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Subgroups of Finite Index in Profinite Groups
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Let € be a class of finite groups. By this we understand that € is a class in the
usual sense, which contains all groups of order 1, and contains, with every group
GeC, all isomorphic copies of G. By a pro-€ group, we mean a topological
group isomorphic to an inverse limit of groups in €, viewed as a topological
group in the usual way. If € is closed under taking homomorphic images, this is
equivalent to saying that G is a compact totally disconnected Hausdorff to-
pological group such that G/Ne€ for every open normal subgroup N of G. We
write €* for the class of all pro-€ groups.

It seems to be unknown whether every subgroup of finite index in a finitely
generated profinite group is open. Here we say that a profinite group is finitely
generated, if it has a dense subgroup which is finitely generated in the algebraic
sense. The answer is known to be affirmative if € is the class AN of finite
abelian-by-nilpotent groups (Anderson [1]) or the class of finite supersoluble
groups (Oltikar and Ribes [6]). I am indebted to L. Ribes for bringing these
results to my attention, and for several stimulating discussions. We generalize
these results as follows. For an integer [ =1, let )’ denote the class of all finite
groups G which have a series

1=6Gy<G;<..<G,=G (%)
with all factors G, /G, nilpotent. The least ! for which such a series exists is
known as the nilpotent length or Fitting height of G.

Theorem 1. If Ge(NHY* (for some 1=1) and G is finitely generated, then every
subgroup of finite index in G is open.

It is easy to see that a profinite group G belongs to (M")* if and only if G has
a series () in which each G, is closed and each G, ,/G, is pronilpotent.

As in [1], we prove the theorem by showing that the algebraic derived or
commutator group

G =<lxy]: x,yeG)

is closed, whenever Ge()*.
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Lemma 1. Let G be a compact topological group, S be a closed non-empty subset
of G, and let

={sElsf! . s¥l:5eS} (n=1).
Then G=<S> if and only if G=S8" for some n=1.

This is no doubt well known. We write (X ) for the subgroup generated
(algebraically) by a subset X of a group.

Proof. Suppose that G ={S). We may suppose that S contains 1 and S=S~'. By
assumption, G= U S"; also each of the sets S” is closed. If S* <G for all n, then

Baire’s Category Theorem ([4], p.200) shows that one of the sets S" is not
nowhere dense. Thus S* contains a non-empty open subset U of G. Clearly G

= U Ug, and by compactness we can write G = U Ug; (g;€G) for some finite m.

Smce G={8>, we can choose t=1 such that {gl,...,gm}gSt. Then clearly G
=8"*! as required.

This proves one implication; the other is trivial.

For any group G, let

3(G)={[x,y]: x,yeG}
denote the set of commutators of elements of G.

Lemma2. Let € be a class of finite groups closed under taking subgroups,
homomorphic images, and direct products. Then the following two conditions are
equivalent:

(1) For every finitely generated GeC®* the derived group G’ is closed.

(2) There exists an integer-valued function f(k) such that H' =5(HY® for
every k-generator group He® (k=1).

If these conditions are satisfied, and € consists of soluble groups, then every
subgroup of finite index in a finitely generated €*-group is open.

Proof. (2)=(1). Let G be a k-generator group in €* (that is, G contains a dense

subgroup which is generated algebraically by k elements), let m=f(k) and let

xeG'. If N is an open normal subgroup of G, then x is congruent modulo N to

an element of 4(G)", since G/Ne€Q. Hence xNn§(G)"+@. Since (G)" is

compact and each xN is closed, it follows that {x}=()xN has non-empty
N

intersection with 6(G)", that is, xed(G)™. So G'=45(G)™, which is closed.
Suppose that (1) holds, and let F be the free €*-group on k generators, that
is, hm X/N, where X is a free abstract group on k generators, and N runs over
all normal subgroups of X such that X/Ne@. By assumption, F’ is closed, and
so we can use Lemma 1 to conclude that F'=3(F)" for some m. Define f(k)=
Since every k-generator group H in € is a homomorphic image of F, we have H’
=6(H)’® for every such H. I am indebted to L. Ribes for this simple argument.
Now suppose the conditions hold. Let G be a finitely generated group in €*.
We show that every subgroup N of finite index in G is open by induction on the
index. It suffices to consider the case N<aG. By ([1], Proposition 7) G/N is
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soluble. Unless G/N is of prime order, there is a subgroup H=<aG with
N < H <G. By induction, H is open. Then H is also finitely generated, so again
by induction, N is open. Hence we may assume that G/N is of prime order p. In
that case, N=G', and since G’ is closed, we can pass to G/G’ and reduce to the
case when G is abelian. Also N = G? ={g?: geG}, which is also a closed subgroup
of G, and passing to G/G¥, we may assume that G has exponent p. Let H be a
finitely generated dense subgroup of G. Then H is finite, hence closed, and so H
=G. Hence G is a finite discrete group, and all its subgroups are open. This
proves Lemma 2.

In virtue of Lemma 2, Theorem 1 follows from the following rather surpris-
ing result, which has independent interest:

Theorem 2. If GeN' and G can be generated by k elements, then G' =5(G)", where
m=k+2k—1)(1-1).

The proof of this will require some preparatory lemmas. The first of these is
based on an argument of Rhemtulla [5].

Lemma 3. Let G={x4,...,x,» and let H be a nilpotent normal subgroup of G.
Suppose that H=<{)5,.. ,ys> is generated by the comjugacy classes in G of
elements yl,. ¥, Then every element of [H,G] can be expressed in the form
]_[ [h., x;] H [A}, ;1 (h,, e H), where the product is taken for definiteness in order

i° J

of lncreasmg suffices.

Proof. We use induction on the nilpotency class ¢ of H. If ¢=1, then H is
abelian. The map h—T[h, x;] is then an endomorphism of H, and its image is the
subgroup [H, x;]. Since x; normalizes [H, x;] and operates trivially on H/[H, x,],

every subgroup of H containing [ H, x;] is normalized by x,. Hence [[[H,x,]=L
i=1
is normal in G. Clearly G operates trivially on H/L since each of its generators
does. Hence [H,G]<L, and we must have equality. This deals with the case ¢
=1.
Now let ¢>1, let K=y, ,(H), and L=y (H), where {y,(H)} is the lower

central series of H. By the case ¢=1, we have [L,G]=[][L,x;]<G. Since
i=1
[K,y;]=L, which is central in H, the usual commutator identities

[ab,c]=[a,cl’[b,c]; [abcl=[a c][a b] (0
show that the map ki—[k,y;]1(keK) is homomorphic; its image is the subgroup

[K,y;] Let J= ]_[ [K,y;], where the order of the factors is immaterial, and let
Jj=
x—X be the natural homomorphism of G onto G=G/[L,G]. Then L is central in

G, so J<aG. In the group G/J, the normal subgroup K/J is centralized by the
images of the elements y,,...,¥,, and hence also by their conjugates. Since
H={% ...,y%, it follows that K/J is central in H/J, that is, L=[H, K]

<[L,G]J=L. Hence L= ]_[[L ]]_[[KyJ

i=1 Jj=
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Now let ge[H, G]. By induction, we have
g=[10h,x1[][H;,y;] modL,
i=1 j=1

where h;, h;eH. Hence, by the previous paragraph, and since L is central in H,
we can write

g= 1—[ Ly, x; 10, x,] n [kj’ yj] [h_,j: )’j] (LeL, kjeK)
i=1 j=1
= H Ch; 1, x;] n [kj h;',yj']a
i=1 i=1
by the identities (1). This gives the result.

A simpler version of the above argument yields the following, which was
pointed out to me by P.W. Stroud in 1965:

Lemmad4. Let G={x,,...,x,> be a nilpotent group. Then every element of G’ can
k

be expressed in the form ]—[ [g:, x;], where the product is again taken in order of
i=1
increasing suffices for definiteness.
We omit the details.
Before proceeding with the main theorem, we digress to point out some
purely group-theoretic consequences of Lemma 3.

Corollary 1. Suppose that G can be generated by k elements, and G’ is nilpotent.
Then every element of G' can be written as a product of Sk(k+3)—1 commutators.

Proof. Let G={xy,...,x,» and G'=H. Then H={[x;,x;]°:1<i<j<k), so H
can be generated by the G-conjugacy classes of 2k(k—1) elements.

By Lemma 3, every element of [H, G] can be expressed as a product of 2k(k
—1)+k=21k(k+1) commutators. Since G/[H,G] is nilpotent of class at most
two, a straightforward argument shows that every element of G’ is congruent
modulo [H,G] to a product of k—1 commutators, of the form [g,x,]
(g,€G,1<Zi<k—1) say. From this the result follows.

It would be interesting to know how good these various bounds are.

In the same way as Corollary 1, one can prove

Corollary 2. Suppose that G can be generated by k elements, and y,,,(G) is
nilpotent. Then every element of G' is a product of k*!+2k commutators.

The proof uses Lemma 4 and the fact that if G={x,,...,x,>, then

Year (G =[x, nx; 19 120,k
The next lemma is the point where finite group theory comes into play.

Lemma5. Let G=AH be a finite group, where A<1G, AnH=1, and A is
nilpotent. Suppose that G can be generated by k elements, and A=[A,G]. Then A
can be generated by k—1 conjugacy classes of elements of G.
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Proof. The argument proceeds in steps. Firstly, we may assume that A is a p-
group for some prime p. For if yP,...,y® | are elements whose G-conjugacy
classes generate the Sylow p-subgroup of A, and y,=[][y®, then A
=<y?7"’aykG—1>- ?

We may further assume that A is elementary abelian. For A/®(A) is
elementary abelian, where @(A4) denotes the Frattini subgroup of 4, and any set
of elements which generates 4 modulo ®(4), already generates A.

Now we view A as an IF, H-module, with H acting by conjugation. We have
to show that 4 is a k— l-generator IF, H-module. If B is the intersection of the
maximal submodules of A, then A/B is completely reducible, and no proper
submodule C of 4 can satisfy A =B+ C. So we may assume that 4 is completely
reducible.

Let V be any irreducible IF, H-module, let J(IF,H) denote the Jacobson
radical of IF,H, and let m; be the multiplicity with which V' occurs in
IF,H/J (IF, H). Adopting an approach based on methods of Gaschiitz, we prove:

(T) The multiplicity of V in A is at most m,(k—1).

From this the result follows, since IF, H/J(IF, H) is a direct sum of m,, copies
of each irreducible IF, H-module ¥, and so A is a homomorphic image of a direct
sum of k—1 copies of the cyclic module IF, H/J (IF, H).

To see (f), let A4, be the largest submodule of 4 which is a direct sum of
copies of V;say A, =V, ®...®V,(V;=V,15i<1), and let G, =4 H. Since G, is
a homomorphic image of G, it follows that G, can be generated by k elements

say G, =<{Xy,...,x0. Let V¥=V,®...®V,. If qﬁeHom]FpH(Vl*, V), then
U,={vg+v:veV*}

is a submodule of A complementary to V;. The number of such submodules U,
18
lHon'ileﬂ(Vﬁ, VOI=IE[,

where E=Endy, 5V, and in fact these exhaust the submodules complementary to
V in A. For each such ¢, UyH is a subgroup of G; complementary to V;. Since A
=[A,H] we have IV, = [VI,H] and so Cy, (U,H)=0. Hence Uy H has |V'| distinct
conjugates, each intersecting A in Uj,. So the total number of complements to V;
in G, is at least |E['~ 1 |V|.

Now consider the set of all k-tuples (v, x, ..., v,x,) (v;€V). There are |V
such, and each complement to ¥, in G can be generated by exactly one such k-
tuple. Since the k-tuple (x,,...,x,) lies in no complement, we have
alk—1)

b
and this is well known to be the same as m,. Hence t <my, (k—1), as claimed.

A much simpler argument shows that 4 can be generated by k conjugacy
classes under far weaker hypotheses:

Lemma5’. Let G=AH, A<G, AnH=1 be a group. If G can be generated by k
elements, then A can be generated by k conjugacy classes of G.

[VIF>|E|"-1.|V|. Let |[V|=p" |E|=p®. Then t<

+1. Clearly a/b=dim,V
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Proof. Let G={x,,...,x,>. Write x,=a;h, (g;€ A4, h,eH), and let N=<(d¥,...,a%>.
Then NH is a subgroup of G containing each x;. Therefore NH=G and N =A.
Now we can conclude the proof of Theorem 2.

Proof of Theorem 2. This is by induction on L If /=1 the theorem follows from
Lemma 4. Suppose that I>1, and let H be the 9t'~'-residual of G, that is, the
smallest normal subgroup whose factor group belongs to 9t~ '. Then H is
nilpotent. By a theorem of Higman ([2] or [3]), G/H' splits over H/H'. Also H
=[H,G]. By Lemma¥’, there are elements y,,...,y,_,;€H such that H
=H'{yS, ...,y _1>. Since H' <®(H), we have H=)%,...,y¢ >. By Lemma 3,
every element of H=[H,G] can be expressed as a product of 2k—1 com-
mutators.

Let ueG'. By induction, u can be expressed in the form u=vw, where v is a
product of k+(2k—1)(I—2) commutators, and weH. Thus u is a product of k
+(2k—1)(I—1) commutators, as required.

Corollary 3. Let G be a finite group. If G can be generated by k elements, and
GeN', then there exist elements z,,...,z,eG (m=k+(2k—1)(I—1)) such that

m
every element of G’ has the form || (g, z,], where the product is taken in order of
increasing i. i=1

This is a corollary of the proof of Theorem 2 rather than its statement.
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