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In this paper, some classical results about Boolean lattices and Brouwerian 
(semi)lattices are obtained in a new fashion and strengthened considerably. We 
are talking about: (1) the Glivenko-Frink result identifying, within a given 
pseudo-complemented semilattice, a certain Boolean closure retract; (2) the 
Glivenko-Stone result making the Dedekind-MacNeille completion of a Boo- 
lean lattice Boolean; (3) Rasiowa's analogue of that for Brouwerian (semi-) 
lattices. In our approach, these results become more independent of each other 
than they used to be in the literature. Our proofs are fairly straightforward (if 
not trivial). 

However, this is only one aspect of our paper. First and above all, we want 
to stress the importance of certain principles that seem to have been somewhat 
neglected in the past. We are talking about: (1) the notion of join-extensions of 
partially ordered sets; (2) the notion of meet-retracts of meet-semilattices. 
Technically, our observations concerning these principals are laid down in the 
Lemmas of the paper and their Corollaries. 

Join-completions (complete join-extensions) have been introduced by Bana- 
schewski [-3]. They are intimately related to (closure) representations of complete 
lattices as systematically studied by Btichi [7]. Join-extensions in full generality 
have been introduced by Bruns [-6]. 1 In spite of the pioneer work of these 
authors, join-extensions have not been paid much attention in the literature. 
Recently, one of the present authors has begun to exploit the idea of join- 
extensions (cf. [-22-24]). The present paper may be considered as a joint effort to 
continue in this direction. 

In w 0, we recall the absolute minimum of basic facts about join-extensions 
necessary for this paper. More facts are found in the literature mentioned above. 
Note that we are looking at join-extensions, E, of the partially ordered set P as 
abstract extensions, in particular, as subsets of the largest join-extensions L(P). 
As a matter of fact, it shortens proofs considerably to look at the elements of 

Pesotan [16] has developed a "symmetric" extension theory coverring both meet- and join- 
extensions 
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L(P) (or any E such that P ~ E c L ( P ) )  as just e lements- l ike  the elements of P 
i t se l f -and  not as certain subsets of P. After all, it does not pay to look at the 
reals as Dedekind cuts of the rationals all the time. As a basic feature of join- 
extensions, meets in P are preserved, i.e., remain the same in E. As noticed by 
Ch. Dial, the same preservation principal applies to relative pseudo-com- 
plements, as far as they exist in P (w 1). A considerably stronger version of 
Rasiowa's aforementioned result (Theorem 1.4) is obtained as an immediate 
consequence of this observation, In w we apply this preservation principle to 
pseudo-complements. For  the latter, we obtain a result (Proposition 2.2) much 
stronger even than the strengthened Rasiowa result above. We also get a short 
direct proof of the Glivenko-Stone result (Theorem 2.3). So far, (relative) 
pseudo-complements were preserved by going up to join-extensions. In w 3, we 
observe that they are also preserved by going down to meet-retracts. Combining 
the going up and going down principles, we obtain neat characterizations of 
Brouwerian join-completions (Corollary 3.8). In w 4, we give a new proof of an 
extended version of the Glivenko-Frink result (Theorem 4.1). Our proof is 
almost free of calculation and does not use any of the sophisticated axiomat- 
izations of Boolean lattices. In particular, Glivenko's important equat ion-(4.4)  
- i s  obtained without any extra charge. We also arrive at some converse 
(Proposition 4.2), thus throwing some new light on Glivenko-Frink's result. In 
this context, the notion of a Brouwerian subact (introduced in w167 1, 3) begins to 
play quite a role. We finish with a considerable generalization of Glivenko- 
Frink's result (Theorem 4.3). 

O. Reminders on Join-Extensions 

Let P be a partially ordered set and E an extension of P. I.e., P is a subset of E 
and the partial order of P is the restriction to P of the partial order of E. In case 
every element xeE  is the join (1.u.b.) of some subset M c P  (one may take M 
= {p~PLp<x},  for that matter), P is join-dense in E and E a join-extension of P. 
The following observation is well-known: 

Lemma 0.1. Let E be a join-extension of P and M c P .  Then 

(0.1) / f infpM exists, then infeM exists, and in f~M=infpM.  

Consequently, infp M exists iff inf~ M exists and belongs to P. 

We use the notation infM (more precisely: infp M) for the meet (g.l.b.) of the 
subset M (in P). If M={a i [ i~ I  }, we will also write /~ a i (more precisely: P/~ ai). 

i~I i~I 

Analogous notations will be used for joins. (0.1) states that P is completely meet- 
faithful in E, so that actually the reference to the join-extension E we are in (P 
itself is one of them) can be omitted as far as meets are concerned. 

Note that infp ~ and the greatest element of P are the same things. Hence 
applying Lemma 0.1 to the degenerate case M = ~, we get: 
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Corollary 0.2. I f  P has a greatest element, e, then e is the greatest element of any 
join-extension E. And P has a greatest element iff E has and the latter belongs to 
P. 

Let us now assume that E is a meet-semilattice or a complete lattice 
respectively. I.e., x A y=inf~{x,  y} exists for each x, yEE, or infEN exists for each 
subset N c E (non-empty or empty). Note that in the latter case supE N exists for 
each N = E. 

Corollary 0.3. Let P be a partially ordered set, E a join-extension which is a meet- 
semilattice or a complete lattice respectively. Then P is a meet-semilattice (or a 
complete lattice) iff P is a (meet-)subsemilattice of E (or a closure retract of E). 

In an arbitrary partially ordered set E, a closure operator is mapping 7: E ~ E 
with the usual properties of preserving the order, enlarging (a=<7(a)), and being 
idempotent. It is completely determined by its image 

(0.2) C = i m 7  

by virtue of the formula 

(0.3) 7(a)=min{c~Cra<=c}. 

A closure retract is any subset C c E  such that the minima (0.3) exist for all atE.  
(0.2), (0.3) establish, in fact, the one-to-one correspondence between all closure 
operators 7 and all closure retracts C of E. Suppose now that P above is a 
complete lattice. Since P is completely meet-faithful in E, P is, indeed, a closure 
retract C of E (and completeness of E is not needed for that). Conversely, if P is 
a closure retract C of E, the completeness of E makes P complete too. Note that 
the corresponding closure operator ~, as a mapping from E onto P, is completely 
j oin-preserving: 

(0.4) i f x = E V x i ,  then 7(x)=PVT(xi).  
i ~ I  i ~ I  

In particular, for M = {xi l i e I  } c P :  

(0.5) supp M = 7(sup~ M), 

which comes as a reminder that joins are not preserved the same way as meets 
are (Lemma 0.1). 

A join-extension, E, of the partially ordered set P is a join-completion once E 
is a complete lattice. Corollary 0.3 will help us to establish a survey of all join- 
completions of P, more generally, of all join-extensions of P that are meet- 
semilattices. This will come as part of the most general survey of all join- 
extensions of P, as obtained from the largest joint-extension of P, L(P). Here 
"largest" means precisely that 

(0.6) each join-extension of P is order-embeddable over P into L(P). 

"Over P "  means, of course, that each element of P is kept fixed by the order- 
embedding. Note that the latter is uniquely determined. Consequently, L(P) it- 
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self is uniquely determined up to unique isomorphism over P. Looking at one 
realization of L(P) and all intermediate sets E, 

P ~ E ~ L(P), 

we are actually looking at all non-isomorphic join-extensions of P (cf. Bruns [6], 
J. Schmidt [22]). 

L(P) is actually a jo in-comple t ion-  and it suffices to postulate (0.6) for join- 
completions only. (For an inner characterization and a universal property of 
L(P), cf. J. Schmidt [22].) In particular, L(P) is a meet-semilattice. By Corollary 
0.3 then, the join-extensions E of P which are meet-semilattices are, up to 
isomorphism, the (meet-)subsemilattices of L(P) containing P, and the least such 
join-extension is the subsemilattice of L(P) generated by P. We may here 
always throw in the largest element, e, of L(P) (Corollary 0.2), so that we wind 
up with the least join-extension of P, M(P), which is a meet-semilattice with 
identity e. Likewise, the join-completions of P are, up to isomorphism, the 
closure retracts of L(P) containing P (Banaschewski [3-]), and the least join- 
completion of P is the closure retract of L(P) generated by P, i.e., the set of all 
meets (in L(P)) of subsets M c P .  It is known as the normal or Dedekind- 
MacNeille completion of P, denoted by N(P). P is join- and meet-dense in P. 
Actually, N(P) is the largest join- and meet-extension of P and the only join- 
and meet-completion of P (Banaschewski [3]). By Lemma 0.1, P is completely 
meet- and join-faithful in N(P). However, this frequently stated observation, 
together with completeness, fails to characterize N(P) in general. 

1. Relative Pseudo-Complements in Join-Extensions 

Let P be a meet-semilattice and a, z~P. We denote by a ~ z  (or a T z  if 
necessary) the relative pseudo-complement of a with respect to z, 

(1.1) a ~ z = m a x { x ~ P l a A x < z } .  

Lemma 0.1, concerning meets, has now an exact analogue for "arrows":  

Lemma 1.1. Let P be a meet-semilattice and E a join-extension of P, also a meet- 
semilattice. Then for a, z~P: 

(1.2) if a ~ z  exists, then a ~ z  exists, and a ~ z = a T z .  

Consequently, a ~ z exists iff a ~ z exists and belongs to P. 

Proof a A ( a - ~ z ) < z ,  holding in P, holds in E too. Let now x~E be such that 
a A x < z .  By join-density, x = s u p ~ M  for some M c P .  For yeM,  we get 
a/x y =< a/x x -< z, whence y _< a ~ - +  z. This being true for each y ~ M, x < a ~ z. 

A Brouwerian (relatively pseudo-complemented, pseudo-Boolean, Heyting, im- 
plicative) semilattice is a meet-semilattice-necessarily with largest element e -  
in which all relative pseudo-complements a ~ z  exist. It is well-known that 
relative pseudo-complementation can be axiomatized by equations either for the 
unary operators a ~  (cf., e.g., Rasiowa-Sikorski [18]) or the unary operators--~z 
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(Katrifi/tk-Mitschke [131). Anyway, Brouwerian semilattices form an equational 
class of algebras (E, A , e , ~ ) ,  where (E, A,e) is a meet-semilattice with identity 
and ~ satisfies those aforementioned equations. A Brouwerian subalgebra is a 
subsemilattice containing e and closed under ---~. It is again a Brouwerian 
semilattice by itself. 

Here is an exact analogue of Corollaries 0.2 and 0.3: 

Corollary 1.2. Let P be a partially ordered set, E a Brouwerian join-extensionj (a 
join-extension which is a Brouwerian semilattice). Then P is a Brouwerian 
semilattice iff P is a Brouwerian subalgebra of E. 

Proof Corollaries 0.2, 0.3, Lemma 1.1. 

Note that E = L(P) is a Brouwerian (semi)lattice since L(P) is even complete 
and has the appropriate infinite distributivity (cf. Birkhoff [4], Ch.V, Theorem 
24). Hence the Brouwerian join-extensions of P are exactly the Brouwerian 
subalgebras of L(P) containing P. In particular, there is the least Brouwerian join- 
extension of P, B(P), first observed by Ch. Dial, namely the Brouwerian 
subalgebra of L(P) generated by P. Note that this Brouwerian subalgebra is 
obtained from P by first closing under ---,, then under finite meets (including e 
= in f , ) .  This is indeed true in any Brouwerian semilattice E ~ P, join-density of 
P in E being not required here. So in our case E=L(P) ,  we pass from P to its 
closure under ~ ,  call it A(P). We may write, cum grano salis, 

(1.3) B(P)=M(A(P)). 

(Recall that M(P) was the subsemilattice with e generated by P in the given 
model of L(P).) In particular: 

Proposition 1.3. Let P be a partially ordered set closed in L(P) under -% P=A(P). 
Then M(P) is the least Brouwerian join-extension of P, B(P)= M(P). 

A partially ordered set P such that P=A(P) might be called a Brouwerian 
partially ordered set. Note that the total restriction to P of the operation --* in 
L(P) can be described completely within P itself: 

(1.4) a-~z=max{xEel(a1~(x] c(zI}, 

where (x] denotes the principal ideal of P generated by x. This extended notion 
of the relative-pseudo-complement not even involving meets seems to have been 
used first by Katrififik [-121. All statements of this section can be extended, 
mutatis mutandis, from our Brouwerian semilattices to Brouwerian partially 
ordered sets. The term "Brouwerian semilattice" would, of course, become 
ambiguous now. As a matter of fact, Katrififik loc.cit, considers Brouwerian 
join-semilattices. 

Proposition 1.3 dealing with finite meets, let us consider the infinitary 
analogue. By virtue of Corollaries 0.3 and 1.2, the Brouwerian join-completions 
of P are exactly the closure retracts of L(P) closed under -* and containing P. 
Again, there is the least Brouwerian join-completion of P. Again, it is obtained by 
first closing under -% then under arbitrary meets. So it may be written 
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N(A(P)), 

which, by virtue of (1.3), coincides with N(B(P)). However, in contrast to (1.3), 
join-density plays a role here. Indeed, we have to show closure of N(A(P)) 
under --+. The proof of that is different from, and even simpler than, the proof of 
(1.3), and we actually get somewhat more, namely a~zeN(A(P) )  for each 
z~N(A(P)) and any a~L(P). Indeed, represent a as the join in L(P) of elements 
aiEA(P ), z as the meet in L(P) of elements zj~A(P). It follows that ai-- ,z~A(P ) 
for each i and j, so that 

a ~ z = A (a i - ;z )  
i , j  

is in N(A(P)). As an immediate consequence, we have 

Theorem 1.4. Let P be a partially ordered set such that P=A(P).  Then the 
Dedekind-MacNeille completion N(P) is Brouwerian. 

Theorem 1.4 was first stated and proven by Rasiowa ([17], Theorem 3.8) for 
lattices with zero. Actually, her long-winded method of proof (cf. also Rasiowa- 
Sikorski [18], Ch. IV, 9.1) does not apply to Brouwerian semilattices, not to 
speak of Brouwerian partially ordered sets. For  she uses the analogous 
Glivenko-Stone result for Boolean lattices (Theorem 2.3 below) and McKinsey- 
Tarski's theory "of the representation of Brouwerian lattices with zero as lattices 
of open elements of closure algebras (Boolean algebras with topological closure 
operators in them; cf. [15]). D. Smith [27] seems to have been the first to 
publish a direct proof of Rasiowa's result (without mentioning the latter), now 
for Brouwerian lattices with or without zero. Meanwhile, the result has become 
an exercise in Balbes-Dwinger's book [1] (p. 238, ex. 11), again for Brouwerian 
lattices with zero. Nothing in their book seems to indicate the present line of 
thought. 

We proved above that N(A(P)) is somewhat more than just a Brouwerian 
subalgebra of L(P). We may say it is even a "subact" of L(P). For some of the 
fundamental rules of a Brouwerian semilattice L - l i k e  L(P) a b o v e - c a n  be 
interpreted to the effect that the semilattice L acts on itself, with the unary 
operators a ~  (asL) as the individual actions (cf. J. Schmidt [25]). A Brouwerian 
subact then, in general, should be a meet-subsemilattice N c L  containing the 
identity of L and closed under those unary operators a--+ (a~L). This makes N 
more than just a Brouwerian subalgebra. Note that each filter F c L  is a 
Brouwerian subact. That N(A(P)) was a Brouwerian subact of L(P) does not 
come as an accident. The proof above actually shows: 

Lemma 1.5. Any Brouwerian closure retract N of a Brouwerian join-completion L 
is a Brouwerian subact of L. 

It was mentioned in w that in general N(P) is the only join- and meet- 
completion of P so that P is completely meet- and join-faithful in N(P). 
However, there may be other completions featuring this double faithfulness. For  
instance, there is the largest join-completion in which P is completely join- 
faithful, denoted by I~(P) (cf. J. Schmidt [23, 24]). In general, N(P)cI~(P) ,  but 
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equality may not take place. However, if P is a Brouwerian meet-semilattice, we 
are in a better position, due to 

Proposition 1.6. Let P be a meet-semilattice, let B be any Brouwerian join- 
completion of P and E any join-extension of P in which P is completely join- 
faithful. Suppose B ~ E. Then actually B = E. 

Proof. Suppose aeE. We can write a as the join in E of elements a~eP. By the 
completeness of B, the join in B, b, of these elements a~ exists. Certainly a_<_ b. On 
the other hand, b is the join in E of elements bjeP. For  every j, the infinite 
distributivity of B yields 

bj=b A bj = BV (a i A bi). 
i 

Since P is a meet-semilattice, a i A bjeP. Since bj~P too, 

b~ = e V (al A b j). 
i 

Since P is completely join-faithful in E, 

bi= EV (ai A bi)<a. 
i 

This being true for each j, b<a, whence a=b~B and E=B.  

Corollary 1.7. I f  P is a Brouwerian semilattice, N(P) is the only completely join- 
faithful join-completion of P. 

(For a closely related characterization of N(P) for an arbitrary partially 
ordered set P, cf. J. Schmidt [21].) 

2. Applications to Pseudo-Complements 

Throughout  this section, the partially ordered set P will have a zero, o. Then 
each join-extension E of P has a zero. The latter, however, may be different from 
the zero of P, i.e., E may have a new zero, a "tail", e.g., E=L(P) .  Throughout  
this section, we will only consider join-extensions having the same zero as P. 
Note  that M(P), N(P), Iv (P  ), A(P), B(P), N(A(P)) are among them. The largest 
among them is L*(P), i.e., L(P) with its "tai l"  removed. It is the largest join- 
completion of P with the same zero. 

The pseudo-complement of asP  in P is the element 

(2.1) ~ a = a - ~ o = m a x { x ~ P I a A x = o } .  

If necessary, we will write ~ a. We can now reformulate Lemma 1.1: 

Lemma 2.1. Let P be a meet-semilattice with zero and E a join-extension of P, also 
a meet-semilattice, with the same zero as P. Then for aeP: 
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(2.2) if ~p a exists, then ~ a  exists and ~ a =  ~p a. 

Consequently, ~p a exists iff ~ a  exists and belongs to P. 

A pseudo-complemented semilattice is a meet-semilattice with zero in which 
all pseudo-complements ---7a exist. We can look at them as algebraic systems 
(E, A, e , ~ )  characterized by equations (cf. Balbes-Horn [2]) which are special 
cases of the aforementioned equations for the operator ~ z (Katrififik-Mitschke 
loc.cit.). We may call these algebraic systems, for lack of an established word, 
PSC-algebras. A PSC-subalgebra then is a subsemilattice closed under ~ and 
containing the largest element e (hence the least element o=-Te) .  Again, the 
PSC-subalgebras of L*(P) containing P are exactly the join-extensions with the 
same zero which are pseudo-complemented semilattices. Among them is cer- 
tainly a least one, the PSC-subalgebra generated by P. Note, however, that there 
is no relatively simple description of the latter comparable to (1.3). On the other 
hand, the least pseudo-complemented join-completion (with the same zero) will 
be 

N ( P w ~ P w ~ - T P ) ,  

where - T P = { ~ p I p ~ P } .  Actually, P w ~ P w - 7 ~ P  is the closure in L*(P) of P 
under -7. More generally, the pseudo-complemented join-completions of P are 
exactly those join-completions (with the same zero), E, containing even P w-7 P. 
Indeed, represent a c e  as the join in L*(P) of elements aieP. Then ~ a  is the 
meet of the pseudo-complements ~ ai, hence belongs to E. With that, we have a 
strong analogue of Rasiowa's result, Theorem 1.4: 

Proposition 2.2. Let P be a partially ordered set with zero such that ~ P ~ P. Then 
every join-completion of P (with the same zero) is pseudo-complemented. 

We might even have omitted "with the same zero" here since a complete 
lattice with a "tail" is trivially pseudo-complemented. Also, there is an extension 
of Proposition 2.2 to certain join-extensions. We leave that to the reader. 

Let us finish this section with the aforementioned Glivenko-Stone result 
(Glivenko [9], Stone [28]). 

Theorem 2.3. Let P be a Boolean lattice. Then N(P) is the only Boolean join- 
completion-with the same z e r o / - o f  P. N(P) is even the largest Boolean join- 
extension E - w i t h  the same z e r o - o f  P: Each such E - P  included-is a Boolean 
suba!gebra of N(P). 

Note that the addition "with the same zero" is essential here unless we 
exclude the one-element Boolean lattice P. 

Rather than basing the proof of the strengthened Rasiowa result, Theorem 
1.4, on this classical predecessor, we use Theorem 1.4 here. So N(P) is certainly 
Brouwerian, hence distributive. The Boolean complementation of P is the 
restriction to P of the pseudo-complementation in N(P). Let x~N(P). We want 
to show that -7-7  x = x. Let x = A x~, where xi ~P, and consider the join in N(P), y, 
of the elements -7 x i. So 

~ y = A  ~ x i = A x i = x .  
i i 
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With that, -n ~ x = ~ ~ ~ y = ~ y = x. Trivially, a distributive pseudo-com- 
plemented lattice with involutionary pseudo-complementat ion is Boolean. 
(By virtue of Huntington's  theorem [11], w one can omit distributivity here; 
but this is no longer trivial. We got distributivity free of charge anyway.) 

Let now E be any Boolean join-extension of P, with the same zero. In this 
case, the join-density of P in E implies meet-density. So E c N ( P ) .  An E is a 
PSC-subalgebra, here: a Boolean subalgebra, of N(P). 

Here is some converse: 

Proposition 2.4. Let P be a pseudo-complemented semilattice which has a Boolean 
join-extension, with the same zero, E. Then P is Boolean. 

Proof P is a PSC-subalgebra of E. Hence pseudo-complementat ion of P is still 
involutionary, making P a lattice, even a sublattice of E. So P is again 
distributive, completing the proof. 

3. Relative Pseudo-Complements and Meet-Retractions 

A meet-retraction of a meet-semilattice E is an idempotent (meet-)endo- 
morphism. 

Lemma 3.1. Let ~ be a meet-retraction of the meet-semilattice E. Let P = i m  7 be 
the corresponding meet-retract. Let a, z~P  be such that a ~ z  exists. Then 
a ~ z exists, and 

(3.1) a ~ z = 7 ( a T z  ). 

Proof One has a/x 7 ( a ~  z) = 7(a)/x 7(a ~ z) = 7(a/x (a T z)) < 7(z) = z. Next, 
let x ~ P  be such that a A x < z .  So x < _ _ a ~ z ,  whence x = 7 ( x ) < 7 ( a ~ i ~ z  ). 

Combining this with Lemma 1.1, we get 

Corollary 3.2. Let P be a meet-retract of  the meet-semilattice E and P join-dense 
in E. Let a, z~P. Then 

(3.2) a- - -~  z = a ~  z, 
P E 

where the left hand side exists iff the right hand side exists. 

An immediate consequence of Lemma 3.1 alone: 

Corollary 3.3. Every meet-retract P of  a Brouwerian semilattice E is a Brouwerian 
semilattice. 

For the extreme special case E = ~(X)  and P the family of open sets of some 
topology on X, this is a very old observation. McKinsey and Tarski [15] 
replaced ~(X)  by an arbitrary Boolean lattice E and the topological interior 
operator by an arbitrary kernel operator  still satisfying the Kuratowski axioms 
(actually, their setup is dual to this paper). They also showed that each 
Brouwerian lattice with zero can be obtained that way. Siemion Fajtlowicz 
observed that (3.1) holds also for meet-preserving closure operators. Actually, 
for the latter we have a somewhat stronger observation: 
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Lemma 3.4. Let 7 be a meet-preserving closure operator of the meet-semilattice E 
and P = i m  7. Let a c e  and z~P.  Then 

(3.3) 7(a) T z = a  T z, 

where the left hand side exists iff the right hand side exists. 

Corollary 3.5. If, in addition, E is Brouwerian, then P = i m  7 is a Brouwerian 
subalgebra, even a subact, of  E. 

Here  is some converse:  

Lemma 3.6. Let E be a meet-semilattice and 7 a closure operator of E onto a 
Brouwerian subact P = i m  7. Then 7 is meet-preserving. 

Since E is not  assumed Brouwer ian  by itself, we redefine the not ion  of a 
Brouwerian subact P. P should still be a meet-subsemilat t ice  of  E (which is, of  
course, true once P is a closure retract  of  E). Moreover ,  for each z~P and a tE ,  
a T z  is assumed to exist in E and to belong to P. No te  that  a Brouwer ian  
subact  will certainly be a Brouwer ian  semilatt ice by itself. Fo r  if bo th  a and 
z are in P, then a ~ / ~  z, being also in P, is a ~  z indeed. The  identi ty of  P, 
z 7 z = z ~ z, will then be the identity of  E. 

The  p roof  of  L e m m a  3.6 is very simple. Let  a, beE. Then  a A b <7 (a  A b). But 
7(aAb)eP,  so b-~7(aAb)~P.  Hence  7(a)<b--*7(aAb) and 7(a)Ab<=7(aAb ). 
Repeat ing  this switching, we get 7(a)A 7(b)< 7(a A b). 

Combin ing  this with Corol la ry  3.5, we get 

Corollary 3.7. Let E be a Brouwerian semilattice and 7 a closure operator in E. 
Then P = im 7 is a Brouwerian subact i f f 7 / f  is meet-preserving. 

Let us collect several results abou t  jo in-comple t ions :  

Corollary 3.8. Let P the a partially ordered set, E a join-completion of P, 7 the 
corresponding closure operator from L(P) onto E. Then the following are 
equivalent: 

(i) 7 is meet-preserving; 

(ii) E is a meet-retract of L(P); 

(iii) E is Brouwerian; 

(iv) E is a Brouwerian subalgebra of L(P); 

(v) E is a Brouwerian subact of  L(P). 

Proof (v) ~ (iv) ~ (iii) being trivial, (iii) ~ (v) by L e m m a  1.5 ((iii) ~ (iv) a l ready 
by Corol la ry  1.2). ( v ) ~  (i) by L e m m a  3.6 (and the converse holds by Corol la ry  
3.5). ( i ) ~  (ii) is trivial. ( i i ) ~  (iii) by Corol la ry  3.3. 

4. Around Glivenko's Theorem 

The p roof  of  Gl ivenko-Stone ' s  T h e o r e m  2.3 is usually based on the famous  
Gl ivenko  result which, loosely speaking, ties Brouwer ian  and Boolean  lattices 
together.  In this section, we are first going to extend Gl ivenko ' s  result somewhat  
and to arrive at some converse. 
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Theorem 4.1 (Glivenko-Frink). Given a meet-semilattice P and an element z~P  
such that a-~ z exists for each a~P. Then 75, defined by 

(4.1) ~ ( a ) = ( a ~ z ) ~ z  (a~P), 

is a meet-preserving closure retraction, and the associated closure retract, 

(4.2) B~=imy~, 

is a Boolean lattice with least element z. 

Proof 7~ is a closure operator in P, so that B~ is a subsemilattice of P. B~ is even 
a Brouwerian subact of P: Let a~P and x~Bz, then x is of the form x = b ~ z for 
some b~P. Certainly, aAb---,z~B~. But in P, a A b ~ z = a ~ ( b ~ z ) ,  whence 
a ~ x~B~. This makes B~ a Brouwerian semilattice by itself. Since z is the least 
element of B~, B~ is pseudo-complemented, with pseudo-complementation 

(4.3) B 7 a - = a - g 2 * z = a ~ z  (a~Bz). 

This pseudo-complementation being involutionary, B~ is actually a lattice. Being 
Brouwerian, it is distributive, hence Boolean. Lemma3.6 makes 7_, meet- 
preserving: 

(4.4) ~'z(a A b)=?,z(a) A y~(b). 

This classical result due for (Brouwerian) lattices to Glivenko [9] and 
extended to semilattices by Frink [8], Gr/itzer and E.T. Schmidt (cf. [10], p. 58, 
Remark; [-19], Lemmas 4 and 5) seems to have been formulated only for z = o  
(least element, whose existence we do not require here). Rarely, on the other 
hand, is the important equation (4.4) included in the result. 

As in the proof of Glivenko-Stone's Theorem 2.3, we got distributivity free of 
charge here. Neither did we have to calculate, nor did we have to use one of 
those clever axiomatizations of Boolean lattices not mentioning distributivity at 
all. On the contrary, some of them (cf. Huntington [11], w also Birkhoff [4], 
Ch. II, Theorem 17) are more or less immediate consequences of Theorem 4.1 
(applied to z = 0), requiring very little, if any, additional calculation (for details, 
cf. J. Schmidt E25], w 8). 

We now prove the following converse: 

Proposition 4,2. Let P be a meet-semiIattice and 7 a meet-preserving closure 
operator whose closure retract B = im 7 is Boolean, with least element z. Then a ~ z 
exists for each a~P, and B = B  z. 

Proof. Let a~P. Since the Boolean complement - n ? 2 ( a ) = y ( a ) ~ , z  exists in B, 
a ~ z  exists in P and a ~ z = ~ y ( a )  by virtue of Lemma 3.4-(3.3) from left 
to right. Hence 

~z(a) = (a ~ z) ~ z = ~ 7(a) ~ z = m-17(a) = 7(a), 

whence 7z = 7 and B~ = B. 
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Summarizing Theorem 4.1 and Proposition 4.2, we have established a one- 
to-one correspondence between the Boolean closure retracts B with meet- 
preserving closure operators ~ and those elements t eP  admitting all relative 
pseudo-complements a--* z. The shortest description of this correspondence does 
not even mention the closure operator 7: 

(4.5) B = i m ( ~  z), z = min B. 

Note that these right Brouwerian elements z form a subsemilattice, b~(P), of P 
(as opposed to our former least Brouwerian join-extension B(P)). Incidentally, 
b~(P) is empty unless P has an identity e. We then have ecb,.(P) and B e = {e}. 
Trivially, each Brouwerian subact is contained in b~(P). In particular, B~ ebb(P) 
for each zcb~(P), so that actually 

(4.6) b~(P)= U B~, 
zEbr(P) 

making br(P ) itself the largest Brouwerian subact of P. Note that b~(P) becomes a 
closure retract of P once P is complete, so that b~(P) itself will be complete. 
Also, the Boolean closure retracts B~ (zEbr(P)) will be complete, and the closure 
operators 7=: P ~B~, completely join-preserving anyway (cf. (0.4)), will preserve 
finite joins and meets (Eq. (4.4)), hence be lattice homomorphisms. (For more 
details about this "right" one-to-one correspondence and a "left" counter- 
part, cf. J. Schmidt [25]; cf. also E.T. Schmidt [191, [-203; Varlet [31J.) 

We finish with a generalization of Glivenko-Stone's Theorem 2.3: 

Theorem 4.3. Let P be a meet-semilattice. Let E be a join-completion of P. Then 

(4.7) b~(P)cbr(E ) 

and, for each zcb~(P), 

(4.8) ~ e Bz = N(B~), 

where the upper indices refer to the semitattice we are in. 

Proof. Let zcb~(P). We actually show that a ~ z E E  for each acL(P). Represent a 
as the join in L(P) of elements aicP. So ai--+ zeP,  so that a--. z, the meet of those 
elements ai-~z, is in E, and zcb~(E), proving (4.7). Evidently, B P c B f  for every 
zcb~(P). Any x c B f  can be written in the form x = a ~ z ,  for some acE. 
Represent a as the join in E of elements a~cP. Again, x is the meet of the 
elements a ~ z c B  f. With that, B P is meet-dense in Bf. However, by Glivenko- 
Frink's Theorem 4.1, both Bf and Bf are Boolean lattices. Actually, B e is a 
Boolean subalgebra of Bf. So Bz P, being meet-dense in Be, is also join-dense in 
Bf. But Bf, being a closure retract of the complete lattice E, is complete itself. 
With that, B[ is the Dedekind-MacNeille completion of Bf. 

For  z = 0, we have the following 

Corollary 4.4. Let P be a pseudo-complemented semilattice, E any join-completion 
- with the same zero - of P. Then 

(4.9) B~o=N(BPo). 
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I f  P is n o w  B o o l e a n ,  t h e n  P wil l  c o i n c i d e  wi th  Bo P, so tha t  (4.9) runs  

(4.10) Bo-E-N(P). 

A n o t h e r  a p p l i c a t i o n  o f  G l i v e n k o - F r i n k ' s  T h e o r e m  4.1 m a k e s  N(P) B o o l e a n :  

G l i v e n k o - S t o n e ' s  T h e o r e m  2.3. In  pa r t i cu l a r ,  7o~: E ~ N ( P )  is a la t t ice  h o m o m o r -  

p h i s m  (even c o m p l e t e l y  j o i n - p r e s e r v i n g ,  r e m e m b e r ) .  F o r  al l  this, E m a y  still  be  

any  j o i n - c o m p l e t i o n  o f  P.  In  the  l i t e ra ture ,  E has  a lways  b e e n  a s s u m e d  to  be  the  
idea l  c o m p l e t i o n .  
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