Subgroups of Finite Index in Profinite Groups

Brian Hartley

Department of Mathematics, University of Manchester, Manchester M 13 9 PL, England

Let $\mathfrak C$ be a class of finite groups. By this we understand that $\mathfrak C$ is a class in the usual sense, which contains all groups of order 1, and contains, with every group $G \in \mathfrak{C}$, all isomorphic copies of G. By a *pro-* \mathfrak{C} group, we mean a topological group isomorphic to an inverse limit of groups in \mathfrak{C} , viewed as a topological group in the usual way. If $\mathfrak C$ is closed under taking homomorphic images, this is equivalent to saying that G is a compact totally disconnected Hausdorff topological group such that $G/N \in \mathfrak{C}$ for every open normal subgroup N of G. We write \mathfrak{C}^* for the class of all *pro-* $\mathfrak C$ groups.

It seems to be unknown whether every subgroup of finite index in a finitely generated profinite group is open. Here we say that a profinite group is finitely generated, if it has a dense subgroup which is finitely generated in the algebraic sense. The answer is known to be affirmative if $\mathfrak C$ is the class $\mathfrak V\mathfrak V\mathfrak v$ of finite abelian-by-nilpotent groups (Anderson [1]) or the class of finite supersoluble groups (Oltikar and Ribes [6]). I am indebted to L. Ribes for bringing these results to my attention, and for several stimulating discussions. We generalize these results as follows. For an integer $l \geq 1$, let \mathfrak{R}^l denote the class of all finite groups G which have a series

$$
1 = G_0 \lhd G_1 \lhd \ldots \lhd G_l = G \tag{(*)}
$$

with all factors G_{i+1}/G_i nilpotent. The least *l* for which such a series exists is known as the *nilpotent length* or *Fitting height* of G.

Theorem 1. *If* $G \in (\mathbb{R}^l)^*$ (for some $l \geq 1$) and G is finitely generated, then every *subgroup of finite index in G is open.*

It is easy to see that a profinite group G belongs to $(\mathfrak{N}^l)^*$ if and only if G has a series (*) in which each G_i is closed and each G_{i+1}/G_i is pronilpotent.

As in [1], we prove the theorem by showing that the algebraic derived or commutator group

 $G' = \langle [x, y] : x, y \in G \rangle$

is closed, whenever $G \in (\mathfrak{N}^l)^*$.

Zeitsch 9 by Springer-Verlag 1979 **Lemma** 1. *Let G be a compact topological group, S be a closed non-empty subset of G, and let*

$$
S^n = \{ s_1^{\pm 1} s_2^{\pm 1} \dots s_n^{\pm 1} : s_i \in S \} \qquad (n \ge 1).
$$

Then G = $\langle S \rangle$ *if and only if G = Sⁿ for some n ≥ 1.*

This is no doubt well known. We write $\langle X \rangle$ for the subgroup generated (algebraically) by a subset X of a group.

Proof. Suppose that $G = \langle S \rangle$. We may suppose that S contains 1 and $S = S^{-1}$. By assumption, $G = \bigcup_{n=1}^{\infty} S^n$; also each of the sets S^n is closed. If $S^n < G$ for all *n*, then Baire's Category Theorem ($[4]$, p. 200) shows that one of the sets $Sⁿ$ is not nowhere dense. Thus $Sⁿ$ contains a non-empty open subset U of G. Clearly G $=\bigcup_{g\in G}Ug$, and by compactness we can write $G=\bigcup_{i=1} Ug_i (g_i \in G)$ for some finite m. Since $G = \langle S \rangle$, we can choose $t \ge 1$ such that $\{g_1, \ldots, g_m\} \le S^t$. Then clearly G $=S^{n+t}$, as required.

This proves one implication; the other is trivial. For any group G, let

 $\delta(G) = \{ [x, y] : x, y \in G \}$

denote the *set* of commutators of elements of G.

Lemma 2. Let $\mathfrak C$ be a class of finite groups closed under taking subgroups, *homomorphic images, and direct products. Then the following two conditions are equivalent:*

(1) For every finitely generated $G \in \mathbb{C}^*$ the derived group G' is closed.

(2) There exists an integer-valued function $f(k)$ such that $H' = \delta(H)^{f(k)}$ for *every k-generator group H* $\in \mathbb{C}$ ($k \geq 1$).

If these conditions are satisfied, and $\mathfrak C$ *consists of soluble groups, then every* subgroup of finite index in a finitely generated \mathfrak{C}^* -group is open.

Proof. (2) \Rightarrow (1). Let G be a k-generator group in \mathbb{C}^* (that is, G contains a dense subgroup which is generated algebraically by k elements), let $m = f(k)$ and let $x \in G'$. If N is an open normal subgroup of G, then x is congruent modulo N to an element of $\delta(G)^m$, since $G/N \in \mathfrak{C}$. Hence $xN \cap \delta(G)^m \neq \emptyset$. Since $\delta(G)^m$ is compact and each *xN* is closed, it follows that $\{x\} = \int_N$ *xN* has non-empty

intersection with $\delta(G)^m$, that is, $x \in \delta(G)^m$. So $G' = \delta(G)^m$, which is closed.

Suppose that (1) holds, and let F be the free \mathfrak{C}^* -group on k generators, that is, $\lim X/N$, where X is a free abstract group on k generators, and N runs over all normal subgroups of X such that $X/N \in \mathfrak{C}$. By assumption, F' is closed, and so we can use Lemma 1 to conclude that $F' = \delta(F)^m$ for some *m*. Define $f(k)=m$. Since every k-generator group H in $\mathfrak C$ is a homomorphic image of F, we have H' $=\delta(H)^{f(k)}$ for every such H. I am indebted to L. Ribes for this simple argument.

Now suppose the conditions hold. Let G be a finitely generated group in \mathbb{C}^* . We show that every subgroup N of finite index in G is open by induction on the index. It suffices to consider the case $N \lhd G$. By ([1], Proposition 7) G/N is soluble. Unless G/N is of prime order, there is a subgroup $H \triangleleft G$ with $N < H < G$. By induction, H is open. Then H is also finitely generated, so again by induction, N is open. Hence we may assume that *G/N* is of prime order p. In that case, $N \geq G'$, and since G' is closed, we can pass to G/G' and reduce to the case when G is abelian. Also $N \geq G^p = \{g^p : g \in G\}$, which is also a closed subgroup of G, and passing to G/G^p , we may assume that G has exponent p. Let H be a finitely generated dense subgroup of G. Then H is finite, hence closed, and so H $=$ G. Hence G is a finite discrete group, and all its subgroups are open. This proves Lemma 2.

In virtue of Lemma 2, Theorem 1 follows from the following rather surprising result, which has independent interest:

Theorem 2. *If* $G \in \mathbb{R}^l$ and G can be generated by k elements, then $G' = \delta(G)^m$, where $m=k+(2k-1)(l-1)$.

The proof of this will require some preparatory lemmas. The first of these is based on an argument of Rhemtulla [5].

Lemma 3. Let $G = \langle x_1, \ldots, x_r \rangle$ and let H be a nilpotent normal subgroup of G. *Suppose that* $H = \langle y_1^G, ..., y_s^G \rangle$ is generated by the conjugacy classes in G of *elements* y_1, \ldots, y_s . Then every element of $[H,G]$ can be expressed in the form $\prod_{i=1}^n [h_i, x_i] \prod_{j=1}^n [h'_j, y_j]$ ($h_i, h'_j \in H$), where the product is taken for definiteness in order *of increasing suffices.*

Proof. We use induction on the nilpotency class c of H. If $c=1$, then H is abelian. The map $h \mapsto [h, x_i]$ is then an endomorphism of H, and its image is the subgroup $[H, x_i]$. Since x_i normalizes $[H, x_i]$ and operates trivially on $H/[H, x_i]$, every subgroup of H containing $[H, x_i]$ is normalized by x_i . Hence $\prod [H, x_i] = L$

 $i=1$ is normal in G. Clearly G operates trivially on *H/L* since each of its generators does. Hence $[H, G] \leq L$, and we must have equality. This deals with the case c $=1.$

Now let $c>1$, let $K=\gamma_{c-1}(H)$, and $L=\gamma_c(H)$, where $\{\gamma_i(H)\}$ is the lower central series of H. By the case $c=1$, we have $[L, G] = \prod [L, x] \triangleleft G$. Since $i=1$ $[K, y] \leq L$, which is central in H, the usual commutator identities

$$
[ab, c] = [a, c]^b [b, c]; \quad [a, bc] = [a, c] [a, b]^c
$$
 (1)

show that the map $k \mapsto [k, y_j]$ ($k \in K$) is homomorphic; its image is the subgroup [K, y_j]. Let $J = \prod_{j=1}^{n} [K, y_j]$, where the order of the factors is immaterial, and let $x \rightarrow \overline{x}$ be the natural homomorphism of G onto $\overline{G}=G/[L, G]$. Then \overline{L} is central in \bar{G} , so $\bar{J} \lhd \bar{G}$. In the group \bar{G}/\bar{J} , the normal subgroup \bar{K}/\bar{J} is centralized by the images of the elements $\bar{y}_1, \ldots, \bar{y}_s$, and hence also by their conjugates. Since $\langle y_s^G \rangle$, it follows that K/J is central in H/J , that is, $L = [H, K]$ $\leq L$, $G \mid J \leq L$. Hence $L = \prod_{i=1}^{L} [L, x_i] \prod_{j=1}^{L} [K, y_j].$

Now let $g \in [H, G]$. By induction, we have

$$
g \equiv \prod_{i=1}^r [h_i, x_i] \prod_{j=1}^s [h'_j, y_j] \mod L,
$$

where h_i , $h'_j \in H$. Hence, by the previous paragraph, and since L is central in H, we can write

$$
g = \prod_{i=1}^{r} [h_i, x_i] [l_i, x_i] \prod_{j=1}^{s} [k_j, y_j] [h'_j, y_j] \qquad (l_i \in L, k_j \in K)
$$

=
$$
\prod_{i=1}^{r} [h_i l_i, x_i] \prod_{j=1}^{s} [k_j h'_j, y_j],
$$

by the identities (1). This gives the result.

A simpler version of the above argument yields the following, which was pointed out to me by P.W. Stroud in 1965:

Lemma 4. Let $G = \langle x_1, \ldots, x_k \rangle$ be a nilpotent group. Then every element of G' can *k be expressed in the form* $\left[\right] [g_i, x_i]$, where the product is again taken in order of $i=1$ *increasing suffices for definiteness.*

We omit the details.

Before proceeding with the main theorem, we digress to point out some purely group-theoretic consequences of Lemma 3.

Corollary 1. *Suppose that G can be generated by k elements, and G' is nilpotent. Then every element of G' can be written as a product of* $\frac{1}{2}k(k+3) - 1$ *commutators.*

Proof. Let $G = \langle x_1, ..., x_k \rangle$ and $G' = H$. Then $H = \langle [x_i, x_j] \cdot B : 1 \leq i < j \leq k \rangle$, so H can be generated by the G-conjugacy classes of $\frac{1}{2}k(k-1)$ elements.

By Lemma 3, every element of [H, G] can be expressed as a product of $\frac{1}{2}k(k)$ $-1+1=k(1+k+1)$ commutators. Since $G/[H,G]$ is nilpotent of class at most two, a straightforward argument shows that every element of G' is congruent modulo $[H, G]$ to a product of $k-1$ commutators, of the form $[g_i, x_i]$ $(g_i \in G, 1 \le i \le k-1)$ say. From this the result follows.

It would be interesting to know how good these various bounds are.

In the same way as Corollary 1, one can prove

Corollary 2. Suppose that G can be generated by k elements, and $\gamma_{c+1}(G)$ is *nilpotent. Then every element of G' is a product of* $k^{c+1} + 2k$ *commutators.*

The proof uses Lemma 4 and the fact that if $G = \langle x_1, ..., x_k \rangle$, then

 $\gamma_{c+1}(G) = \langle [x_i, \ldots, x_i, \ldots]^G : 1 \leq i \leq k \rangle.$

The next lemma is the point where finite group theory comes into play.

Lemma 5. Let $G = AH$ be a finite group, where $A \triangleleft G$, $A \cap H = 1$, and A is *nilpotent. Suppose that G can be generated by k elements, and* $A = [A, G]$ *. Then A can be generated by* $k-1$ *conjugacy classes of elements of G.*

Proof. The argument proceeds in steps. Firstly, we may assume that A is a pgroup for some prime p. For if $y_1^{(p)},..., y_{k-1}^{(p)}$ are elements whose G-conjugacy classes generate the Sylow p-subgroup of A, and $y_i = \prod y_i^{(p)}$, then A $=\langle y_1^G, \ldots, y_{k-1}^G \rangle.$

We may further assume that A is elementary abelian. For $A/\Phi(A)$ is elementary abelian, where $\Phi(A)$ denotes the Frattini subgroup of A, and any set of elements which generates A modulo $\Phi(A)$, already generates A.

Now we view A as an \mathbb{F}_nH -module, with H acting by conjugation. We have to show that A is a $k-1$ -generator \mathbb{F}_pH -module. If B is the intersection of the maximal submodules of A, then *A/B* is completely reducible, and no proper submodule C of A can satisfy $A = B + C$. So we may assume that A is completely reducible.

Let V be any irreducible \mathbb{F}_pH -module, let $J(\mathbb{F}_pH)$ denote the Jacobson radical of \mathbb{F}_pH , and let m_V be the multiplicity with which V occurs in $\mathbb{F}_pH/J(\mathbb{F}_pH)$. Adopting an approach based on methods of Gaschütz, we prove:

(†) The multiplicity of V in A is at most $m_V(k-1)$.

From this the result follows, since $\mathbb{F}_pH/J(\mathbb{F}_pH)$ is a direct sum of m_V copies of each irreducible \mathbb{F}_pH -module V, and so A is a homomorphic image of a direct sum of $k-1$ copies of the cyclic module $\mathbb{F}_nH/J(\mathbb{F}_nH)$.

To see (†), let A_1 be the largest submodule of A which is a direct sum of copies of V; say $A_1 = V_1 \oplus ... \oplus V_t$ ($V_i \cong V_i$, $1 \le i \le t$), and let $G_1 = A_1 H$. Since G_1 is a homomorphic image of G, it follows that G_1 can be generated by k elements; say $G_1 = \langle x_1, ..., x_k \rangle$. Let $V_1^* = V_2 \oplus ... \oplus V_t$. If $\phi \in \text{Hom}_{\mathbb{F}_p H}(V_1^*, V_1)$, then

$$
U_{\phi} = \{ v \phi + v : v \in V_1^* \}
$$

is a submodule of A complementary to V_1 . The number of such submodules U_{ϕ} is

 $|{\rm Hom}_{\mathbb{F}\times H}(V_1^*, V_1)| = |E|^{t-1},$

where $E = \text{End}_{\mathbb{F}_p H} V$, and in fact these exhaust the submodules complementary to V in A. For each such ϕ , $U_{\phi}H$ is a subgroup of G_1 complementary to V_1 . Since A $=[A,H]$ we have $V_1=[V_1,H]$ and so $C_{V_1}(U_{\phi}H)=0$. Hence $U_{\phi}H$ has |V| distinct conjugates, each intersecting A in U_{ϕ} . So the total number of complements to V_1 in G_1 is at least $|E|^{t-1}$ |V|.

Now consider the set of all k-tuples $(v_1x_1,...,v_kx_k)(v_i\in V)$. There are $|V|^k$ such, and each complement to V_1 in G can be generated by exactly one such ktuple. Since the k-tuple $(x_1, ..., x_k)$ lies in no complement, we have $|V|^k > |E|^{t-1} \cdot |V|$. Let $|V| = p^a$, $|E| = p^b$. Then $t < \frac{a(k-1)}{b} + 1$. Clearly $a/b = \dim_E V$

and this is well known to be the same as m_V . Hence $t \leq m_V(k-1)$, as claimed.

A much simpler argument shows that A can be generated by k conjugacy classes under far weaker hypotheses:

Lemma 5'. Let $G = AH$, $A \lhd G$, $A \cap H = 1$ be a group. If G can be generated by k *elements, then A can be generated by k conjugacy classes of G.*

Proof. Let $G = \langle x_1, \ldots, x_k \rangle$. Write $x_i = a_i h_i (a_i \in A, h_i \in H)$, and let $N = \langle a_1^G, \ldots, a_k^G \rangle$. Then *NH* is a subgroup of G containing each x_i . Therefore *NH* = G and *N* = A. Now we can conclude the proof of Theorem 2.

Proof of Theorem 2. This is by induction on *l.* If $l=1$ the theorem follows from Lemma 4. Suppose that $l>1$, and let H be the \mathfrak{N}^{l-1} -residual of G, that is, the smallest normal subgroup whose factor group belongs to \mathfrak{R}^{l-1} . Then H is nilpotent. By a theorem of Higman ([2] or [3]), *G/H'* splits over *H/H'.* Also H $=[H,G]$. By Lemma 5', there are elements $y_1,...,y_{k-1} \in H$ such that H $H' \langle y_1^G, \ldots, y_{k-1}^G \rangle$. Since $H' \leq \Phi(H)$, we have $H = \langle y_1^G, \ldots, y_{k-1}^G \rangle$. By Lemma 3, every element of $H=[H,G]$ can be expressed as a product of $2k-1$ commutators.

Let $u \in G'$. By induction, u can be expressed in the form $u = vw$, where v is a product of $k+(2k-1)(l-2)$ commutators, and $w\in H$. Thus u is a product of k $+(2k-1)(l-1)$ commutators, as required.

Corollary 3. *Let G be a finite group, tf G can be generated by k elements, and* $G \in \mathfrak{N}^l$, then there exist elements $z_1, \ldots, z_m \in G$ ($m=k+(2k-1)(l-1)$) such that *every element of G' has the form* $\bigcup [g_i, z_i]$, where the product is taken in order of *increasing i.* $i=1$

This is a corollary of the proof of Theorem 2 rather than its statement.

References

- 1. Anderson, M.P.: Subgroups of finite index in profinite groups. Pacific J. Math. 62, 19–28 (1976)
- 2. Higman, G.: The complementation of abelian normal subgroups. Publ. Math. Debrecen 4, 455 458 (1956)
- 3. Carter, R., Hawkes, T.: The $\tilde{\gamma}$ -normalizers of a finite soluble group. J. Algebra 5, 175–202 (1967)
- 4. Kelley, J.L.: General Topology. Princeton, N.J.: Van Nostrand 1955
- 5. Rhemtulla, A.H. : Commutators of certain finitely generated soluble groups. Canad. J. Math. 21, **1160-1164** (1969)
- 6. Oltikar, B.C., Ribes, L.: On prosupersolvable groups. Pacific J. Math. (to appear)

Received January 12, 1979