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1. Introduction 

A finite part ial  geomet ry  [2] is an incidence s tructure S=(P,B,I)  with a 
symmet r ic  incidence relat ion satisfying the following axioms:  

(i) each point  is incident with t + l  lines ( t > l )  and two distinct points  are 
incident with at mos t  one line; 

(ii) each line is incident with s + l  points  ( s > l )  and two distinct lines are 
incident with at mos t  one point ;  

(iii) if x is a point  and L is a line not  incident with x, then there are exactly 
c~ (c~>l) points  xl ,  x 2 . . . .  ,x~ and c~ lines L1, L 2 . . . .  ,L~ such that  x l L i l x i l L ,  
i = l , 2 , . . . , e .  

I f  f P J = v and [B [ = b, then v = (s + 1) (s t + e)/c~ and b = (t + 1) (s t + ~)/e [2]. Also 
c~(s+t+l -~)[s t ( s+l ) ( t+l )  [-7] and ( t + l - 2 c ~ ) s < ( t + l - e ) 2 ( t - 1 )  [4]. 

The part ial  geometr ies  with c~ = l are the generalized quadrangles  [7]. If c~ = 
s +  1, then the part ial  geomet ry  is the same as a 2 - ( v ,  s +  1, 1) design. If  a = t ,  t h e  
geomet ry  is noth ing  else than  a net of  order  s + 1 and deficiency s -  t + 1 [6]. 

If  the points  x, y (resp. lines L, M) of S are incident with a c o m m o n  line 
(resp. point)  of  S, then we write x ~ y  (resp. L~M);  otherwise we write x * y  
(resp. L ~  M). 

Recent ly  all part ial  geometr ies  with B a lineset of  PG(n, q), n> 2, P the set of  
all points  of  PG(n,q) on these lines, and I the natura l  incidence relation, were 
de termined (the case e =  1 was handled by Buekenhou t  and Lef4vre ([3], [18]), 
the case c~ > 1 by De  Clerck and  Thas  [5]). 

In this pape r  we determine all par t ia l  geometr ies  with B a lineset of  AG(n, q), 
n > 2 ,  P the set of  all points  of  AG(n,q) on these lines, and I the natura l  
incidence relation. 

2. Lemma 

Let S=(P,B, I) be a partial geometry with parameters s, t, c~, where ~> 1, and 
suppose that S '=(P' ,B' , I ' ) (P'cP,  B '~B,I '=Ic~((P'  xB')w(B'  xP') ) )  is a sub- 
structure of S for which the following conditions are satisfied: 
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(i) IB'] > 1 and any element of B' is incident with s+ 1 elements of P'; 
(ii) if the line L~B is incident with the points x, yeP', x+  y, then L~B'. 

Then S' is a partial geometry with parameters s, t', c~. 

Proof It  is sufficient to prove  that  any point  of  P '  is incident with t' + 1 (t' > 1) 
! 

lines of B'. Consider  distinct points  x, y of P', and let t'~+ 1, resp. t y + l ,  be the 
n u m b e r  of  lines of B' which are incident with x, resp. y. N o w  we count  in two 
different ways the number  of ordered pairs (L~, Ly), where L~ + Ly, x I 'L l ,  y I'Ly, 
L ~ L y .  If  x ~ y ,  then we obtain  t ' ~ ( ~ - l ) = t ' y ( c ~ - l ) ;  if x ~ y ,  then we obtain  
(t'x + 1) e = (t'y + 1) e. Consequent ly  t'~ = t'y. Hence any point  of P' is incident with 
t' + 1 lines of B'. F r o m  ]B'l > 1 and e > 1, it follows tha t  t' > 1. We conclude that  S' 
is a part ial  geomet ry  with pa ramete r s  s, t', ~. 

3. Embedding in AG(2,  s + 1) 

Theorem. I f  the partial geometry S = (P, B, 2) with parameters s, t, ~ is embedded 
in AG(2, s+ I), then S is a net of order s + l  and deficiency s - t  + l, or B w  {line 
at infinity of AG(2, s+I)} is a complete oval of the dual projective plane of 
PG(2, s+ 1), where PG(2, s+ 1) is the projective completion of AG(2, s+ 1) (here 
necessarily s = 2 h - 1). 

Proof If  the part ial  geomet ry  S = (P, B, I) with pa ramete r s  s, t, c~ is embedded  in 
A G(2, s + 1), then evidently ~ {t, t + 1 }. Consequent ly  S is a net of order  s + 1 and 
deficiency s -  t + 1, or  a dual  design. Let  S be a dual design. Since no two distinct 
lines of S are parallel,  we have  b < s + 2 and so t + 1 = 2. Consequent ly  B is a set 
of  s + 2 lines, no three of  which are concurrent  and no two of which are parallel. 
This proves  the theorem.  

4. Embedding in AG(3,  s + 1) 

4.1. Theorem.  Suppose that the partial geometry S=(P,B,Y.) with parameters s, t, 
c~, where e > l ,  is embedded in AG(3,s+ I), and that P is not contained in a plane 
of AG(3, s+ 1). Then the following cases can occur. 

(a) s = l ,  e = 2 ,  t~{2, 3, 4, 5} (S is a 2 - ( t + 2 ,  2, 1) design in AG(3, 2)). 
(b) P is the pointset of AG(3, s+ 1), and B is the set of all lines of AG(3,s+ 1) 

whose points at infinity are the points of a (maximal) {(s + 1) n -  (s + 1) + n; n} 
-a rc  of the plane at infinity of AG(3,s+I)  (here n - l = ~ ,  t=(s+2) (n-1) ,  
2 < n < s + 2 ) .  

Proof. Suppose  that  x~P, L eB and x•L. Then  a substructure  S o =(P~, Bo, I~o ) of 
S is induced in the plane xL=co. F r o m  the l e m m a  follows tha t  So~ is a par t ia l  
geomet ry  with pa ramete r s  s, t', ~. Since S o is embedded  in a plane, S~ is a net of  
order  s +  1 and deficiency s - t ' +  1 (e= t ' ) ,  or B ~ u  {line at infinity of  co} is a 
comple te  oval of  the dual  of  the project ive comple t ion  of co. 

Let  us suppose that  S~ is of  the second type. Then  s = 2 h -  1 and e = 2. N o w  
we assume that  there exists a point  x'cP, a line EeB, x ' tE ,  such that  the 
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corresponding geometry S o, is a net (necessarily of deficiency s -  1). If zCP o (resp. 
z(~Po,), then the number of lines M of B which are incident with z and a point of 
P~ (resp. P~,) equals s + 2  (resp. 2s+2) .  Now we consider the lines of S incident 
with z and parallel to the plane co (resp. co'). If there are at least two such lines, 
then their plane defines a subgeometry So,,. For  such a subgeometry t"s{2, 1}, 
and so there are at most three lines of S which are incident with z and parallel to 
co (resp. co'). Hence s + 2 < t + l < s + 5  resp. 2 s + 2 < t + l < 2 s + 5 ,  and so 
s~{1,2,3}. Since s is odd, we have ss{1,3}. If s=3 ,  then t=7 ,  in contradiction 
with a(s+t+ 1 -~)]st(s+ 1)(t+ 1). So s =  1 and ts{3, 4, 5}. Next we assume that 
for any point x '~P  and any line EEB, x'~E, the corresponding geometry S o, is 
not a net. From the preceding case there follows that t + l > s + 2 .  Now we 
remark that no two lines of S are parallel (if two lines of S are parallel and if co' 
is the plane of these lines, then S o, is a net). Consequently b < (s + 1) 2 -b (s + 1) -}- 1. 
Hence ( t+  l ) (s t+2)/2<(s+ 1) 2 + ( s +  1)+ 1, and so (s+2)(s(s+ 1 ) + 2 ) < ( s +  1) 2 
+ ( s + l ) + l .  So s = l  and t=2 .  

Hence, if S o is of the second type, then s = l ,  e = 2  and te{2, 3,4, 5}. 
Finally we suppose that for any plane co, co=xL with xsP,  LeB, x~L, the 

geometry S o is a net. Let E~B and let co" be a plane containing E. Suppose that 
E is the only line of B in co". I fx 'eP,  x ' !E,  then any line of S incident with x', is 
incident with a point of E or is parallel to co". Since S:#So,, with co'=x'E, there 
is a line M in B which is incident with x', which is not contained in co', and 
which is parallel to co". If yIE,  then Sy M is a net and so the intersection of y M  
and co" is a line of B, a contradiction. Hence the plane co" contains a second line 
of S, and so all points of co" are points of P (So,, is a net) and all lines of co" 
parallel to E are lines of B. Consequently P is the pointset of AG(3, s + 1), and if 
EeB then B contains all lines parallel to E. Let PG(2,s+I) be the plane at 
infinity of AG(3, s+ 1), and let us consider the points at infinity of the lines of B. 
The set of these points intersects any line of PG(2,s+ 1) in c~+ 1 points or in 
none at all. Consequently this set is a (maximal) {(s + 1) (e + 1) - (s + 1) + (~ + 1); 

+ 1 } - arc [1 ] of PG (2, s + 1). This proves completely the theorem. 

4.2. Theorem. Suppose that the generalized quadrangle S=(P,B, I) with parame- 
ters s,t is embedded in AG(3,s+ I), and that P is not contained in a plane of 
AG(3, s + 1). Then the following cases can occur. 

(a) s = I, t = 2 (trivial case). 
(b) t =  1 and the elements of S are the affine points and affine lines of an 

hyperbolic quadric of PG(3, s + 1), the projective completion of AG(3, s + 1), which 
is tangent to the plane at infinity of AG(3, s+ 1). 

(c) s=2 ,  t = 2  (an embedding of the generalized quadrangle with 15 points and 
15 lines in AG(3, 3)). 

(d) P is the pointset of AG(3, s+ 1), and B is the set of all lines of AG(3, s+ 1) 
whose points at infinity are the points of a complete oval of the plane at infinity of 
AG(3, s+ I) (here s + l = 2  h and t = s + 2 ) .  

(e) P is the pointset of AG(3, s + 1) and B =B 1 u B  , where B I is the set of all 
affine totally isotropic lines with respect to a symplectic polarity ~ of the 
projective completion PG(3,s+ 1) of AG(3,s+ I) and where B 2 is the class of 
parallel lines defined by the pole (the image with respect to ~) of the plane at 
infinity of AG(3, s+ 1) (here t =s + 2). 
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Proof Suppose  that  xeP, LeB and x~_L. Then a substructure  S,, =(P~o,B,~,I~) is 
induced in the plane xL=co. F r o m  [16] follows that  S~ is a net with pa ramete r s  
s, t' = 1 (consisting of two classes of parallel  lines in co) or that  B~ is a set o f  lines 
with c o m m o n  point  y. Suppose  that  B o is a set of lines with c o m m o n  point  y, 
and that  there exists a line M in B which is incident with y and which is not  
conta ined in co (then we have t >  1). Let  zIM,  zEP, z#y .  The lines of  B th rough  
z are necessarily the line M and t lines in a plane co' parallel  to co. Suppose  a 
m o m e n t  that  S~, is a net. Then t = 2  and the n u m b e r  of lines of  B which are 
incident with y and have a point  in c o m m o n  with the net S~,, equals s + 1. So 
there are at least ( s + 1 ) + 2 > 3  lines of B which are incident with y, a con- 
tradiction.  Consequent ly  B~, is a set of  lines with c o m m o n  point  z. Analogously  
( interchange y and z) B,o is a set of  t lines with c o m m o n  point  y. If  S~ is a net 
(where co is a plane containing at least two lines of B), then we say that  co is of 
type I; if B,o is a set of t lines having a c o m m o n  point  y, then we say that  co is of  
t y p e I I  (if M is the line defined by y I M ,  MeB-B,o ,  and if zTM, then the ~+ i 
lines of B incident with z are M and t lines in a plane co' parallel  to co; moreove r  
co' is also of  t ype I I ) ;  if Bo~ is a set of t +  1 lines having a c o m m o n  point  y, then 
we say that  co if of t ype I I I .  N o w  we consider three cases. 

(a) t > 2. Suppose  tha t  the plane co contains  a line L of B. Assume a m o m e n t  that  
L is the only line of  B in co. Let  L I y I M I x ,  M e B - { L } ,  x@y. The lines of  B 
which are incident with x are M and t lines in a plane co' parallel  to co. Since 
t > 2 the plane co' is of  type II. Consequent ly  the lines of B which are incident 
with y are M and t lines in the plane co, a contradict ion.  There  follows that  co 
contains at least two lines of B. 

Next  we suppose that  co is a p lane of type III ,  and let L be a line of Bo~. The  
c o m m o n  point  of  the t + 1 lines of  B~ is denoted by y. N o w  we assume that  any  
plane th rough  L is of type I I  or III .  Since there are s + 2 planes th rough  L and 
only s + 1 points  on L, there is some point  z on L which is incident with at least 
2 t - 1  lines, a contradict ion.  So there is a p lane co' th rough  L for which S o, is a 
net. There are two lines L, N of S~, which are incident with y, and hence y is 
incident with at least t + 2 lines of B, a contradict ion.  There  follows that  there 
are no planes of type III .  

N o w  we assume that  there is at least one plane co of  type I I .  The c o m m o n  
point  of the lines of  Bo~ is denoted by Yo, and let M be the line for which yoIM 
and M ~ B - B o .  Suppose  tha t  Yo, Yl . . . . .  y~ are the points  of M, and that  
L~I, ...,Lit, M are the t + l  lines of  B incident with Yi ( i = 0 , 1  . . . .  ,s). If  co' is a 
p lane which contains Li~, which does not  contain M, and which is not  parallel  to 
co, then co' is of type I I  (otherwise the c o m m o n  point  of L~ and M is incident 
with at least t + 2 lines of B, a contradiction).  If co" is a p lane which contains M, 
then co" is of  type I (if co" is of  type II  and  if Yi is the c o m m o n  point  of  the lines 
of  B~,,, then yi is incident with the t lines of  B~,, and also with the t lines 
Li~ . . . .  ,L~r, a contradiction).  Consequent ly  for any ie{0,1 . . . . .  s} there is a line 
L~j which is conta ined in B,o,,. Hence  the number  of planes co" th rough  M is 
equal  to I {L~ . . . .  , Li~} [ = t. There  follows that  t = s + 2, and so v = (s + 1) a, or P is 
the pointset  of  AG(3, s+ 1). F r o m  the preceding there also follows tha t  any line 
of  AG(3, s+ 1) which is parallel  to M, is an element of  B. We also r emark  that  
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any plane parallel to M is of type I, and that any plane not parallel to M is of 
type II (since such a plane does not contain M, but contains at least one of the 
lines Lij ). Now it is easy to see that all lines parallel to M play exactly the same 
role. The plane at infinity of AG(3, s+I)  is denoted by lr~, and the point at 
infinity of M is denoted by y~. Let y'~ be a point of M', where M' is parallel to 
M, and let E~I . . . .  ,E~,, M' be the lines of B which are incident with y'~, The lines 
Ell . . . .  ,Eit are contained in a plane col, and the line at infinity M "  of co' i is 
independent of the choice of the point Yl on M' (remark that yoo is not on M~). 
If the lines M' and M", M ' ~  M',  are both parallel to M, then M R + M ~  (if M~o 

_ t !  t 

- Moo, then any plane with line at infinity Moo contains at least 2 t -  1 lines of B, 
a contradiction). So with the (s+ 1) 2 lines parallel to M' correspond the (s+ l) 2 
lines of rco~ which does not contain Y~o. Now we consider a line Noo of ~o 
through Yoo. A plane co" with line at infinity N~ is of type I, and the lines of B in 
co" define two points at infinity Y~o and Zoo on N~. Consequently with the s+  1 
lines of co" which are parallel to M, there correspond the s+  1 lines of rcoo which 
contain y| Now we define as follows an incidence structure S'=(P',B',I'): P' 
= P ~ P |  with Poo the pointset of 2| B'=(B-B~()uB|  where BM is the set of 
lines parallel to M and where Boo is the set of the lines of ~roo which contain y~; 
I '  is the natural incidence relation. From the preceding considerations it follows 
readily that S' is a generalized quadrangle with parameters s' = t' = s + 1, which is 
embedded in the projective completion PG(3 , s+ I )  of AG(3,s+I). Now the 
theorem of Buekenhout and Lef6vre 1-3] tells us that B' is the set of totally 
isotropic lines with respect to a symplectic polarity of PG(3, s+ 1). Consequently 
S is the generalized quadrangle with parameters s, s + 2 = t defined by the regular 
point y| of S' ([14~, p.20). We conclude that we have here case (e) in the 
statement of the theorem. 

Finally we assume that there are no planes of type II. Let L be a line of B, 
and let co be an arbitrary plane containing L. Then co contains a:t least two lines 
of B, and S~ is a net with parameters s, t' = 1. Consequently any point of co is in 
P, and any line of co parallel to L belongs to B. Hence P is the pointset of 
AG(3, s + 1) and if L eB, then B contains all lines parallel to L. Let PG(2, s + 1) be 
the plane at infinity of AG(3, s+ 1), and let us consider the points at infinity of 
the lines of B. The set of these points intersects any line of PG(2,s+I) in 2 
points or in none at all. 

Consequently this set is a complete oval of PG(2, s+ 1). We conclude that we 
have here case (d) in the statement of the theorem. 

(b) t---1. Suppose that B = { L  o, . . . ,L~,M o .... ,Ms}, Li~Mj,  and let us consider 
the projective completion PG(3, s + 1) of AG(3, s + 1). If s > 2, then the s +2  lines 
of PG(3,s+I) which are concurrent with the projective lines Mo, M~, M 2 
constitute a regulus R of an hyperbolic quadric Q (the projective lines Mi, 
Mj(i=~j) are non-concurrent, since P is not contained in an AG(2, s+I)). 
Consequently L 0 .. . .  ,L~ are elements of R, and M o .. . .  ,Ms are elements of the 
complementary regulus R' of Q. There also follows that Q contains two lines at 
infinity. Se we have case (b) in the statement of the theorem. If s = 1, then it is 
easy to check that we have also case (b). 
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(c) t=2 .  We shall prove that se{1, 2}. First of all we assume that there is a plane 
co of type I. If  x is a point of P - P ~ ,  then the number of lines of B which are 
incident with x and a point of S~o equals s + 1. Hence s + 1 < t + 1 = 3, or s t  { 1, 2}. 

Now we suppose that there is no plane of typeI.  Let LeB and assume a 
moment  that the plane co contains only the line L of B. If x is a point of P which 
is not in co, then the lines of B which are incident with x are the line M defined 
by x I M I y I L ,  and two lines in a plane co' parallel to co. Evidently co' is of 
type II. Consequently the lines of B which are incident with y are M and two 
lines in co, a contradiction. There follows that the plane co is always of type II  or 
III. Now we suppose that any plane co through L is of type III. Since there are 
s + 2 planes through L and only s + 1 points on L, there is a point on L which is 
incident with at least 5 lines of B, a contradiction. Consequently there exists a 
plane co of typeII .  Let co be of t ype I I  and suppose that L1, L2~B~, LIIxZL2, 
x lM,  M e B - B ~ .  If  yIM, then the lines of B which are incident with y are M 
and two lines in a plane co' parallel to co. A plane co" through M is necessarily of 
type II (if co" is of type III, then there is a point on M which is incident with at 
least 4 lines of B). Hence the number of lines of B having one point in common 
with M equals s + 2. This number  also equals (s + 1)t = 2(s + i), a contradiction. 

So we conclude that there is at least one plane of typeI ,  and that se{1,2}. 
The case s = 1, t = 2 is a trivial case. So there remains only the case s = t = 2. 

Let co be a plane of type I, with 

B~={Lo,L1, L2,Mx, M,,M,}, 

Po) = {Xo, Yo, Zo, xl,  Yl, zl, x2, Y2, z2}, 

xiZMx, yiZMy, z~IM~, xiZL i, yiILi, z~ZLi. Suppose that xoINx, yoINy, z 0 I N  ~ 
(Nx,Ny,NzeB), where N~r N/d{My,Lo], N~r that xo, x3, xa 
are the points of Nx, that Yo, Y3, Y4 are the points of Ny, and that Zo, z3, z ,  are 
the points of N~. Then P = {x~,y~, z~lli=O, 1, 2, 3, 4}. We remark that the planes 
N~M~, NyMy, N~M~ are parallel (since these planes are of typeII) ,  and that the 
planes co, LoN ~, LoNy, LoN ~ are exactly the 4 planes which contain Lo (if LoN ~ 
= L 0 Ny, then LoN~ =Lo  Ny =LoN ~ = co' is of type I, and so, if V is one of the lines 
of B~, parallel to L 0, then L~V is of type I, a contradiction). Now we shall speak 
about the six lines of the set B - { L  o, L~, Lz, M x, M~, M~, N~, N~, N~}. Since the 
planes N~M~, NyMy, N~M~ are parallel we may assume that x3, Y3, z3 resp. xa, 
Y4, z4 are collinear in AG(3,3) (the lines x3y3 and x4y4 are parallel to co). As 
any line of B is incident with a point of P~, the lines x3y 4, x~y3, x3z4, x~z3, 
Y3 z4, Y4Z3 are the remaining six lines of B. Let us suppose that z~ is on Y3 x4, 
then z a is on x3y4, x 2 is  o n  y 3 z 4 ,  x 1 is on y4z3, y~ is on XaZ4, Yz is on x4z3. 
Now S is completely described. F rom this detailed description it easily follows 
that the generalized quadrangle with 15 points and 15 lines is effectively 
embeddable in an AG(3, 3). 

Remark. If S is of type4.2.e with s=2 ,  then S is the unique generalized 
quadrangle with 27 points and 45 lines ([10], [11], [17]). In such a case the 
subquadrangles of S with parameters s = 2, t' = 2 are of type 4.2. c. 
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5. Embedding in AG(d,s+l) ,  d > 4  

5.1. Embedding of Partial Geometries with ~ > 1 

Theorem. Suppose that the partial geometry S=(P,B,s with parameters s, t, 
(a> 1) is embedded in AG(d,s+ 1), where d>_4, and that P is not contained in an 
AG(d',s+ I), with d' <d. Then the following cases can occur. 

(a) s = l ,  ~--2, t e { d -  l ,d .... ,2 ~} and then S is a 2 - ( t + 2 , 2 , 1 )  design (P is an 
arbitrary pointset of AG(d, 2) which is not contained in an AG(d', 2), d '<  d). 

(b) S is the design of points and lines of AG(d, s+ 1). 
(c) P is the pointset of AG(d,s+ 1), and B is the set of all lines of AG(d,s+ 1) 

whose points at infinity constitute the complement of a hyperplane PG(d-2 ,  s + 1) 
of the space at infinity of AG(d, s + 1). 

Proof Suppose that s=  1. Then ~=2  and S is a 2 - ( t + 2 ,  2, 1) design. Evidently P 
is an arbitrary pointset of AG(d, 2) which is not contained in an AG(d', 2), d' <d. 
Here t ~ { d -  1, d, .... 2~}. 

Now we suppose that s=2.  Let L, M be two non-concurrent lines of S which 
are not parallel in AG(d,s+l),  and suppose that AG(3,s+I) is the affine 
subspace containing these lines. From 2. follows that S induces a partial 
subgeometry S' =(P',B', I') in AG(3, s+ 1), with parameters s, t', c~. From 4.1 we 
know that P' is the pointset of AG(3,s+I), and that B' is the set of all lines of 
AG(3, s+ 1) whose points at infinity are the points of a (maximal) { ( s + l ) n -  
( s+ l )+n ;  n} - a r c  of the plane at infinity of AG(3, s + l ) ( n - 1  =a,  t '=(s+2)(n-1), 
2 < n <s  +2). Let p be a point of P - P ' ,  and suppose that AG(4, s + 1) contains p 
and AG(3,s+I). In AG(4,s+I)  a partial subgeometry S"=(P", B", I"), with 
parameters s, t", ~, is induced. If L 1 is a line of AG(3, s + 1) parallel to L (L1 :# L), 
then in the affine threespace pLL~ a partial subgeometry with parameters s, tl, 
is induced. Consequently all the points of pLL  l belong to P" (see 4.1). There 
follows immediately that P" is the pointset of AG(4, s + 1). Let N be a line of B" 
and let q be a point of P", which is not on N. Since any point of the plane qN 
belongs to P", the partial subgeometry induced in qN is a net of order s+  1 and 
deficiency s - e + 1  (see 3). Consequently any line of AG(4, s + l )  parallel to N, 
belongs to B". If g2 is the set of the points at infinity of the lines of B", then any 
line of the space at infinity PG(3, s+ 1) of AG(4, s+ 1) contains exactly 0 or ~+  1 
points of (2. Hence ~ is the pointset of PG(3, s+ 1) or is the complement of a 
plane of PG(3, s + l )  [12]. So a = s + l  or ~=s.  Next, let r be a point of P - P " ,  
and suppose that AG(5, s+ 1) contains r and AG(4, s+ 1). In AG(5, s+ I) a partial 
subgeometry S'"=(P'", B'", I'") is induced. If L 1 is a line of AG(3, s+ 1) parallel 
to L (LI=~L), then in the fourdimensional affine space rpLL~ a partial sub- 
geometry is induced. Consequently all the points of rpLL~ belong to P'". There 
follows immediately that P'" is the pointset of AG(5, s+ 1). If N is a line of B'", 
then any line of AG(5,s+I)  parallel to N belongs to B'", and if f2' is the set of 
the points at infinity of the lines of B'", then any line of the space at infinity 
PG(4, s+ 1) of AG(5, s + 1) contains exactly 0 or c~+ l(ae{s, s+  1}) points of 12'. 
Hence f2' is the pointset of PG(4,s+ 1) or is the complement of a threespace of 
PG(4, s + 1). By repeating this reasoning, the desired result follows. 



8 J.A. Thas 

5.2. Embedding of Generalized Quadrangles 

Theorem. Suppose that the generalized quadrangle S=(P,  B, I) with parameters s, 
t is embedded in AG(4, s + 1), and that P is not contained in an AG(3, s + 1). Then 
the following cases can occur. 

(a) s = l ,  te{2, 3, 4, 5, 6, 7} (trivial cases). 
(b) s = t = 2 (an embedding of the generalized quadrangle with 15 points and 15 

lines in AG(4, 3)). 
(c) s - t = 3  and S is isomorphic to the generalized quadrangle (2(4, 3) arising 

from a non-singular hyperquadrie of PG(4, 3). 
(d) s = 2, t = 4 (an embedding of the generalized quadrangle with 27 points and 

45 lines in AG(4, 3)). 

Proof Suppose that s = l .  Let x0, x 1 . . . . .  x~, Yo, Y~, . . . ,Y, t~{2 ... .  ,7}, be distinct 
points of AG(4,2) which are not contained in an hyperplane. Then the sets 
P = {x~,yjlli, j6{O,. . . ,  t}} and B = {{xi,yj}lli, j~{0, . . . ,  t}} define a generalized 
quadrangle with parameters s = 1 and t. From now on we suppose s > 2. 

Let L, M be two non-concurrent lines of S which are not parallel in AG(4, s+l), 
and suppose that AG(3, s+ 1) is the affine subspace containing these lines. 
From El6] follows that S induces a generalized subquadrangle S'=(P', B', I'), 
with parameters s, t', in AG(3, s + 1). 

Suppose that S' is of type 4.2.d or 4.2.e. Then t' = s + 2 .  In [16] it is proved 
, <  that s t  _ t .  Since s + l ,  we have also t<_s 2 [7]. Consequently s(s+2)<<_s 2, a 

contradiction. 
Next, we suppose that S' is of type 4.2.c. Then s = t ' = 2 .  Since st'<_t<_s 2, we 

have t = 4. So S is necessarily the unique generalized quadrangle with 27 points 
and 45 lines. For the points and lines of S' we use the notations of the final part 
of the proof of 4.2. Let N x, N~, Nj~', Mx, L o be the lines of B which contain x o. 
The hyperplane AGO, 3) defined by ~o and Nx is denoted by H, the hyperplane 
coN~ is denoted by H', and the hyperplane o3N" is denoted by H". The subquad- 
rangle S"= (P', B'; T") resp. S'"= (P'", B"', I " )  induced in H' resp. H" has param- 

= ' N ; e B ,  ' zoIN;, eters s, t" resp. s, t'", with s t "= t ' "=2 .  Suppose that Ns ' " yoINs 
N~r Lo}, N~r Lo}, and that N)[; N~'cB"; yoIN~" zoINj" N/${My, Lo}, 
N~"r Lo}. Any point o r s  is on one of the lines Lo, M~, My, M~, Nx, Ny, N~, N~, 
Nr N~, N~', N~', N~'. The point at infinity of L o is denoted by (Lo), etc. Then (MJ = 
(My) = (M~). Moreover the points (N~), (Nj, (N~), (Mx) are on a line N| the points 
(Nx), (N~), (N'), ( M j  are on a line N~, and the points (N"), (N~'), (N~'), (MJ are on 
a line N;~. So there arise three lines N~, N~, N~ which contain the point (M~). 
Let us consider the lines N, and N{, a, be{x,y ,  z} and a+b. There are three lines 
L o, L,b ~, 12ab ~ of B concurrent with N~ and Ns and there are also three lines N a, 
N~, T concurrent with each of Lo, L~b~, E~b ~ [14]. We have necessarily T=N~', 
with {a, b, c} ={x, y, z}. Consequently the lines N,, N[,, N~', Lo, L,b~, 12,b ~ 
constitute a generalized quadrangle which is embedded in the affine threespace 
defined by N~, N{, and this quadrangle necessarily is of type 4.2.b. There follows 
that (N,), (N~), (N~!') are on a line V:o, that (Lo), (Lob,), (/2,~,) are on a line W~, and 
that V~ and W~o have a point u| in common ((N~), (Ns (N~'), u~ o are the four 
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points of Voo, and (Lo), (Labc), (Eabc), u~ are the four points of W~). If Lo, Dab, 
Eab (resp. Lo, i)'ab, E'ab, resp. Lo, D;'b, E"b), a+b and a, be{x, y, z}, are the lines 
of S which are concurrent with Na, N b (resp. N,, N[, resp. N~', Nb' ), then the lines 
Lo, L1, L2, M~, My, Mz, N~, Ny, Nz, N', N;, N;, N", N;', N~', Dab , E,b , D'~b , E'ab , 
D'~'b, E'a'b, Labc, Eab c are the 45 lines of S. 

So we have the following construction of the generalized quadrangle with 27 
points and 45 lines in AG(4, 3). First of all we choose the points (Lo), (Mx), (N~), 
(Ny), (Nz), (N'), (N~), (N'), (N"), (N~'), (N~') in such a way that the conditions 
above are satisfied. Next we choose the line L o through (Lo), and we label the 
three points on L 0. Such a choice determines a configuration of 27 points and 45 
lines, and it is not a difficult but a tedious work to check that this incidence 
structure is indeed a generalized quadrangle. We also remark that in the 
hyperplane at infinity coordinates can be chosen in such a way that we have (Lo) 
=(0, 0, 0, 1), (Mx)=(1 , 0, 0, 0), (N~) =(0, 1, 0, 0), (Ny)=(1, 1, 0, 0), (Nz)=(1 , - 1 ,  0, 
0), (N')=(0, 0, 1, 0), (N;)=(1, 0, 1, 0), (N;)=(1, 0, - 1 ,  0), (N")=(0, 1, 1, 0), (N;') 
=(~, -1 ,  -1 ,  0), (N;')=(1, 1, 1, 0). 

Finally we suppose that any two non-coplanar lines of S define a sub- 
quadrangle of type 4.2.b. If the lines L, M of S contain the point p of S, then the 
plane L M  contains just the lines L, M of S (if N is a line of S which is 
concurrent with L, but not coplanar with M, then in the threespace M N  a 
quadrangle of type 4.2.b is induced, and so L, M are the only lines of S in the 
plane LM). Let L be a line of S, let Po . . . . .  p~ be the points of L, and let L, 
M~I . . . . .  M~t be the t + l  lines of S through p~. Then the t 2 + s + l  hyperplanes 
MlkM21, LM~ Mi2 are distinct. The number of hyperplanes containing L equals 
(s + 1) 2 + (s + 1) + 1, and so t 2 < (s + 1) 2 + 1 or t < s + 1. Since any pair of distinct 
lines o r s  is regular, we have t = l  or t>s  [14]. Since t:4=l, we have t~{s ,s+l} .  
Since s +  1 and since s+t  divides st(s+ 1)(t+ 1) [7], there holds s=t.  As any line 
of S is regular, S is isomorphic to the classical quadrangle Q(4, s) [14]. 

Let H be the threespace defined by three concurrent lines L o, L1, L 2 of S. 
The common point of these lines is denoted by p. Then all the lines of S in H 
contain p and any point of S in H is on one of these lines (if there is a line of S in 
H which does not contain p, then a subquadrangle S' of type 4.2.b is induced in 
H, a contradiction since in S' there are at least three lines which contain p). The 
lines of S in H are denoted by Lo,.. . ,  Lt,. Suppose that t' < t, and let L t be a line 
of S through p which is not in H (necessarily t>2).  Let qILt,  q~p.  The t + l  
lines of S through q are L~ and t lines in the threespace/~ through q and parallel 
to H. Analogously the t + 1 lines of S through p are L t and t lines in H. So we 
have t ' = t - 1 .  Now we consider the threespace R defined by L o, L~, L t (_~ does 
not contain Lt,=L,_ O. Since H and / I  contain t lines of S through p, their 
intersection contains t -  1 lines of S through p. If s = t > 3, then t -  1 > 3, and so 
H = H ,  a contradiction. So we have necessarily s = t = 3 .  The points of L t are 
denoted by Po .. . .  ,Pa, and let L t, M~I . . . . .  M~3 be the lines of S through p~ (the 
lines L~, M~ ~, ..., M~ a are not contained in a hyperplane). The point at infinity of 
Mil is denoted by (M~a), etc. The points (Miz), (Mi2), (Mi3) are not collinear, and 
the set {(M~I ), ( M J ,  (M~3)} is denoted by V/. Remark that the 12 points (M~j) are 
coplanar ((M~j) is always a point of the plane at infinity coo~ of the threespace H). 
If T is a line of coo~ which intersects V i and Vj, i+j, then T also intersects V k and 
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Vl, {i,j, k, l} = {0, 1, 2, 3} (since any two lines M~, and M~b define a quadrangle of 
type 4.2.b). Moreover a line which contains two points of Vii, has no point in 
common with V~, i +j. The number of lines of these two types equals 9 + 12 = 21, 
and so any line of (~| has 2 or 4 points in common with V o u V l w V 2 u V 3 =  V. Let 
W be the set of the points of coco which are not in V. Any line of co~ has 1 or 3 
points in common with W, and since IWI=9 the set W is a unital of c%o [13]. 
Since e ~  has order 4 the unital evidently is a hermitian curve. In c%o there are 
exactly 4 triangles whose vertices are exterior points of W and whose sides are 
secants of W. So we have a complete description of the sets V0, V1, V2, V a. We 
remark that the 40 points of S are on the lines gt, M~j and that the 40 lines of S 
are the lines of the 9 subquadrangles defined by the pairs {Mia, M~b}, i + j  (the 
lines at infinity defined by these 9 subquadrangles are the 9 tangents of the 
hermitian curve W and the 9 lines which join (Lt)=(L3) to the points of W). 
Now we have a detailed description of the quadrangle S. From this description 
follows the construction of a model of the classical quadrangle Q(4,3) in 
AG(4, 4). 

Now we assume that for any point p of S, the lines of S through p are 
contained in a hyperplane. Suppose a moment that s > 2. Let L and M be lines 
of S which contain the point p of S. Now we consider the s + 2 threespaces which 
contain the plane L M .  If H is such a threespace, then H contains only the lines 
L, M of S, or H contains any line of S through p, or a subquadrangle of type 
4.2.b is induced in H. There are s hyperplanes of the third type, one hyperplane 
/ t  of the second type, and consequently there is one hyperplane R which 
contains only the lines L, M of S. Let N be a line of S through p, which is not 
contained in ~,  and let q-rN, q=t:p. The s + l  lines of S through q are N and s 
lines in the threespace through q and parallel to H. Analogously the s + 1 lines 
of S through p are N and s lines in H, a contradiction since s > 2. There follows 
that s = t = 2 .  

So we suppose that s = t = 2 .  Let L b e  a line of S, let P0, P J, P2 be the points of 
L, and let L, M i 1, Mi 2 be the lines of S through Pi. Through the plane M o 1 Mo 2 
there is exactly one hyperplane H o which contains only the lines M o 1, Mo 2 of S. 
Evidently the lines M s 2, M12, M21, M2 2 are parallel to Ho. The point at infinity 
of M o 1 is denoted by (M 01), etc. Then (M 01) .. . .  , (M2 2) are points of the plane at 
infinity ~O~o of H o. In the threespace M~a Mjb, i:l=j, a subquadrangle of type 4.2.b 
is induced, and so we may assume that (M o 1), (Mz 1), (Ms 1) are on a line N1, that 
(Mll) ,  (Moz), (Mzz) are on a line N2, that (Mzl), (M02), (Mlz) are on a line N3, 
and that (Mol), (M2z), (Mle) are on a line N 4. The fourth point on the line N i is 
denoted by ni. The points on the line (L)n i are denoted by (L), ni, uil , ui2. Then 
uil, u~z, (L), (Mjl), (Mjz), i=  1, ..., 4 and j = 0 ,  1, 2, are the points at infinity of the 
15 lines of S. Now we have a detailed description of the quadrangle S. From this 
description follows the construction of a model of the classical quadrangle with 
15 points and 15 lines in AG(4, 3) (by the choice of the points (MIj) in r and 
the point (L) not in co| the points at infinity of the 15 lines are determined; 
next, we choose the line L through (L); by the labeling of the 3 points on L, the 
generalized quadrangle is completely determined). 

Theorem. Suppose that the generalized quadrangle S = (P, B, -r) with parameters s, t 
is embedded in A G( d, s + 1), d ~ 5, and that P is not contained in an A G(d - 1, s + 1). 
Then the following cases can occur. 
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(a) s-- 1 and t~{[d/2] . . . . .  2 d- ~ - 1} (trivial case) 
(b) s = l ,  t=4 ,  d = 5  (an embedding of the generalized quadrangle with 27 

points and 45 lines in AG(5, 3)). 

Proof Suppose that s = l .  Let Xo, x 1 . . . . .  xt, Y0, YI . . . .  ,Yt, t~{[d/2] ,  . . . ,2  d - 1 - 1 } ,  
be distinct points of AG(d, 2) which are not contained in an hyperplane. Then 
the sets P={xi, yj[li, j~{O . . . .  ,t}} and B={{xi, yj}l[i, je{O,...,t}} define a 
generalized quadrangle with parameters s = 1 and t. 

Now we suppose that s >= 2. Let L, M be two non-coplanar lines of S, and call 
AG(3, s +  1) the affine threespace which contains these lines. Suppose that p is a 
point of S which does not belong to AG(3,s+I), and call AG(4,s+I) the 
fourdimensional affine space defined by AG(3, s+  1) and p. Suppose that q is a 
point of S which does not belong to AG(4, s+  1), and call AG(5, s+  1) the affine 
space defined by AG(4, s+I) and q. In AG(3, s+I) (resp. AG(4, s+I), resp. 
AG(5, s+1)) a subquadrangle S' (resp. S", resp. S"') with parameters s, t' (resp. 

It t/ Ip! s, t , resp. s, t'") is induced. We have t' < t  < t _ t < s  2. From [16] follows that 
necessarily t ' = l ,  t"=s, t'"=s 2, and so t=s 2 and d=5 .  From the preceding 
theorem follows that t ' = l ,  t " = s = 2 ,  t=4 ,  d = 5  or t ' = l ,  t " = s = 3 ,  t=9 ,  d=5 .  

Let us suppose that s=2 ,  t=4 ,  d=5.  Let S' be a subquadrangle with 
parameters 2, 2 of S, which is embedded in the hyperplane H of A G(5, 3). Let L o 
be a line of S', suppose that x o, Yo, zo are the points of L o, that N~, M~, L o are 
the lines of S' containing xo, that Ny, My, L o are the lines of S' containing Yo, 
that N z, M~, L o are the lines of S' containing z o, and that M~, My, M z belong to 
a threedimensional affine space T. Let N x, N~, N~', M x, L o be the lines of B 
which contain x o. The hyperplane defined by T and N" is denoted by H', and 
the hyperplane defined by T and N;' is denoted by H". The subquadrangle 
S"=  (P", B", 37') resp. S ' "=  (P'", B"', T'") induced in H'  resp. H"  has parameters 
s,t" resp. s,t'", with s=t"=t'"=2. Suppose that N~,N'~B", yoTN~, ZoTN ", 

, , ,, ,, t,, ,, ,, , 1  L N~6{My, Lo} , N~r an~t that N~, Ns ~B , yoIN~, zoIN',  N~ 6{My, o}, 
N~'r {M~, Lo}. Any point of S is on one of the lines Lo, M~, My, M., N~, Ny, N z, 
N]~, N;, N~, N}/, Ny', N~". The point at infinity of L o is denoted by (Lo), etc. Then 
(M~), (My), (M~) are on a line M~o. Moreover the points (M~), (My), (M~), (Nx), 
(Ny), (Nz) are in a plane c%o, the points (M~), (My), (M~), (N~), (N;), (N~) are in a 
plane co~, and the points (M~), (My), (Mz), (N~'), (N~'), (N~') are in a plane co~. We 
remark that co~ o, co~, co~ are three distinct planes, and that (Lo) is in no one of 
these planes. Moreover, if [a,b,c}:{x,y,z}, the points (M~), (Nb), (N3 are 
collinear, the points (M,), (N~), (N~') are collinear, and the points (M,), (N~'), (Nc') 
are collinear. There are three lines Lo, L~b~, E~b ~ of B concurrent with N~ and N~, 
and there are also three lines N,, N~, U concurrent with each of Lo, L~br E~b ~. 
We have necessarily U = N~; with {a, b, c} = {x, y, z}. There follows that (No), (N[), 
(N~") are on a line Voo, that (Lo), (L,b~), (E~b~) are on a line W| and that V~o and 
W~o have a point uoo in common ((N,), (N;), (N"), u~o are the four points of V~o, 
and (Lo), (Labc) , (]~abc), Uoo are the four points of W~o). If L o, D,b, E~b (resp. L o, 
D'~b, E'~b, resp. Lo, D2b, E2b), a4:b and a, b~{x,y,z}, are the lines of S which are 
concurrent with N,, Nb (resp. N', N[, resp. N/l, N['), and i fL  0, E 0, E;  are the lines 
of S concurrent with M~, My, M~, then the lines L o, E o, E'o, M~, My, M~, N~, N~, 

t /  ~ !  / N~, N:~, N~, N~, N}/, Nff , Nj', D~b, E~b, D'b, E',o, D~b, E~b, L~b~, E~b~ are the 45 lines 
of S. 
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So we have the following construct ion of the generalized quadrangle  with 27 
points  and 45 lines in AG(5, 3). First of  all we choose the points  (Lo), (M~), (My), 
(M~), (Nx), (Ny), (N~), (N~), (N~), (N~O, (N~), (N~'), (N") in such a way that  the 
condit ions above are satisfied. Next  we choose the line Lo through (Lo), and we 
label the three points  on L o. Such a choice determines a conf igurat ion of 27 
points  and 45 lines, and it is not  a difficult but  tedious work  to check tha t  this 
incidence structure is indeed a generalized quadrangle.  We also r emark  tha t  in 
the hyperp lane  at infinity coordinates  can be chosen in such a way that  we have 

(L0) =(0,0 ,  0,0, t), 

(Mx) =(1,  0, 0, 0, 0), (My) =(0, 1, 0, 0, 0), (M~) =(1,  1, 0, 0, 0), 

(Nx) = (0, 0, 1, 0, 0), (Ny) = (1, 1, 1, 0, 0), (Nz) = (0, 1, 1, 0, 0), 

(N') = (0, 0, 0, 1, 0), (N;) =(1,  1, 0, 1, 0), (N~) =(0, 1, 0, 1, 0), 

( N ' )  = ( 1 , -  1, 1, 1,0), (N~') =(0, 1, 1, 1, 0), (N~') =(1, 1, 1, 1, 0). 

Final ly we assume that  s = 3 ,  t = 9 ,  d = 5 .  Then  S contains subquadrangles  
with pa ramete r s  3, 3, and described in the preceding theorem. So in S we can 
choose three concurrent  lines L, M, N, with c o m m o n  point  p, in such a way that  
L, M, N are the only lines of S in the threespace T defined by L, M, N. There  
are 5 hyperplanes  containing T and in 3 of these hyperplanes  a subquadrangle  
with pa ramete r s  3, 3 is induced. Let  H1, H 2 be the other  hyperplanes  th rough  T. 
The  lines of S in H i all contain p. The  n u m b e r  of lines of S in Hi equals 3 + at, 
with a l  + a  2 =4 .  Let  L~ be a line of  S th rough  p and not  in H~, and let qTL 1, 
q+p, The 10 lines of  S th rough  q are L 1 and 9 lines in the hyperp lane  H 3 
th rough  q and parallel  to H 1. Analogous ly  the 10 lines of  S th rough  p are L 1 and 
9 lines in the hyperp lane  H1. Consequent ly  3 + a~ = 9, a contradict ion.  
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