How to Conjugate C1-Close Group Actions

Karsten Grove and Hermann Karcher*

The aim of this paper is to prove the following stability theorem for group actions.

Theorem A. *Let G be a compact Lie group and let M be a connected compact differentiable manifold. Then any two* $C¹$ *-close G-actions on M are conjugate by an explicitly defined diffeomorphism isotopic to the identity map of M.*

The existence of a map conjugating two $C¹$ -close G-actions has already been proved by Palais [5]. Palais' proof relies essentially on the fact that there exists a representation of G in an orthogonal group $O(n)$ and an equivariant embedding of M in \mathbb{R}^n . The main tool in our approach is to define a "center *of mass"* for almost constant maps. This enables us to define a specific map conjugating the two group actions if they are $C¹$ -close.

Using this notion of center we prove in the last paragraph a differential geometric version of the theorem:

If M carries a Riemannian metric and one of the actions is by isometries, then we say in terms of curvature bounds for M, independent of the dimension of M, how C¹-close the actions have to be.

We hope that this will be useful in e.g. pinching problems, compare the special case $G = \mathbb{Z}_2$ in Grove and Karcher [3] and also Shiohama [6].

A key point in our work was to find a useful "center *of mass"* of a map. We thank D. Burghelea for stimulating discussions on that. He arrived at such a definition for maps with connected compact domain using properties of the heat equation and harmonic maps, $-$ we believe that his center can also be used to prove Theorem A for connected compact Lie groups.

1. Center of almost Constant Maps

Let N and M be compact Riemannian manifolds and denote by $C^0(N, M)$ the Banach manifold of continuous maps from N to M; the component of the constant maps is modelled on $C^0(N, \mathbb{R}^n)$. The

^{*} This work was done under the program "Sonderforschungsbereich Theoretische Mathematik" (SFB 40) at the University of Bonn.

tangent bundle $TC^{0}(N, M)$ is naturally equivalent to $C^{0}(N, TM)$ and $C⁰(N, M)$ carries a Finsler structure given by

(1.1)
$$
||X||_{C^0} := \max_{p \in N} ||X(p)||_{f(p)} \text{ for all } X \in T_f C^0(N, M)
$$

see e.g. Eliasson [1].

There is a natural embedding $\hat{e}: M \to C^0(N, M)$ defined by $\hat{e}(m)(p)$ $n=m$ for all $p \in N$ and all $m \in M$. Put $\hat{e}(m):=\hat{m}$ and $\hat{e}(M):=\hat{M}$. Then we have the Banach bundle $TC^{0}(N, M)|_{\hat{M}}$ over \hat{M} containing the tangent bundle $T\hat{M}$ of \hat{M} as a finite dimensional subbundle. We define now a complementary bundle to $T\hat{M}$ in $TC^0(N, M)|_{\hat{M}}$. Let $P: TC^0(N, M)|_{\hat{M}} \to$ $TC^0(N, M)|_{\hat{M}}$ be given by

(1.2)
$$
P(X)(p) = \int_{N} X, \text{ (normalization: vol } (N) = 1)
$$

for all $X \in TC^0(N, M)|_{\hat{M}}$ and all $p \in N$. P is a differentiable bundle map with $P^2 = P$ i.e. a bundle projection. The image of P equals TM, so $E:= \ker P \subseteq TC^0(N, M)|_{\hat{M}}$ is a bundle with $E \oplus T\hat{M} = TC^0(N, M)|_{\hat{M}}$.

The connection on \tilde{M} induces a connection on $C^{0}(N, M)$ such that the exponential map of $C^0(N, M)$ is given by $C^0(\exp)$: $TC^0(N, M) \rightarrow$ $C⁰(N, M)$ i.e. for $X \in T_f C⁰(N, M)$ we have $C⁰(\exp)(X)(p) = \exp_{f(n)} X(p)$ for all $p \in N$, – see Eliasson [1]. Thus from the bundle projection $\pi: E \to \tilde{M}$ we get a differentiable deformation retraktion of a tubular neighborhood $U_{\varepsilon} = C^{0}(\exp)(E_{\varepsilon})$ of \hat{M} in $C^{0}(N, M)$ to \hat{M} , - denote this by $\tilde{\pi} =$ $\bar{\pi} \circ C^{0} (\exp)^{-1} |_{U_{\varepsilon}}.$

Now if $f \in C^0(N, M)$ is sufficiently C^o-close to a constant map $\hat{m} \in C^{0}(N, M)$ we have $f \in U_{s}$. We shall say that f is "almost constant". We define the "*center of mass*" $\mathcal{C}(f)$ of f by

$$
\mathscr{C}(f) := \tilde{\pi} \circ f \in \hat{M}.
$$

Then for any isometry $A: M \rightarrow M$ on M we have

$$
(1.4) \t\t A \circ \mathscr{C}(f) = \mathscr{C}(A \circ f).
$$

To prove this we just note that for the constant map $\hat{c} = \mathscr{C}(f)$ we have $\int \exp_c^{-1}$ of =0 and $A_* \circ \exp_c^{-1} \circ f = \exp_{A(c)}^{-1} \circ A \circ f$, where A_* is the dif- \check{N} ferential of the isometry A.

2. The Conjugation Map

Let now N be a compact Lie group G with right invariant metric and corresponding volume, and consider two differentiable G-actions on $M \mu_i: G \times M \rightarrow M$, $i=1, 2$. Choose a riemannian metric on M such that μ_1 operates by isometries. Let R_h denote right translation on G

by $h \in G$; we have for every $f \in C^0(G, M)$ which has a well defined center $\mathscr{C}(f)$ (i.e. $f \in U_s$), that

$$
\mathscr{C}(f) = \mathscr{C}(f \circ R_h).
$$

Define now the map $\eta: G \times M \to M$ by $\eta(g, m) = \mu_1 (g^{-1}, \mu_2 (g, m))$ for all $(g, m) \in G \times M$ and let $\hat{\eta}$: $M \to C^1(G, M) \subset C^0(G, M)$ be the corresponding map $\hat{\eta}(m) = \eta(m, \cdot)$. It is easy to see that $\hat{\eta}: M \to C^0(G, M)$ is an embedding and if μ_2 is C¹-close to μ_1 , then $\hat{\eta}$ is C¹-close to $\hat{e}: M \to C^0(G,M)$ (e: $G \times M \rightarrow M$ is the trivial action). Since $\hat{\eta}$ is of course C^o-close to \hat{e} we have that $\hat{\eta}(M) \subset U_{\gamma}$, so

$$
(2.2) \t S := \tilde{\pi} \circ \hat{\eta} : M \to \hat{M} \equiv M
$$

is a well defined differentiable map. Since π is a bundle projection and $\hat{\eta}$ is C¹-close to \hat{e} we have $S = \tilde{\pi} \circ \hat{\eta}$ is C¹-close to $1_M = \tilde{\pi} \circ \hat{e}$, i.e. S is a diffeomorphism on M isotopic to 1_M .

To complete the proof of Theorem A we show that S conjugates μ_1 and μ_2 . To this end, note that $S(m)=\mathcal{C}(\hat{\eta}(m))$ for all $m \in M$, so using (1.4) and (2.1) we get for each $h \in G$

(2.3)
\n
$$
\mu_1(h, S(m)) = \mu_1(h, \mathcal{C}(\hat{\eta}(m)))
$$
\n
$$
= \mathcal{C}(\mu_1(h, \cdot) \circ \hat{\eta}(m))
$$
\n
$$
= \mathcal{C}(\mu_1(h, \cdot) \circ \hat{\eta}(m) \circ R_h)
$$
\n
$$
= \mathcal{C}(\hat{\eta}(\mu_2(h, m)))
$$
\n
$$
= S(\mu_2(h, m)). \quad Q.E.D.
$$

Corollary 2.4. Let μ_1, μ_2 : $H \rightarrow G$ be two homomorphisms of the compact *Lie group H into the Lie group G with biinvariant metric. We can view* μ_1 and μ_2 as actions of H on G by isometries, namely left translations $\mu_i(h, g) := \mu_i(h) \cdot g$. If μ_1 and μ_2 are C^o-close then the map S(2.2) *turns out to be a left translation. In other words the subgroups* $\mu_1(H)$ *,* $\mu_2(H)$ *are conjugate in G.*

Proof. By assumption the map $\hat{\eta}_g$: $H \to G$, $\hat{\eta}_g(h) = \mu_1(h^{-1}, \mu_2(h, g)) =$ $\mu_1(h^{-1}) \cdot \mu_2(h) \cdot g$ is almost constant so that the center $\mathscr{C}(\hat{\eta}_g) = S(g)$ is defined. Now (1.4) and $\hat{\eta}_g = R_g \circ \hat{\eta}_e$ imply $\mathcal{C}(\hat{\eta}_g) = \mathcal{C}(\hat{\eta}_e) \cdot g$ or $S(g) = S(e) \cdot g$. The left translation S is a diffeomorphism of G which conjugates the actions μ_1, μ_2 and $S(e) \in G$ conjugates the subgroups $\mu_1(H), \mu_2(H)$.

Remark. As example consider $O(n)$ with scalar product $\langle A, B \rangle$:= $\frac{1}{2}$ trace *AB*^{*}. The metric is so normalized that the shortest closed geodesics – e. g. exp $t \cdot A$, $0 \le t \le 2\pi$,

$$
A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

have length 2π . The cutlocus distance is π and for the sectional curvatures K holds $0 \le K \le \frac{1}{2}$. It follows from (3.1) and (3.3) that a map into $O(n)$ has a well defined center if its image is contained in a ball of radius $\pi/4$ (actually $\pi/3$ with a refinement of (3.3)). Two subgroups $\mu_1(H)$, $\mu_2(H)$

are therefore conjugate, if $\max_{H} d(\mu_1(h), \mu_2(h)) \leq \frac{\pi}{3}$.

Corollary 2.5. Let M be compact, The identity $1_M \in \text{Diff}(M)$ has a *neighborhood* U_r *in the C*¹-topology, such that any homomorphism τ : $H \rightarrow U_s \subset \text{Diff}(M)$ of a compact Lie group H is trivial.

Proof. By Theorem A τ is conjugate to the trivial action of H on M.

Remark. The notion of almost constant map with a well defined center can be extended to more general situations. Consider a map *f:* $X \to C^{0}(N, M)$, X of finite volume, N compact. We call f almost constant, if for each $n \in N$ the map $f_n: X \to M$, $f_n(x) = f(x)(n) \in M$ is almost constant. We define the center of f to be the map $\mathcal{C}(f) \in C^0(N,M)$ given by $\mathscr{C}(f)(n)=\mathscr{C}(f_n)$. The interpretation of the center is given by the following: For every $n \in N$ holds $\int \exp_{g(f)(n)}^{-1} f(x)(n) dx = 0$. For example x an almost constant $f: X \to \text{Diff}(M)$ has a center in the space of maps from M to M ; according to the proof of Theorem A the center is actually in Diff(M) if f is almost constant in the C^1 -sense.

3. A Differential Geometric Version of the Previous Construction

In this section we assume that M is a Riemannian manifold and that the action μ_1 of the compact Lie group G is by isometries. We describe in terms of the Riemannian metric how close another action μ_2 (by diffeomorphisms) has to be to μ_1 , so that the center-map is a well defined diffeomorphism conjugating μ_1 and μ_2 .

Let δ be the minimum and Δ the maximum of the sectional curvatures K of M, and let D be the minimum of the cut-locus distance $d(p, C(p))$ (a continuous function on M). Put $\rho = \frac{1}{2} D$ if $\Delta \leq 0$ or $\rho = \text{Min}(\frac{1}{2} D, \frac{1}{2} \pi \Delta^{-\frac{1}{2}})$ if $\Delta > 0$. Then every metric ball B of radius $\langle \rho \rangle$ is strongly convex, i.e. for any points p, $q \in B$ there is a unique minimizing geodesic from p to q in M and this geodesic segment lies in B, see e.g. Karcher $[4]$.

Proposition 3.1. *Let X be a measure space of volume 1 and* $f: X \rightarrow M$ *a measurable map such that the image* $f(X)$ *of* f *in* M *is contained in a* *metric ball B of radius* $\leq \rho'$ *determined below, Then f has in B a well defined center* $\mathcal{C}(f) \in B$ *.*

Proof. For every $p \in B$ we define a tangent vector v_p at p by

(3.2)
$$
v_p := \int_{X} \exp_p^{-1} f(x) dx.
$$

We claim that the vector field $p \rightarrow \nu_p$ is differentiable and vanishes only at one point of B. Therefore in B the center $\mathcal{C}(f)$ is well defined. To prove the claim we need the following:

Lemma 3.3. For $q \in M$ let c: $[0, 1] \rightarrow M$ be a geodesic with $||\vec{c}|| =$ β <2p and $c(0)=q$. Let *J* be a *Jacobi field along c with J*(0)=0 (i.e. $J'' + R(J, \dot{c}) \dot{c} = 0$ where R is the curvature tensor and "¹" denotes covariant *derivative*). Then for $\delta > 0$ we have,

$$
||J(t) - t J'(t)|| \leq \left(\frac{A}{\delta}\right)^{\frac{3}{2}} \cdot \frac{\sin \delta^{\frac{1}{2}} \beta t - \delta^{\frac{1}{2}} \beta t \cos \delta^{\frac{1}{2}} \beta t}{\sin \Delta^{\frac{1}{2}} \beta t} \cdot ||J(t)||
$$

$$
\leq k_1 (A, \delta, \beta) \cdot ||J(t)|| \quad \left(e, g, k_1 \left(\frac{1}{2}, 0, \frac{\pi}{2}\right) \leq \frac{\pi^3}{48}\right)
$$

and similar formulas for other combinations of signs of 6 and A (as will be seen from the proof).

Proof.
$$
\frac{d}{dt} \langle J - tJ', J - tJ' \rangle = 2 \langle -tJ'', J - tJ' \rangle \text{ implies that}
$$

(3.4)
$$
||J(t) - tJ'(t)|| \leq \int_0^t ||t \cdot J''|| dt \leq \max |K| \cdot \beta^2 \cdot \int_0^t t \cdot ||J|| dt.
$$

For $||J||$ we have the Rauch-estimates, see e.g. Gromoll, Klingenberg, Meyer [2],

$$
||J(t)|| \leq \begin{cases} ||J'(0)|| \cdot \delta^{-\frac{1}{2}} \beta^{-1} \sin \delta^{\frac{1}{2}} \beta t & \text{if } \delta > 0 \\ ||J'(0)|| \cdot t & \text{if } \delta = 0 \\ ||J'(0)|| \cdot (-\delta)^{-\frac{1}{2}} \beta^{-1} \sinh(-\delta)^{\frac{1}{2}} \beta t & \text{if } \delta < 0 \end{cases}
$$

and similar lower bounds with δ replaced by Δ . Insert these estimates in (3.4) and integrate:

$$
||J(t)-tJ'(t)|| \le ||J'(0)|| \max |K| \cdot \beta^2 (\delta^{\frac{1}{2}} \beta)^{-3} \cdot (\sin \delta^{\frac{1}{2}} \beta t - \delta^{\frac{1}{2}} \beta t \cos \delta^{\frac{1}{2}} \beta t),
$$

(resp. if $\delta < 0$: $\le ||J'(0)|| \max |K| \beta^2 ((-\delta)^{\frac{1}{2}} \beta)^{-3}$

$$
\cdot ((-\delta)^{\frac{1}{2}} \beta t \cosh(-\delta)^{\frac{1}{2}} \beta t - \sinh(-\delta)^{\frac{1}{2}} \beta t) \text{ etc.}).
$$

Now use the lower Rauch-estimates to prove the lemma:

$$
||J(t) - tJ'(t)|| \le ||J(t)|| \cdot \max |K| \beta^2 (\delta^{\frac{1}{2}} \beta)^{-3}
$$

$$
\cdot (\sin \delta^{\frac{1}{2}} \beta t - \delta^{\frac{1}{2}} \beta t \cdot \cos \delta^{\frac{1}{2}} \beta t) \cdot \Delta^{\frac{1}{2}} \beta (\sin \Delta^{\frac{1}{2}} \beta t)^{-1}
$$

and similarly for $\Delta = 0$ or $\Delta < 0$.

Remark. In pinching situations or if $\Delta < 0$ the lemma can be improved by estimating $\int \cos kt \cdot J - k^{-1} \sin kt \cdot J' \parallel$ with e.g. $2k^2 = (A + \delta) \hat{\beta}^2$.

To continue the proof of Proposition 3.1 we choose $\rho' < \rho$ such that $\beta \leq 2\rho'$ in Lemma 3.3 implies that $||J(t)-tJ'(t)|| \leq q \cdot ||J(t)||$ for some $q < 1$. We consider now the vector field v along a geodesic γ defined by $\gamma(\varepsilon)$ = $\exp_p \varepsilon \cdot A$ with $A \in T_pM$ and $||A|| = 1$. For each $x \in X$ we get the contribution $\exp_{\nu(\varepsilon)}^{-1} f(x)$ to the integral $v_{\nu(\varepsilon)}$. Therefore define the family of geodesics $c(\varepsilon, t) = \exp_{\gamma(\varepsilon)}(1-t) \exp_{\gamma(\varepsilon)}^{-1} f(x)$ which join $c(\varepsilon, 0) = f(x)$ to $c(\varepsilon, 1) = \gamma(\varepsilon)$. Consider then the Jacobi fields $J_{\epsilon_0}(t) = \frac{d}{dt} c(\epsilon_0, t)$ along the geodesics $c(\varepsilon_0, \cdot)$, obviously $J_{\varepsilon_0}(0)=0$ and $J_{\varepsilon}(1)=\dot{\gamma}(\varepsilon)$. We get

$$
\left.\frac{D}{d\varepsilon}\exp_{\gamma(\varepsilon)}^{-1}f(x)\right=\frac{D}{d\varepsilon}\left.\frac{d}{dt}\,c(\varepsilon,t)\right|_{t=1}=J'_{\varepsilon}(1)=J'_{\varepsilon}(1;\,x).
$$

All these derivatives exist uniformly in B , therefore we have

(3.5)
$$
\frac{D}{d\varepsilon} v_{\gamma(\varepsilon)} = \int\limits_X -J'_\varepsilon(1;x) dx.
$$

From $J_{\varepsilon}(1; x) = \dot{\gamma}(\varepsilon)$ together with Lemma 3.3 we obtain

(3.6)
$$
\left\|\dot{\gamma}(\varepsilon)+\frac{D}{d\varepsilon}v_{\gamma(\varepsilon)}\right\|\leq q\cdot\|\dot{\gamma}(\varepsilon)\|.
$$

Therefore ν is a differentiable vector field with isolated singularities. The index of the vector field $-v$ is $+1$, since at the boundary of the convex ball B ν is an average over inward pointing vectors (and B is contractible). From this we have that ν has at least one singularity. On the other hand (3.6) implies that if γ is a geodesic leaving an isolated singularity of ν , then the component of v in the direction $-\dot{\gamma}$ is strictly increasing, so the index of each singularity of $-v$ is $+1$, $-$ thus v has exactly one singularity in B, the center $\mathscr{C}(f)$. (3.6) implies also $d(p, \mathscr{C}(f)) \leq ||v_p|| \cdot (1 - q)^{-1}$.

Let now X be a compact Lie group G with right-invariant metric of volume 1. Let μ_1 be an action on M by isometries and μ_2 an action by diffeomorphisms. As in Section 2 we consider the map $\eta: G \times M \rightarrow M$, and we denote now $\hat{\eta}(m): G \to M$ by η_m and similarly $\eta(g, \cdot): M \to M$ by η^g . We assume that the actions are so close in the $C⁰$ -topology, that for each $m \in M$ we have that $\eta_m(G)$ is contained in some convex ball $B_{\rho'}$ as described in Proposition 3.1. We therefore have a unique *center of mass* of η_m *in* $B_{\rho'}$. Assuming now that for all $m \in M$ $\eta_m(G)$ lies in a ball of radius $\frac{1}{2}\rho'$, then there is in M a unique center $S(m) = \mathscr{C}(n_m)$ with the property

$$
\|\exp_{S(m)}^{-1} \circ \eta_m\|_{C^0} < \rho',
$$

i.e. C^0 (exp) is a diffeomorphism on $E_{p'}$, see Section 1, thus S: $M \rightarrow M$ is differentiable. (In the notation of Section 2 $S = \tilde{\pi} \circ \hat{\eta}$, where $\tilde{\pi}$ is defined on $U_{p'}$.) As we have seen in Section 2 $\mu_1(g, S(m)) = S(\mu_2(g, m))$ for all $(g, m) \in G \times M$.

Proposition 3.7. *There is an explicit condition* (3.15) *for the* C^1 distance of μ_1 and μ_2 which guarantess that S is a diffeomorphism, and a *slightly sharper condition so that* S is even isotopic to 1_M .

Proof. We fix $m \in M$ and a unit tangent vector $A \in T_m M$. Put $\eta^g(m) =: m_g$, $\eta_*^g(A) =: A_g \in T_{m_g}M$ and $S(m) =: c$. Let $\gamma_g: [0, 1] \to M$ be the geodesic from c to m_{g} i.e. $\gamma_{g}(0)=c$ and $\gamma_{g}(1)=m_{g}$, put $\|\dot{\gamma}_{g}\|=\beta_{g}$. Next consider $c(\varepsilon)=$ $S(\exp_{m}^{S} \epsilon \cdot A)$ and the geodesics γ_{gg} from $c(\epsilon)$ to $m_{gg} = \eta^{g}(\exp_{m} \epsilon \cdot A)$. By that we get the Jacobi fields $J_g(t) = \frac{d}{d\varepsilon} \gamma_{gs}(t) \Big|_{\varepsilon=0}$ with $J_g(0) = S_*(A)$ and $J_g(1) = A_g$. Moreover, by definition of $c(\varepsilon)$ we have $\int_G \dot{\gamma}_{ge}(0) dg = 0$ and thus

(3.8)
$$
\frac{D}{d\varepsilon} \int\limits_{G} \dot{\gamma}_{g\,\varepsilon}(0) \, dg = \int\limits_{G} J'_{g}(0) = 0.
$$

We shall now approximate $S_{*}(A)$ by an average of the A_{g} parallel translated to $c(0) = S(m)$ and thereby derive $S_*(A) = 0$. Let us split J_g in $J_g = Y_g + Z_g$, where Y_g and Z_g are Jacobi fields along γ_g with

(3.9)
$$
Y_g(0) = 0, \quad Y_g(1) = A_g
$$

and

(3.10) $Z_g(0) = S_g(A), \quad Z_g(1) = 0.$

Lemma 3.3 gives us

$$
(3.11) \t\t\t\t||Z_g(0) + Z'_g(0)|| \leq k_1(\Lambda, \delta, \beta_g) \cdot ||Z_g(0)||.
$$

Similarly we have to compare $Y'_g(0)$ and B_g =parallel translate of A_g along γ_g to $\gamma_g(0) = c$. Therefore

Lemma 3.12. *If J is a Jacobi field along* γ *with* $J(0)=0$ *and P_t denotes parallel translation along* γ *, then, if* $\delta > 0$ *,*

$$
||J(t)-t\cdot P_tJ'(0)||
$$

\n
$$
\leq \max |K|\cdot \delta^{-\frac{3}{2}}\cdot (\delta^{\frac{1}{2}}\beta t-\sin \delta^{\frac{1}{2}}\beta t)\cdot \Delta^{\frac{1}{2}}\cdot (\sin \Delta^{\frac{1}{2}}\beta t)^{-1}\cdot ||J(t)||
$$

and similar estimates for other signs of δ and Δ .

2 Math. Z.,Bd. 132

Proof. Put $W = J - t \cdot P_tJ'(0)$, hence $W'' = J'' = -R(J, \dot{c})\dot{c}$. Let Q be the unit parallel field such that $Q(\tau) = ||W(\tau)||^{-1} W(\tau)$ for a fixed τ . Then

$$
||W(\tau)|| = \langle W(\tau), Q(\tau) \rangle = \int_{0}^{\tau} \int_{0}^{\tau} \langle W'', Q \rangle \leq \int_{0}^{\tau} \int_{0}^{\tau} \max |K| \beta^{2} ||J||,
$$

we insert the upper Rauch estimate to get

$$
||W(\tau)|| \leq ||J'(0)|| \cdot \max |K| \cdot \delta^{-\frac{3}{2}} \beta^{-1} (\delta^{\frac{1}{2}} \beta \tau - \sin \delta^{\frac{1}{2}} \beta \tau),
$$

and the lower Rauch estimate to complete the proof.

Remark. Also this lemma can be improved for pinching situations. Continuing the proof of Proposition 3.7 we get from Lemma 3.12

(3.13)
$$
||B_g - Y'_g(0)|| \leq k_2(A, \delta, \beta_g) \cdot ||A_g||.
$$

We approximate now $S_*(A) = \int_G Z_g(0) \, dg$ by $\int_G B_g \, dg$:

$$
\int_{G} Z_g(0) \, dg - \int_{G} B_g \, dg \, \frac{1}{(3.8)} \int_{G} \left(Z_g(0) + Z'_g(0) \right) dg - \int_{G} \left(B_g - Y'_g(0) \right) dg,
$$

hence by (3.11) and (3.13)

$$
(3.14) \quad ||S_{*}(A) - \int_{G} B_{g} dg|| \leq k_{1}(A, \delta, \beta) \cdot ||S_{*}(A)|| + \int_{G} k_{2}(A, \delta, \beta_{g}) \cdot ||A_{g}|| dg.
$$

This inequality contains the desired information. We make now the *assumption* that the two actions of G are so close in the $C¹$ -topology, that parallel translation of A_g along any once broken geodesic form m_g to *m* in B_{ρ} gives a vector $\mathring{P}A_{g}$ such that $\angle (A, PA_{g}) \leq \Phi_{g}$. Then (3.14) implies that if

$$
(3.15) \qquad k_1(\Delta, \delta, \beta) < 1, \qquad k_2(\Delta, \delta, \beta_g) < \cos \Phi_g
$$

we have

$$
(1 + k_1(\Lambda, \delta, \beta)) \|S_* (A)\| \geq \int_G (\cos \Phi_g - k_2(\Lambda, \delta, \beta_g)) \cdot \|A_g\| \, dg > 0.
$$

So (3.15) *is the condition for S to be of maximal rank and since S is also homotopic to* 1_M *it is a diffeomorphism.*

Moreover if $\varphi := \star (S_*(A), \{B_{\epsilon} \, dg\})$ *we have from* (3.14) *and* (3.15) *also G*

(3.16)
$$
\sin \varphi \le k_1 + k_2 \frac{1 + k_1}{\cos \Phi_g - k_2}.
$$

Therefore we have also an explicit condition for S to satisfy the assumptions of the diffeotopy Theorem 3.1 *in Grove and Karcher* [3], *so S is then isotopic to* 1_M .

Example. In the case of M being the standard sphere i.e. $\delta = \Delta = 1$ we can, knowing the structure of Jacobifields on the sphere (compare (3.9) and (3.10)), obtain more explicit estimates. With X^{*s} denoting the reflection of the vector $X \in T_{S(m)}M$ at the tangent hyperplane orthogonal to γ_{g} we have,

(3.17)
$$
\int_{G} (1 - \alpha_{g}) S_{*}(A) dg - \int_{G} (1 + \varepsilon_{g}) PA_{g} dg
$$

$$
= \int_{G} \alpha_{g} S_{*}(A)^{*g} dg - \int_{G} \varepsilon_{g} PA_{g}^{*g} dg
$$

where

(3.18)
$$
\alpha_g := \frac{1}{2} \left(1 - \frac{\beta_g}{\tan \beta_g} \right)
$$
 and $\varepsilon_g := \frac{1}{2} \left(\frac{\beta_g}{\sin \beta_g} - 1 \right)$.

Except in the case $G = \mathbb{Z}_2$ all the reflections "**" are different; therefore it is not obvious how to get a reasonably sharp sufficient condition from (3.17). A rough one is: If for all $m \in S^n$ $\eta_m(G)$ lies in a ball of radius $\leq \frac{\pi}{4}$ and $\Phi_{\rho} \leq 76^{\circ}$ for all $g \in G$ then μ_1 and μ_2 are conjugate.

Since a spherical triangle in a ball of radius $r = 45^{\circ}$ (= 36°, = 30°) has area $\leq 55.5^\circ$ ($\leq 33.1^\circ$, $\leq 22.2^\circ$), we can guarantee $\Phi_{g} \leq 76^\circ$ if the angle Ψ_{g} between $A \in T_m S^n$ and $A_g \in T_{m_g} S^n$ parallel translated from m_g to m along the unique shortest geodesic is $\leq \Phi_{\epsilon}$ -area, i.e. $\leq 20.5^{\circ}$ ($\leq 42.9^{\circ}$, $\leq 53.8^{\circ}$).

Added in Proof. § 3 gives a proof of Theorem A without using Banach manifolds except for the differentiability argument for S on top of p. 17. To give a completely selfcontained differential geometric proof of Theorem A we prove the differentiability of the conjugating map S as follows:

On the neighborhood $U = \{(m, n) \in M \times M | d(m, n) < \rho'\}$ of the diagonal of $M \times M$ we define the map

v:
$$
U \to TM
$$
 by $v(m, n) = \int_{G} exp_{n}^{-1}(\eta_{m}(g)) dg \in T_{n}M$.

We know $v(m, n) = 0 \Rightarrow n = \mathcal{C}(n_m) = S(m)$; therefore graph $S = v^{-1}(Z)$, where Z is the zero-section of *TM.* Now we prove that already the partial map $v(m, \cdot)$: $B_{\rho}(m) \rightarrow TM$ is transversal to Z. Then graph S is (i) a differentiable submanifold of U and (ii) has no "vertical" tangent (= tangent to the second factor of $M \times M$), hence S is a differentiable map.

To prove the transversality assume $v(m, n) = 0$, note that $v(m, \cdot)$ is a vector field on $B_{\rho'}$, consider geodesics γ with $\gamma(0)=n$ and their image curves under $v(m, \cdot)$ in *TM*: $X(t) = v(m, \gamma(t))$. We identify (π_*, K) : *TTM* \rightarrow

TM \oplus *TM*, *G.K.M.* [2] p. 45, where π_* is the differential of π : *TM* \rightarrow *M* and K is the connection map. Under this identification $\dot{X}(0) = (\dot{y}, D_y X)(0)$, while tangent vectors to the zero-section are represented by $(\dot{y}, 0)$. Now (3.6) proves the transversality.

References

- t. Eliasson, H.I.: Geometry of manifolds of maps. J. Diff. Geometry 1, 169-194 (1967).
- 2. Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im GroBen. Lecture notes series 55. Berlin-Heidelberg-New York: Springer 1968.
- 3. Grove, K., Karcher, H.: On pinched manifolds with fundamental group \mathbb{Z}_2 , to appear in Compositio math.
- 4. Karcher, H.: Anwendungen der Alexandrowschen Winkelvergleichssätze. Manuscripta math. 2, 77-102 (1970).
- 5. Palais, R.S.: Equivalence of nearby differentiable actions of a compact group. Bull. Amer. math. Soc. 67, 362-364 (1961).
- 6. Shiohama, K.: Pinching theorem for the real projective space, preprint Tokyo (1972).

K. Grove Mathematisches Institut D-5300 Bonn Federal Republic of Germany

H. Karcher Mathematisches Institut D-5300 Bonn Federal Republic of Germany

(Received January 30, 1973)