extreme point, iff there do not exist distinct points y, ze C
with x=1/2(y+z). Ex C is the set of extreme points of C.

Let (X, t) be a topological space. €(X, t) denotes the set of bounded continuous
functions on X, B, (X, t):=0(¥(X, 1)) (B(X, 1)) the o-algebra of Baire (Borel) sets
and #,(X,t) (#(X, 1)) the set of real bounded B,y(X,t) (B(X, t))}-measurable
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functions on X. A nonnegative measure y on B(X, t) is said to be tight iff, for every

&>0 there is a compact set K = X such that u(X — K)<es. The set of bounded tight

measures on X will be denoted by 4, (X, 7). If fe B(X, t) and pe 4 (X, t), then the

integral | fduis denoted by u(f); f” is the mapping vi—v(f)on .#, (X, t). (X, 1) is
X

the set of bounded lower semicontinuous functions on X.

Throughout the paper subsets M of .4, (X, t) will be endowed with the weak
topology v(M, # (X, t)), the smallest topclogy for which every function f'|M with
fe (X, 1) is lower semicontinuous.

3.

We now formulate the main result:

Theorem. Suppose that (X, t) is a topological space and H a convex and weakly closed
set of tight measures with sup{v(X): veH} <oo. Then for every ucH there is a
probability measure p on the g-algebra o({ f'|ex H: fe B(X, t)}) on the set of extreme
points of H such that

w(f)= Jv(f)dp  for every feB(X, 1. (1)

ex H

This result can be extended to a wider class of functions. A function on X is
called u-measurable, iff it is measurable with respect to the p-completion of B (X, ¢).

Corollary. In the theorem bounded y-measurable functions f on X can be substituted
for the functions fe (X, t).

Before we give the proofs, we recall some well known facts. Let E be a real
locally convex linear space and K —E a convex compact subset with the relative
topology s. A measure pe.# (K, s) represents xe E, which is denoted by x =r(p), iff
x'x= {x'dp for every x'e E’, the topological dual of E. If p is a probability measure,

K

this is equivalent to a(x)={adp for every lower semicontinuous function on K
K

which is affine (i.e. if c€(0, 1) and y, zeK, then f(cy+(1 —c) z)=cf(y) + (1 —¢) f(2))
([6],9.7). On .# (K, s) the Choquet ordering is defined by p<gq iff p(f)=q(f) for
every fe#(K, 5) which is convex (substitute “ =~ for “ =" in the definition of affine).
This ordering is inductive. A convenient reference for Choquet theory is [17].
Suppose now that X is compact. ¥ (X, t) with the norm of uniform convergence
is a Banach space. We define the linear space of signed measures #(X,t):=
MAX, )— M (X, t). By the Riesz representation theorem .#(X,t) can be
identified with €(X, t)’ and is locally convex in the weak*-topology. On #_ (X, 1)
the weak*-topology coincides with v(.#, (X, t), S(X, 1)) ({7], Th. 8.1). Thus His a
convex weak*-compact subset of .# (X, t) and Choquet theory can be applied.
For this compact case we reformulate the notions of barycenter and Choquet
ordering in a way which is more convenient in our special situation. First, we define

Be(H):={(\V (f{ +c)|H: fieB(X,1); c,eR; i=1,...,n; nelN}.

isn
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Lemma. Suppose (X, 1) to be compact and let ye# (X,t) and p,qe M (H, v(H,
F(X,1). Then:
a) If feB(X,t), then f'|H is measurable with respect to B(H, v(H, #(X, t))).
b) u=r(p) if and only if

p(f)=[v(f)dp for every feB(X,1). )

"
c) p<q if and only if p(b)=q(b) for every be By (H).
Proof. Define the sets

H:={feB(X,1t): f’|H is Borel measurable},
A ={feB(X, 1) p(f)= | v(f)dp}.

H

According to the definition of the weak topology (1,)' is lower semicontinuous on H
for every Aet. Hence 1,€# and if u=r(p), then 1, too. Since # and # are
closed under bounded sequential convergence, this implies #(X,)<=# and
B(X,t)c ' ([3],§0). Thus we have proved a) and the nontrivial implication of b).

%0(X, 1) is the smallest class of bounded functions on X which contains €(X, t)
and is closed under bounded sequential convergence ([2], ex. 56.9). By applying this
argument for each i <n separately, we see that p(b) < q(b) holds for every b of the
form

b=V (f+c)H
with ¢;eIR and f,e%,(X, t) if and only if it holds for every b with f,e%(X, t). The
latter condition is equivalent to p<g by [1], 1.1.3.

Proof of the Theorem. 1. First we assume (X, t) to be compact.

1. H is a convex weak*-compact subset of .#(X, t). Choquet’s theorem ([1], 1.4.8)
provides the existence of a probability measure ge.#, (H) (we omit the topology)
which represents u and is maximal in the Choquet ordering. By the lemma, (2) holds
for q. f M <./ (X, 1) define

WM):=o({f'1M: feB(X, )}).

We will show that q(W) =0 for every WeIB(H) with Wnex H = . Hence the outer
measure of | 2B (H) induces a probability measure p on 2(ex H) for which (1) holds.

2. Let Wel3(H) be disjoint from ex H. It is easily verified that
WH)=){c({['|H: feF}): F<B(X,t) countable}.

Hence there is a countable family # < (X, t) such that
Weo({f'|H: feF}).

By use of Lusin’s theorem ([2], ex. 68.5) a sequence of mutually disjoint compact
sets (K,: nelN) in X can be constructed which has the following properties:
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(@) pX —|) K,)=0;

nelN
(b) fIK,e¥(K,,K,Nt) for every feZ# and neN.
This is already done in [8], proof of Satz 1.
3. We define

Xp=UK, te=Xinr

t, denotes the topology on X, characterised by: Get, iff Gn K, eK,nt for every
nelN.

(X, 1) is a locally compact ¢-compact space. Furthermore
B(Xy, to)=B(X,, 1)

and the sets .#, (X, t,) and .#_ (X,, t,) are equal.
Define (X ,, t,) to be the Alexandrov compactification of (X, ¢,),
My (X, 1) ={ved (X, 1): v(X ~X,)=0},
ﬂxl(Xza ty)={veM (X,,t;): v(X,—X,)=0}

and i: X; - X, the natural embedding.
By a well known lemma ([4], 5.3) the mappings

ll: ’%Xl(X’ t)_-)ﬂ-f—(Xl’ tO)a VHV\%(Xl,tO)a
tp0 M (Xy,t) = My (X5,15),  viovei™!

are homeomorphisms.
Further we define

1:=1y014, H0==HﬁﬂX1(X,t), HZ::lHO’
H, the closure of H, in 4, (X ,,t,),
W:=o({f'|H: feB(X,1), fIK,cb(K,,K,nt) for every neN})

and state some properties:

(c) Hy, H, and H, are convex; H, is compact.

(d) ex Ho=ex H My (X,1), Hy=H,nMly,(X,,t,),

ex Hy=ex H, " My, (X5, t5)

() itexHy=exH,.

M 1Y Bo(H))=UNH,>B,(H)nH,; 1~ |H,: H,—H, is continuous.
We prove (c)f).

(c) The convexity of the sets is clear. H, is bounded and closed in the weak*-
topology, hence compact.

(d) Ifveex H N H,, then veex H,,. Conversely, let veex Hyand v,, v,€H with v
=1/2(v;+v,). v(X — X ,)=0implies v(X — X ,)=0fori=1, 2, hence v,;e Hy, v=v,
=y, and veex H.
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As H is relatively closed in 4y (X, t) and 1, is a homeomorphism, H  is closed
with respect to v(.#, (X ;,t,), #(X,t,)), hence with respect to the finer topology
(M (X, 0, F (X, 1)) Since 1, i1s a homeomorphism too, H, 1s relatively closed
in My (X,,t,) which means

szﬁzmﬂxl(Xzatz)~

From this the last equation follows exactly like the first one.

(e) holds, since 1 is affine and injective.

() We recall that H and H, are compact. By use of the Stone-Weierstrafl
theorem we find

Bo(H)=c({f'|H: fe4(X,0)}), Bo(H)=a({f'|H,: feF(X,,1,)}).
Hence By(H)nHyc AN H, and

AnHo=1"c({f'|H,: feB(X,.t,), [IK,e€(K,,K,Nt,) for every neN}))
=171 (Bo(H,))-

17'|H, is continuous because of
U(Hls j(Xla tO)) CD(HD f(X.b tl))
4. The relation

0=N(X*X1)=I£V(X—X1)dq

implies q(H — H)=0. Because of this and (f} a probability measure is defined by
g(B):=q(1~*(B)) for every BeB,(H,).

We denote the unique tight extension of g to B (H,) by g as well and show that it
is maximal in the Choquet ordering. Suppose #mie.#, (H ,) with §<m. The compact
sets K, being closed and open in X ,, we have X,;eB,(X,,t,) which implies

1y, x,YEBS (H,)N (=B (Hy)),
hence

[ (x,_xydm= [(1x,_x,)dq
H; H>

which means m(H, —H,)=0.
In (f) we showed that :~ ! is continuous on H ,; thus a tight measure m is defined
on H by

m(B):=m{1(BnH,) for every BeB(H).

If feBy(X,1) let feBo(X ,,t,) be an extension of f|X ;. Suppose f1, ..., f,eBo(X, 1)
and ¢y, ...,c,€IR. By part ¢) of the lemma
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H;

J v (ff +c)dg §Hj v (ff +c)dm,

hence

) V( fl+cl)dq<§ \/(f +c)dm.

H l n
By the lemma this is equivalent to g <m. By hypothesis ¢ is maximal which implies ¢
=m, hence g=m. Thus g is maximal.
5. If WelB(H) is disjoint from exH we have WnexHy=g by (d) and
UWnHg)nex Hy=g by (d) and (e). From the construction of X', and ¢, follows
Wel, hence 1(Wn Ho)eBo(H,) by (f). The maximal measure g vanishes on every
Baire set disjoint from ex H, ([1], p.38), especially g{1(W n H ;))=0 which implies
q(W)=

This completes the proof in the compact case.
II. Now we consider an arbitrary topological space.

1. As p is tight there is a sequence of mutually disjoint compact sets (K,,: nelN)in X
such that

X1::UKn

nelN

has measure u(X). Exactly like in part I we can construct the compact space (X 5, t,),
the mapping : and the set H, such that (¢), (d) and (e) keep valid. Again we have
X, nB(X,)=X,nB(X,,1,), hence

(g) 1W(ex Hp)=W(ex H,).

According to part], for iueH, there is a probability measure p on W(ex H ) for
which

1u(A)= [ v(4)dp for every AeB(X,,1,).
exHay

(X, — X )=0 implies
1=p({veex Hy: v(X,— X ,)=0})=p(ex H,).

Using (g) we define the image measure po 1 on Wiex H,) and denote its canonical
extension to W(ex H) by p. If AeB(X,1), then

pA)=1pAnX )= | v(AnX,)dp= [ v(4)dp.

exHy exH
Hence (1) holds and the theorem is proved.

Proof of the Corollary. Let f be a bounded p-measurable function on X. There are
geB(X,t) and NeB(X,1) with f{X —N=g|X — N and u(N)=0. From

| (V) dp=p(N)=

exH

follows

p({veex H: v(N)>0})=0.
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We denote this null-set by M. f' is defined on ex H—M (and can be trivially
extended to ex H) and equal to g’ there. Thus

p(N=p@= | vdp= [ v(f)dp= | v(f)dp.

exH—M exH-M exH

This completes the proof.

4. Remarks

1. The proof yields a stronger result as stated in the theorem: There is a tight
probability measure g on the Borel sets of H such that (2) holds for g and
qle({f'|H: feB(X,)}) induces p by outer measure construction.

2. Our final remark concerns uniqueness of representing measures. We introduce
M:={ge M (H): there is le.#, (X,1) such that

AMf)={v(f)dq for every fe B(X,t)}
and "

R (H):=(V (ff +c)H: feB(X,0); c;eR; i=1,...,n; neN}.
On .4 an inductive ordering is defined by
p<q iff p(b)=q{b) forevery be®"(H).

If X is compact, then it is equivalent to the Choquet ordering. In (#, <) we can
prove analoga of the classical uniqueness theorems, e.g. [17, IL3.6 ([9], p. 62).

I am indebted to Prof. Kellerer for a simplification in the proof of the theorem and to H.
v. Weizsicker for several discussions.
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