
Math. Z. 168, 7l-76 (1979) Mathematische 
Zeitschrift 

�9 by Springer-Verlag 1979 

Subgroups of Finite Index in Profinite Groups 

Brian Hartley 

Department of Mathematics, University of Manchester, Manchester M 13 9 PL, England 

Let ~ be a class of finite groups. By this we understand that ~ is a class in the 
usual sense, which contains all groups of order 1, and contains, with every group 
G ~ ,  all isomorphic copies of G. By a pro-~ group, we mean a topological 
group isomorphic to an inverse limit of groups in ~, viewed as a topological 
group in the usual way. If ~ is closed under taking homomorphic images, this is 
equivalent to saying that G is a compact totally disconnected Hausdorff to- 
pological group such that G/N~g for every open normal subgroup N of G. We 
write g* for the class of all pro-~ groups. 

It seems to be unknown whether every subgroup of finite index in a finitely 
generated profinite group is open. Here we say that a profinite group is finitely 
generated, if it has a dense subgroup which is finitely generated in the algebraic 
sense. The answer is known to be affirmative if ~ is the class 919l of finite 
abelian-by-nilpotent groups (Anderson [1]) or the class of finite supersoluble 
groups (Oltikar and Ribes [6]). I am indebted to L. Ribes for bringing these 
results to my attention, and for several stimulating discussions. We generalize 
these results as follows. For an integer l>  1, let 91l denote the class of all finite 
groups G which have a series 

1 = G 0 < G I < , . . < G I = G  (*) 

with all factors Gi+I/G ~ nilpotent. The least 1 for which such a series exists is 
known as the nilpotent length or Fitting height of G. 

Theorem 1. I f  G~(91z) * (for some l > l )  and G is finitely generated, then every 
subgroup of finite index in G is open. 

It is easy to see that a profinite group G belongs to (91~)* if and only if G has 
a series (,) in which each G i is closed and each Gi+I/G i is pronilpotent. 

As in [1], we prove the theorem by showing that the algebraic derived or 
commutator  group 

G' = ( I x ,  y] : x, yeG) 

is closed, whenever G~(91z) *. 
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Lemma 1. Let G be a compact topological group, S be a closed non-empty subset 
of G, and let 

s n ~ - { s ~ l s ~  1 . . . S + I ; s i E S }  (n  ~ l ) .  

Then G = ( S )  if and only if G=S" for some n> l. 

This is no doubt well known. We write ( X )  for the subgroup generated 
(algebraically) by a subset X of a group. 

Proof Suppose that G = (S) .  We may suppose that S contains 1 and S =S-1 .  By 

assumption, G =  ~) S"; also each of the sets S" is closed. If S"<G for all n, then 
n = l  

Baire's Category Theorem ([4], p. 200) shows that one of the sets S" is not 
nowhere dense. Thus S" contains a non-empty open subset U of G. Clearly G 

= U Ug, and by compactness we can write G = ~) Ug i (g~eG) for some finite m. 
g~G i= 1 

Since G = ( S ) ,  we can choose t > l  such that {gl,. . . ,gm}<St. Then clearly G 
=S  "+~, as required. 

This proves one implication; the other is trivial. 
For  any group G, let 

6(G)={[x,y]:x, yeG} 

denote the set of commutators of elements of G. 

Lemma2.  Let ff be a class of finite groups closed under taking subgroups, 
homomorphic images, and direct products. Then the following two conditions are 
equivalent: 

(1) For every finitely generated GEff* the derived group G' is closed. 
(2) There exists an integer-valued function f(k)  such that H ' = 6 ( H )  I(k) for 

every k-generator group H eff (k > 1). 
I f  these conditions are satisfied, and ff consists of soluble groups, then every 

subgroup of finite index in a finitely generated ff*-group is open. 

Proof ( 2 ) ~  (1). Let G be a k-generator group in ff* (that is, G contains a dense 
subgroup which is generated algebraically by k elements), let m =f (k)  and let 
xeG'. If N is an open normal subgroup of G, then x is congruent modulo N to 
an element of ~(G) m, since G/Neff. Hence x N r ~ 6 ( G ) m ~ .  Since ~(G) m is 
compact and each x N  is closed, it follows that { x } = O x N  has non-empty 

N 
intersection with ~(G) m, that is, xe6(G) m. So G' = c~(G) m, which is closed. 

Suppose that (1) holds, and let F be the free ff*-group on k generators, that 
is, l imX/N, where X is a free abstract group on k generators, and N runs over 

( 
all normal subgroups of X such that X/Neff .  By assumption, F' is closed, and 
so we can use Lemma 1 to conclude that F'  =fi(F) m for some m. Define f (k)=m.  
Since every k-generator group H in ff is a homomorphic image of F, we have H' 
= 6(H) I(k) for every such H. I am indebted to L. Ribes for this simple argument. 

Now suppose the conditions hold. Let G be a finitely generated group in ff*. 
We show that every subgroup N of finite index in G is open by induction on the 
index. It suffices to consider the case N<:G. By ([1], Proposition 7) G/N is 
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soluble. Unless G/N is of prime order, there is a subgroup H<1G with 
N < H  < G. By induction, H is open. Then H is also finitely generated, so again 
by induction, N is open. Hence we may assume that G/N is of prime order p. In 
that case, N> G', and since G' is closed, we can pass to G/G' and reduce to the 
case when G is abelian. Also N__> G p = {gP: geG}, which is also a closed subgroup 
of G, and passing to G/G p, we may assume that G has exponent p. Let H be a 
finitely generated dense subgroup of G. Then H is finite, hence closed, and so H 
= G. Hence G is a finite discrete group, and all its subgroups are open. This 
proves Lemma 2. 

In virtue of Lemma 2, Theorem 1 follows from the following rather surpris- 
ing result, which has independent interest: 

Theorem 2. I f  G~91 l and G can be generated by k elements, then G'=c~(G) m, where 
m=k+(2k-1)(1-1) .  

The proof of this will require some preparatory lemmas. The first of these is 
based on an argument of Rhemtulla [51. 

Lemma3.  Let G=(x l ,  ...,x~) and let H be a nilpotent normal subgroup of G. 
Suppose that H=(y~, . . . , yT)  is generated by the conjugacy classes in G of 
elements Yl,...,Ys. Then every element of [H,G] can be expressed in the form 

I~ Ehi, xil [h), Y j] (hi, h}eH), where the product is taken for definiteness in order 
i=1 j = l  

of increasing suffices. 

Proof We use induction on the nilpotency class c of H. If c = l ,  then H is 
abelian. The map hF--,[h, xg] is then an endomorphism of H, and its image is the 
subgroup [H, x~l. Since x~ normalizes [H, x~] and operates trivially on H/[H, x~l, 

r 

every subgroup of H containing [H, x~] is normalized by x~. Hence 1~ [H, x~l = L 
i=1 

is normal in G. Clearly G operates trivially on H/L since each of its generators 
does. Hence [H,G] <L,  and we must have equality. This deals with the case c 
~ 1 .  

Now let c > l ,  let K=Tc_I(H), and L=Tc(H), where {?~(H)} is the lower 

central series of H. By the case c=  1, we have [L, G1 = I~ [L,x~1~G. Since 
i=1 

[K, y~] __< L, which is central in H, the usual commutator identities 

[ab, c]=[a, cjb[b,c]; Ea,'bc]=Ea, cl[a, bl c (1) 

show that the map k~--~Ek, Yjl (k~K) is homomorphic; its image is the subgroup 

[K, yj]. Let J = 1:1 [K, y j], where the order of the factors is immaterial, and let 
j = l  

x ~  be the natural homomorphism of G onto G=G/[L, G]. Then L is central in 
G, so ]<zG. In the group G/J, the normal subgroup K/J is centralized by the 
images of the elements 371,...,ys, and hence also by their conjugates. Since 

,y~), it follows that K/J is central in H/J, that is, L = [ H , K  1 

< [L, 61 J < L. Hence L = l:] EL, xll IzI [K, Y jl. 
i=1 j = l  
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Now let gin[H, G]. By induction, we have 

s 

g=- f i  [hl, xi] [ I  [h),Yi] modL, 
i = l  1=1 

where hi, h)~H. Hence, by the previous paragraph, and since L is central in H, 
we can write 

s_ 
g = I I  [h~, x~l [li, xi~ [ l  [kj, y3-[ [h~, yj] (l~ ~L, kj~K) 

i = 1  j = l  

= [ I  [hi li, xl] [kj h), yj], 
i = 1  j = l  

by the identities (1). This gives the result. 
A simpler version of the above argument yields the following, which was 

pointed out to me by P.W. Stroud in 1965: 

Lemma 4. Let G=<xl,  ..., Xk) be a nilpotent group. Then every element of G' can 
k 

be expressed in the form [I  [gl, xl], where the product is again taken in order of 
i = l  

increasing suffices for definiteness. 

We omit the details. 
Before proceeding with the main theorem, we digress to point out some 

purely group-theoretic consequences of Lemma 3. 

Corollary 1. Suppose that G can be generated by k elements, and G' is nilpotent. 
Then every element of G' can be written as a product of �89 + 3) - 1 commutators. 

Proof. Let G=<x I . . . . .  Xk> and G'=H. Then H=([x i ,  xj]G: l <-_i<j<=k>, so H 
can be generated by the G-conjugacy classes of �89  elements. 

By Lemma 3, every element of [H, G] can be expressed as a product of �89 
-1)+k=�89 1) commutators. Since G/[H,G] is nilpotent of class at most 
two, a straightforward argument shows that every element of G' is congruent 
modulo [H, G1 to a product of k - 1  commutators, of the form [&,xi] 
(&EG, 1 <_iNk-1)  say. From this the result follows. 

It would be interesting to know how good these various bounds are. 
In the same way as Corollary 1, one can prove 

Corollary2. Suppose that G can be generated by k elements, and 7c+1(G) is 
nilpotent. Then every element of G' is a product of k c+ l +2k  commutators. 

The proof uses Lemma 4 and the fact that if G = ( x >  ...,Xk) , then 

7c+l(G)=<[xi,, . . . , x i c + , ] G :  1 Ni t<k  ). 

The next lemma is the point where finite group theory comes into play. 

Lemma5.  Let G = A H  be a finite group, where A < G ,  A c ~ H = I ,  and A is 
nilpotent. Suppose that G can be generated by k elements, and a = [a, G]. Then A 
can be generated by k - 1  conjugacy classes of elements of G. 
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Proof The argument proceeds in steps. Firstly, we may assume that A is a p- 
group for some prime p. For  if y(lv),..., y(kP_ )_~ are elements whose G-conjugacy 

classes generate the Sylow p-subgroup of A, and y~=I]y} p), then A 
.... Yk- 1). P 

We may further assume that A is elementary abelian. For  A/~(A) is 
elementary abelian, where r denotes the Frattini subgroup of A, and any set 
of elements which generates A modulo r already generates A. 

Now we view A as an lFpH-module, with H acting by conjugation. We have 
to show that A is a k -  1-generator lFpH-module. If B is the intersection of the 
maximal submodules of A, then A/B is completely reducible, and no proper 
submodule C of A can satisfy A = B + C. So we may assume that A is completely 
reducible. 

Let V be any irreducible IFvH-module, let JOFpH) denote the Jacobson 
radical of IFpH, and let m v be the multiplicity with which V occurs in 
IFpH/JOFpH). Adopting an approach based on methods of Gaschtitz, we prove: 

('f) The multiplicity of V in A is at most my(k -  1). 

From this the result follows, since IFvH/J(IFpH ) is a direct sum of m v copies 
of each irreducible lFvH-module V, and so A is a homomorphic  image of a direct 
sum of k -  1 copies of the cyclic module IFpH/JOFpH ). 

To see (t), let A 1 be the largest submodule of A which is a direct sum of 
copies of V; say A1=V10...GVt(Vi~-V,l<=i<t ), and let GI=A1H. Since G 1 is 
a homomorphic  image of G, it follows that G 1 can be generated by k elements; 
say G 1 = ( x  1 . . . . .  xk). Let V * =  V20 ... | If  r V1), then 

is a submodule of A complementary to V 1. The number  of such submodules U 0 
is 

IHom~,H(V,  ' Vl)] =lEit- 1 

where E = EndFp ~ V, and in fact these exhaust the submodules complementary to 
V in A. For each such qS, U~H is a subgroup of G~ complementary to V,. Since A 
= [ A , H ]  we have VI=[V>H ] and so Cv,(UoH)=O. Hence UeeH has IV[ distinct 
conjugates, each intersecting A in Ue. So the total number  of complements to V 1 
in G 1 is at least IEI t-1 IV I. 

Now consider the set of all k-tuples (VlX>...,VkXk)(vieV). There are IV[ k 
such, and each complement to V 1 in G can be generated by exactly one such k- 
tuple. Since the k-tuple (x>...,xk) lies in no complement, we have 

ig]k~>]E[t 1 [V[. Let [V[=p a, [El=p b. Then t<a(k-b 1) �9 - - +  1. Clearly a/b = dim e V 

and this is well known to be the same as m v. Hence t<mv(k-1) ,  as claimed. 
A much simpler argument shows that A can be generated by k conjugacy 

classes under far weaker hypotheses: 

Lemma 5". Let G=AH, A-<G, A ~ H = I  be a group. I f  G can be generated by k 
elements, then A can be generated by k conjugacy classes of G. 
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Proof Let  G = ( x  I .... ,xk). Wri te  x~=aih~(aisA, hi~H), and  let N=(a~, . . .  G ,a  k ) .  
Then  NH is a subg roup  of  G conta in ing  each x i. Therefore  N H = G  and  N = A .  

N o w  we can conc lude  the p r o o f  of  T h e o r e m  2. 

Proof of Theorem 2. This is by  induct ion  on I. If l =  1 the theorem follows f rom 
L e m m a  4. Suppose  tha t  l >  1, and  let H be the 91 ~- 1-residual of G, tha t  is, the 
smallest  n o r m a l  subgroup  whose factor g roup  belongs  to 9l z- 1. Then  H is 
ni lpotent .  By a theorem of  H i g m a n  ([2] or  [3]), G/H' splits over  H/H'. Also  H 
= [ H , G ] .  By L e m m a 5 ' ,  there  are e lements  yl , . . . , yk_l~H such tha t  H 
=H'(y?, . . . .  Yk-a) .  Since H'<q)(H), we have H=(y~, . .  - ., Yk- z)- By L e m m a  3, 
every e lement  of  H=[H,G] can be expressed as a p roduc t  of  2 k - 1  com- 
muta tors .  

Let  u~G'. By induct ion,  u can be expressed in the form u=vw, where v is a 
p roduc t  of  k + ( 2 k - 1 ) ( l - 2 )  commuta to r s ,  and  w~H. Thus u is a p roduc t  of  k 
+ ( 2 k - 1 ) ( l - 1 )  commuta to r s ,  as required.  

Coro l la ry  3. Let G be a finite group, t f  G can be generated by k elements, and 
Gcgl ~, then there exist elements z a ..... zm~G(m=k + ( 2 k - 1 ) ( I - 1 ) )  such that 

every element of G' has the form YI [gl, zl], where the product is taken in order of 
increasing i. ~= a 

This is a coro l la ry  of the p r o o f  of  Theo rem 2 ra ther  than  its s ta tement .  
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