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1. Introduction

A finite partial geometry [2] is an incidence structure S=(P,B,I) with a
symmetric incidence relation satisfying the following axioms:

(i) each point is incident with t+1 lines (t=1) and two distinct points are
incident with at most one line;

(ii) each line is incident with s+1 points (s=1) and two distinct lines are
incident with at most one point;

(iii) if x is a point and L is a line not incident with x, then there are exactly
o (x=1) points x,, x,,...,x, and o lines L,, L,,...,L, such that xIL,Ix,IL,
i=1,2,...,0

If |P|=v and |B|=b, then v=(s+1)(st+a)/e and b=(t+1)(st+ o)/ [2]. Also
a(s+t+1—a)|st(s+ 1) +1)[7] and (t+1-20)s<(t+1—x)*(t—1) [4].

The partial geometries with =1 are the generalized quadrangles [7]. If o=
s+ 1, then the partial geometry is the same as a 2—(v, s+ 1, 1) design. If a=t¢, the
geometry is nothing else than a net of order s+ 1 and deficiency s—¢+1 [6].

If the points x, y (resp. lines L, M) of S are incident with a common line
(resp. point) of S, then we write x~y (resp. L~M); otherwise we write x~y
(resp. L~ M).

Recently all partial geometries with B a lineset of PG(n, q), n=2, P the set of
all points of PG(n,¢) on these lines, and I the natural incidence relation, were
determined (the case a«=1 was handled by Buekenhout and Lefévre ([3], [18]),
the case a>1 by De Clerck and Thas [5]).

In this paper we determine all partial geometries with B a lineset of AG(n, q),
n=2, P the set of all points of AG(n,q) on these lines, and I the natural
incidence relation.

2. Lemma
Let S=(P,B,I) be a partial geometry with parameters s, t, o, where a>1, and

suppose that S'=(P,B,I)}(P'<P,B'cB,I'=In((P'xB)u(B xPY))) is a sub-
structure of S for which the following conditions are satisfied:
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2 J. A. Thas

(i) |B'|>1 and any element of B’ is incident with s+ 1 elements of P’;
(ii) if the line LeB is incident with the points x, yeP', x=y, then LeB'.
Then S’ is a partial geometry with parameters s, t', a.

Proof. Tt is sufficient to prove that any point of P’ is incident with ¢’ +1 (¢ = 1)
lines of B. Consider distinct points x, y of P, and let . +1, resp. t,+1, be the
number of lines of B" which are incident with x, resp. y. Now we count in two
different ways the number of ordered pairs (L, L ), where L, + L , xI'L_, yI'L,,
L.~L,. If x~y, then we obtain t,(xa~1)=t,(x—1); if x~y, then we obtain
(t,+1) a=(t, + 1) . Consequently ¢, =t,. Hence any point of P’ is incident with
t'+1 lines of B'. From |B'|>1 and a>1, it follows that t' = 1. We conclude that S’
is a partial geometry with parameters s, t', o.

3. Embedding in AG(2,5+1)

Theorem. If the partial geometry S=(P, B,I) with parameters s, t, o is embedded
in AG(2,s+1), then S is a net of order s+1 and deficiency s—t+1, or Bu {line
at infinity of AG(2,s+1)} is a complete oval of the dual projective plane of
PG(2,s+1), where PG(2,5+41) is the projective completion of AG(2,s+1) (here
necessarily s=2"—1).

Proof. 1f the partial geometry S =(P, B, T) with parameters s, ¢, o is embedded in
AG(2,5+1), then evidently ae{z,t+1}. Consequently S is a net of order s+1 and
deficiency s—t-+1, or a dual design. Let S be a dual design. Since no two distinct
lines of S are parallel, we have b<s+2 and so t+1=2. Consequently B is a set
of s+ 2 lines, no three of which are concurrent and no two of which are paraliel.
This proves the theorem.

4. Embedding in AG(3,5+1)

4.1. Theorem. Suppose that the partial geometry S=(P, B, I) with parameters s, t,
o, where a>1, is embedded in AG(3,s+1), and that P is not contained in a plane
of AG(3,5+1). Then the following cases can occur.

(a) s=1, x=2,te{2,3,4,5} (Sisa2—(t+2, 2, 1) design in AG(3, 2)).

(b) P is the pointset of AG(3,s+1), and B is the set of all lines of AG(3,s+1)
whose points at infinity are the points of a (maximal) {(s+1)n—(s+1)+n;n}
—arc of the plane ar infinity of AGQ3,s+1) (here n—1=q, t=(s+2)(n—1),
2<n=<s+2).

Proof. Suppose that xeP, LeB and xZ L. Then a substructure S, =(£,,B,,,I,) of
S is induced in the plane x L=c. From the lemma follows that S, is a partial
geometry with parameters s, t', o. Since S, is embedded in a plane, S, is a net of
order s+1 and deficiency s—t'+1 (a=t), or B, v {line at infinity of w} is a
complete oval of the dual of the projective completion of cw.

Let us suppose that S is of the second type. Then s=2"—1 and «=2. Now
we assume that there exists a point x'eP, a line LeB, x'EL, such that the
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corresponding geometry S, is a net (necessarily of deficiency s—1). If z¢ P, (resp.
z¢ P ), then the number of lines M of B which are incident with z and a point of
P, (resp. E,) equals s+ 2 (resp. 25+2). Now we consider the lines of S incident
with z and parallel to the plane w (resp. ). If there are at least two such lines,
then their plane defines a subgeometry S,... For such a subgeometry t"e{2, 1},
and so there are at most three lines of § which are incident with z and parallel to
o (resp. ’). Hence s+2Zt+1Ls+5 resp. 25+2=t+1<2s5+5, and so
se{l,2,3}. Since s is odd, we have se{l1,3}. If s=3, then t=7, in contradiction
with a(s+t+1—o)[st(s+1)(t+1). So s=1 and re{3,4,5}. Next we assume that
for any point x’eP and any line LeB, x'£L, the corresponding geometry S, is
not a net. From the preceding case there follows that r+1=s+2. Now we
remark that no two lines of § are parallel (if two lines of S are parallel and if '
is the plane of these lines, then S, is a net). Consequently b<(s+1)2 +(s+1)+1.
Hence (t+1)(st+2)2=(s+1)*+(s+1)+1, and so (s+2)(s(s+1)+2)<(s+1)?
+(s+1)+1. So s=1 and t=2.

Hence, if S, is of the second type, then s=1, a=2 and te{2, 3,4, 5}.

Finally we suppose that for any plane w, w=xL with xeP, LeB, xIL, the
geometry S, is a net. Let LeB and let @” be a plane containing L. Suppose that
L is the only line of B in ", If x'e P, x'EL, then any line of S incident with x', is
incident with a point of L or is parallel to o”. Since S=*S_,, with w’=x'L, there
is a line M in B which is incident with x', which is not contained in «’, and
which is parallel to o”. If yIL, then S,,, is a net and so the intersection of yM
and " is a line of B, a contradiction. Hence the plane w” contains a second line
of S, and so all points of " are points of P (S, is a net) and all lines of «”
parallel to L are lines of B. Consequently P is the pointset of AG(3,s+1), and if
L'eB then B contains all lines parallel to L. Let PG(2,5+1) be the plane at
infinity of AG(3,5+ 1), and let us consider the points at infinity of the lines of B.
The set of these points intersects any line of PG(2,5+1) in o+ 1 points or in
none at all. Consequently this set is a (maximal) {(s+ 1){a+1)—(s+ 1)+ (x+1);
ao+1}—arc [1] of PG(2,s+1). This proves completely the theorem.

4.2. Theorem. Suppose that the generalized quadrangle S=(P, B, 1) with parame-
ters s,t is embedded in AG(3,s+1), and that P is not contained in a plane of
AG(3,s+1). Then the following cases can occur.

(a) s=1, t=2 (trivial case ).

(b) t=1 and the elements of S are the affine points and affine lines of an
hyperbolic quadric of PG(3,s+1), the projective completion of AG(3,s+1), which
is tangent to the plane at infinity of AG(3,s+1).

(c) s=2, t=2 (an embedding of the generalized quadrangle with 15 points and
15 lines in AG(3,3)).

(d) P is the pointset of AG(3,5+1), and B is the set of all lines of AG(3,s+1)
whose points at infinity are the points of a complete oval of the plane at infinity of
AG(3,5+1) (here s+1=2" and t=s5+2).

(e) P is the pointset of AG(3,s+1) and B=B, UB_, where B, is the set of all
affine totally isotropic lines with respect to a symplectic polarity n of the
projective completion PG(3,s+1) of AG(3,s+1) and where B, is the class of
parallel lines defined by the pole (the image with respect to n) of the plane at
infinity of AG(3,5+1) (here t=s+2).
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Proof. Suppose that xeP, LeB and x¥L. Then a substructure S, =(B,,B,,I,) is
induced in the plane x L=w. From [16] follows that S, is a net with parameters
5, t'=1 (consisting of two classes of parallel lines in ) or that B, is a set of lines
with common point y. Suppose that B, is a set of lines with common point y,
and that there exists a line M in B which is incident with y and which is not
contained in o (then we have t>1). Let zIM, zeP, z+y. The lines of B through
z are necessarily the line M and ¢ lines in a plane «’ parallel to w. Suppose a
moment that S, is a net. Then t=2 and the number of lines of B which are
incident with y and have a point in common with the net S, equals s+1. So
there are at least (s+1)-+2>3 lines of B which are incident with y, a con-
tradiction. Consequently B, is a set of lines with common point z. Analogously
(interchange y and z) B, is a set of ¢ lines with common point y. If S is a net
(where w is a plane containing at least two lines of B), then we say that w is of
typeI; if B, is a set of ¢ lines having a common point y, then we say that w is of
typell (if M is the line defined by yIM, MeB—B,, and if zIM, then the t+1
lines of B incident with z are M and ¢ lines in a plane w' paraliel to w; moreover
w' is also of typell); if B, is a set of t+1 lines having a common point y, then
we say that w if of type III. Now we consider three cases.

(a) t>2. Suppose that the plane w contains a line L of B. Assume a moment that
L is the only line of B in w. Let LIyIMIx, MeB—{L}, x+y. The lines of B
which are incident with x are M and t lines in a plane o’ parallel to . Since
t>2 the plane ' is of typell. Consequently the lines of B which are incident
with y are M and ¢ lines in the plane o, a contradiction. There follows that w
contains at least two lines of B.

Next we suppose that w is a plane of typeIll, and let L be a line of B,,. The
common point of the ¢+ 1 lines of B, is denoted by y. Now we assume that any
plane through L is of typell or 1II. Since there are s+2 planes through L and
only s+1 points on L, there is some point z on L which is incident with at least
2t—1 lines, a contradiction. So there is a plane ' through L for which S is a
net. There are two lines L, N of S, which are incident with y, and hence y is
incident with at least t+2 lines of B, a contradiction. There follows that there
are no planes of typeIIlL

Now we assume that there is at least one plane w of typeIl. The common
point of the lines of B, is denoted by y,, and let M be the line for which y,IM
and MeB—B,. Suppose that y,, yi,....y, are the points of M, and that
Lty -s Ly, M are the t+1 lines of B incident with y; (i=0,1,...,s). If ©' is a
plane which contains L;;, which does not contain M, and which is not parallel to
w, then o’ is of typell (otherwise the common point of L;; and M is incident
with at least ¢+ 2 lines of B, a contradiction). If @” is a plane which contains M,
then w"” is of typeI (if ®” is of type Il and if y; is the common point of the lines
of B,., then y, is incident with the ¢ lines of B,. and also with the ¢ lines
L, ...,L;, a contradiction). Consequently for any i€{0,1,...,s} there is a line
L;; which is contained in B,,.. Hence the number of planes " through M is
equal to |{L;y, ..., L;}[=t. There follows that t =s+2, and so v=(s+1)?, or P is
the pointset of AG(3,s+1). From the preceding there also follows that any line
of AG(3,s+1) which is parallel to M, is an element of B. We also remark that
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any plane parallel to M is of typel, and that any plane not parallel to M is of
typell (since such a plane does not contain M, but contains at least one of the
lines L;;). Now it is easy to sec that all lines parallel to M play exactly the same
role. The plane at infinity of AG(3,5+1) is denoted by =z, and the point at
infinity of M is denoted by y_. Let y; be a point of M’', where M’ is parallel to
M, and let L, ..., L,,, M' be the lines of B which are incident with y;. The lines
Ly, ..., L, are contained in a plane w;, and the line at infinity M|, of w) is
independent of the choice of the point y; on M’ (remark that y_ is not on M)).
If the lines M’ and M", M'+M", are both parallel to M, then M M. (if M/,
=M, then any plane with line at infinity M contains at least 21— 1 lines of B,
a contradiction). So with the (s+1)* lines parallel to M’ correspond the (s+ 1)?
lines of m, which does not contain y,. Now we consider a line N of n_
through y.. A plane ©” with line at infinity N_ is of typel, and the lines of B in
" define two points at infinity y,, and z_ on N_. Consequently with the s+1
lines of w” which are parallel to M, there correspond the s+ 1 lines of 7, which
contain y,. Now we define as follows an incidence structure §'=(P’,B’,I'): P’
=PuUP, with P the pointset of n,; B =(B—B,,)UB,_, where B,, is the set of
lines parallel to M and where B, is the set of the lines of n_, which contain y_;
T' is the natural incidence relation. From the preceding considerations it follows
readily that S’ is a generalized quadrangle with parameters s'=¢'=s+ 1, which is
embedded in the projective completion PG(3,s+1) of AG(3,s+1). Now the
theorem of Buekenhout and Lefévre [3] tells us that B’ is the set of totally
isotropic lines with respect to a symplectic polarity of PG(3, s+ 1). Consequently
S is the generalized quadrangle with parameters s, s+ 2=t defined by the regular
point y, of 8 {[14], p.20). We conclude that we have here case (e} in the
statement of the theorem.

Finally we assume that there are no planes of typell. Let L be a line of B,
and let @ be an arbitrary plane containing L. Then @ contains af least two lines
of B, and S, is a net with parameters s, 1'=1. Consequently any point of @ is in
P, and any line of w parallel to L belongs to B. Hence P is the pointset of
AG(3,s+1) and if LeB, then B contains all lines parallel to L. Let PG(2,s+1) be
the plane at infinity of AG(3,5+1), and let us consider the points at infinity of
the lines of B. The set of these points intersects any line of PG(2,s+1) in 2
points or in none at all.

Consequently this set is a complete oval of PG(2,s+1). We conclude that we
have here case (d) in the statement of the theorem.

(b) t=1. Suppose that B={L,, ..., L, M,,..., M}, L;~M,, and let us consider
the projective completion PG(3,s+1) of AG(3,s+1). If s=2, then the s+2 lines
of PG(3,s+1) which are concurrent with the projective lines My, M,;, M,
constitute a regulus R of an hyperbolic quadric @ (the projective lines M,,
M; (i+j) are non-concurrent, since P is not contained in an AG(2,s+1)).
Consequently Lg,...,L; are elements of R, and M, ..., M, are elements of the
complementary regulus R’ of Q. There also follows that Q contains two lines at
infinity. Se we have case (b) in the statement of the theorem. If s=1, then it is
easy to check that we have also case (b).
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(c) t=2. We shall prove that se{1,2}. First of all we assume that there is a plane
w of typel. If x is a point of P—P,, then the number of lines of B which are
incident with x and a point of S equals s+ 1. Hence s+ 1<t +1=3, or se{l,2}.

Now we suppose that there is no plane of typel. Let LeB and assume a
moment that the plane o contains only the line L of B. If x is a point of P which
is not in w, then the lines of B which are incident with x are the line M defined
by xIMIyIL, and two lines in a plane o' parallel to w. Evidently ' is of
type Il. Consequently the lines of B which are incident with y are M and two
lines in w, a contradiction. There follows that the plane w is always of type Il or
IT11. Now we suppose that any plane o through L is of type IIl. Since there are
s+2 planes through L and only s+ 1 points on L, there is a point on L which is
incident with at least 5 lines of B, a contradiction. Consequently there exists a
plane w of typell. Let @ be of typell and suppose that L, L,eB,, L, IxIL,,
xIM, MeB—B,. If yIM, then the lines of B which are incident with y are M
and two lines in a plane ' parallel to w. A plane »” through M is necessarily of
type II (if w"” is of typeIll, then there is a point on M which is incident with at
least 4 lines of B). Hence the number of lines of B having one point in common
with M equals 5+ 2. This number also equals (s+1)t=2(s+ 1), a contradiction.

So we conclude that there is at least one plane of typel, and that se{1,2}.
The case s=1, t=2 is a trivial case. So there remains only the case s=t=2.

Let w be a plane of type I, with

sz{LOVLI’ LZaMx’ Mya Mz}a

B, =1{X0, Y0, 20> X1, V1215 X2, V25 Z2 >

xIM,, y,IM,, zIM,, x;IL,, y,1L;, z;IL;. Suppose that x,IN,, yoIN,, z,IN,
(N,,N,,N,eB), where N.¢{M,,Ly}, N¢{M,, Ly}, N¢{M,, Lo}, that x,, x3, x4
are the points of N,, that y,, y;, y, are the points of N,, and that z,, z,, z, are
the points of N,. Then P={x,,y;,z]i=0,1,2,3,4}. We remark that the planes
N.M,, NM,, N,M, are parallel (since these planes are of typeIl), and that the
planes o, LyN,, Ly N,, Ly N, are exactly the 4 planes which contain L, (if Ly N,
=LyN,, then LoN, =L,N,=L,N,=w' is of typel, and so, if V' is one of the lines
of B, parallel to L, then LV is of type, a contradiction). Now we shall speak
about the six lines of the set B—{L,, L, L,, M, M,, M_, N, N,, N,}. Since the
planes N, M,, N,M,, N, M, are parallel we may assume that x3, y3, z3 resp. x,,
Y4, z4 are collinear in AG(3,3) (the lines x3 y; and x, y, are parallel to w). As
any line of B is incident with a point of P,, the lines X3 y,, X4 V3, X3 Z4, X423,
V1 Z4, V424 are the remaining six lines of B. Let us suppose that z; is on y;x,,
then z, is on X34, X, 1S 00 Y324, Xy 1S 0N Y425, Yy IS ON X324, Y, is on X4 25.
Now S is completely described. From this detailed description it easily follows
that the generalized quadrangle with 15 points and 15 lines is effectively
embeddable in an AG(3,3).

Remark. If § is of type4.2.e with s=2, then S is the unique generalized
quadrangle with 27 points and 45 lines ([10], [11], [17]). In such a case the
subquadrangles of S with parameters s=2, ¢ =2 are of type4.2.c.
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5. Embedding in AG(d,s+1), d=4
5.1. Embedding of Partial Geometries with a>1

Theorem. Suppose that the partial geometry S=(P,B,I) with parameters s, t, o
(>1) is embedded in AG(d, s+ 1), where d=4, and that P is not contained in an
AG(d', s+ 1), with d' <d. Then the following cases can occur.

(@) s=1, a=2,te{d—1,d,...,2%} and then S is a 2—(t+2,2,1) design (P is an
arbitrary pointset of AG(d,2) which is not contained in an AG(d',?2), d' <d).

(b) S is the design of points and lines of AG(d,s+1).

{c) P is the pointset of AG(d,s+1), and B is the set of all lines of AG(d,s+1)
whose points at infinity constitute the complement of a hyperplane PG(d—2,5+1)
of the space at infinity of AG(d,s+1).

Proof. Suppose that s=1. Then a=2 and S is a 2—(¢+2,2,1) design. Evidently P
is an arbitrary pointset of AG(d,2) which is not contained in an AG(d',2), d <d.
Here te{d—1,d,...,2%.

Now we suppose that s=2. Let L, M be two non-concurrent lines of § which
are not parallel in AG(d,s+1), and suppose that AG(3,s+1) is the affine
subspace containing these lines. From 2. follows that S induces a partial
subgeometry S§'=(P’,B,I') in AG(3,s+ 1), with parameters s, t', o. From 4.1 we
know that P’ is the pointset of AG(3,5+1), and that B’ is the set of all lines of
AG(3,s5+1) whose points at infinity are the points of a (maximal) {(s+1)n—
(s+1)+n; n}—arc of the plane at infinity of AG(3,s+1)(n—1=q, '=(s+2)j(n—1),
2<n=s+2). Let p be a point of P— P, and suppose that AG(4,s+ 1) contains p
and AG(3,s+1). In AG(4,s+1) a partial subgeometry S§”=(P”,B",1"), with
parameters s, ¢, o, is induced. If L, is a line of AG(3,s+1) parallel to L (L, +L),
then in the affine threespace pLL, a partial subgeometry with parameters s, ¢,, o
is induced. Consequently all the points of pLL, belong to P” (see 4.1). There
follows immediately that P” is the pointset of AG(4, s+ 1). Let N be a line of B”
and let ¢ be a point of P, which is not on N. Since any point of the plane gN
belongs to P”, the partial subgeometry induced in g N is a net of order s+ 1 and
deficiency s—o+41 (see 3). Consequently any line of AG(4, s+ 1) parallel to N,
belongs to B”. If Q is the set of the points at infinity of the lines of B”, then any
line of the space at infinity PG(3, s+ 1) of 4G(4, s+ 1) contains exactly 0 or a+1
points of Q. Hence Q is the pointset of PG(3, s+1) or is the complement of a
plane of PG(3, s+1) [12]. So a=s+1 or a=s. Next, let » be a point of P—P”,
and suppose that AG(5, s+ 1) contains r and AG(4, s+ 1). In AG(5, s+ 1) a partial
subgeometry S =(P", B”, T"') is induced. If L, is a line of AG(3, s+ 1) parallel
to L (L,#L), then in the fourdimensional affine space rpLL; a partial sub-
geometry is induced. Consequently all the points of r pLL; belong to P"”. There
follows immediately that P’ is the pointset of AG(5, s+1). If N is a line of B”,
then any line of AG(5,s+1) parallel to N belongs to B, and if € is the set of
the points at infinity of the lines of B’”, then any line of the space at infinity
PG(4,5+1) of AG(S5,5+1) contains exactly 0 or a+1(ze{s,s+1}) points of 2.
Hence €' is the pointset of PG(4,5+1) or is the complement of a threespace of
PG(4,5+1). By repeating this reasoning, the desired result follows.
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5.2. Embedding of Generalized Quadrangles

Theorem. Suppose that the generalized quadrangle S=(P, B, I) with parameters s,
t is embedded in AG(4, s+1), and that P is not contained in an AG(3, s+1). Then
the following cases can occur.

(a) s=1,1te{2,3,4,5,6, 7} (trivial cases).

(b) s=t=2 (an embedding of the generalized quadrangle with 15 points and 15
lines in AG(4, 3)).

(c)s=t=3and S is isomorphic to the generalized quadrangle Q(4, 3) arising
Sfrom a non-singular hyperquadric of PG(4,3).

{d) s=2, t=4 (an embedding of the generalized quadrangle with 27 points and
45 lines in AG(4, 3)).

Proof. Suppose that s=1. Let xg, X,,....%,, Vo> Vs> ¥, 1€{2,..., 7}, be distinct
points of AG(4,2) which are not contained in an hyperplane. Then the sets
P={x,yli,je{0,....t}} and B={{x;,y}ije{0,....,t}} define a generalized
quadrangle with parameters s=1 and t. From now on we suppose s=2.

Let L, M be two non-concurrent lines of S which are not parallel in AG{4, s+1),
and suppose that AG(3,s+1) is the affine subspace containing these lines.
From [16] follows that S induces a generalized subquadrangle §'=(P’, B, I'),
with parameters s, ¢, in AG(3, s+1).

Suppose that S is of type 42.d or 42.e. Then ¢'=s-+2. In [16] it is proved
that st'<t. Since s+1, we have also t<s? [7]. Consequently s(s+2)<s%, a
contradiction.

Next, we suppose that S’ is of type 4.2.c. Then s=t'=2. Since st <t<s?, we
have t=4. So § is necessarily the unique generalized quadrangle with 27 points
and 45 lines. For the points and lines of $” we use the notations of the final part
of the proof of 4.2. Let N, N, N/, M, L, be the lines of B which contain x,,.
The hyperplane AG(3, 3) defined by w and N, is denoted by H, the hyperplane
wN; is denoted by H', and the hyperplane wN, is denoted by H”. The subquad-
rangle §"=(P",B",1") resp. S"'=(P", B",I"") induced in H' resp. H” has param-
eters s, t” resp. s, t", with s=1"=t""=2. Suppose that N, NJeB", y,IN,, z,IN;,
N¢{M,, Lo}, N/¢{M,, Ly}, and that N, N'eB”, yoIN], zoIN;, N)'¢{M,, Lo},
N;¢{M,, L,}. Any point of S is on one of the lines Ly, M, M, M, N, N,, N, N,
N;, N}, N7, N}, N/ The point at infinity of L, is denoted by (L), etc. Then (M,)=
(M,)=(M,). Moreover the points (N,), (N,), (N,), (M,) are on a line N, the points
(NDs (N), (N), (M) are on a line N, and the points (N;), (N)), (N,), (M,) are on
a line N/. So there arise three lines N, N, N, which contain the point (M,).
Let us consider the lines N, and N, a, be{x, y, z} and a=b. There are three lines
Ly, Lpe, Ly of B concurrent with N, and N, and there are also three lines N,
Ny, T concurrent with each of Ly, L,,., L,,. [14]. We have necessarily T=N/,
with {a, b, c}={x, y, z}. Consequently the lines N,, NJ, N/, Ly, L, Lope
constitute a generalized quadrangle which is embedded in the affine threespace
defined by N,, N/, and this quadrangle necessarily is of type 4.2.b. There follows
that (N,), (N,), (IN,') are on a line V, that (L,), (L,,,). (L,,.) are on a line W_, and
that ¥V and W, have a point u, in common ((N,), (N,), (N)), u,, are the four
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points of V_, and (L), (L,;.) (Lape)s U, are the four points of W, ). If Ly, D,
E,, (resp. L, D,,, E,,, resp. Ly, D7, E}), a%b and a, be{x, y, z}, are the lines
of § which are concurrent with N,, N, (resp. N,, Nj, resp. N;', N;"), then the lines
LO: Lla L2a an My? Mz> Nx> Ny> ]\]z> N,é, N;a N;: N;’ ]\Ty”, ]Vz”, Dabﬁ Eab> D;b’ Ez,zba
Dy, Ely, Loper Ly, are the 45 lines of S.

So we have the following construction of the generalized quadrangle with 27
points and 45 lines in AG(4, 3). First of all we choose the points (L), (M,), (N,),
(N,), (N, (NY), (V)), (N]), (N)), (N,'), (N)') in such a way that the conditions
above are satisfied. Next we choose the line L, through (L,), and we label the
three points on L. Such a choice determines a configuration of 27 points and 45
lines, and it is not a difficult but a tedious work to check that this incidence
structure is indeed a generalized quadrangle. We also remark that in the
hyperplane at infinity coordinates can be chosen in such a way that we have (L)
=(0,0,0,1), (M,)=(1,0,0,0), (N)=(0,1,0,0), (N)=(1,1,0,0), (N)=(1, —=1,0,
0), (NJ=(0, 0, 1, 0), (N)=(1, 0, 1, 0), (N))=(1, 0, =1, 0), (N)=(0, 1, 1, 0), (N})
=(1, -1, -1, 0), (N))=(1, 1, 1, O).

Finally we suppose that any two non-coplanar lines of S define a sub-
quadrangle of type 4.2.b. If the lines L, M of S contain the point p of S, then the
plane LM contains just the lines L, M of § (if N is a line of S which is
concurrent with L, but not coplanar with M, then in the threespace MN a
quadrangle of type 4.2.b is induced, and so L, M are the only lines of S in the
plane LM). Let L be a line of §, let p,,...,p, be the points of L, and let L,
M,,,...,M;, be the t+1 lines of S through p,. Then the t*+s+1 hyperplanes
M, . M,,, LM; M,, are distinct. The number of hyperplanes containing L equals
(s+1)2+(s+1)+1, and so t*<(s+1)*+1 or t<s+1. Since any pair of distinct
lines of § is regular, we have t=1 or t=s [14]. Since ¢=1, we have te{s,s+1}.
Since s=1 and since s+ ¢ divides st(s+1)(¢+ 1) [7], there holds s=t. As any line
of S is regular, S is isomorphic to the classical quadrangle Q(4,s) [14].

Let H be the threespace defined by three concurrent lines L,, L, L, of S.
The common point of these lines is denoted by p. Then all the lines of § in H
contain p and any point of S in H is on one of these lines (if there is a line of S in
H which does not contain p, then a subquadrangle S’ of type 4.2.b is induced in
H, a contradiction since in S’ there are at least three lines which contain p). The
lines of S in H are denoted by L, ..., L,. Suppose that ' <, and let L, be a line
of S through p which is not in H (necessarily t>2). Let gIL,, g=p. The t+1
lines of S through g are L, and ¢ lines in the threespace H through g and parallel
to H. Analogously the 41 lines of S through p are L, and ¢ lines in H. So we
have t'=t—1. Now we consider the threespace H defined by L, L,, L, (H does
not contain L, =L,_,). Since H and H contain ¢ lines of S through p, their
intersection contains ¢t —1 lines of S through p. If s=¢>3, then t—1=3, and so
H=H, a contradiction. So we have necessarily s=t=3. The points of L, are
denoted by p,,...,ps, and let L,, M;,, ..., M, be the lines of S through p; (the
lines L,, M;, ..., M, are not contained in a hyperplane). The point at infinity of
M, is denoted by (M;,), etc. The points (M;,), (M, ,), (M, ) are not collinear, and
the set {(M,,), (M;,), (M, )} is denoted by V,. Remark that the 12 points (M;;) are
coplanar ((M,;) is always a point of the plane at infinity w,, of the threespace H).
If T is a line of w,, which intersects V; and V), i#J, then T also intersects V; and



10 J.A. Thas

Vi, {i, ), k, 1} =10, 1, 2, 3} (since any two lines M;, and M, define a quadrangle of
type 4.2.b). Moreover a line which contains two points of V;, has no point in
common with V;, i#j. The number of lines of these two types equals 9+12=21,
and so any line of @, has 2 or 4 points in common with V,uV,UV,uV,;=V. Let
W be the set of the points of @, which are not in V. Any line of w_, has 1 or 3
points in common with W, and since |W|=9 the set W is a unital of w_ [13].
Since w,, has order 4 the unital evidently is a hermitian curve. In w_, there are
exactly 4 triangles whose vertices are exterior points of W and whose sides are
secants of W. So we have a complete description of the sets V,, V;, V,, V5. We
remark that the 40 points of S are on the lines L,, M;; and that the 40 lines of §
are the lines of the 9 subquadrangles defined by the pairs {M;,, M,,}, i+ (the
lines at infinity defined by these 9 subquadrangles are the 9 tangents of the
hermitian curve W and the 9 lines which join (L))=(L;) to the points of W).
Now we have a detailed description of the quadrangle S. From this description
follows the construction of a model of the classical quadrangle Q(4,3) in
AG(4,4).

Now we assume that for any point p of S, the lines of S through p are
contained in a hyperplane. Suppose a moment that s>2. Let L and M be lines
of S which contain the point p of S. Now we consider the s+ 2 threespaces which
contain the plane LM. If H is such a threespace, then H contains only the lines
L, M of S, or H contains any line of S through p, or a subquadrangle of type
4.2.b is induced in H. There are s hyperplanes of the third type, one hyperplane
H of the second type, and consequently there is one hyperplane H which
contains only the lines L, M of S. Let N be a line of § through p, which is not
contained in H, and let gIN, g#p. The s+1 lines of S through ¢q are N and s
lines in the threespace through ¢ and parallel to H. Analogously the s+ 1 lines
of S through p are N and s lines in H, a contradiction since s> 2. There follows
that s=t=2.

So we suppose that s=¢=2. Let L be a line of S, let p,, py, p, be the points of
L, and let L, M;,, M,, be the lines of S through p,. Through the plane M,, M,,
there is exactly one hyperplane H, which contains only the lines M,,, M,, of S.
Evidently the lines M,,, M, ,, M,,, M, , are parallel to H,. The point at infinity
of My, is denoted by (M,,), etc. Then (Mg,),...,(M,,) are points of the plane at
infinity w,, of H,. In the threespace M;, M;;, i=j, a subquadrangle of type 4.2.b
is induced, and so we may assume that (M,,,), (M, ), (M, ) are on a line N, that
(M), (Mg,), (M,,) are on a line N,, that (M,,), (M,,), (M,,) are on a line Nj,
and that (M), (M;,), (M, ,) are on a line N,. The fourth point on the line N, is
denoted by n,. The points on the line (L) n; are denoted by (L), n;, u;, u;,. Then
U1, Uiz, (L), (M}y), (M), i=1,...,4 and j=0,1,2, are the points at infinity of the
15 lines of S. Now we have a detailed description of the quadrangle S. From this
description follows the construction of a model of the classical quadrangle with
15 points and 15 lines in AG(4,3) (by the choice of the points (M;) in @, and
the point (L) not in w,, the points at infinity of the 15 lines are determined;
next, we choose the line L through (L); by the labeling of the 3 points on L, the
generalized quadrangle is completely determined).

Theorem. Suppose that the generalized quadrangle S =(P, B, I) with parameters s, t
is embedded in AG(d, s+ 1), d=5, and that P is not contained in an AG(d—1, s+1).
Then the following cases can occur.
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(@) s=1 and te{[d/2],...,24" ' —1} (trivial case)
(b) s=1, t=4, d=5 (an embedding of the generalized quadrangle with 27
points and 45 lines in AG(5, 3)).

Proof. Suppose that s=1. Let xq, X1, ...,X,, Yo, V1> Yy t€{[d/2],..., 2071 =1},
be distinct points of AG(d, 2) which are not contained in an hyperplane. Then
the sets P={x;y;li,je{0,...,t}} and B={{x;y;}llije{0,....t}} define a
generalized quadrangle with parameters s=1 and ¢.

Now we suppose that s=2. Let L, M be two non-coplanar lines of S, and call
AG(3, s+ 1) the affine threespace which contains these lines. Suppose that p is a
point of S which does not belong to AG(3,s+1), and call AG(4,s+1) the
fourdimensional affine space defined by AG(3, s+ 1) and p. Suppose that ¢ is a
point of § which does not belong to AG(4, s+ 1), and call AG(5, s+ 1) the affine
space defined by AG(4,s+1) and ¢. In AG(3,5+1) (resp. AG(4,s+1), resp.
AG(5,s+1)) a subquadrangle S (resp. S”, resp. $") with parameters s, ¢ (resp.
s,t”, resp. s, t”) is induced. We have ' <t <t <t <s% From [16] follows that
necessarily t' =1, t"=s, t”=s% and so t=s? and d=5. From the preceding
theorem follows that ¢'=1, t"=s5s=2, t=4, d=5or t'=1, t"=s5=3, t=9, d=3.

Let us suppose that s=2, t=4, d=5. Let §' be a subquadrangle with
parameters 2, 2 of S, which is embedded in the hyperplane H of AG(5, 3). Let L,
be a line of ', suppose that x,, y,, z, are the points of L, that N, M, L, are
the lines of §" containing x,, that N,, M, L, are the lines of S’ containing y,,
that N, M,, L, are the lines of §’ containing z,, and that M, M,, M_ belong to
a threedimensional affine space 7. Let N, N;, N, M_, L, be the lines of B
which contain x,. The hyperplane defined by T and N/ is denoted by H’, and
the hyperplane defined by T and N, is denoted by H". The subquadrangle

"=(P",B",1") resp. 8" =(P", B”,I'"") induced in H' resp. H" has parameters
s,t" resp. 5,1, with s=t"=r"=2. Suppose that N, N;eB", y,IN,, z,IN],
Ny¢{M,, Lo}, N;¢{M_, Lo}, and that N}, N’eB", yo,IN/, z,IN,’, N;'¢é{M,, L},
N;'¢{M,,Ly}. Any point of § is on one of the lines Ly, M, M,, M_, N,, N,, N,,
Ny, N,, N}, N/, N), N,". The point at infinity of L, is denoted by (L,), etc. Then
(M,), (M,), (M) are on a line M. Moreover the points (M,), (M,), (M), (N,),
(N,), (N,) are in a plane w,,, the points (M,), (M,), (M,), (N,), (N;), (N;) are in a
plane w/,, and the points (M,), (M), (M,), (N;), (N;), (N;') are in a plane w,,. We
remark that o, o, @, are three distinct planes, and that (L,) is in no one of
these planes. Moreover, if {a,b,c}={x,y, 2}, the points (M,), (N,), (N,) are
collinear, the points (M,), (Ny), (N) are collinear, and the points (M,), (), (N.)
are collinear. There are three lines Ly, L,,., L,,. of B concurrent with N, and Nj,
and there are also three lines N,, N;, U concurrent with each of L, L., L.
We have necessarily U =N, with {a,b,c}={x,y,z}. There follows that (N,), (N;),
(N') are on a line V,, that (L), (L,,.), (L,,,) are on a line W, and that V,, and
W, have a point u_, in common ((N,), (N}), (N."), u,, are the four points of V_,
and (L), (L,p.), (Lype)s U, are the four points of W,). If Ly, D,,, E,, (resp. Lo,
D,,, E,,, resp. Ly, Dy, E,), ab and a, be{x,y, z}, are the lines of § which are
concurrent with N,, N, (resp. N,, N;, resp. N, N,),and if L, Ly, L; are the lines
of S concurrent with M,, M, M,, then the lines L, L,, Ly, M., M,, M_, N,, N,,
N, N;, N, N, NY', NJ, N, Doy Egyo Dy, By Dgyr Eqys Lases Loy are the 45 lines
of S.
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So we have the following construction of the generalized quadrangle with 27
points and 45 lines in AG(5, 3). First of all we choose the points (L), (M,), (M,),
(M), (NJ, (N), (N}, (N, (N), (N), (Ng), (Ny), (V') in such a way that the
conditions above are satisfied. Next we choose the line L, through (L), and we
label the three points on L,. Such a choice determines a configuration of 27
points and 45 lines, and it is not a difficult but tedious work to check that this
incidence structure is indeed a generalized quadrangle. We also remark that in
the hyperplane at infinity coordinates can be chosen in such a way that we have

{L)=(0,0,0,0,1),

{M,)=(1,0,0,0,0), (M,)=(0,1,0,0,0), (M,)=(1,1,0,0,0),
(N)=(0,0,1,0,0), (Ny)=(1,1,1,0,0), (N,)=(0,1,1,0,0),
(N5)=(0,0,0,1,0), (N)=(1,1,0,1,0), (N)=(0,1,0,1,0),
N)=(1,~-1,1,10), (N)=(0,1,1,1,0), (N/)=(1,1,1,1,0).

Finally we assume that s=3, =9, d=5. Then S contains subquadrangles
with parameters 3, 3, and described in the preceding theorem. So in § we can
choose three concurrent lines L, M, N, with common point p, in such a way that
L, M, N are the only lines of § in the threespace T defined by L, M, N. There
are 5 hyperplanes containing T and in 3 of these hyperplanes a subquadrangle
with parameters 3, 3 is induced. Let H,, H, be the other hyperplanes through T.
The lines of S in H; all contain p. The number of lines of S in H; equals 3 +a;,
with a; +a,=4. Let L be a line of § through p and not in H,, and let gIL,,
g=p. The 10 lines of S through ¢ are L, and 9 lines in the hyperplane H,
through ¢ and parallel to H,. Analogously the 10 lines of S through p are L, and
9 lines in the hyperplane H,. Consequently 3 +a, =9, a contradiction.
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