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In this paper we study the equation 

Lu  = g(u) - f .  (1) 

Our interest is in deciding whether (1) has a solution for every f~LZ(f2). Here L 
is an unbounded self-adjoint operator on L2(Q) with compact resolvent (i.e. 
( L - i i ) - 1  is compact) and g : L  2 (O)--* L 2 (O) is defined by (g(u))(x)= ~,(u(x)) where 
~: R ---, R is continuous and y-1 ~(y) ~ #(v) as y ~ os ( -  oo). We always assume that 
# and v are finite and that Q has finite measure. (Usually, we will not distinguish 
between g and ~. This will cause no confusion.) 

It turns out (cp. [-7, w that, in many cases, (1) has a solution for every 
f~Le(Q) if and only if the simpler equation 

Lu = #u + + v u -  - f (2) 

has a solution for every f~L2(Q). Here u+(x)=sup{u(x) ,O} and u-(x) 
= inf{u(x), 0}. (Note that this differs from the notation in [7].) One only expects 
(cp. [7] and E8]) (1) and (2) to behave similarly if the particular case of (2) 

L u =  #u + + v u -  (3) 

has only trivial solutions. Thus it is of interest to determine 

A o =-{(#, v)~R2: (3) has a non-trivial solution}. 

It seems difficult to determine A o even in simple cases (for example, even if L is 
the Laplacian with Dirichlet boundary condition and f2 is a sphere). Thus it 
becomes of interest to determine properties of A o. In w 1, we prove that if ~ is an 
eigenvalue of L, then the component of A o containing (r, z) is unbounded. This is 
a bifurcation type theorem. We use this result to partially answer a question of 
Berestycki [5]. 

In w 2, we prove that, if a certain homotopy index for Eq. (3) is non-zero, then 
Eq. (1) is solvable for every feL2(O). This improves a result in [7]. (The ho- 
motopy index is defined in [6].) 
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In w 3, we prove that, if (#, v)(~Ao, if [#, v] contains precisely one eigenvalue 
of L and if this eigenvalue is simple, then the solvability of (2) does determine 
the solvability of (1). Finally, in w we discuss some open problems. 

Many of our results could be abstracted further. In particular, g(u) could be 
replaced by more general operators in a number of the results. For example, we 
could replace g(u) by g(x, u), replace # by #fl(x) and replace v by vf2(x ) (provided 
that f~ and f2 are bounded and positive on (2 and we place a uniformity con- 
dition on how y- lg (x ,y )  tends to #fl(x)  (vf2(x)) as y--+ oo( -m) .  In this case, 
our results still hold if appropriately modified. (For most, but not all, of the 
results, we need to assume that fl(x)=f2(x) a.e. on s 

The author has been considerably influenced by the recent work of Amann 
[2] and Amann and Zehnder [3]. I should like to thank them for sending me 
preprints of their work. 

w 1. The Bifurcation Theorem 

Let Aft = {(#, v)~Ao: #>v}. Note that (#, v)EA o if and only if (v, #)~A o and that 
(#, #)eAff if and only if # is an eigenvalue of L. In this section, we prove the 
following theorem. We assume that the assumptions of the introduction hold. 

Theorem 1. I f  ~ is an eigenvalue of L, then the component C~ of A~ containing 
(% r) is unbounded. 

Before proving Theorem 1, we need some preliminaries. Note that, by Dun- 
ford and Schwartz [13, Lemma 7.6.13], a(L) consists of isolated points. If C~ is 
bounded, choose K > 0  such that / > s u p { l # l + l v l + l :  (#,v)eC~}. If a, 
bea(L)vo {oo} vo { -  oo} and a<b, let (2~,b be the orthogonal projection onto the 
subspace N~, b of Le(F2) spanned by the eigenvectors of L corresponding to eigen- 
values in (a, b). Define P~,b=I-Q~,b and Wa, b=Na~b. NOW Eq. (3) is equivalent 
to the pair of equations 

Lw = Pa, b(#(n + w) + + v(n + w)-), (4) 

Ln=Q~,b(#(n+w) + + v(n+w)-).  (5) 

(Remember that L is self-adjoint.) Note that N,, b ~ ( L ) .  

Lemma 1. I f  a< v<#<b,  Eq.(4) has a unique solution w=Su, v(n ) in ~(L)c~ W~, b 
for each neNa, b. Moreover, S,,v is positive homogeneous and continuous as a map 
of N,, b into ~(L) with the graph norm and there is a K > 0  such that 
IlSu,~(n)ll' < K ]]n[] for n~Xa, b, where II ll' denotes the graph norm. 

Remark. Su,~ is easily seen to be Lipschitz continuous. 

Proof This is a rather standard application of the contraction mapping theorem. 
Hence we only sketch the argument. For simplicity assume that - o o  < a  and 
b<  ~ .  Let y=�89 Then (4) is equivalent to 

w=Z~,~(#x(n+w) + +v~(n+w)-), (6) 

where Z is the inverse of (L-7I)lwo,~, /2, = # - 2  and v, = v - y .  Since L is self- 
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1 1 l = 2 ( b _ a ) _ l  ' Since is 1. adjoint, II/]]=sup b 7 ' 7 - a 2  P~b orthogonal, IIP~,bll 
Moreover, the map y ~ # ~ y + + v y -  (of R to R) is Lipschitz continuous with 
Lipschitz constant sup(l&l, Ivll}. Thus the same result holds for the map 
u--,121 u+ +vlu-  (as a map of L2(f2) into itself). Using these results, we find by a 
simple calculation that for each n~N,, b the right-hand side of (6) defines a con- 
traction mapping of Wa, b into itself. Hence most of the result follow. Note that 
S,,~ will be positive homogeneous because each term of (6) is. The contraction 
mapping theorem implies that S~,,, is continuous as a map of N,, b into Li(f2). 
Equation (4) now implies that LSu, v(n ) is continuous in n and so the required 
continuity follows. The estimate for Su,~ can be easily proved directly. Alter- 
natively, it follows from the continuity and positive homogeneity of S,,~. 

Thus, we see that (12, v)~Ag if and only if there is a non-trivial solution (in 
N~, b) of 

0 = i~,~ (n) = L n - Qa, b (12 (n + S,,~ (n)) + + v (n + Su, ~ (n))-). (7) 

(Remember that Su,~(0)=0. ) Note that the map n~F,,~(n) is still positive homo- 
geneous. We assume that r is finite (and thus Na, b is finite-dimen- 
sional. Moreover, F is also a gradient mapping. It is the gradient of the mapping 

L, ~(n)- 1(C(~ + S.,~(n)), n + S~, ~(~))- ~(n + S., ~(n)), 

where G(u)=�89 v(u-)2). There are a number of ways of proving this. 
a 

The shortest way is to apply Theorem 2.3 in Amann [2] (as in w 3 there). Note 
that his saddle point reduction is equivalent to ours and that his function f 
agrees with ours except for a linear isomorphism of N,, b. Alternatively, it can be 
proved by (i) an approximation argument (noting that the map u~g(u)  is 
Fr6chet differentiable as a map of @(L) into L2(~?) if g is continuously differentiable 
and g' is bounded on R), or (ii) by a careful direct differentiation offu ' ~ (and the 
use of the equation satisfied by S,, ~(n)). (The latter proof requires the use of the 
definition of the gradient since the chain rule is inapplicable and the use of the 
Lipschitz property of Su,~(n ). Some care must also be exercised because L is 
unbounded.) 

We now wish to apply the homotopy index in the sense of Conley [63. We 
assume some knowledge of its basic properties. The idea of using the homotopy 
index in a similar situation is due to Amann and Zehnder [3]. Assume that 
(~, v)r 0. Since F,,~ is a gradient mapping and Fu,~(n).t=O if n~Na, b\{0}, zero is 
the only bounded solution of n'(t)=Fu,~(n(t)) (cp. [3], proof of Theorem9.1). 
Thus the homotopy index of the isolated invariant set zero is defined. We use 
h(0, Fu, ~) to denote this homotopy index. 

Lemma 2. I f  #Ca(L) and a < t~ <b, h(O, Fu,~) is defined and is the homotopy type of 
pointed mu-sphere where m, is the number of eigenvalues (counting multiplicities) 
of L in (12, b). 

Proof If # =  v, (4) becomes 

L w =  Pa,~I,~(n + w))= # w. 
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Thus, since #6a(L), Su, u(n)=0. Hence Fu, u ( n ) = L n - y n .  The result now follows 
from the statement in w 1.4.3 in [6]. 

In particular, if a, f leR\a(L)  and [c~,fl]c~a(L)=t=~, then m~@ma and thus 
h(0, F~,,)@h(0, F~,p) (since pointed spheres S k and S z do not have the same ho- 
motopy type if k oe l). 

We need one more technical lemma. 

Lemma3.  Let D denote a closed half disc in R 2 (e.g. {(x,y)ER2: x2+yZ<--a, 
y_>_0}) with centre A and let E and H denote the curved and straight parts of 8D 
respectively (where E and H are closed). Assume that K 1 and K 2 are two compact 
subsets of D such that K1;sK2=N,  A~K 1 and Ktc~E=~.  Then there is an arc T 
in D \ ( K 1 u K z ~ E  ) such that the ends of T lie in distinct components of 
H\({A} u E). 

Fig. 1 
A H 

Proof. The result is well-known but it is difficult to find an explicit reference. It 
follows easily from the Alexander lemma (Newman [17], Theorem 5.8.1). Essen- 
tially the same result is proved in part of the proof of Corollary 2.3 in Turner 
[22]. The result can also be proved by using the Mayer-Vietoris sequence of 
Cech cohomology. 

Proof of Theorem 1. If C~ is bounded we can choose a half disc D in {(#, v)~R2: 
#__>v} with centre (r, ~) such that the curved part E of 8D does not interest C~. 
(Thus the straight part H of 8D lies in the line #=v.) Moreover, by our earlier 
choice of K, we can choose D such that [#l, lv l<K for (#,v)~D. Since C~ is a 
component of Dc~Ag, a standard argument (cp. [22], proof of Corollary2.3) 
shows that D ~ A g = K l u K 2 ,  where K 1 and K 2 are compact, K l n K 2 = N ,  
C~_K 1 and K~ does not intersect the curved part of c~D. By Lemma 3, there is 
an arc T~_D\(K 1 u K2)~_D\Ag such that the two ends (c~, ~) and (/~,/~) of T lie 
in different components of {(#, #)~D: #@z}. In our earlier construction of Fu, ~, 
we take a < - K  and b > K  such that (a, b)c~ a(L) is finite. (Thus F,,~ is defined 
for (#, v)ED.) Since T ~ A ~ = ~ ,  Fu,~(n)=t=O if (#, v)~T and neN~,b\{0 }. Thus, by 
our earlier comments, the homotopy index h(0, F,,~) is defined for (#, v)e T and, 
by homotopy invariance (cp. Conley [6], Theorem 4.1.4), it is constant on T. In 
particular, h(0, F~,~)=h(0, Fr However, by the construction of T, Te[c~, fl] and 
thus, by Lemma 2 and the comments following it, h(0, F~.~)=#h(O, Fp, p). Hence we 
have a contradiction and C~ must be unbounded. 

Remarks. 1. The author's original proof avoided the use of the saddle point re- 
duction work of Amann and used results in Gromoll and Meyer [15] instead of 
the homotopy index. However, Amann's work shortened the proof while the 
homotopy index seems more flexible to use than the results in [-15]. 

2. If L is not self-adjoint, degree theory could be used to prove a rather 
weaker result. Our method could also be used to obtain a weaker result in some 
cases where L does not have compact resolvent. 
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3. Note that we do not claim to prove that there is an unbounded connected 
subset of {(#, v)~Ao: #>v} with (z,z) in its closure. We do not know whether 
this is true or false. 

4. Theorem 1 can be improved slightly. However, it is convenient to defer the 
discussion of this till the end of w 2. 

Finally, for this section, we indicate how Theorem 1 can be used to give a 
partial answer to a question of Berestycki [5, p. 390]. If L is a second order 
elliptic partial differential operator with appropriate boundary condition and 
K e R  he asks whether the equation 

L u = # u  + + ( # - K ) u -  (8) 

has a non-trivial solution for an infinite number of #'s. For simplicity, let us 
assume that L is bounded below and let 2 1 < 2 2 < . . .  denote the distinct eigen- 
values of L. 

Proposition 1. Let e =l im sup(2n+ i -2 , ) .  I f  0 < IKI <�89 (8) has an infinite number 
of solutions. ,4 

Proof. As usual, it suffices to assume that K > 0 .  Choose e 1 such that 
K<�89189 By the proof of Theorem4 in Dancer [17], (#,v)~A o if 
2n<V_--<#<An+ 1. Thus, if 2 n + l - 2 n > e l ,  (#,v)~A o whenever #+v=�89 
and O<=#-v<=�89 1. Choose zea(L) such that %<%+l<...Z...<fln<fin+x 
where % and an+l (fin and fi~+l) are successive eigenvalues of L, where 
c~+ 1 -%>e~ and where fin+l -fi~>el. Then C~ must intersect # - v = K  at a point 
(#, v) with a~+l +~,<=#+v<=fin+fl~+l. (This follows because (i) C~ is unbounded 
and thus C~ must leave the box O<_#-v<=K, %+%+l<=#+V<_fin+fl,+~ and 
because (ii) we have shown that A o (and hence C~) does not intersect the ends on 
which # + v = a ~ + a n +  1 or fi~+fi~+l-) Since we can choose the ~'s and fi's 
arbitrarily large (because e 1 < e), the result follows. 

Remark. Let N(2) denote the number of eigenvalues of L less than or equal to 
(counting multiplicity). If N(2)~c)~ as , ~ o o ,  then it is easy to see that e>= 1/c 
while, if )~-~N(2)-*0 as 2 ~ )  then e=  ~ .  Since there are known estimates for 
N(2) for many elliptic partial differential operators (cp. Agmon [2] Theorem 
14.6), we obtain estimates for e in some cases. For example, it turns out that e 
tends to be infinite if the order of the operator is higher than the dimension of ~2 
while we obtain an estimate for e if equality holds. For  example, if ~2_c R 2 is 
bounded and smooth and if L is the Laplacian with Dirichlet boundary con- 
dition then e>4rc(m(~2))-1, where re(f2) denotes the measure of (2. 

2. On the symmetric domain, one can often obtain better results by restrict- 
ing to a subspace of functions with appropriate symmetries (because, in the sub- 
space, the corresponding e may be larger). 

w 2. On the Solvability of Lu=g(u)-f 

In this section, we show how the homotopy index can be used to improve a 
result of [7] on the solvability for all f~L2(f2) of the equation 

Lu = g ( u ) - f .  (9) 
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We assume that all the conditions of the introduction hold. Our main result is 
the following. 

Theorem 2. Assume that (#, v)~Ao, and that h(O, F~,~) is non-zero. 7hen (9) has a 
solution for every f~L2(f2). 

Remarks. 1. Whether the homotopy index is non-zero apriori depends upon the 
choice of a and b (with the notation of w 1). We will prove, however, that it is 
independent of a and that whether it is zero is independent of b. Here a and b 
are restricted by the requirement that a(L)n(a, b) is finite. 

2. By using the homotopy invariance of the homotopy index, we see that it 
suffices to check that h(O, Fp,~)+O for some point (/l,~) of the component of 
R2\Ao containing (tt, v). It is also easy to show that h(0, Fu,~)=h(0 , F~,u). 

Before proving Theorem 2, we need some preliminaries. In particular, we 
need to justify Remark 1. For the moment, we write F~ ...... b to indicate the ex- 
plicit dependence upon a and b. For  simplicity, we assume that 0 is not a local 
maximum of F, ..... b. (The arguments in this case are similar but easier.) Since 
Fu ..... b is positive homogeneous, we can argue as in Conley [6, p. 55] to show 
that 

h(O, F, ..... b) = $1 A [F,+,~,a,b/x + ] (10) 

where S 1/x denotes a suspension, 

fu+v,a,b = {xffNa, b: HX][ = 1 and f,.+ .... b(X)>0}, 

X + is any point of Fu+,~,a,b and [- ] denotes homotopy type. Suppose now that 
?tea(L) u { -  oo} such that (~t, a] contains exactly one distinct eigenvalue 2 i of L 
(possibly multiple). Now N~,b=Na, b@Ki, where Ki={xeL2(f2): L x = 2 i x  }. It fol- 
lows easily from our construcation in w 1 that 

f ,  ..... b (n) = f,,~, e,b (n + S (n)) 

where S(n) is the unique solution in K~ of the equation 

L w= Pi F~, ~,a,b(n + w), 

where nENa, b, w~K~ and P~ is the orthogonal projection of N~, b onto K~. Now it 
follows from the work of Amann (cp. [23, Lemma 3.3) (and is also easily seen 
directly) thatf~,~,~, b(n + Z) (where n~N.,b, z~Ki) is concave in z and has its maxi- 
mum at z=S(n). Thus T.-{zeK~:  f~,,~,~.b(n+z)>O} is either empty or is a closed 

convex set containing S(n). Since f~,~,a,b(0+z)<0 if z + 0  (as is easily seen), it 
follows that 

Z a -  {u~N~,b\{O}: f~,,.a,b(u) >__0} = u({n} + T,), (11) 

where the union is over {ncN~,b\{O}: f,,,,a,b(n+'S(n))>O}, i.e., over 
Za=--~{n~Na, b\{O}: fu ..... b(n)~0} .  Since T, is convex, it can be contracted down 
to {S(n)} by the obvious homotopy. Thus, by (11), Z e and Za have the same 
homotopy type. Since  f),u,e,b(,~X)=Z2fx,~,a,b(X) if 2 > 0  (because F;.,u,a,o is posi- 
tive homogeneous), we can contract Z~ radially and deduce that Ze and E + I t, v,t~, b 

have the same homotopy type. Moreover, a similar result holds for Z..  Hence 
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F.+,v,e,b and E + have the same homotopy type and thus, by (10), h(0, + F .  ..... b) ., V, a, b 
=h(O,F.,~,e,b) , as required. (Note that we may ignore base points because our 
sets are absolute neighbourhood retracts as we see below.) 

We now need to consider the increasing b to /~ r  such that 
(b,/))r~o-(L)= ~. In this case, we prove a weaker result which suffices for our 
purposes. Adding an eigenvalue of L greater than b in the construction of F. ..... b 
is the same as adding an eigenvalue of - L  less than - b  in the construction of 
- F .  ..... b" Thus, by our arguments above, 

Zb-- {X~Xa, b: Ilxll = 1, - f .  ..... b(X)>0} 
and 

2 ~ -  {xeNa, s: Ilxll = 1, - f .  ..... 8(x)>0} 

have the same homotopy type and thus the same cohomology. Hence, by 
Alexander's duality (cp. Dold [12, p. 301]), 

/ ?~  (F2 , o. b) -- 

where k = dim N~, ~ -  dim N., b, 

?.+~,~.b={x~X.,b: I l n l l = l ,  f.,+ .... b(n)>0), 

~,+~,.,~ is defined similarly and /ln denotes reduced homology. (Here we have 
used that N ~ , b \ Z b = ~  +, .... b and the corresponding result for Na, ~. Thus, by Dold 

[12, p. 51], 2 ; la  S k A Pu+~,~, b and s ~,+~.~,~ have the same homology. To com- 
plete the proof, we need to make a few observations. Firstly, implicit in the 

+ proof of the result of [6, p. 55] quoted earlier is that F .  ..... b is a strong defor- 
mation retract of a neighbourhood of itself in the sphere. (This is proved by using 
the tangential component of the differential equation and deforming along flow lines 
of this equation on the sphere.) Thus F.+,~,a,b is an absolute neighbourhood re- 
tract (in the sense of Spanier [21, p. 56]). A similar argument shows t ha t  ff'.+,v,a,b 
and F.+~,~,b have the same homotopy type and thus X~/xSk/xF.+~,., b and 
S a A F.+ ,.,?, have the same homology. Since each of these spaces is simply con- 
nected (by Spanier [21, Corollary 8.5.3]) and since they are absolute neigh- 
bourhood retracts (because F.+~,.,b and F.+~,a,~, are), Corollary 7.8.5 in Hu [16] 
implies that either space is contractible if and only if all of its homology groups 
are zero. Thus, since they have the same homology, if one is contractible, so is 
the other. Hence, if h (0, F~ ..... b) + 0, then 

h(O, F. ..... ~)4=0. 

Remark. A rather more elaborate argument (using, for example, Lemma t in 
Dancer [11]) implies that 

h(O, I2'. . . . . .  ~)= ~k/x h(0, f .  . . . . .  b)' 

We have shown that adding an eigenvalue below a or above b does not make 
the homotopy index zero. Thus the assumption of Theorem 2 is well defined. 
Note that, we have also shown that it suffices to use homology (or cohomology) 
to decide whether the homotopy index is non-zero. 

We now return to the proof of  Theorem 2. 
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Step 1. We prove that (9) is solvable for every feL2(f2) if g is continuously differ- 
entiable on R and there is a K > 0  such that [g'(y)l<K on R. 

If a < - K and b > K we can repeat the proof of Lemma 1 to reduce Eq. (9) to 
the equation 

Ln=Qa, bg(n § Sl(n))-Qa, b f  (12) 

on N~, b. Here Sl(n ) is the unique solution in Wa, b of 

L w  =P,,b g ( n + w ) - P . , b f .  (13) 

A simple estimation shows that 

I[Sl(n)[I ~ K 1  Ilnll +g2, (14) 

is a gradient system. Now since y - l ( g ( y ) - p y +  
since g is continuous, it is easy to see (cp. [7, 

Moreover, as before, (12) 
- v y - ) + O  as [y[~oo and 
Lemma 2]) that 

Ilull-l(g(u)-~u+-vu ) ~ 0  (15) 

in L2(O) as Ilull--,c~. Since S1(n) is a solution of (13) and since S(n) is a solution 
of (6), a simple estimation shows that I[n/1-1 HS(n)-S,(n)ll-+O as n--+oo. (Here 
we use (14) and (15).) From this inequality and (15), we find that 

C n - Qa, b g (n + S l(n)) = f. .~ (n) + r (n), (16) 

where [[n[1-1 ][r(n)[[ ~ 0  as [[n[[--+ oo. By similar arguments, r is bounded on bound- 
ed sets. 

Choose a fixed bounded neighbourhood T of zero. Then T is an isolating 
neighbourhood for F~, v. Suppose we look for a solution of (12) of the form n =s  t, 
where t e T  and s is large. By (16) and the positive homogeneity of F,,~, (12) 
becomes 

Fu, ,(t) + s -1 r(s t ) -  s -1 Qa, b f =O. (17) 

If s is large, our earlier estimates for r imply that the last two terms are small on 
all of T. Thus, by homotopy invariance, 

h(I,F~)=h(O,F,,~).O, 

if s is sufficiently large. (Here F~ denotes the mapping on the left-hand side of 
(17) and I denotes the set of bounded solutions of n'(t)=Fl(n(t)) in T.) Since the 
left-hand side of (17) is still a gradient equation (because (12) is), it follows easily 
(cp. [3, proof of Theorem 9.1]) that (17) has a solution in T and hence (9) has a 
solution, as required. 

Step 2. We remove the extra condition on g. 

Fix feL2(t?). Now, since (p, v)~Ao, there is a / ~ > 0  such that 

[ILu-  #u  + -vu - I1  >/~ [lull (18) 
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for ueL2(f2)m~(L). If Ig,(Y)l ~�89 +M on R (where g (y )=gy+  + vy -  +gl(Y)), 
it is easy to see that 

[Igl(u)ll _-<IK Ilull +M1 (19) 

on LZ(f2), where M 1 depends only on/s M and the measure of g?. It follows from 
(18) and (19) that, i fu is a solution of (9), then IlulL-<_M2, where M 2 depends only 
o n / ( ,  M and the measure of ~2. 

It is easy, but tedious, to construct continuously differentiable g,: R--+R such 
that (i) g,--+g uniformly on compact subsets of R, (ii) ]g'~(y)[ _-<K, on R and (iii) 
for every e > 0, there is an M e > 0 with 

]gn(y)--/zy + -- v y-[ <=elYl + M~ (20) 

on R for all n. By Step 1, there is a solution u, of L u = g , ( u ) - f  and, by the 
argument in the previous paragraph, ][u,[[ <M~ for all n. Hence by (20) and the 
equation satisfied by u,, we find that {Lu,,} is bounded in L2((2). Since L has 
compact resolvent, it follows that {u,} is compact in L2(f2). Thus, by choosing a 
subsequence if necessary, we may assume that u, ~ v in L2(~2) as n ~ oo. Since L is 
closed, the required result that L v = g ( v ) - f  will follow if we show that 
g,(u,)~g(v) in L2(f2) as n ~  o0. By Egorov's theorem and the construction of the 
g,, g,(u,)--+g(v) uniformly except on a set of small measure. Hence the result will 
follow if we show that ~ g,(u,) 2 and ~ g(v) 2 are small over sets of small measure. 
This follows easily from (20) since {u, z} are equi-integrable (because {u,} is pre- 
compact in Lg(f2)). This proves Theorem 2. 

Remarks. 1. Note that our assumption that L has compact resolvent is used 
essentially in the proof of Step 2 of Theorem 2. 

2. It would be preferable to have a type of homotopy index in infinite dimen- 
sions that could be used directly. 

3. Our methods (and especially Step 1) could be applied to many other asymp- 
totically small gradient perturbations. For example, the methods should be 
applicable to some Hamiltonian systems of ordinary differential equations. The 
technique in Step2 should be useful in other situations. It could be used to 
improve some of the results in [3]. 

4. The homotopy index condition in Theorem 2 is more general than the 
corresponding condition on the degree (as in w 3 of [7]). (It can be shown that, 
except for sign, the appropriate degree is independent of a and b and equals the 
infinite-dimensional Leray-Schauder degree.) The homotopy index condition is 
more general because a slight generalization of the result in Rothe [20] and 
Alexander duality imply that the degree is an alternating sum of the ranks of the 
reduced homology groups/q,(F,+~). (Remember that the homotopy index is zero 
if and only if/~,(F,,+~)=0 for all n.) Moreover the homotopy index condition is 
sometimes more convenient to check. For example, the homotopy index is non- 
zero if Fu+,v is not connected. (This is used in w 3.) However, if [#, v] contains at 
most, two eigenvalues of L (counting multiplicity), the homotopy index is zero 
precisely when the degree is zero. It is possible to construct an example where 
N,. b is three-dimensional, the degree is zero but the homotopy index is non-zero. 
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We now consider an important special case where our assumptions are satis- 
fied. Assume zea(L) and (s,y)eR 2 with s E + y 2 = l  and s>y.  Let Q~ denote the 
orthogonal projection onto K~, the kernel of L - r I ,  and define ks, y: K ~ K ~  by 
ks, y ( n ) = - Q ~ ( s n + + y n - ) .  We easily see (cp. [7, w that, if ks, y(n)+O for 
n~K~\{0} and if t is sufficiently small and non-zero, then (z+ts ,  z + t y ) ~ A  o. 
Note that ks, y is positive homogeneous and is a gradient mapping. (It is the 
gradient of - ~ Is(n+) 2 +y(n-)2].) 

f~ 

Theorem 3. Assume that ks, y(n ) ~ 0 for n~K~\{0} and a < z < b. I f  t is sufficiently 
small and positive, h(O, F#(t) ,v( t ) ,a ,b)  = X k /~ h(O, k~,y), where #(t) =r  +ts ,  v ( t )=z  + t y  
and k is the number of eigenvalues of L (counting multiplicity) in (% b). In particu- 
lar, if h (0, k~, y) ,t = O, if g: R ~ R is continuous with y -  t g (y) ~ ix (v) as y ~ oo ( - oo), 
and if (ix, v) lies in the component of Ra\A0 containing (ix(t), v(t)) (where t is small 
and positive), then Eq. (9) has a solution for all feL2(~). 

Proof The second statement follows from the first, Theorem 2 and Remark 2 
after Theorem 2 if we note that, as earlier, whether the homotopy index is non- 
zero is determined by homology and thus cannot be made zero by suspensions. 
We now prove the first statement. With our earlier notation iexcept we write 
St(n ) to show the variation of S(n) with t), 

LS,(n) = Po,~ [ix(t) (n + S~(n))++ v(t) (n + S,(n))-]  
i,e. 

iL - z I)  S~ in) = t ~ .  ~ Is  in + S, in)) + + y in + S,(n))-  l -  

Since (L-zI)]wo,~ is invertible, it follows easily that there is a K > 0  such that 
liSt(n)[ ] < t K  I[n[] if t is small (and positive) and n~N,, b. Now we must consider 
the homotopy index of zero of 

F~,~,~(,~ (n) = L n - P Eix (t) (n + S, (n)) + + v (t) (n + S~(n))- ] 

- Q~ [ix(t) (n + S,(n) + + v (t) (n + S t (n))- ], 

where P=P~,b-Q~, i.e., of 

(L -- z J) ! 5 n - t 15 [s(n + St(n)) + + y(n + St(n))-3 

- t Q ~ [ s ( n +  S~(n) + + y(n+ Stn)-] .  

1 
Since multiplying by the positive self adjoint P + ~ Q ~  does not affect the ho- 

motopy index of zero (cp. [6], p. 55), we have to evaluate the homotopy index of 
0 for 

( L -  z I) P n - t 15 Is (n + S t (n) + + y(n + S,(n))- ] 

- Q~ Is (n + S,(n)) + + y (n + S,(n))-  3. 

Since [[St(n)][ <=tK [[n[[, we see by letting t tend to zero, that we must evaluate the 
homotopy index of 

( L - z I )  P n - Q ~ [ s n  + + y n - ] .  
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Now, by the homotopy ( L - r I ) P n - Q ~ [ s ( t n + ( 1 - t ) ( 2 ~ n ) §  
- t )Q~n) - ]  our homotopy index reduces to the homotopy index of ( L - z I ) P n  
-Q~[s(Q~ n)++ y(Q~ n)-]. (In the last homotopy, it is easy to check directly that, 
for any bounded solution n(r) of the corresponding differential equation, P n(r) 
=0 for all reR.) The result now follows for the product theorem and the for- 
mula for the homotopy index of zero of a linear mapping (cp. [-6], w and 
w 

Remarks. 1. The proof could be shortened a little if we used the remark just 
before the proof of Theorem 2. 

2. A similar result holds for t <0. (ks, y is replaced by -k~,y). It can be de- 
duced from this and Remark 2 after the statement of Theorem 2 that, if t is small 
and positive, then ( z -  ty, z - t s )g /A  o provided that k y ( n ) +  0 o n  Na, b\{O }. More- 
over the corresponding homotopy index is non-zero if and only if h(0, ks, y )=t=0 
(and thus if and only if the corresponding homotopy index for #(t), v(t) is non- 
zero). 

3. Theorem 2 improves a result in [7]. (Our result is equivalent to the one 
there if dimK~<2.) As before, there is an example with dimK~=3,  with the 
homotopy index non-zero and with the degree zero. 

Finally we explain how Theorem 1 can be improved. Assume that z~cr(L) 
and that K1, ..., Kp are closed "intervals" on 

B={(s,y)~R2: s>=y, s2+y2=2} 

K2 

3 

Fig. 2 

p 
such that ks, y(n)~=0 if n6K~\{0} and (s, y ) 6 B \  ~ intKi and such that, for each 

i--1 
i, ks, y(no)=0 for some nooKs\{0 } and some (s, y)eK i. Let m i denote h(0, k . . . . .  ), 
where (s~, w~) is the end point of K~ nearest (1, 1) and let rap§ 1 = h(O, k 1, 1). It is 
easy to show (cp. [-7]), that if e is sufficiently small, if (#, v)eAg and if I1(#, v) 
-( 'c,z)ll2<e (where I[ 112 denote the L 2 norm on R2), then ( # , v ) - ( z , z ) = r w  
where wein tK  i for some i. Let /~i= {(#, v): (#, v) - (z, z) = r w, where weKi,  
0<r<�89 We say that K~ and Kj are strongly related if there is a connected set 
T~_A~d\{(z,-c)} such that T contains points arbitrarily close to (z, z) in both/~i  
and/~j.. (Intuitively, Ag contains a "loop",) 

We say that K i and Kj are related if i = j  or if i o, i 1 . . . . .  i are such that i o = i, i s = j  
and Ki~ is strongly related to Ki~+~ for O<_t<_s-1. (Intuitively, there is a suc- 
cession of"loops".)  Theorem 1 can be improved as follows. 
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Fig. 3 

~ T  

Proposition 2. Suppose that 1 <i<=p. Let i 1 be the smallest integer such that i 1 <i 
and Kil is related to Ki and let i 2 be the largest integer such that i 2 >=i and K~2 is 
related to K i. Then either (i) there is a j such that K i and Kj are related and an 
unbounded connected subset A of Ag \ ( z ,  z) containing points arbitrarily close to 
(% z) in I{j or (ii) rail and mi2+x have the same stable homotopy type. 

(Two sets X and Y have the same stable homotopy type if there is a non- 
negative integer p such that the suspensions SPX and SPY have the same ho- 
motopy type. If m i = [Xi], for each i, when we say that m~ and mj have different 
stable homotopy type, we really mean X~ and Xj have different stable ho- 
motopy types. Note that we need only consider a finite number of p's by (Spa- 
nier [21, Theorem 8.5.11]) and that, if X i and Xj have different homology, they 
have different stable homotopy type.) This proposition improves Theorem 1 if 
p > 2  because it is not difficult to use homology to prove that m s and m 1 have 
different stable homotopy types if j > l  and that mj and rap+ 1 have different 
stable homotopy types i f j < p +  1. Proposition 2 is proved by using Theorem 3 
and properties of connected sets (as in w 2 of [9]) and by more carefully using the 
ideas in the proof of Theorem 1. We omit the proof. Note that stable homotopy 
occurs because of the suspension in Theorem 3. (If L is bounded above or below, 
we often need only consider fewer suspensions.) There is one case when the 
statement of our (rather complicated) Proposition 2 can be simplified. Assume 
that, for each i, A~- c~/(i is a simple curve (or is empty). Then, in possibility (i) of 
Proposition 2, we may take i---j and strongly related is equivalent to related. 
This assumption is true in many cases because if (i) kso,yo(no)= 0 where [I no [] = 1; 
if (ii) {x~f2:no(X)=0 } has measure zero and if (iii) the non-radial part of kso,y ~ 
has locally a Lipschitz continuous inverse near n o (as a map of the sphere in K~ 
into the tangent bundle to the sphere), then a rather tedious application of the 
contraction mapping theorem implies that {(#, v, u)~R 2 x L2(f2): [Jull =1, u is 
near no, (#, v) - (z ,  r) is small and has direction near (So, Yo), L u = #  u+ +vu-}  is 
a curve parameterized by t, where t =  II(#, v)- (z ,  z)ll2. (In addition, in this case, 
k~,y(n) =t= 0 if n is near n o on the sphere, if n @ n o and if (s, y) is near (So, Yo).) 

Finally, the homotopy index considerably restricts the manner in which a 
connected subset A of Ag intersecting/(i arbitrarily close to (z, z) can meet (7, 7) 
where 7ea(L)\{r}.  

w 3. On a Simple Special Case 

If (#, v)6Ao, if the range of L u - # u  §  vu-  is not equal to L:(~2) and if g: R-~ R 
is continuous such that y-lg(y)-~#(v) as y-~ oo(-oo) ,  then 

-= {f~L2(~): (9) has a solution} 



Homogeneous Problems 45 

is a closed proper subset of L2(~). (This is proved in [7].) On the other hand, 
Theorem 3 implies that, if a certain homotopy index is non-zero, then N = L2(O). 
It is natural to ask whether these two possibilities exhaust R2\A0.  Thus we 
make the rather optimistic conjecture. 

Conjecture A. If (#, v)~A o and the range of L u - # u  + - v u -  is equal to L2(~2), 
then h(0, F,, ~) 4= 0. 

It would be of interest to prove a result of this type under additional assump- 
tions on L or on (#, v). Proposition 1 of [7] shows that Conjecture A is true if L 
is a second order ordinary differential operator with separated boundary con- 
ditions. We will prove a result of the second type in a moment. There are nu- 
merous weaker variants of Conjecture A. The weakest is probably the following. 

Conjecture A'. Suppose that (#, v)q~A o and that there is a continuous g: R--,R 
such that y - l g ( y ) ~ # ( v )  as y - ,  o o ( -  oo) and such that N =t=L2(f2). Then, for every 
continuous g with y- lg(y) - - .#(v)  as y ~  oo(-oo) ,  N 4=L2(f2). 

We only prove one very simple result. 

Proposition 3. Assume that ~,i-1 < 2~ < )Li + 1 are distinct successive eigenvalues of L 
and '~i is simple. I f2i_ 1 <#,  v <)~i+ 1 and (#, v)q~Ao, then either (i) the range of Lu 
- #u + - vu -  does not equal L2(O) or (ii) h(0, F,,~)4=0. (If  i=1,  we let 20= -oo . )  

Proof Let a=2~_ 1 and b=2i+ 1 in the reduction method of w If f~Na, b, and 
thus Pa, bf--O, it is easy to see that the equation L u = # u + + v u - - f  has a so- 
lution if and only if the equation F, ,~(n)=f  has a solution (in the notation of 
w 1). By our assumptions, Na, b is one-dimensional. It is easy to see that a positive 
homogeneous mapping g on R with g(1)4=0 and g(-1)4=0 satisfies either (i) 
h(O,g)4=O or (ii) the range of g is [0, oo) or ( - ~ , 0 ] .  Thus h(O,F,,~)4=O or the 
range of F,,~ is not equal to N~,b, i.e., there is an f in N,, b such that 
L u = # u + + v u -  - f  has no solution. This completes the proof. 

Remarks. 1. In fact, if h(0, F,,~)~0, the corresponding degree is also non-zero. 
Essentially, our proof is valid because every positive homogeneous mapping of 
R to R satisfies the analogue of Conjecture A. This result does not extend to 
maps of R 2 (even for maps g which are gradient mappings and such that G(z) 
+ G ( - z ) =  k H z II 2, where g is the gradient of G and z ER 2. 

2. There is one variant of Proposition 3. We delete the assumption that 2 i is 
simple but assume that there is a group G of unitary operators on L2(O) com- 
muting with L and with the map u-- .#u + + v u -  such that Kx,, the kernel of L 
-2f l ,  is generated by one element under the action of the group. Then it is easy 
to show that f,,~ is invariant under the action of the group G of unitaries and 
thus f~,~(n)= CHnll 2. It follows easily that Proposition 3 holds in this case and, 
in fact h(0, Fu, ~)@0 if (#, v)(~A o and 2~_ 1 < #, v < 2~+ 1 . Note that such a group of 
unitaries is usually a reflection of symmetries of the domain #2. The result is 
useful because, in many cases, a multiple eigenvalue is a consequence of such a 
group of symmetries. 

3. In fact, the method in Remark 2 can be used to obtain results if we wea- 
ken the assumption there that K~ is generated by one element under the action 
of the group. For example, assume that O is a square in R 2, that L is the Lap- 
lacian with Dirichlet boundary conditions and that i=2.  Then either (#, v)sA o 
or the corresponding homotopy index is non-zero (where 21<#,  v<23). This 
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follows because, by the symmetries, F + is {x~Na, b: Ilxd[ = 1}, or it is empty or it 
has at least four components. (In fact, a more difficult result of Nussbaum [18] 
implies that, if (#, v)r then the corresponding degree is non-zero.) Symmetries 
can be used to simplify the calculation of the homotopy index and of the degree 
in many other cases. For  example, assume that (i) f2 is the disc in R 2, (ii) L is 
the Laplacian with Dirichlet boundary conditions, (iii) (#, v)r o and (iv) (9) has 
a radially symmetric solution for every radially symmetric feL2(~2). Then it can 
be shown that (9) has a solution for all f~L2(f2). Note that, by a variant of 
Proposition 1 in [7], condition (iv) reduces to a simpler condition on the ra- 
dially symmetric solutions of eqn (3). The proof will appear elsewhere. In ad- 
dition, we will show that there are cases where the symmetries enable one to 
quickly decide whether the homotopy index is non-zero but it is difficult to 
decide whether the degree is non-zero. 

4. We mentioned earlier that there is an example with Na, b three-dimen- 
sional, the homotopy index non-zero and the degree zero. This example can be 
chosen such that f2 is the unit disc in R 2 and such that a circle group of sym- 
metries acts on Na, b. The example can be used to construct an example where (i) 
f2 is the unit disc in R2; (ii) L is invariant under the circle group of symmetries 
generated by the rotations and (iii) there is a (relatively) open subset W of the 
radially symmetric functions in L2((2) such that (9) has a solution for all f~L2((2) 
but no radially symmetric solution for all f s  W. It would be of interest to decide 
whether similar behaviour can occur when L is the Laplacian. 

w 4. Additional Open Problems 

In this section, we want to mention some other problems. The first problem is to 
try to understand better the structure of A o. In particular, does A o contain an 
open set and does every component of A o contain an element (#, v) with # =  v? 
Little is known of A 0 even in such simple cases as (a) f2 is the disc in R" and L is 
the Laplacian with Dirichlet boundary conditions or (b) ~2= [ - 1 ,  1] and Ly =y+ 
with the boundary conditions y ( - 1 ) = y 1 (  - 1 )=y(1)=y l (1 )=0 .  (The latter case 
is a problem raised by Fu~ik.) A few comments can be made. For  some partial 
differential operators, a few elements of A o can be found by a separation of 
variables. Some results can be proved for problem (b) above. Firstly, the anal- 
ogues of all the results of w 2 in [7] hold (though some of the proofs there need 
to be modified). Secondly, it can be shown that, if u +0, if Lu = # u + +  vu- and if 
(#, v) belongs to the component C i of A o containing (2i, 2 3 (where 2i is the ith 
eigenvalue of L), then u has exactly ( i - 1 )  zeros in (0, 1) and each of these is 
simple. It follows that Cjc~ C~=~ i f j+i .  Thirdly, some of our comments in w 
and the easily proved result that ][h + Jl 2 4 = IIh-[] 2 for each eigenfunction of L with 
an even number of zeros can be used to obtain a rather complete understanding 
of A o near the eigenvalues of L. 

We mention two more problems. Firstly, /f (#, v)eA0, prove that the range 
~ of L u - # u  + - v u -  is not dense in Lz(Y2). This is probably a rather optimistic 
conjecture and it would be of interest to prove it under additional assumptions 
on L or on (#, v). The reason it is of interest is that, if (#, v)eAo, if ~1 #:L2(y2), 
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if g: R ~ R  is continuous and if g ( y ) - # y + - v y  - is bounded on R, it follows that 
:~4:L2((2) (cp. [8]). The conjecture is known to be true for some second order 
ordinary differential operators (cp. [8]). (The class includes all second order 
operators with Dirichlet boundary conditions.) It is not difficult to prove that, if 
the range of Fu, ~ is not dense in Na, b, then ~1  +L2(O) �9 It follows that the conjec- 
ture is true when )~_1<#,  v<2~+ 1 and )~ is simple (by a similar argument to 
that in the proof of Proposition 3). As in Remark 2 after Proposition 3, the 
conjecture is still true when we replace "2~ is simple" by an appropriate sym- 
metry condition. 

Finally, if g is convex, if y - l g ( y ) ~ / z ( v )  as y - - , o o ( - o o ) ,  (#,v)(~A o and 
2 ~ _ 1 < # < 2 ~ < v < 2 ~ + ~  it would be of interest to understand the structure of 
and the number of solutions of (9) for each f e N .  Here we take ):o = - oo. Partial 
results are known if # and v are near ,l~ (e.g. Podolak [19]). If 2~ is simple and if 
N+L2(f2), it is easy to use some of our earlier ideas to show that there is a 
continuous function ~: K/l--* R such that ~ = { c ~ h i + v :  ~>~(v)} (or c~<~(v)). Here 
h i spans K~. Moreover, if f e in t  N, the equation has at least two solutions. In 
fact, the convexity could be weakened. In some cases where h 1 is positive on f2 a 
much more precise result is known (cp. [4] or [10]). (This result is also true for i 
= 1 in case (b) above provided that/~ > 0.) Unfortunately, if h i changes sign in f2, 
it can be shown under fairly very weak hypotheses on L that such a precise 
result is no longer true. In particular, there is an f in L2(f2) for which the equa- 
tion has at least 4 solutions. 
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