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How to Conjugate C1-Close Group Actions 

Karsten Grove and Hermann  Karcher  '~ 

The aim of this paper is to prove the following stability theorem for 
group actions. 

Theorem A. Let G be a compact Lie group and let M be a connected 
compact differentiable manifold. Then any two Ca-close G-actions on M are 
conjugate by an explicitly defined diffeomorphism isotopic to the identity 
map of M. 

The existence of a map conjugating two Cl-close G-actions has already 
been proved by Palais [5]. Palais' proof  relies essentially on the fact that 
there exists a representation of G in an orthogonal group 0 (n) and an 
equivariant embedding of M in IR". The main tool in our approach is to 
define a "center of mass" for almost constant maps. This enables us to 
define a specific map conjugating the two group actions if they are Ca-close. 

Using this notion of center we prove in the last paragraph a differential 
geometric version of the theorem: 

I f  M carries a Riemannian metric and one of the actions is by isometries, 
then we say in terms of curvature bounds for M, independent of the dimen- 
sion of M, how C a-close the actions have to be. 

We hope that this will be useful in e.g. pinching problems, compare 
the special case G = 7Z, 2 in Grove and Karcher [3] and also Shiohama [6]. 

A key point in our work was to find a useful "center of mass" of a 
map. We thank D. Burghelea for stimulating discussions on that. He 
arrived at such a definition for maps with connected compact  domain 
using properties of the heat equation and harmonic maps, - we believe 
that his center can also be used to prove Theorem A for connected com- 
pact Lie groups. 

1. Center of almost Constant Maps 

Let N and M be compact  Riemannian manifolds and denote by 
C~ the Banach manifold of continuous maps from N to M; 
the component  of the constant maps is modelled on C O (N, R"). The 

* This work was done under the program "Sonderforschungsbereich Theoretische Mathe- 
matik" (SFB 40) at the University of Bonn. 
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tangent bundle TC~ is naturally equivalent to C~ TM) and 
C O (N, M) carries a Finsler structure given by 

(1 .1 )  HX[lco==max [IX(p)Illtp~ for all Xe  T I C~ M) 
pen 

see e.g. Eliasson [1]. 

There is a natural embedding ~: M-o C~ M) defined by 0(m)(p) 
�9 "=m for all peN and all meM. Put ~(m).-=rh and ~(M):=~/.  Then we 
have the Banach bundle TC~ M)l~t over M containing the tangent 
bundle T ~ / o f  ~ / a s  a finite dimensional subbundle. We define now a 
complementary bundle to T~'/in TC ~ (N, M)I~. Let P: TC ~ (N, M)l~t -~ 
TC ~ (g, M)lu be given by 

(1.2) P(X) (p)= I X, (normalization: vol (N)= 1) 
N 

for all XETC~ M)[~ and all peN. P is a differentiable bundle map 
with p2 = p  i.e. a bundle projection. The image of P equals TM, so 
E : =  ker P c TC o (N, M)l~t is a bundle with E @ TM = TC ~ (N, M)l~t. 

The connection on M induces a connection on C O (N, M) such that 
the exponential map of C~ M) is given by C~ TC ~ (N, M) 
C o (N, M) i.e. for X e T I C O (N, M) we have C O (exp) (X) (p) = expr(p) X ~) 
for all peN, - see Eliasson [1]. Thus from the bundle projection n: E-o M 
we get a differentiable deformation retraktion of a tubular neighborhood 
U~:= C~ of )f/ in C~ M) to ]f/, - denote this by ~, = 
n o C O (exp)- 11 v~- 

Now if fE  C~ M) is sufficiently C~ to a constant map 
the C~ M) we have f e  Us. We shall say that f is "almost constant". 
We define the "center of mass" ~f(f) of f by 

(1.3) qf(f): = ~ ofe ~/.  

Then for any isometry A: M -o M on M we have 

(1.4) A o c~(f)=Cg(A of).  

To prove this we just note that for the constant map ~=cg(f) we.have 
~exp/ - io f=0  and A. oexp21of=expa~c)oAof, where A. is the dif- 

N 
ferential of the isometry A. 

2. The Conjugation Map 

Let now N be a compact Lie group G with right invariant metric 
and corresponding volume, and consider two differentiable G-actions 
on M #i: G x M ~ M, i--1, 2. Choose a riemannian metric on M such 
that #l operates by isometrics. Let R h denote right translation on G 
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by heG; we have for every f e  C~ M) which has a well defined center 
~g(f) (i. e. f e  U~), that 

(2.1) ~ ( f )  = ~(fo R~). 

Define now the map t/: G x M ~ M by t/(g, m) = #1 (g- 1, #2 (g, m)) 
for all ( g , m ) e G x M  and let ~: M ~ C I ( G , M ) c C ~  be the cor- 
responding map 0 (m)." = r/(m,.). It is easy to see that 0: M --* C o (G, M) is an 
embedding and if#2 is Cl-close to #1, then 0 is Cl-close to ~: M ~ C~ 
(e: G x M ~ M is the trivial action). Since 0 is of course C~ to 
we have that 0 ( m ) c  U~, so 

(2.2) S , = ~ o O : M --. Ig/I - M 

is a well defined differentiable map. Since ~ is a bundle projection and 
0 is CLclose to ~ we have S=  ~ o 0 is Cl-close to 1M = ~  o ~, i.e. S is a 
diffeomorphism on M isotopic to l~t. 

To complete the proof of Theorem A we show that S conjugates 
#2 and #2. To this end, note that S(m)=~g(fl(m)) for all mere,  so using 
(1.4) and (2.1) we get for each heG 

(2.3) 

#1 (h, S (m)) = #1 (h, ~g (O (m))) 

-- c6(# 1 (h,.)o 0 (m)) 

= ~(#1 (h, . )o 0 (m) o Rh) 

=~(0  (#2 (h, m))) 

=S(#2(h,m)). Q.E.D. 

Corollary 2.4. Let #2, #2: H -~ G be two homomorphisms of the compact 
Lie group H into the Lie group G with biinvariant metric. We can view 
#1 and #2 as actions of H on G by isometrics, namely left translations 
#i(h, g): =#i(h).g. I f  #1 and #2 are C~ then the map S(2.2) turns out 
to be a left translation. In other words the subgroups #1 (H), #2 (H) are 
conjugate in G. 

Proof By assumption the map 0g: H ~ G, 0g (h): = #1 (h- a, #2 (h, g)) = 
#1(h-1)  �9 # 2 ( h ) ' g  is almost constant so that the center cg(Og)=..S(g) is 
defined. Now (1.4) and Og = Rg o Oe imply cg(Og)= ~(0e) " g or S(g) = S(e). g. 
The left translation S is a diffeomorphism of G which conjugates the 
actions #1, #2 and S (e)e G conjugates the subgroups #1 (H), #2 (H). 

Remark. As example consider O(n) with scalar product (A, B ) , =  
1. trace AB*. The metric is so normalized that the shortest closed geod- 
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esics-  e. g. exp t.  A, 0 < t < 2 n, 

A =  0 

0 

have length 2n. The cutlocus distance is n and for the sectional curvatures 
K holds 0-<K_-_~. It follows from (3.1) and (3.3) that a map into O(n) has 
a well defined center if its image is contained in a ball of radius n/4 
(actually n/3 with a refinement of (3.3)). Two subgroups #l(H), /~2(H) 

therefore conjugate, if max d (~1 (h), Pz (h)) < 3 "  a r e  

Corollary 2.5. Let M be compact, The identity 1MeDiff(M ) has a 
neighborhood U~ in the Cl-topology, such that any homomorphism z: 
H ~ U~ c Diff(M) of a compact Lie group H is trivial. 

Proof By Theorem A z is conjugate to the trivial action of H on M. 

Remark. The notion of almost constant map with a well defined 
center can be extended to more general situations. Consider a map 
f:  X ~ C~ M), X of finite volume, N compact. We call f almost 
constant, if for each h e N  the map f,: X ~ M ,  f , ( x ) = f ( x ) ( n ) e m  is 
almost constant. We define the center o f f  to be the map cg(f)e C o (N,M) 
given by ~ ( f ) (n )=  rC(f~). The interpretation of the center is given by the 
following: For every h e N  holds ~ exp~r)~,)f(x)(n)dx=O. For example 

x 
an almost constant f :  X--* Diff(M) has a center in the space of maps 
from M to M; according to the proof of Theorem A the center is actually 
in Diff(M) i f f  is almost constant in the C~-sense. 

3. A Differential Geometric Version of the Previous Construction 

In this section we assume that M is a Riemannian manifold and that 
the action Pl of the compact Lie group G is by isometries. We describe 
in terms of the Riemannian metric how close another action la2 (by 
diffeomorphisms) has to be to #1, so that the center-map is a well defined 
diffeomorphism conjugating pl and #2. 

Let 6 be the minimum and A the maximum of the sectional curvatures 
K of M, and let D be the minimum of the cut-locus distance d(p, C(p)) 
(a continuous function on M). Put p, = �89 D if A _-< 0 or p." = Min (�89 D, �89 n A-7) 
if A > 0. Then every metric ball B of radius < p is strongly convex, i. e, 
for any points p, qeB there is a unique minimizing geodesic from p to q 
in M and this geodesic segment lies in B, see e.g. Karcher I-4]. 

Proposition 3.1. Let X be a measure space of volume 1 and f :  X ~ M 
a measurable map such that the image f ( X )  o f f  in M is contained in a 
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metric ball B of radius < p' determined below, Then f has in B a well 
defined center c~(f)E B. 

Proof For every peB we define a tangent vector z~p at p by 

(3.2) % : =  ~ eXpp~f(x) dx. 
X 

We claim that the vector field p -~ % is differentiable and vanishes only 
at one point of B. Therefore in B the center cg(f) is well defined. To prove 
the claim we need the following: 

Lemma 3.3. For q e M  let c: [O, 1 ] - * M  be a geodesic with ]lOll= 
/3<2p and c(O)=q. Let J be a Jacobi field along c with J(O)=O (i.e. 
J" + R (J, ~) ~ = 0 where R is the curvature tensor and ..... denotes covariant 
derivative). Then for 6 > 0  we have, 

I[J(t)-tJ '( t)[[<(~) ~ ' =  sin6�89189176 A~/3 t �9 fld (t)ll 

~ k  t (A, 6 , /3 ) .  IIJ(t)lr 
- 48I  

and similar formulas for other combinations of signs of 6 and A (as will 
be seen from the proof). 

d 
Proof -dr ( J - t J ' ,  J - t J ' ) = 2  ( - t J " ,  J - t J ' )  implies that 

(3.4) [[J(t)-tJ'(t)l[<- [[t.J"lJdt<maxlg]./32.~t �9 [[Jlldt. 
0 0 

For JlJlr we have the Rauch-estimates, see e.g. Gromoll, Klingenberg, 
Meyer [2], 

IIJ'(O)H "5-~/3-1sinf~/3t if 5 > 0  

]lJ(t)[[=< []J'(0)H't if 5 = 0  

[]J '(0)[[.(-6) 2/3 s m h ( - S y / 3 t  if 5 < 0  

and similar lower bounds with 5 replaced by A. Insert these estimates in 
(3.4) and integrate: 

]tJ(t) - tJ'(t)1t --< [] J'(0)[1 max [KI./32 (6~fl)- 3. (sin 5~/3 t - 6 {/3 t cos 5 ~/3 t), 

(resp. if b < 0 :  < [[J'(0)[[ max IK[/32((-6)�89 

�9 ( ( -  5) �89 t cosh ( -  6) ~/3 t -  sinh ( -  5) ~/3 t) etc.). 
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Now use the lower Rauch-estimates to prove the lemma: 

I[J(t)- t J'(t)l[ _-< ][J(t)H �9 max ]K I f12 (6~ fi)-3 

�9 (sin 5 ~ fi t -  6 ~ fl t- cos 6 ~ flt)- A ~ fl (sin A ~ fit)- 1 

and similarly for A = 0 or A < 0. 

Remark. In pinching situations or if A < 0 the lemma can be improved 
by estimating I[ cos k t.  J -  k -1 sin k t.  J' I[ with e.g. 2k a = (A + 5) fi2. 

To continue the proof of Proposition 3.1 we choose p' < p  such that 
f l<2p '  in Lemma 3.3 implies that l]J(t)-tJ'(t)tl <q" I]J(t)L[ for some q<  1. 
We consider now the vector field v along a geodesic 7 defined by 7 (e)= 
expv e. A with A~ TpM and [[A]t = 1. For each x e X  we get the contribu- 
tion exp~) f (x)  to the integral %(~). Therefore define the family of geod- 
esics e (e, t) = exp 7(o (1 - t) exp~) f(x) which join e (e, 0) =f(x) to c (e, 1) = ? (e). 

d 
Consider then the Jacobi fields J,o(t)=-d-e c(%, t) along the geodesics 

c(~0, .), obviously J~o(0)=0 and J~(l)--~(~). We get 

o D d c(e,t) l =J'~(1)=J~(1;x). 
de exp~-("t) f (x)  = de d--i- t= 1 

All these derivatives exist uniformly in B, therefore we have 

D 
(3.5) de %(~)= ~ - J ; ( 1 ;  x)dx .  

x 

From J~ (1; x)= ~ (5) together with Lemma 3.3 we obtain 

�9 D 

(3.6) ?(e)+-3~- e v~(~) < q .  [l~(e)[[. 

Therefore v is a differentiable vector field with isolated singularities. The 
index of the vector field - v  is + 1, since at the boundary of the convex 
ball B vis an average over inward pointing vectors (and B is contractible). 
From this we have that v has at least one singularity. On the other hand 
(3.6) implies that if ? is a geodesic leaving an isolated singularity of v, 
then the component of v in the direction - ~  is strictly increasing, so the 
index of each singularity of - v  is + 1, - thus ~has exactly one singularity 
in B, the center cg (f). (3.6) implies also d(p, rg(f))< [[vp][ �9 (1 _q) - l .  

Let now X be a compact Lie group G with right-invariant metric of 
volume 1. Let #t be an action on M by isometrics and #2 an action by 
diffeomorphisms. As in Section 2 we consider the map t/: G x M-~ M, 
and we denote now O(m): G--*M by i/,, and similarly q(g, .): M ~ M  by qg. 
We assume that the actions are so close in the C~ that for each 
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m ~ M we have that r/., (G) is contained in some convex ball Bp, as described 
in Proposition 3.1. We therefore have a unique center of mass of 7,, in Bp,. 
Assuming now that for all m e M  rim(G) lies in a ball of radius 1 , : p ,  then 
there is in M a unique center S(m)." = ~(r/,,) with the property 

II exps(~) ~ r/,, II co < p', 
i.e. C~ is a diffeomorphism on Ep,, see Section 1, thus S: M--~M is 
differentiable. (In the notation of Section 2 S = ~ o 0, where ~ is defined on 
Up,.) As we have seen in Section2 pl(g,S(m))=S(#2(g,m)) for all 
(g, m) e G x M. 

Proposition3.7. There is an explicit condition(3,15) for the C 1- 
distance of #1 and ~2 which guarantess that S is a diffeomorphism, and a 
slightly sharper condition so that S is even isotopic to 1M. 

Proof We fix m~ M and a unit tangent vector A e T m M. Put r/g (m) =: rag, 
r/g. (A)=:Ag~ T , , M  and S(m)=." c. Let Vg: [0, 1] ~ M  be the geodesic from 
c to mg i.e. yg(0)=c and 3;g(l)=mg, put [l~gll =:fig. Next consider c(e):= 
S (exp,, e. A) and the geodesics ~,g, from c (e) to mg~:= r/g (exp,, e. A). By that 

d 7g~(t) o we get the Jacobi fields J g ( t ) = ~ -  e with Jg(O)=S.(A) and 

Jg (1) = Ag. Moreover, by definition of c (e) we have ~ pg, (0) dg= 0 and thus 
G 

(3.8) D 

We shall now approximate S,  (A) by an average of the Ag parallel 
translated to c (0)= S(m) and thereby derive S,  (A)~e O. Let us split Yg in 
Jg = Yg + Zg, where Yg and Zg are Jacobi fields along 7g with 

(3.9) Yg(0)=0, Yg(1)= Ag 

and 

(3.10) z A 0 ) = S , ( A  ), z~(1)=0.  

Lemma 3.3 gives us 

(3.11) II Zg (0)+ Z'g (0)II ~_~kl(A, ~), fig). I[ Zg(0)II. 

Similarly we have to compare Y~'(0) and Bg=parallel translate of Ag 
along yg to ?g (0)= c. Therefore 

Lemma 3.12. I f  J is a dacobi field along y with J (0 )=0  and P~ denotes 
parallel translation along y, then, if fi > O, 

IIJ(t)- t.  Pt J'(0)]l 

< m a x  IK[" ~-ff" (6~ fl t -  sin ~ fit). A ~. (sin A ~ fl t) -~ - IlJ(t)]l 

and similar estimates for other signs of fi and A. 

2 Math. Z.,Bd. 132 
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Proof Put W=J-t.PtJ'(O), hence W " = J " = - R ( J , d ) d .  Let Q be 
the unit parallel field such that Q(-c)= II W(z)l1-1 W(z) for a fixed z. Then 

II w(~)ll = (w(~),  Q ( 0 ) =  j (w",  Q ) ~  ff J max IKI/32 IlJI1, 
0 0  0 0  

we insert the upper Rauch estimate to get 

l[ W(~)11 ~ [1J'(0)[[. max [K[. 6-  ~/3-1(6~/3 "c- sin ~5 ~/3 ~), 

and the lower Rauch estimate to complete the proof. 

Remark. Also this lemma can be improved for pinching situations. 
Continuing the proof of Proposition 3.7 we get from Lemma 3.12 

(3.13) IIBg- ~'(0)11 <=k2(A, 6,/3g). IIA~II �9 

We approximate now S,  (A) = S Zg(0) dg by S Bg dg: 
G G 

hence by (3.11) and (3.13) 

(3.14) I I s , (a ) -  ~ B, dg[l<kl(A, a,/3). IIS,(A)II + j kz(A, a,/3,). IIA~II dg. 
G G 

This inequality contains the desired information. We make now the 
assumption that the two actions of G are  so close in the Cl-topology, 
that parallel translation of Ag along any once broken geodesic form mg 
to m in B o, gives a vector PAg such that ~(A, pAg)<cI)g. Then (3.14) 
implies that if 

(3.15) kl (A; 3,/3) < 1, k2 (A, 3,/3g) < cos ~ 

we have 

(1 +kl(A, 6,/3)) [IS, (A)[[ > j (cos q~g-k2(A, 6, fig))-liAgil d g > 0 .  
G 

So (3.15) is the condition for S to be of maximal rank and since S is also 
homotopic to 1M it is a diffeomorphism. 

Moreover if ~o: = ~ (S, (A), ~ Sg dg) we have from (3.14) and (3.15) also 
G 

1 +k 1 
(3.16) sin q~-<k I + k  2 cos ~ g - k  2 " 
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(3.17) 

where 

Therefore we have also an explicit condition for S to satisfy the assumptions 
of the diffeotopy Theorem 3.1 in Grove and Karcher [3], so S is then iso- 
topic to 1M. 

Example. In the case of M being the standard sphere i.e. ~ = A --: 1 we 
can, knowing the structure of Jacobifields on the sphere (compare (3.9) 
and (3.10)), obtain more explicit estimates. With X *g denoting the 
reflection of the vector X~ Ts(,oM at the tangent hyperplane orthogonal 
to ~g we have, 

(1 - ag) S, (A) d g -  ~ (1 + eg) PAg dg 
G G 

= ~agS,(A)*gdg-  ~egPA*gdg 
G G 

1 (1 t & l  and 1 
sin fig 

Except in the case G=Z2 all the reflections "*g" are different; there- 
fore it is not obvious how to get a reasonably sharp sufficient condition 
from (3.17). A rough one is: If for all m~S" qm(G) lies in a ball of radius 

n 
< ~ -  and ~g=<_76 ~ for all gEG then #~ and #2 are conjugate. 

Since a spherical triangle in a ball of radius r = 45 ~ ( = 36 ~ = 30 ~ has 
area =< 55.5 ~ (<= 33.1 ~ =< 22.2~ we can guarantee ~g G 76 ~ if the angle ~g 
between A~ T,, S" and AgE Tm, S" parallel translated from mg to m along 
the unique shortest geodesic is _< ~g-area, i.e. =< 20.5 ~ (=< 42.9 ~ =< 53.8~ 

Added in Proof. w 3 gives a proof of Theorem A without using Banach 
manifolds except for the differentiability argument for S on top of p. 17. 
To give a completely selfcontained differential geometric proof of 
Theorem A we prove the differentiability of the conjugating map S as 
follows: 

On the neighborhood U = {(m, n) ~M x M]d (m, n) < p'} of the diagonal 
of M x M we define the map 

v: U-+TM by v(m,n)'.=~exp~l(~lm(g))dg~T,M. 
G 

We know v(m,n)=O ~n=CgO/,,)=S(m); therefore g raphS=v- l (Z) ,  
where Z is the zero-section of TM. Now we prove that already the partial 
map v(m, "): Bp, (m)~ TM is transversal to Z. Then graph S is (i) a 
differentiable submanifold of U and (ii) has no "vertical" tangent 
(=  tangent to the second factor o fM • M), hence S is a differentiable map. 

To prove the transversality assume v(m, n)= O, note that v (m, ") is a 
vector field on Bp,, consider geodesics 7 with ~ (0)= n and their image 
curves under v (m, .) in TM: X(t)= v (m, 7 (t)). We identify (n. ,  K): TTM-~ 

2* 
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TMOTM, G.K.M. [-2] p. 45, where 7z, is the differential of re: TM--,M 
and K is the connection map. Under this identification 2 ( 0 ) =  (~, D~X) (0), 
while tangent vectors to the zero-section are represented by (9, 0). Now 
(3.6) proves the transversality. 
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