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1. Introduction 

We prove a representation theorem of the Choquet type. Let (X, t) be a topological 
space and H a weakly c l o s e d - n o t  necessarily c o m p a c t - b o u n d e d  convex set of 
nonnegative tight Borel measures on X. F o r / ~eH  there is a probabili ty measure p 
on the set ex H of extreme points of H with barycenter/~. The problem is, what 
"barycenter"  means. In [8] Weizs~icker essentially proves the existence of a 
probabili ty measure p such that 

It(A)= ~ v(A) dp 
e x H  

for every Baire subset A ofX.  I f X  is completely regular and Souslin, this result can 
easily be obtained from [4], ex. 5.10, if it is Polish, from a remark in [5], w 3. 

It  is natural to ask for a representing measure p such that the formula holds for 
every Borel set or even for every #-measurable set A (compare I-8], 5.2). Even in the 
case where X is compact  there does not seem to be a simple way from the results 
mentioned above to the answer of this question. In this paper we give a positive 
answer by proving the desired result directly. 

2. Preliminaries 

If A is a set and Y a set of real functions on A, then o-(Y) denotes the a-algebra 
generated on A by Y. I fB c A ,  then 1B is the characteristic function of B on A, and if 
f i s  a function on A, then f i B  is the restriction of f on B. IfCg is a system of subsets of 
A, then we define Bc~Cg.- = {B c~ C: C~(g}. If C is a convex subset of a linear space, 
then x~ C will be called extreme point, iff there do not exist distinct points y, zE C 
with x =  1/2(y+z). Ex C is the set of extreme points of C. 

Let (X, t) be a topological space, cg(X, t) denotes the set of bounded continuous 
functions on X, ~Bo(X, t ) :=  a(cg(X, t)) (~(X,  t)) the a-algebra of Baire (Borel) sets 
and ~o(X,  t) (~(X,  t)) the set of real bounded ~o(X,  t) (~3(X, t))-measurable 
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functions on X. A nonnegative measure # on ~3(X, t) is said to be tight iff, for every 
> 0 there is a compact set K ~ X such that/~(X - K) < ~. The set of bounded tight 

measures on X will be denoted by Jg+ (X, t). I f f~N(X,  t) and #EJg+(X, t), then the 
integral ~ fdl~ is denoted by/~(f) ; f '  is the mapping v ~--~v(f) on M//+ (X, t). J ( X ,  t) is 

X 

the set of bounded lower semicontinuous functions on X. 
Throughout the paper subsets M of J + ( X ,  t) will be endowed with the weak 

topology v(M, J ( X ,  t)), the smallest topology for which every function f ' I M  with 
fE~c(X, t) is lower semicontinuous. 

. 

We now formulate the main result: 

Theorem. Suppose that (X, t) is a topological space and H a convex and weakly closed 
set of tight measures with sup{v(X)" v e H } <  oo. Then for every #EH there is a 
probability measure p on the a-algebra rr({f'lex H: f E N ( X ,  t)}) on the set of extreme 
points of H such that 

l~(f) = ~ v( f )  dp for every f e N ( X ,  t), (1) 
exit/ 

This result can be extended to a wider class of functions. A function on X is 
called/~-measurable, iff it is measurable with respect to the/z-completion of ~3 (X, t). 

Corollary. In the theorem bounded I~-measurable functions f on X can be substituted 
for the junctions f e N ( X ,  t). 

Before we give the proofs, we recall some well known facts. Let E be a real 
locally convex linear space and K ~ E a convex compact subset with the relative 
topology s. A measure p E Jg+ (K, s) represents x eE, which is denoted by x = r (p), iff 
x'x = ~ x' dp for every x'EE', the topological dual of E. If p is a probability measure, 

K 

this is equivalent to a(x)= ~ a dp for every lower semicontinuous function on K 
K 

which is affine (i.e. if c6(0, l) and y, zEK, then f ( c y  + (1 - c) z) -- cf(y) + (1 - c) f(z))  
([6], 9.7). On ~d+ (K, s) the Choquet ordering is defined by p-<q iff p ( f ) <  q ( f )  for 
every fECg(K, s) which is convex (substitute" __<" for"  = "  in the definition of affine). 
This ordering is inductive. A convenient reference for Choquet theory is [1]. 

Suppose now that X is compact, c~(X, t) with the norm of uniform convergence 
is a Banach space. We define the linear space of signed measures Jg(X, t ) ,= 
M I + ( X , t ) - • + ( X , t ) .  By the Riesz representation theorem J / ( X , t )  can be 
identified with cg(X, t)' and is locally convex in the weak*-topology. On Jg+ (X, t) 
the weak*-topology coincides with v(~+(X,  t), J ( X ,  t)) ([7], Th. 8.1). Thus H is a 
convex weak*-compact subset of ~ ( X ,  t) and Choquet theory can be applied. 

For this compact case we reformulate the notions of barycenter and Choquet 
ordering in a way which is more convenient in our special situation. First, we define 

V t .~ N~')(H):={( ( f /+c~) lg : f /ENo(X, t ) ;  e/~IR; i = 1 , . ,  n; nEN}. 
i-<n 
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Lemma. Suppose (X, t) to be compact and let #~//{+(X, t) and p, q~J~+(H, u(H, 
Je(X, t))). Then: 

a) I f  f ~ (X , t ) ,  then f '[H is measurable with respect to ~3(H, v(H, J (X,  t))). 
b) #= r(p) if and only if 

#(f) = ~ v(f) dp for every f ~ ( X ,  t). (2) 
H 

c) p-<q if and only if p(b)<q(b) for every b~M~(H). 

Proof. Define the sets 

~ :  = { f ~ ( X ,  t): f '[H is Borel measurable}, 

Jr': = { f ~ ( X ,  t): # ( f ) =  ~ v(f)dp}. 
H 

According to the definition of the weak topology (1a)' is lower semicontinuous on H 
for every Aet. Hence 1AE~ and if #=r(p), then 1A~W' tOO. Since ~ and Yf' are 
closed under bounded sequential convergence, this implies ~ ( X , t ) c W  and 
~(X,  t) c W' ([3], w 0). Thus we have proved a) and the nontrivial implication of b). 

~o(X, t) is the smallest class of bounded functions on X which contains oK(X, t) 
and is closed under bounded sequential convergence ([2], ex. 56.9). By applying this 
argument for each i<n separately, we see that p(b)<=q(b) holds for every b of the 
form 

b= V(f/+c~)IH 
i <r,  

with ciMR and f ~ o ( X ,  t) if and only if it holds for every b with f ~ ( X ,  t). The 
latter condition is equivalent to p~q  by [13, 1.1.3. 

Proof of the Theorem. I. First we assume (X, t) to be compact. 

1. H is a convex weak*-compact subset of ~ ( X ,  t). Choquet's theorem ([lJ, 1.4.8) 
provides the existence of a probability measure q~Jd+ (H) (we omit the topology) 
which represents # and is maxima/in the Choquet ordering. By the lemma, (2) holds 
for q. If M ~ ~ +  (X, t) define 

~IB(M):=a({f'IM : f a~(X, t)}). 

We will show that q(W) = 0 for every We?iB(H) with Wc~ ex H = ~. Hence the outer 
measure ofq J29(H) induces a probability measure p on 2B(ex H) for which (1) holds. 

2. Let We21~(H) be disjoint from exH. It is easily verified that 

?tB(H)=U{a({f'IH: y e s } ) :  2 ~ M ( X ,  t) countable}. 

Hence there is a countable family f f  c ~(X,  t) such that 

Wca({f'[H: f ~ - } ) .  

By use of Lusin's theorem ([2], ex. 68.5) a sequence of mutually disjoint compact 
sets (K,: n~N) in X can be constructed which has the following properties: 
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(a) # ( X -  U K , ) = 0 ;  

(b) f [K ,  eCg(K,, K,  c~ t) for every f e w  and neN.  

This is already done in [8], proof of Satz 1. 

3. We define 

XI:= ?NK,, to:=Xlcnt. 

t 1 denotes the topology on X 1 characterised by: G e q iff G c~ K , e K ,  c~ t for every 
neN.  

(X~, ta) is a locally compact a-compact space. Furthermore 

~3 (X1, to) = ~(Xl ,  tl) 

and the sets JI+(X1, to) and J/C+(X1, tl) are equal. 
Define (X2, t2) to be the Alexandrov compactification of (X~, tl), 

dCxl(X, t), = {ve~+(X,  t): v(X - X 0 = 0 } ,  

~{xt(Xa,  t a ) : =  {1)eJ~/~+(X2, ta): 1,(X 2 - X 1 ) = 0 }  

and i: X1 ~ X  a the natural embedding. 
By a well known lemma ([4], 5.3) the mappings 

q :  ~xI (X,  t) ~ JC+(X1, to), 

12: .~+(X1,  t l ) - - ) ' J~xl(X2,  t2), 

are homeomorphisms. 
Further we define 

l : = 1 2 ~  Ho:=H~Jgx~(X,t),  

/-/a the closure of H 2 in ~{+(Xa, t2)  , 

v ~  vlfS(X l, to), 
"-1 V I----~V o 1 

H2:=tH o, 

~2i:=a({f'lH: f e~(X,t) ,  fLK~eCg(Kn,K, nt)  for every neN}) 

and state some properties: 

(c) Ho, H2 and/~2 are convex;/q2 is compact. 

(d) ex H0 = ex H c~ ~/xl(X, t), H2 = / t 2 0  ~/~X1 (X 2, t 2), 
ex H2 = ex *O2 c~ J//x,(X2, t2). 

(e) * e x H 0 = e x H 2 .  

(f) t- l(fSo(Iq2))=2Ic~Ho~o(H)caHo; ~-1[H2: H2--+Ho is continuous. 

We prove (c)-(f). 
(c) The convexity of the sets is clear./-]2 is bounded and closed in the weak*- 

topology, hence compact. 
(d) If veex H c~ Ho, then veex Ho. Conversely, let veex H o and v 1, v z e H  with v 

= 1/2(vl + v2). v ( X - X 1 )  = 0  implies vi(X -X1)  =0  for i = 1, 2, hence vieHo, v = v 1 
=v2 and veexH. 
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As Ho is relatively closed in J~xl (X, t) and 11 is a homeomorphism, H 1 is closed 
with respect to v(Jg+(Xj, to), J(X1, to)), hence with respect to the finer topology 
o(dg+(X1, tO, J(XD tO). Since t2 is a homeomorphism too, H2 is relatively closed 
in J~xl(X2, t2) which means 

H2 =/]2 c3 d{xl(Xz, t2). 

From this the last equation follows exactly like the first one. 
(e) holds, since i is affine and injective. 
(f) We recall that H and t]2 are compact. By use of the Stone-WeierstraB 

theorem we find 

No(H)=a({f']H: fe~(X,t)}), No(/]2)=a({f'[Ii2: fscg(X2,t2)}). 

Hence No(H) c~ Ho c 9X c~ H o and 

9.1c~Ho = z- l(a({f ' l / /2:  fe~(X2,  tz),f[K.~Cg(K.,K.c~t2) for every n~N})) 

- -  ~ -  l(No(~q2)). 
z-~]H2 is continuous because of 

o(H1, J (X1,  to)) c o(Hx, Y(X1, tl)). 

4. The relation 

0 =# (X - X ~ ) =  ~ v(X -X~)dq 
H 

implies q(H-Ho)=O. Because of this and (t) a probability measure is defined by 

~(B): =q(z- I(B)) for every B6No(H2). 

We denote the unique tight extension of g/to 23(/]2) by c 7 as well and show that it 
is maximal in the Choquet ordering. Suppose nS~d/[+ (/12) with ~/~n~. The compact 
sets Kn being closed and open in X2, we have Xle~o(X2,t2) which implies 

r V -- 

hence 

H 2  /~2 

which means nS(/] 2 - H 2 ) =  0. 
In (0 we showed that z- ~ is continuous on H2; thus a tight measure m is defined 

on H by 

m(B):=rh(t(Bc~Ho)) for every B ~ ( H ) .  

I f f~No(X , t) let feNo(X2,  t2) be an extension off[X~. Suppose f l  .... , f.eNo(X, t) 
and c~ .. . .  , c.elR. By part c) of the lemma 
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[. V (f/+ci)dq<= [~ V(S'+c3dm, 
F12 i<n Er2 i<n  

hence 

S V (f,:'+c0@=<S V (f;+c3dm. 
H i<=n H i n n  

By the lemma this is equivalent to q-<m. By hypothesis q is maximal which implies q 
= m, hence q = m. Thus ~/is maximal. 
5. If W~fiB(H) is disjoint from exH we have W c ~ e x H o = ~  by (d) and 
z(Wc~ H o)~ ex t/2 = ~ by (d) and (e). From the construction of X1 and t l follows 
Ws~[, hence ,(Wc~ Ho)ff~3o(/~2) by (f). The maximal measure ~ vanishes on every 
Baire set disjoint from ex H2 ([1], p. 38), especially q(z(W~ Ho) ) = 0  which implies 
q(W)=0. 

This completes the proof in the compact case. 

II. Now we consider an arbitrary topological space. 

1. As # is tight there is a sequence of mutually disjoint compact sets (K,: n~lN) in X 
such that 

X I : =  O K ,  

has measure #(X). Exactly like in part I we can construct the compact space (XE, re), 
the mapping l and the set H2 such that (c), (d) and (e) keep valid. Again we have 
X 1 c~B(X, t)=X 1 c~3(X 2, t2), hence 

(g) z~El3(ex H0) = ~ ( e x  H2). 

According to part I, for z/~Etq 2 there is a probability measure ~ on ~(ex /J2)  for 
which 

l#(A)= ~ v(A)d~ for every Ae~(X2,t2). 
exH2 

l#(X2--X1)----O implies 

1 =p({veex/-/2: v(X2- Xt) = 0}) =p(ex H2). 

Using (g) we define the image measure ~ o ~ on ~g(ex Ho) and denote its canonical 
extension to ~3(ex H) by p. If A~B(X, t), then 

#(A)=~#(Ac'~X1)-= ~ v(AaX~)d~= ~ v(A)dp. 
exH2 exH 

Hence (1) holds and the theorem is proved. 

Proof of the Corollary. Let f be a bounded #-measurable function on X. There are 
gsN(X, t) and NE~(X,t) with f l X - N = g l X - N  and #(N)=0. From 

v(N)dp=#(N)=O 
eXH 

follows 

p({v~exH: v(N)>0})=0.  
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We denote this null-set by M. f '  is defined on ex H - M  (and can be trivially 
extended to ex H) and equal to g' there. Thus 

/ . t ( f)=p(g)= ~ v(g)dp= ~ v(f)dp= ~ v(f)dp. 
e x H -  M e x H - - M  e x H  

This completes the proof. 

4. Remarks 

1. The proof yields a stronger result as stated in the theorem: There is a tight 
probability measm'e q on the Borel sets of H such that (2) holds for q and 
qla({f'[H: f ~ ( X ,  t)}) induces p by outer measure construction. 

2. Our final remark concerns uniqueness of representing measures. We introduce 

J//: = {qeJ~+(H): there is 2~d/+(X, t) such that 

2(f)  = f v(f) dq for every f~:~(X, t)} 
H 

and 

~ V ( H ) : = ( V  (f' +c~)tH: f ~ ( X , t ) ;  ci~IR; i=l,...,n; n~N}. 
i<=n 

O n / / / / a n  inductive ordering is defined by 

p ~ .q  iff p(b)<=q(b) for every bc~V(H). 

If X is compact, then it is equivalent to the Choquet ordering. In (~' ,  -~-) we can 
prove analoga of the classical uniqueness theorems, e.g. Ell, I1.3.6 ([-9], p. 62). 

I am indebted to Prof. KeUerer for a simplification in the proof of the theorem and to H. 
v. Weizs~icker for several discussions. 
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