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Abstract. We study a viscous incompressible fluid moving in a two dimen- 
sional flat torus [0, L] x [0, 2re], L <  2~. We show a set of external forces for 
which the stationary state is attractive for any Reynolds number R. Moreover, 
the size of this set and the basin of attraction are independent of R. 

In a previous paper [1 ] we have considered a viscous incompressible fluid moving 
in a two dimensional flat torus [0, L] x [0, 2~], LN 2re. We have shown an external 
force f0 for which there is a globally attractive stationary state for any Reynolds 
number R. Moreover, we proved that this stability property holds also for a 
neighbourhood of f0 of size depending on R (and vanishing for R--.oe). In the 
present paper we demonstrate that actually for L <  2re the size of this neighbour- 
hood is independent of  R. 

The Navier-Stokes equations governing the motion are 

~,u +(u. V)u= --Vp + f+vAu,  u(0) = 0, (1) 

~xu~ + ~yuy = 0, (2) 

f udx=O;  I fdx=O,  
D D 

D =  [0,L] × [0,2rc] ; x = ( x , y ) = x c l + y c 2 ~ D  , 

where u(x,t) is the velocity, p ( x , t ) e R  + the pressure, v > 0  the viscosity, f(x) the 
external force. All functions involved are periodic of period L in x and 2re in y. 

We introduce the vorticity co = Oxu r -  aru x. 
Equation (1) becomes 

0,co + (u. V)co = F + vAco, (3) 

where F = ~?xfr - ~3rf~" 
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In our problem we want to introduce a reasonable Reynolds number. In [1] we 
fixed a time scaling and we considered the ratio of the external force and the 
viscosity. It was enough to prove the existence of a set of stationary states 
attractive for any Reynolds number. Here we want to prove the independence of 
the size of this set and so we need more care in defining the Reynolds number (that 
is the explicit time scale). In general the Reynolds number R is defined as 

R=LU/v ,  

where L and U are tength and velocity characteristic of the system. We can assume 
L as the length of the short edge of the torus and U as the supremum of the velocity 
of the stationary state i 

R = sup Llfi(x)lv. 
x~D 

The link between the stationary state and the external force will be discussed at 
the end of the paper. 

It is well known that in general the behavior of the solutions depends on R. 
When R is small there exists an attractive stationary state; when R increases this 
state loses its stability and for large R the motion becomes chaotic. This behavior is 
related with turbulence (see for instance [2]). 

In this paper we want to show an open set of stationary states which are 
attractive for any R with a basin of attraction independent of R. 

We write the stationary state fi(x, y) as 

where 

u(x, y) = fit(y) +  2(x, y), 

il(Y) = cl(A i cosy + A2 siny), 

a = max(Ial l ,  lZ2t), 

u2(x, y )=  all other terms in the Fourier development.  

Hence (5 = co 1 + c92, where 

0.) 1 =A 1 s iny-A2cosy ,  (D2 = ~xU2y-- Oy/~2x. 

We define 

and 

V = U - - f i ;  E= I/2 S v2dx, 
D 

6=09--03; N = l/2 S 62dx, 
D 

(V~2) 2dx = W2• 2 " 

We discuss the relation between R, v, and A. Of course, v is a scaling parameter 
on the velocity field. We can fix v = 1 and use sup[ill as the quantity proportional to 
the Reynolds number. Moreover, R > LA, so that a property valid for any A holds 
for R as large as we want. From here on c i means constant independent of A. 
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The result of  this paper  is stated in the following theorem: 

Theorem. For every A and W< ca the stationary state attracts exponentially each 
solution such that (N(0)--E(0))< c2. More precisely 

E(t)= 1/2 ~ v Z d x ~ 0  exponentially, 
D 

N(t)= 1/2 ~ 6 2 d x ~ 0  exponentially. 
D 

Proof. We introduce the stream function ~p = v~ + ~o, 

V±V: = u; V ± = (By, - 8x) ; Vl~o = v, 

and we develop it in Four ier  series: 

¢p(x,y)= ~ ~ {a,..cos(mhx)cos(ny)+b.,.cos(mhx)sin(ny) 
m = 0  n = 0  

+ Cm, sin(mhx) cos(ny) + din, sin(mhx) sin(ny)}. 

We  define 
V 1 = e l ( a  I c o s y + a  2 siny), 

V 2 = V - - V  1 , 

61 = a l  s iny- -  a2 cosy ,  

(~2 = OxV2y - -  ~ y l ) l x ,  

E 1 = 1/2 ~ (vl)2dx = [(7cL)/2] [(aol) 2 + (bo02] ,  (4) 

E2 = 1/2 ~ (v2)2dx = [(nL)/2]h2[(alo) 2 + (elo) 2] 

+ [(nL)/4] ~ ~ (n 2 + h2m 2) [(am.) 2 + (bin.) 2 + (Cm.) 2 + (din.)2], (5) 
m = l  n = l  

Na = 1/2 ~ (602dx = [(rcL)/2] [(ao0 z + (bo02] ,  (6) 

N 2 = 1/2 ~ (6 2)2dx = [(rcL)/2] h 4[-(ax 0)2 + (c 1 o) 2] 
oo 

+[(nL)/4] ~ ~ [(am.)2+(b,..)2+(c,..)2+(dmn)2](h2mZ+n2) 2, (7) 
m = l  n = l  

and so 
E=E~ +E2; N=NI  +N 2. 

By a direct calculation we have 

dN 
- ~ ~(v- V) ,~dx-  S (v,~) 2dx, (8) 

dt 
dE 

- -  ~v" (v" V)f idx-  ~ (Vv)2dx, (9) 
dt 

and hence 

d(U- E) 
dt 

- -  - f [6(v. v ) o ~ 2 - v .  (v. V ) a 2 ] d x -  f [(V6) 2 - ( v v ) 2 ] d x  

= --~ [61(V 2 " V)(~ 2 -F ~2(Vl" V)(~ 2 --~ ~2(v2" V)(~ 2 - -v  1 "(v2 "V)u 2 

- v 2  -(Vx- V)U~ - v ~ - ( v ~ .  v ) ~ 2 ] d x -  ~ [ (v6)  ~ - (Vv)2]dx. (1o) 
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We note that 

N -- E = U 2 -- E 2 = [(rcL)/2] h Z(h 2 - 1) [(a 1 o) z + (c 1 o) z] 

+[(rcL)/4] ~ ~ I-(a,,~) 2 +(bm,) z +(c,,~) z +(din,) 2] 
m=l n=l 

X (h2m 2 + n2)(h2m 2 + n 2 - 1). (11) 

All terms in the sum are positive and hence (N- -E)  small implies that all 
coefficients in the Fourier development different from a01 and b0t must be small. 

We study now the evolution in time of E~: 

dE~ 
dt - ~v~'[(v2"V)fi2+(v2"V)v2+(u 2"V)vl ]ax-2E~.  (12) 

We observe that 

S [-(V6) 2 - -  (V¥)23 d x  = rcLh4( h2 - 1) [(a 1 o) 2 + (el 0)23 

+ ~ ~ (TzL/Z)[(a,nn)2+(bmn)2+(C,nn)2+(dmn)23['h2m2+n 2] 
m=l n=l 

× [(mh + n) 2 - 1] ~ 2(h 2 - 1 ) (N-E) .  (13) 

Then we estimate the other terms in (10) and (13). By use of the definition of El,  
the expression (11), integration by parts, we obtain 

d ( N - E )  
dt <caW(E1)I/Z(N-E)I/2 + c 4 W ( N - E ) - c 5 ( N - E ) '  (14) 

dE~ 
dt < c6 W(Ea)I/2(N - E)1/2 + cT(E0 ~/2(N - E) - 2E~. (15) 

We study these inequalities. We suppose initially 

cs(N-- E) 1/2 < WC 6 . (16) 

We prove that this property holds for every time if W is small enough. In fact, we 
sum (14) and (15), and we have 

d[(N - -  E) 1/2 -I- (Ex) 1/23 
d t  ~- £9 W [ ( N  - E) 1/2 --~ (E 1) 1/23 - c 10 W[(N -- E) 1/2 + (E0t/2-]. 

(•7) 
For  W small enough ( N -  E) 1/2 + (E0 I/2 is bounded by a function which vanishes 
exponentially. So E~ and ( N - E )  separately vanish exponentially. [] 

Finally, we want to relate the stationary state with the external force f 

f(x, y) = ft(Y) + f2(x, y), 
where 

fl(x) = et(gl cosy + g2 tiny), 

f2(x, y)= other terms in the Fourier development, 

F = F 1 + F2, 
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where 
F1 = ~xfly--  Orflx, 

Fz = Oxf2r-- Orf2:~" 

Proceeding as in [1] we have 

[-~2F2 --a2 " f2-1dx = .[ [(V032) 2 - - ( V H 2 ) 2 " ] K x  • (1 8) 

Hence 

Cl 1 1 (V°32) 2dx ~ I [-(V°32) 2 -- (Vu2) zqdx < [I (~2) zdx] a/2 + [I (u2) 2dx] 1/2 

< [~ (Vo3/)Zdx] 1/2{ IS (F2) adx] 1/2 + ~ (fz)Zdx] i/z}, (19) 

and so 
cl 1 [S (V°32) 2dx] 1/z < IS (Fz)Zdx] 1/2 + [~ (f2)Zax] 1/2. (20) 

Then we see that  small forces f2 produce small s tat ionary states, u 2 for any fl .  
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