On the Integral Representation in Convex Noneompact Sets of Tight Measures

Gerhard Winkler

Mathematisches Institut der Universität München, Theresienstr. 39, D-8000 München 2, Federal Republic of Germany

1. Introduction

We prove a representation theorem of the Choquet type. Let (X, t) be a topological space and H a weakly closed – not necessarily compact – bounded convex set of nonnegative tight Borel measures on X. For $\mu \in H$ there is a probability measure p on the set ex H of extreme points of H with barycenter μ . The problem is, what "barycenter" means. In [8] Weizsäcker essentially proves the existence of a probability measure p such that

$$
\mu(A) = \int_{\mathrm{ex}\,H} v(A) \, dp
$$

for every Baire subset A of X. If X is completely regular and Souslin, this result can easily be obtained from [4], ex. 5.10, if it is Polish, from a remark in [5], § 3.

It is natural to ask for a representing measure p such that the formula holds for every Borel set or even for every μ -measurable set A (compare [8], 5.2). Even in the case where X is compact there does not seem to be a simple way from the results mentioned above to the answer of this question. In this paper we give a positive answer by proving the desired result directly.

2. Preliminaries

If A is a set and $\mathcal F$ a set of real functions on A, then $\sigma(\mathcal F)$ denotes the σ -algebra generated on A by \mathscr{F} . If $B \subset A$, then 1_B is the characteristic function of B on A, and if f is a function on A, then $f|B$ is the restriction of f on B. If $\mathscr C$ is a system of subsets of A, then we define $B \cap \mathscr{C} = \{B \cap C : C \in \mathscr{C}\}\$. If C is a convex subset of a linear space, then $x \in C$ will be called extreme point, iff there do not exist distinct points $y, z \in C$ with $x = 1/2(y+z)$. Ex C is the set of extreme points of C.

Let (X, t) be a topological space. $\mathcal{C}(X, t)$ denotes the set of bounded continuous functions on X, $\mathfrak{B}_0(X, t) := \sigma(\mathscr{C}(X, t))$ ($\mathfrak{B}(X, t)$) the σ -algebra of Baire (Borel) sets and $\mathscr{B}_0(X, t)$ ($\mathscr{B}(X, t)$) the set of real bounded $\mathfrak{B}_0(X, t)$ ($\mathfrak{B}(X, t)$)-measurable

Zeitschrift 9 by Springer-Verlag 1978 functions on X. A nonnegative measure μ on $\mathfrak{B}(X, t)$ is said to be tight iff, for every $\varepsilon > 0$ there is a compact set $K \subset X$ such that $\mu(X - K) < \varepsilon$. The set of bounded tight measures on X will be denoted by $\mathcal{M}_+(X, t)$. If $f \in \mathcal{B}(X, t)$ and $\mu \in \mathcal{M}_+(X, t)$, then the integral $\int f d\mu$ is denoted by $\mu(f); f'$ is the mapping $\nu \mapsto \nu(f)$ on $\mathcal{M}_+(X, t)$. $\mathcal{I}(X, t)$ is

the set of bounded lower semicontinuous functions on X.

Throughout the paper subsets M of $\mathcal{M}_+(X, t)$ will be endowed with the weak topology $v(M, \mathcal{I}(X, t))$, the smallest topology for which every function $f'|M$ with $f \in \mathcal{I}(X, t)$ is lower semicontinuous.

3.

We now formulate the main result:

Theorem. *Suppose that (X, t) is a topological space and H a convex and weakly closed set of tight measures with sup{v(X): veH} <* ∞ *. Then for every* $\mu \in H$ *there is a probability measure p on the* σ *-algebra* $\sigma({f'|\text{ex } H: f \in \mathcal{B}(X, t)})$ *on the set of extreme points of H such that*

$$
\mu(f) = \int_{\text{ex } H} v(f) \, dp \quad \text{for every } f \in \mathcal{B}(X, t). \tag{1}
$$

This result can be extended to a wider class of functions. A function on X is called μ -measurable, iff it is measurable with respect to the μ -completion of $\mathfrak{B}(X, t)$.

Corollary. In the theorem bounded μ -measurable functions f on X can be substituted *for the functions* $f \in \mathcal{B}(X, t)$ *.*

Before we give the proofs, we recall some well known facts. Let E be a real locally convex linear space and $K \subseteq E$ a convex compact subset with the relative topology s. A measure $p \in \mathcal{M}_+(K, s)$ represents $x \in E$, which is denoted by $x = r(p)$, iff $x'x = \int x' dp$ for every $x' \in E'$, the topological dual of E. If p is a probability measure, this is equivalent to $a(x) = \int a dp$ for every lower semicontinuous function on K K which is affine (i.e. if $c \in (0, 1)$ and *y*, $z \in K$, then $f(cy + (1 - c)z) = cf(y) + (1 - c)f(z)$) ([6], 9.7). On $\mathcal{M}_{+}(K, s)$ the Choquet ordering is defined by $p \prec q$ iff $p(f) \leq q(f)$ for every $f \in \mathcal{C}(K, s)$ which is convex (substitute " \leq " for " = " in the definition of affine). This ordering is inductive. A convenient reference for Choquet theory is [1].

Suppose now that X is compact. $\mathcal{C}(X, t)$ with the norm of uniform convergence is a Banach space. We define the linear space of signed measures $\mathcal{M}(X, t) :=$ $\mathcal{M}_+(X,t)-\mathcal{M}_+(X,t)$. By the Riesz representation theorem $\mathcal{M}(X,t)$ can be identified with $\mathcal{C}(X, t)'$ and is locally convex in the weak*-topology. On $\mathcal{M}_+(X, t)$ the weak*-topology coincides with $v(M_+(X, t), \mathcal{I}(X, t))$ ([7], Th. 8.1). Thus H is a convex weak*-compact subset of $\mathcal{M}(X, t)$ and Choquet theory can be applied.

For this compact case we reformulate the notions of barycenter and Choquet ordering in a way which is more convenient in our special situation. First, we define

$$
\mathscr{B}_0^{\vee}(H) := \{ (\bigvee_{i \leq n} (f'_i + c_i) | H : f_i \in \mathscr{B}_0(X, t); \ c_i \in \mathbb{R}; \ i = 1, \dots, n; \ n \in \mathbb{N} \}.
$$

Lemma. *Suppose* (X, t) to be compact and let $\mu \in M_+(X, t)$ and $p, q \in M_+(H, v(H, t))$ $\mathcal{I}(X, t)$)). Then:

a) *If f* $\in \mathcal{B}(X,t)$, then f'|H is measurable with respect to $\mathfrak{B}(H, v(H, \mathcal{I}(X,t)))$. b) $\mu = r(p)$ if and only if

$$
\mu(f) = \int_{H} v(f) \, dp \quad \text{for every } f \in \mathcal{B}(X, t). \tag{2}
$$

c)
$$
p \prec q
$$
 if and only if $p(b) \leq q(b)$ for every $b \in \mathcal{B}_0^{\vee}(H)$.

Proof. Define the sets

$$
\mathcal{H} := \{ f \in \mathcal{B}(X, t): f'|H \text{ is Borel measurable} \},
$$

$$
\mathcal{H}' := \{ f \in \mathcal{B}(X, t): \mu(f) = \int_R \nu(f) \, dp \}.
$$

According to the definition of the weak topology $(1_A)'$ is lower semicontinuous on H for every $A \in t$. Hence $1_A \in \mathcal{H}$ and if $\mu = r(p)$, then $1_A \in \mathcal{H}'$ too. Since \mathcal{H} and \mathcal{H}' are closed under bounded sequential convergence, this implies $\mathscr{B}(X,t) \subset \mathscr{H}$ and $\mathscr{B}(X, t) \subset \mathscr{H}'$ ([3], § 0). Thus we have proved a) and the nontrivial implication of b).

 $\mathscr{B}_0(X, t)$ is the smallest class of bounded functions on X which contains $\mathscr{C}(X, t)$ and is closed under bounded sequential convergence ($[2]$, ex. 56.9). By applying this argument for each *i* \leq *n* separately, we see that $p(b) \leq q(b)$ holds for every *b* of the form

$$
b=\bigvee_{i\leq n}(f'_i+c_i)|H
$$

with $c_i \in \mathbb{R}$ and $f_i \in \mathscr{B}_0(X, t)$ if and only if it holds for every b with $f_i \in \mathscr{C}(X, t)$. The latter condition is equivalent to $p \prec q$ by [1], I.1.3.

Proof of the Theorem. I. First we assume (X, t) to be compact.

1. H is a convex weak*-compact subset of $\mathcal{M}(X, t)$. Choquet's theorem ([1], 1.4.8) provides the existence of a probability measure $q \in M_+ (H)$ (we omit the topology) which represents μ and is maximal in the Choquet ordering. By the lemma, (2) holds for q. If $M \subset \mathcal{M}_+(X,t)$ define

 $\mathfrak{W}(M) := \sigma({f'|M : f \in \mathscr{B}(X, t)}).$

We will show that $q(W) = 0$ for every $W \in \mathfrak{W}(H)$ with $W \cap eX H = \emptyset$. Hence the outer measure of $q \mathfrak{W}(H)$ induces a probability measure p on $\mathfrak{W}(\mathrm{ex}\,H)$ for which (1) holds.

2. Let $W \in \mathfrak{W}(H)$ be disjoint from ex H. It is easily verified that

 $\mathfrak{B}(H) = \left[\begin{array}{cc} 1 & \text{for } (f'|H: f \in \mathcal{F}) \colon \mathcal{F} \subset \mathcal{B}(X, t) \text{ countable} \end{array} \right].$

Hence there is a countable family $\mathscr{F} \subset \mathscr{B}(X, t)$ such that

 $W \in \sigma({f'}|H: f \in \mathscr{F})$).

By use of Lusin's theorem $(2]$, ex. 68.5) a sequence of mutually disjoint compact sets $(K_n: n \in \mathbb{N})$ in X can be constructed which has the following properties:

(a)
$$
\mu(X - \bigcup_{n=1}^{n} K_n) = 0;
$$

(b) $f|K_n \in \mathscr{C}(K_n, K_n \cap t)$ for every $f \in \mathscr{F}$ and $n \in \mathbb{N}$.

This is already done in [8], proof of Satz 1.

3. We define

$$
X_1 := \bigcup_{n \in \mathbb{N}} K_n, \qquad t_0 := X_1 \cap t.
$$

 t_1 denotes the topology on X_1 characterised by: $G \in t_1$ iff $G \cap K_n \in K_n \cap t$ for every $n \in \mathbb{N}$.

 (X_1, t_1) is a locally compact σ -compact space. Furthermore

 $\mathfrak{B}(X_1, t_0) = \mathfrak{B}(X_1, t_1)$

and the sets $\mathcal{M}_+(X_1, t_0)$ and $\mathcal{M}_+(X_1, t_1)$ are equal.

Define (X_2, t_2) to be the Alexandrov compactification of (X_1, t_1) ,

$$
\mathcal{M}_{X_1}(X, t) := \{ v \in \mathcal{M}_+(X, t) : \ v(X - X_1) = 0 \},
$$

$$
\mathcal{M}_{X_1}(X_2, t_2) := \{ v \in \mathcal{M}_+(X_2, t_2) : \ v(X_2 - X_1) = 0 \}
$$

and i: $X_1 \rightarrow X_2$ the natural embedding.

By a well known lemma $([4], 5.3)$ the mappings

 $u_1: M_{X_1}(X, t) \to M_+(X_1, t_0), \qquad v \mapsto v \mathcal{B}(X_1, t_0),$ $u_2: M_+(X_1, t_1) \to M_{X_1}(X_2, t_2), \quad v \mapsto v \circ i^{-1}$

are homeomorphisms.

Further we define

$$
\iota := \iota_2 \circ \iota_1, \qquad H_0 := H \cap \mathcal{M}_{X_1}(X, t), \qquad H_2 := \iota H_0,
$$

 $\bar{H_2}$ the closure of H_2 in $\mathcal{M}_+(X_2,t_2)$,

$$
\mathfrak{A}:=\sigma(\{f'|H: f\in\mathscr{B}(X,t), f|K_n\in\mathscr{C}(K_n, K_n\cap t) \text{ for every } n\in\mathbb{N}\})
$$

and state some properties:

- (c) H_0 , H_2 and $\bar{H_2}$ are convex; $\bar{H_2}$ is compact.
- (d) ex $H_0 =$ ex $H \cap M_{X_1}(X, t)$, $H_2 = \bar{H}_2 \cap M_{X_1}(X_2, t_2)$, $ex H_2 = ex \bar{H}_2 \cap M_{X_1}(X_2, t_2).$
- (e) $i \exp H_0 = \exp H_2$.

(f) $\iota^{-1}(\mathfrak{B}_{0}(\bar{H}_{2})) = \mathfrak{A} \cap H_{0} \supset \mathfrak{B}_{0}(H) \cap H_{0}$; $\iota^{-1}|H_{2}: H_{2} \to H_{0}$ is continuous. We prove (c)–(f).

(c) The convexity of the sets is clear. \bar{H}_2 is bounded and closed in the weak*topology, hence compact.

(d) If $v \in \mathcal{X}$ H \cap H₀, then $v \in \mathcal{X}$ H₀. Conversely, let $v \in \mathcal{X}$ H₀ and v_1 , $v_2 \in$ H with v $= 1/2(v_1 + v_2)$. $v(X - X_1) = 0$ implies $v_i(X - X_1) = 0$ for $i = 1, 2$, hence $v_i \in H_0$, $v = v_1$ $=v_2$ and $v \in \text{ex } H$.

Integral Representation of Tight Measures 75

As H₀ is relatively closed in $\mathcal{M}_{X_1}(X, t)$ and i_1 is a homeomorphism, H₁ is closed with respect to $v(\mathcal{M}_+(X_1,t_0), \mathcal{I}(X_1,t_0))$, hence with respect to the finer topology $v(M_+(X_1,t_1), \mathcal{I}(X_1,t_1))$. Since t_2 is a homeomorphism too, H_2 is relatively closed in $\mathcal{M}_{X_1}(X_2, t_2)$ which means

$$
H_2 = \overline{H}_2 \cap \mathscr{M}_{X_1}(X_2, t_2).
$$

From this the last equation follows exactly like the first one.

(e) holds, since i is affine and injective.

(f) We recall that H and \overline{H}_2 are compact. By use of the Stone-Weierstraß theorem we find

$$
\mathfrak{B}_0(H) = \sigma(\{f'|H: f \in \mathscr{C}(X,t)\}), \quad \mathfrak{B}_0(\bar{H}_2) = \sigma(\{f'|H_2: f \in \mathscr{C}(X_2,t_2)\}).
$$

Hence $\mathfrak{B}_0(H) \cap H_0 \subset \mathfrak{A} \cap H_0$ and

$$
\mathfrak{A} \cap H_0 = i^{-1}(\sigma(\{f' | \bar{H}_2 : f \in \mathcal{B}(X_2, t_2), f | K_n \in \mathcal{C}(K_n, K_n \cap t_2) \text{ for every } n \in \mathbb{N}\}))
$$

= $i^{-1}(\mathfrak{B}_0(\bar{H}_2)).$

 ι^{-1} |H₂ is continuous because of

$$
v(H_1, \mathcal{I}(X_1, t_0)) \subset v(H_1, \mathcal{I}(X_1, t_1)).
$$

4. The relation

$$
0 = \mu(X - X_1) = \int_{H} \nu(X - X_1) \, dq
$$

implies $q(H-H_0)=0$. Because of this and (f) a probability measure is defined by

$$
\overline{q}(B) := q(\iota^{-1}(B)) \quad \text{for every } B \in \mathfrak{B}_0(H_2).
$$

We denote the unique tight extension of \bar{q} to $\mathfrak{B}(\bar{H}_2)$ by \bar{q} as well and show that it is maximal in the Choquet ordering. Suppose $\vec{m} \in \mathcal{M}_+(H_2)$ with $\vec{q} \prec \vec{m}$. The compact sets K_n being closed and open in X_2 , we have $X_1 \in \mathfrak{B}_0(X_2, t_2)$ which implies

$$
(\mathbb{1}_{X_2-X_1})'\in\mathfrak{B}^\vee_0(\bar{H}_2)\cap(-\mathfrak{B}^\vee_0(\bar{H}_2)),
$$

hence

$$
\int_{\overline{H}_2} (1_{X_2 - X_1})' d\overline{m} = \int_{\overline{H}_2} (1_{X_2 - X_1})' d\overline{q}
$$

which means $\overline{m}(\overline{H}_2 - H_2) = 0$.

In (f) we showed that i^{-1} is continuous on H_2 ; thus a tight measure m is defined on H by

$$
m(B) := \overline{m}(\iota(B \cap H_0))
$$
 for every $B \in \mathfrak{B}(H)$.

If $f \in \mathscr{B}_0(X, t)$ let $\overline{f} \in \mathscr{B}_0(X_2, t_2)$ be an extension of $f[X_1, \text{Suppose } f_1, \ldots, f_n \in \mathscr{B}_0(X, t)$ and $c_1, ..., c_n \in \mathbb{R}$. By part c) of the lemma

$$
\int_{\tilde{H}_2} \bigvee_{i \leq n} (\tilde{f}_i' + c_i) d\tilde{q} \leq \int_{\tilde{H}_2} \bigvee_{i \leq n} (\tilde{f}_i' + c_i) d\tilde{m},
$$

hence

$$
\int_{H} \bigvee_{i \leq n} (f'_i + c_i) d q \leq \int_{H} \bigvee_{i \leq n} (f'_i + c_i) d m.
$$

By the lemma this is equivalent to $q\prec m$. By hypothesis q is maximal which implies q $=$ *m*, hence $\bar{q} = \bar{m}$. Thus \bar{q} is maximal.

5. If $W \in \mathfrak{W}(H)$ is disjoint from $e \times H$ we have $W \cap e \times H_0 = \emptyset$ by (d) and $i(W \cap H_0) \cap \text{ex } \overline{H}_2 = \emptyset$ by (d) and (e). From the construction of X_1 and t_1 follows $W \in \mathfrak{A}$, hence $\iota(W \cap H_0) \in \mathfrak{B}_0(H_2)$ by (f). The maximal measure \bar{q} vanishes on every Baire set disjoint from ex \tilde{H}_2 ([1], p. 38), especially $\bar{q}(i(W \cap H_0)) = 0$ which implies $q(W)=0$.

This completes the proof in the compact case.

II. Now we consider an arbitrary topological space.

1. As μ is tight there is a sequence of mutually disjoint compact sets $(K_n: n \in \mathbb{N})$ in X such that

$$
X_1 = \bigcup_{n \in \mathbb{N}} K_n
$$

has measure $\mu(X)$. Exactly like in part I we can construct the compact space (X_2, t_2) , the mapping i and the set H_2 such that (c), (d) and (e) keep valid. Again we have $X_1 \cap \mathfrak{B}(X,t) = X_1 \cap \mathfrak{B}(X_2,t_2)$, hence

(g) $\iota \mathfrak{W}(\text{ex } H_0) = \mathfrak{W}(\text{ex } H_2)$.

According to part I, for $\iota \mu \in \bar{H}_2$ there is a probability measure \bar{p} on $\mathfrak{B}(\mathrm{ex}\, \bar{H}_2)$ for which

$$
\iota \mu(A) = \int_{\text{ex}\,H_2} \nu(A) \, d\bar{p} \quad \text{for every } A \in \mathfrak{B}(X_2, t_2).
$$

 $\iota \mu(X_2-X_1)=0$ implies

$$
1 = \bar{p}(\{v \in \text{ex } H_2 : v(X_2 - X_1) = 0\}) = \bar{p}(\text{ex } H_2).
$$

Using (g) we define the image measure $\bar{p} \circ i$ on $\mathfrak{W}(\text{ex } H_0)$ and denote its canonical extension to $\mathfrak{B}(\text{ex } H)$ by p. If $A \in \mathfrak{B}(X, t)$, then

$$
\mu(A) = \iota \mu(A \cap X_1) = \int_{\alpha \times H_2} \nu(A \cap X_1) d\overline{p} = \int_{\alpha \times H} \nu(A) d\rho.
$$

Hence (1) holds and the theorem is proved.

Proof of the Corollary. Let f be a bounded μ -measurable function on X. There are $g \in \mathcal{B}(X, t)$ and $N \in \mathfrak{B}(X, t)$ with $f |X - N = g | X - N$ and $\mu(N) = 0$. From

$$
\int_{\exp X} v(N) \, dp = \mu(N) = 0
$$

follows

 $p({\text{veex } H: \nu(N)>0})=0.$

We denote this null-set by M. f' is defined on $ex H-M$ (and can be trivially extended to $ex H$) and equal to g' there. Thus

$$
\mu(f) = \mu(g) = \int_{\alpha x H - M} v(g) dp = \int_{\alpha x H - M} v(f) dp = \int_{\alpha x H} v(f) dp.
$$

This completes the proof.

4. Remarks

1. The proof yields a stronger result as stated in the theorem: There is a tight probability measure q on the Borel sets of H such that (2) holds for q and $q|\sigma({f'|H: f \in \mathfrak{B}(X, t)})$ induces p by outer measure construction.

2. Our final remark concerns uniqueness of representing measures. We introduce

$$
\mathcal{M} := \{ q \in \mathcal{M}_+(H) \colon \text{there is } \lambda \in \mathcal{M}_+(X, t) \text{ such that}
$$

$$
\lambda(f) = \int_H v(f) \, dq \text{ for every } f \in \mathcal{B}(X, t) \}
$$

and

$$
\mathscr{B}^\vee(H) := (\bigvee_{i \leq n} (f'_i + c_i) | H : f_i \in \mathscr{B}(X,t); c_i \in \mathbb{R}; i = 1, ..., n; n \in \mathbb{N} \}.
$$

On $\mathcal M$ an inductive ordering is defined by

 $p \prec q$ iff $p(b) \leq q(b)$ for every $b \in \mathcal{B}^{\vee}(H)$.

If X is compact, then it is equivalent to the Choquet ordering. In (\mathcal{M}, \prec) we can prove analoga of the classical uniqueness theorems, e.g. [1], II.3.6 ([9], p. 62).

I am indebted to Prof. Kellerer for a simplification in the proof of the theorem and to H. v. Weizsäcker for several discussions.

References

- 1. Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Berlin-Heidelberg-New York: Springer 1971
- 2. Berberian, S.K.: Measure and Integration. New York: Chelsea 1970
- 3. Blumenthal, R.M., and Getoor, R.K.: Marcov Processes and Potential Theory. New York: Academic Press 1968
- 4. Bourbaki, N.: Int6gration, Chapitre IX. Paris: Hermann 1969
- 5. Edgar, G.A.: Extremal Integral Representations. J. functional Analysis 23, 145-161 (1976)
- 6. Phelps, R.R.: Lectures on Choquet's Theorem. New York: Van Nostrand 1966
- 7. Topsoe, F.: Topology and Measure. Lecture Notes in Mathematics 133. Berlin-Heidelberg-New York: Springer 1970
- 8. Weizsäcker, H. v.: Der Satz von Choquet-Bishop-de Leeuw für konvexe nicht kompakte Mengen straffer Maße über beliebigen Grundräumen. Math. Z. 142, 161-165 (1975)
- 9. Winkler, G.: Über die Integraldarstellung in konvexen nicht kompakten Mengen straffer Maße. Thesis, Universität München