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A b s t r a c t  An algorithm of optimal design of supports includ- 
ing their number , position and stiffness is proposed . The num- 
ber of supports constitute topological design parameters , their 
positions correspond to configuration parameters . Both , elastic 
and rigid supports are considered and the optimization is aimed 
to minimize the total structure cost . The topology bifurcation 
points correspond to generation of new supports. The topological 
sensitivity derivative is used in deriving the optimality conditions 
�9 The optimization procedure provides number of supports , their 
position and stiffness of both supports and beam segments. 

1 I n t r o d u c t i o n  

The present paper provides an extension of previous opti- 
mal design formulations for beam structures including po- 
sition and stiffness of supports (Mr6z and Rozvany 1975; 
Rozvany 1975; Szel~g and Mr6z 1978; Mr6z and Lekszycki 
1982; Garstecki and Mr6z 1987; Dems and Turant 1997). We 
shall introduce the topological design parameter, namely the 
number of supports , increasing with the beam length. Sim- 
ilar to a previous study for trusses (cf. Bojczuk and Mr6z 
1997), the optimal design path is considered with one size 
parameter increasing. The topology bifurcation is combined 
with the usual optimization for optimal support location and 
cross-sectional stiffness distribution using the optimality con- 
ditions and sensitivity gradients (e.g. Mr6z and Haftka 1994). 

In Section 2, the design parameters are introduced and 
optimality criteria are derived for elastic supports. The opti- 
mality conditions for rigid supports are discussed in Section 
3, and illustrative examples are presented in Section 4. The 
present method can easily be generalized to more complex 
structures, where topology, configuration, and cross-sectional 
optimization can be carried out in the uniform way. 

2 O p t i m a l i t y  c o n d i t i o n s  for  e l a s t i c  s u p p o r t  des ign  

2.1 Design parameters 

The design parameters for beam structures can be classi- 
fied into three classes, namely stiffness, topological, and con- 
figuration parameters. The stiffness parameters are repre- 
sented by beam segment stiffness EI, and support stiffness 
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k = E A / i  where I and A denote the moment of inertia and 
cross-sectional area. The topological parameter corresponds 
to the number of supports which can vary with the beam 
length. The virtual topology variations are considered in the 
design process. Figure 1 illustrates the variation of topology 
in the case of elastic or rigid supports. In Fig. l a  the elastic 
support is added, in Fig. lb  the existing elastic support is 
substituted by two elastic supports. Similarly the rigid sup- 
port addition and substitution is illustrated in Figs. lc  and d. 
The topology variation in Fig. l a  corresponds to the addition 
of a support of stiffness k which is regarded as a topological 
parameter. Similarly, for rigid supports, the support  genera- 
tion is associated with the support reaction R (Fig. lc). The 
positions of actually existing supports constitute the config- 
uration parameters. 

c} 

d} 

Fig. 1. Variation of support topology: (a) introduction of an elas- 
tic support; (b) introduction of a rigid support; (c) substitution of 
the existing elastic support; (d) substitution of the rigid support 

2.2 Optimality conditions for generation of elastic supports 

Consider first the case of the generation of new supports. The 
optimal design is aimed at minimizing the cost of structures 
for specified global compliance, thus 

min C ,  
A(z),s,k 
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subject to 

~ o  - ~ < o, (1) 

where A(x) denotes the cross-sectional area of the beam, k 
is the stiffness of new support, s denotes the parameter spec- 
ifying the location of the support, / /  denotes the potential 
energy and C is the cost of the structure expressed as follows: 

g 
P 

= c / E A d x  + Cs(k ) ,  C 
J 

o 

(2) 

where c is the unit cost of beam material, E denotes Young's 
modulus and Cs(k ) denotes the support cost. 

This cost can be assumed as a sum of two partial costs, 

namely the support material cost --C(s • and the support in- 

stallation cost C(r z).'^ The material cost can be assumed as 
the linear function of the support stiffness 

C~si = csak, (3) 

where CSa is the specific cost. The installation cost is a non- 
linear function of support stiffness, for instance 

csp-CSa k2 k < ko, 
C(S 2) = (CaP - CSa)k - 2ko ' 

~ k o ,  k _> k o . 

Alternatively, this cost can be assumed in the form 

(4) 

C ) = a arctan ks (5) 

The total cost of the elastic support is now expressed as fol- 
lows (cf. Fig. 2): 

(1 (2 = { - 2ko , (6) Cs = C ) + C ) eSpk csp-CSa k2 k < ko ' 
- -  c S p - - C S a  1. csak -1- "-'~2----~0 , k > k 0 , 

or in the form (cf. Fig. 2b) 

C S = C (1) + C(S 2) = csak + a arctan k ~ '  (7) 

where csp , ko, k S and a are positive cost parameters. The 
derivatives of the cost functions with respect to k are 

c s _  OCs _ { cs~C@-~k', kk < ko, (8) 

and 

OCs 
cS (k )=  Ok = csa + -  

ak S 
k 2 + k 2 , 

(9) 

where by analogy to the first function, we have 

o~ (10) CSp =- cs(O ) = CSa + kS " 

Thus the derivatives of two cost functions decrease and tend 
to the same asymptotic value CSa. 
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Fig. 2. Variation of support cost and of its derivative for varying 
stiffness k: (a) cost function specified by (6); (b) cost function 
specified by (7) 

The potential energy of a supported beam is 

g 

11 
0 o 

(11) 

where w(x) is the beam deflection field, w 0 denotes the de- 
flection at the support, n denotes the beam curvature, q(x) 
is the distributed transverse loading, and EI  is the flexu- 
ral beam stiffness. The optimal design problem (1) can be 
formulated as follows: 

max min C*, (12) 
A A,s,k 

where 

C* = c f f  E A d x  + Cs(k)+ 
o 



1 
A H O -  EI tr  2 dx  + ~ k w  0 - dx  , (13) 

0 0 

and A _ 0 is the Lagrange multiplier. The optimality condi- 
tions with respect to A, s, k and A are 

1 I  OH OC* 
c - - A n ~  2 -  = 0 ,  - - - -  - -  - - 0 ,  

2 A Os Os 

c s ( k )  - :Aw  = o 
2 

g g 1/ 1 2 /  
-~ E I n  2 d z  + -~kw 0 - qw dx  = H 0 , 

0 0 

(14) 

where the following relationships were used: 

OI n f l A  n - 1  = n I (15) I = f lA  n , O-A = 

and n depends on the cross-sectional parameter variation. 
The first condition specifies the curvature for the optimal 
design of a varying cross-section. The second condition de- 
termines the position of a new elastic support. Following 
Mr6z and Rozvany (1975) and Mrdz and Lekszycki (1982), 
the first derivative of the potential energy with respect to the 
position, is 

OH RO x=so (16) 
08 8=So= 1 

where 0 = - w  t is the deflection slope. It is seen that at the 
optimal support there is 0 = 0. Moreover, R denotes the re- 
action of support and for the elastic support R = kw O. The 
third condition provides the optimal support condition. Not- 
ing that c s ( k  ) varies within the interval [CSa , CSp], attaining 
maximum at k = 0, the condition for introduction of support 
can be expressed in the form 

C S p - - ~ w p = O ,  or W p =  , (17) 

where Wp is now the maximum beam deflection occurring at 
k = 0. The value of deflection Wp specified by (17) provides 
a level (or sensor) line on the deflection diagram. When the 
deflection line w = w(x)  touches the level line Wp = const., a 
new support is generated at the tangency point. As c S tends 
to a steady value CSa , the second deflection line is specified 

Wa = V ~ A  Sa < Wp, (18) 

which provides the minimal deflection value. The support 
stiffness is selected so that the actual deflection satisfies the 
optimality condition (14)3 and for k > k0, the deflection 
at support is given by (18). Thus except the regions near 
the rigid end supports, the deflection line between elastic 
supports lies within domain Wa <_ w( z )  < Wp. Figure 3 
illustrates this concept of optimal design. The line w = Wp 
plays the role of a "sensor line", generating new supports, and 
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the line w = Wa provides the deflection value at supported 
points for support stiffness exceeding the critical value k 0. 

On the other hand , when c S = const., the optimal solu- 
tion, already discussed by Szel~g and Mr6z (1978), provides 
distributed support conditions (cf. Fig. 4). The beam is sup- 
ported over the segment - a / 2  < s < a / 2  with two concen- 
trated supports at the points of the end segments. 

a} 

w0>a . 2L.-  
b} 

w~ 

Fig. 3. (a) Introduction of first elastic support; (b) introduction 
of a consecutive elastic support 

, I W~ I I 

I I I I I  

Fig. 4. Optimal support solution for a beam with constant cost 
derivative cs, associated with constant deflection w = wa at the 
supported portion 

For a prismatic beam, E A  = const., E I  = const., the 
Lagrangian (13) takes the form 

C* = cEA~  + C s ( k ) +  

n o -  EI  2 -  (19) 
2 

0 0 

and the optimality conditions are 

g 

e t  - -~ An d x  = O, 

0 

OH OC* RO x=s  = o ,  

 s(k) - = o ,  

g g 

o o 

(2o) 
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The generation of new supports follows the same rules as in 
the previous case. 

The present analysis can be related to the topological 
derivative concept discussed by Bojczuk and Mr6z (1997). 
Namely, admitting virtual topology variation by introduc- 
tion of support of vanishing stiffness, the derivative of the 
Lagrangian with respect to support stiffness equals 

OC* k=0 1 2 1 2 (21) 0k = ~s(0) - ~ 0  = % - 7 ~ 0 ,  

and this derivative becomes nonpositive when 1/2Aw02 >_ csp. 

Thus the support of vanishing stiffness can be introduced 
when the deflection curve touches the sensor line which is 
the locus of the vanishing topological derivative. 

2.3 Conditions for  support substitution 

Consider now a different mode of topology variation , by as- 
suming new supports to be generated at the two local max- 
imum deflection points by removing the material from the 
existing neighbouring support (Fig. 5). Denote by k 1 and w 1 
the existing support  stiffness and deflection at the support 
position 1. Similarly, denote by k2, k 3 and by w2, w 3 the new 
support stiffnesses and deflections at the new support posi- 
tions 2 and 3. Initially, we have k 1 = kl0 , k = k 2 = k 3 = 0, 
5k = 5k 2 = 5k3, so during the exchange of material between 
supports 1 and 2, 3 there is 

k l + k 2 + k 3 = k l o ,  5 k 2 + S k 3  = - S k  1, 

o r  

k 1 + 2 k = k l o ,  2 5 k = - S k  1. (22) 

where 

C(s2)(kl0), k 2 < kl0 
C(e)(klO), k2) = C(2)(k2) , k 2 > klO 

(24) 

denotes the cost function of the support installation related 
to the total  exchange of support 1 by support 2 (Fig. 6), and 

CtS 1)'" and "~C~ z) are defined properly by (3) and (4)  or (5). In 
view of (22) and taking into account that  

O, (25) 
Ok2 ~2=0 = Ok k = 0  = 

we now obtain, instead of (21), the relationship 

OC* k=0 1A(w~ + w32 - 2w2) '  (26) Ok = cSp -- cSa -- 4 

representing the condition of the initiation of the support 
substitution process of the form 

CSp - CSa - 1A(w~ + w] - 2Wl 2) < 0. (27) 
4 

The optimal positions of supports 2 and 3 are specified by 
the conditions analogous to the second condition (14). 

o) 

klo k2 

 ryrvccr 

I c.' 
b, 

Fig. 5. Substitution of the single support by two supports 

The Lagrangian associated with the support substitution 
process has the form 

o 

, (.,) 

o 

klo k2 

Fig. 6. Cost function of support installation related to total ex- 
change of two supports for: (a) cost function specified by (4); (b) 
cost function specified by (5) 

3 O p t i m a l i t y  c o n d i t i o n s  for  r i g i d  s u p p o r t s  

The introduction of a rigid support  involves finite variation 
of both static and deflection fields. This case can be studied 
as a limit transition for an elastic support  design by requiring 
CSa = O, Wa = 0 for k --+ cr However, it is more convenient 
to reformulate the support cost in terms of its reaction. 

The optimization problem has a form similar to previously 

rain C ,  
A(x),s k 



subject to 

H0 - H _< 0,  (28) 

where s k denotes the position of the k-th support, and the 
structure cost equals 

g K r 

=c [ E A d x  + E CRK" (29) C 
, 1  
0 k=l  

The support cost is now expressed in terms of the reaction/~ 
as follows (cf. Fig. 7): 

CR = CR0 +cRa I R I, (30) 

where CRO is the initial cost of support installation, and CRa 
is the specific cost. 

R 

Fig. 7. Cost function for rigid support 

The Lagrangian and the optimali ty conditions are now 

K 

c* = c f EAdx + ~ CRk+ 
0 k=l  

A H O-  -~ EI~  2 d x -  qwdx , (31) 

0 

and 

1 I 1 c - :An~ 2 "  = c-- :Ann2~g n-1 = 0 
2 A 2 

(Rw')k =O, k= l , . . . , K ,  

1 

~ / EI~2 dz - / qw dx = Ho . (32) 

0 0 

The optimality conditions (32) provide optimal beam 
stiffness distribution and optimal support position. To spec- 
ify topology variation by introduction of an additional sup- 
port, we shall consider the final increment of the Lagrangian 
C*, namely 

"4C* = "4C - A '4H,  (33) 

and examine the condition of topology variation AC* < 0. 
Assume that  the cross-sectional areas of the beam are 

fixed; for a design with K existing rigid supports, the K + 1 
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support is introduced. The potential energy increase due to 
the action of this support equals 

1 R(n) w (34) A H = _ ~  K + I  0, 

R(h~)+l is the reaction of the new support and w 0 de- where 
notes the beam deflection at the support point before its in- 
troduction (Fig. 8). It is seen that  the maximal increase of 
the potential energy corresponds to maximal displacement 
w 0 at the support K + 1. Denoting by R k the support re- 
actions before introduction of the (K + 1)-th support,  the 
actual values of reactions are 

R~ n) = R k + ARk ,  k - - - 1 , 2 , . . . , K + l ,  (35) 

where RK+ 1 =- O, R (n) K + I  ---- ARK+l" The variation of the 
cost of the structure now equals 

K + I  

n C  = CR0 + e r a  ~ ( IRk  + n R k  I - [ Rk i), (36) 
k=l  

and the variation of the Lagrangian is expressed as follows: 

K + I  

,46* ----_. CRO q- CRa E (IRk + ARk I -- ]Rk ])-- 
k=l  

1 AR(n) w (37) /(+1 0. 

U777-cr-cv;3  

I 
I 

i 

Fig. 8. Variation of the potential energy induced by the introduc- 
tion of a rigid support 

The condition for introduction of new support now takes the 
form 

AC* <_ O, 

o r  

K + I  
2CR 0"4-2cRa E (I Rk A- AR k i-- IRk [) 

too > k=l (38) 
- : ~ R ( ; ;  1 

Assuming, in a particular case, that  all reactions have the 
same orientation, we have 

Z K+I (~ )=  
E lgk = E Rk const., (39) 
k=l  k=l  
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and 

K + I  

E ARk = 0. (40) 
k = l  

Then the condit ion (38) is simplified and can be expressed as 
follows: 

1 AR(n) w CRo-~ K+] 0_<0, 

o r  

2CRo 
wo >_ AR(n ) . (41) 

K + I  

The conditions (38) and (41) replace the condition (21) de- 
rived in the previous section for the case of the introduction 
of an elastic support  of vanishing stiffness. Now, however, a 
finite s tate variat ion occurs and the opt imal  support  position 
x = s may differ from the initial posit ion x = s o at which 
the condit ion (38) or (41) was applied. 

Let us generate a solution for a beam loaded by the unit 
reaction force R = 1 applied at x = s 0. Denote by wo(x , so) , 
xO(X , so) , and Mo(x, so) the deflection, curvature, and bend- 
ing moment  fields for this solution. Thedef lec t ion,  curvature, 
and bending moment  fields due to applied loading to a beam 
without  the addit ional  suppor t  are denoted by wi(x), xi(x),  
and Mi(x ). The condit ion of rigid support  at x = s O is ex- 
pressed as follows: 

w(so) = wi(so) - R(so)wo(so, so) = 0, (42) 

and provides the value of the reaction 

wi(s~  (43) 
R(so) - wo(so, so)" 

The deflection, curvature,  and bending moment  fields for the 
support  position x = s are now 

w(x, s) = ~ ( x )  - n ( s ) w o ( x  , s ) ,  

M(x,  s) = Mi(x  ) - R(s)Mo(x,  s) ,  

to(x, s) = xi(x) - t~(s)go(x, s) .  (44) 

The  opt imal  support  position corresponds to vanishing de- 
flection and slope at the supports,  so we have 

w(s, s) = wi(s) - a ( s ) w o ( s  , s) = O, 

w' (s, s) = w~(s) - R(s)wtO(s, s) = 0. (45) 

Writ ing 

H ~(s)  = wi(s0) + wi (so) As, 

~0(s, s) = ~0(s0,~0) + [~(s0,  s0) + ~ ~  s0)] ~s ,  

0~ 1 
~b(s,s) = ~o(so,so) + wb'(so, so) + --ST(so, so)/As, (46) 

J 

where As = s - s O and Owo/Os , OWto/OS denote sensit ivity 
derivatives with respect to the new support  position s. From 
(45) it follows that  

A S  

O w l o  1 
{wi(so)[Wlol(So,SO) + --~-s (SO,SO)J - 

t Owo tt ] -1  
~i(so)-bT(so,  so) - ~i  (s0)~0(s0, so)j~ , 

a ( s ) -  ~i(s) 
~oo(s, s) 

wi(s0) + w~(s0)as 
+ + 

(47) 

In order to obtain sensit ivity derivatives, we use Bet t i ' s  
principle. For the beams of Fig. 9a and the action of unit  
force R = 1 at two positions x = so, x = s we can write as 
follows: 

1 . w 0 ( s  ,sO) = 1.  w o ( s o , s ) .  (48) 

o) 
,= So 

Wo(So,SolT TWo(S,So) 
S =So4"&S ~ 

b) 
,_ So 

~Wo(S,So) 
, ~  S=So + A S  ...J 

Fig. 9. (a) Sensitivity of displacement with respect to transla- 
tion of force R = 1; (b) Sensitivity of the slope with respect to 
translation of force R = 1 

Taking into account (46)3 , we have 

w0(s, so) = w0(s0, so) + ~6(s0, s0)As, 



6qw 0 . 
w0(s0, s) = w0(s0, so) + --~-s (s0, so)As , (49) 

and finally the sensitivity derivative equals 

Ow 0 . ~o(so, so) (5o) (~0,s0) = ' 

Analogously, for the beams of Fig. 9b loaded by the concen- 
trated unit couple Ma = 1 at x = s O and the unit force at 
x = s, we have 

1. wa(s, so) = 1 .w~( s0 , s ) ,  (51) 

and taking into account that  

Wa( s, SO) = Wa(SO,SO) + Wla(S0, SO)/Is, 

i ~W'o ~o(so, s) = ~(s0, ~0) + -SV~ (s0, s0)~s, (52) 

the sensitivity derivative is 

aS0 (~0,s0)= t ~a(S0, so), (53) 

where w' a is the slope of the beam loaded by the unit couple 
Ma = 1. 

The formulae derived provide the transition from the ini- 
tial support location at x = s o to the corrected location 
x = s, satisfying the optimali ty condition. 

The conditions (38) or (41) of support generation do not 
account for variation of the beam design due to introduced 
support reaction. In fact, by introducing support the beam 
cost has decreased. Using the first optimality condition (32), 
the beam cross-sectional area function can be expressed as 
follows: 

[ 1 M2(x)l 1/(~+1) 

where M = M i for the initial design and M = M i - R M  0 for 
the modified design with introduced support. The value of 
the Lagrange multiplier A for each case, can be determined 
by substituting (54) into the third optimality condition (32). 
Denoting the respective designs specified by (54) by Ai(x ) 
and A(x),  we have 

ACb = c  f E ( A - A i ) d x = c  f E A A d x ,  (55) 

o 9 

and instead of (33), we can analyse variation of the total  
cost AC. In view of (36) and (55), the topology variation 
condition is now 

AC = cRo + / c E A A  dx+ 
, 1 '  

o 

K + I  

eRa ~ (I Rk + ARk I -- I a k  I) < 0. (56) 
k=l  
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This provides the improved assessment of the condition of the 
new support introduction. The iterative procedure can be 
developed, for which the support location and beam redesign 
are carried out consecutively. 

For a prismatic beam E A  = const., E1 = const., the first 
optimality condition (20) provides 

ce--~.xn-~ ~ 2 d x = c t - ~ ) ~ n E 2 ~ + l  M2dx=0,(57) 
0 0 

and the cross-sectional areas A i and A can be calculated from 
(57) in terms of Mi(x ) and M(x)  = Mi(x  ) - RMo(x) .  The 
inequality (56) can then be used in formulating the condition, 
when a rigid support should be introduced. 

The considerations for the second type of topology varia- 
tion, i.e. substitution of the single rigid support by two new 
supports, are similar to the case considered previously and 
are not discussed here. 

4 I l l u s t r a t i v e  e x a m p l e s  

In this section we shall present several examples illustrating 
the general theory of optimal support design including the 
number of supports as an essential design parameter. The 
support introduction and support substitution modes will be 
considered. 

4.1 Example 1. Optimal support of an infinite, uniformly 
loaded beam 

Consider an infinite prismatic beam (EA -- const., E I  = 
const.) loaded by the lateral pressure q (Fig. 10). As the 
boundary conditions have no effect, the optimal support so- 
lution will provide the segment length s between uniformly 
spaced supports. 

t ~  ~ J  

Mo Mo Mo Mo 

" 2  2 

qLy2  | 

q[Z//12 ~ /  ~ ql~ 2 

Fig. 10 Static analysis of the single segment of elastically sup- 
ported beam 

4o1.1 Elastic supports. The problem of optimal segment 
length can be stated as follows: 

ra in  C d = c E A  + ~Cs(k) ,  
A,l,k 1 :  
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subject to 

H 
/7od - T < o,  (58) 

where C d denotes the beam and support cost per unit length, 

HOd is the potential energy density per unit length and /7 
is specified by (11) for the beam segment. The respective 
Lagrangian is now 

and the associated optimality conditions take the form 

g 

:0 
2 

0 

~ . 1 0 H  Cs(k)+A / 7 -  a ~ - y / -  = 0, 

H 
F~ - T = o ,  (6o) 

where w 0 denotes the displacement at the support (Fig. 10). 
The equilibrium of the segment requires that 

q t -  kw 0 = O. (61) 

As the solution is periodic with respect to the segment length, 
in view of the symmetry condition the deflection slope 00 
should vanish at the supported cross-section, thus 

00 = O, (62) 

and the solution for a segment provides the bending moment 
distribution identical as for a beam clamped at both ends, 
thus 

qt2 (63) 
M 0 -  12 

The derivative of the potential energy with respect to seg- 
ment length consists of two terms: the first of the same form 
as for the translation of a clamped end (cf. Mrdz and Rozvany 
1975; Szel~g and Mr6z 1978; Mr6z and Lekszycki 1982), and 
the second related to deflection of elastic supports, namely 

Ow 0 _ OH _ Mox 0 - kwo ag Og 

q2g4 q2g 

288EI k ' 

We also have 

1 M~ q2g _ 

2 E1 k 

(64) 

g g 
/ 1 J q2g5 (65) 

t~ 2 dx - E212 M 2 dx = 720E2I 2 . 
0 0 

Substituting (62)-(65) in the optimality conditions (60), we 
obtain 

q2 g4 1 
c -- "2=An720~E2An+l = O, 

1 q292 
c,(k) - ~ A - ~ -  = 0,  

e_~ 1 d q 2t3 q2 
- Cs(k ) + ~AH 0 + A288~EA n + A T =- O, 

1 q2g4 1 q2g _ Hod, (66) 
2 720flEA n 2 k 

where Cs(k ) and cs(k ) are given by (6) and (8) or (7) and 
(9). The four unknowns g, A, k and A can now be specified 
from (66). 

Introduce the nondimensional parameters 

, = c (2) / (C~go) ,  ~1 = c e / c ~ ,  ~2 = g/eo,  

~3 = A/Ao ,  ~4 = k /Ko .  

Assume that q = 10 kN/m, E = 2.105 MPa, the energy den- 
sity HOd = -0.625 J/m,  the width of cross-section b = 0.04 m, 
the coefficient of cross-section variation n = 3, the unit cost 
of the beam material c = 1 [1/~Nm)], and the coefficients 
of nondimensional parameters C~ = 108 [t/m], t o = 1 m, 

A 0 = 10 -2  m 2, and K 0 = 108 N/m. The support cost has 
the form described by (6), where CSa = 1 m/N, CSp/CSa = 6. 
Figure 11 presents values of the nondimensional total cost per 
unit length ~1, and (2, ~3, ~4 for different values of parameter 

characterizing the cost of the support installation. Let us 

note  that for the linear cost function cs(k) = csk, CVS z)'~ = 0, 
the optimal solution provides g = 0 and the beam is sup- 
ported by uniformly distributed linear spring supports. 

~.1.2 Rigid supports. The optimal support problem can now 
be formulated as follows: 

minC d 
A,~ ' 

subject to 

H 
H0d- T - 0. (67) 

The Lagrangian and the optimality conditions are now 

and 

g 

1 - - n A I / n 2  dx = 0, 
c -  2t A 

0 

_~ 1 OH 
- ~ 2 C R o + A  H - A ~ - ~  = 0 ,  

/ /  
/7od - 7 = o,  (69) 

where R = qg is the support reaction. Following the analysis 
of the previous case, the set (69) can be presented in the form 

c -  21--An q294 
720~E2An+l - 0, 
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Fig. 11. (a) Optimal nondimensional total cost in function of 
support installation cost parameter ,7; (b) optimal nondimensional 
cross-sectional area, span between supports and support stiffness 
in function of parameter y 

1 C q293 
- - ~  Ro + A 360flEA n - 0 ,  

1 q2s - HO d (70) 
2 720flEA n 

and the solution provides the values of g, A and A, namely 

[ 1440fl(_H0d) r nCRo ~ n] 1/(n+4) 

and 

(71) 

( ,6Ro 4] v(.+4) 
A = 1440flE(_H0d) \ 4cE ,] ] 

c. [ q2 4) 

A -  n ( - ~ )  1440flE--(-H0d ) t 4cE ) j 
(72) 

The present example provides the characteristic segment 
size in the structure, which depends on the cost function, 
the level of energy density, the value of the loading and the 
stiffness modulus of the beam. 

4.2 Example 2. Optimization of elastic support in a finite 
beam 

Consider the optimal design of a simply supported beam of 
length g, uniformly loaded over its span. Assume the beam 
to have a rectangular cross-section of width b and height h, 
where h is to be determined from the condition of the optimal 
design for specified global compliance ( - H 0 ) .  For the cost 
function (6) the condition of support introduction (17) is sat- 
isfied for some value of L Then the support is introduced at 
the beam centre. However, for increasing l,  the design may be 
further transformed by the support substitution mode when 
the condition (27) is satisfied. The central support will be 
replaced by two supports located symmetrically with respect 
to the beam centre. 

To illustrate such an evolution assume g - 1 m, b = 0.04 
m, h = 0.1 m, q = 10 kN/m, E = 2.105 MPa, c = 1 [1/(Nm)], 
CSa = 1 m/N,  CSp/CSa =- 6, k 0 = 2 .107 N/re.  

The cost of the initial design presented in Fig. 12a, with- 
out taking into account the cost of rigid supports at the ends, 
is 

C (~ = cEAi  = 8.108 . (73) 

The sensor line, calculated from (17), equals Wp = 1.677.10 - 4  
m and the maximum deflection occurring at the centre of the 
beam can be expressed in the form 

5 qi4 
- 1.953.10 - 4  m. (74) 

w0 - 384 E I  

We have that  w 0 > Wp and the condition of topology modi- 
fication is satisfied. The new elastic support is introduced at 
the centre of the beam. The optimality conditions (20) pro- 
vide that  the new height and stiffness of the elastic support 
are h(1) = 0.0347 m and k(1) = 6.991 �9 107 N/m (Fig. 12b). 

The new cost of the structure is 

C (1) = cEA(1)Z + CSak(1) + CSp - CSa k 0 = 3.975. 108.(75) 
2 

The maximum deflections occurring in points located at the 
distance x 1 = 0.244 m from the ends of beam are equal 

w = 1.774. 10 - 4  m and the elastic support deflection 

is w = 0.877. 10 - 4  m. The new sensor line equals 

w{p 1)- = 2.149 �9 10 - 4  m and now the condition of topology 
modification by the introduction of an elastic support is not 
fulfilled, but the condition (27) of the substitution of a single 
support by two supports is satisfied. Solving for this topol- 
ogy the optimality conditions (20), we have h(2) = 0.0205 m, 

and the new elastic supports of stiffness k(2) = 3.854 �9 107 ~2) 
N/m are located at distances x = 0.318 m from the ends 
of the beam (Fig. 12c). The cost of the beam is now 

( 6 (2) = cEA(2)~ + 2 CSa]r (2) + cSp -~ ]r -= 

3 . 4 1 1  10 s . (76) 

The deflection of the beam centre is w = 1.764 �9 10 - 4  

m, the deflections of elastic supports are w~ 2) = 0.974,10 -4 ,  
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Fig.  12. The evolution of elastic support: (a) the initial design; 
(b) the beam with the central elastic support; (c) the optimal 
support of the beam 

and the local m ax im um deflections occurring at  points  x~ 2) ( = 

0.163 m from the beam ends are w = 1.601.10 - 4  m. The 

sensor line is w(p 2) = 2 .386 .10  - 4  m, and now no condition 
of suppor t  modificat ion is satisfied. This means tha t  the 
design shown in Fig. 12c is opt imal .  The cost of the opt imal  
design is C(O)/C(2) = 2.346 t imes smaller than  the cost of 
the initial  design�9 The distance between elastic supports  is 

x S = g -  2x~ 2) = 0.374 m and is slightly bigger than  tha t  
for the infinite beam of the the same cost, mater ia l ,  and load 

parameters  (x~ nf)'" = 0.290 m). 

4.3 Example 3. Optimization of rigid support in a finite 
beam 

Consider the pr ismat ic  beam with the same length, load and 
boundary  conditions as in the initial  design in Example 2 
(Fig. 13a). Assume the cost of suppor ts  in the form described 
by (30), where CRO = 0.25-108,  CRa ---- 104 [ l /N] .  

a} 

b} 

c} 

d) 

e) 

' + " "  s  DI 
I W o ~  

~ 4 ~  1 , 4 4 4 4  ~ 4 4 1  

xli) 

, L ' ~ ]  + .I+ ++ ++.+ + + ,t,++ m +h"' i'l+ 

I + 

+,++,,L,~ +, + + + + i,+ a,,t, 

~ ~ b b l  

Fig.  13. Optimization of beam with its rigid support: (a) the 
initial design; (b) test introduction of the support; (c) optimal 
configuration of structure with one additional support; (d) test 
introduction of two supports; (e) the optimal structure 

The aim is to determine op t imal  rigid suppor t  and height 
of a rectangular  cross-section for the specified global compli- 
ance ( - H 0 )  , assuming tha t  locations of suppor ts  at  the ends 
and width of cross-section are fixed. 

The cost of the ini t ial  design (Fig. 13a), is 

C (~ = cEAs -1- 2(CR0 -t- CRaR ) -~ 9 .5 .108 , (77) 

where /~  = 1/2qs -- 5 kN and the cost of suppor ts  is 15.8% of 
the to ta l  cost of the beam.  The  Lagrange mult ipl ier ,  calcu- 
lated from (57) ,  equals ,~ -- 4.27.108 [1/(Nm)], the max imum 
deflection w 0 is expressed by (74) and the corresponding re- 

action force (Fig. 13b), is R~ i)" = 6.25 Kn. Now we have 

2CRo +v0 > - -  (78) i / ~ i )  

and the condit ion (41) of in t roduct ion of new rigid suppor t  
is satisfied. The op t imal i ty  condit ions (57), (32)2 and (32)3 

provide the s t ructure  shown in Fig. 13c, where h(1) = 0.0286 

m, R~ 1)" = 6.25 kN; the actual  reactions at  the ends are 

R(1) = 1.875 kN and the Lagrange mult ipl ier  is ,~(1) = 1.22. 
108 [1/(Nm)]. The cost of s t ructure  is now 

C (1) = cEA(1)~+3CRo+CRa(2R(1)+R~ 1)) = 4.039.108 .(79) 

The points of max imum deflections w~ i) = 2.164 �9 10 - 4  m 

are located symmetr ica l ly  at  the distance x = 0.211 m 
from the beam ends and corresponding react ion forces are 

R~ i)- -- 2.76 kN (Fig. 13d). The condit ion of the simultaneous 
int roduct ion of two rigid suppor ts  arising from (32), which 
has the form 

w~ 1) ~ CR--O (80)  
~(1)R~+ ) ' 



is satisfied. The optimali ty conditions (57), (32)2, (32)3 pro- 
vide h(2) = 0.0099 m, ~(2) = 0.42.108 [1/(Nm)] and the 
optimal positions of additional rigid supports specified by 

the distance x = 0.225 m from the beam ends (Fig. 13@ 
The reactions of supports are R(2) = 0.86 kN, R~ 2)" = 2.75 

kN, R~ 2)" = 2.76 kN, and the cost of the structure is 

C (2) = cEA(2)s + 5CRo + CRa(2R(2) + R~ 2) + 2 /~  2)) = 

3.038.108 . (81) 

Now, the condition of topology modification (41), or the more 
precise condition (56), and conditions of support substitu- 
tion are not satisfied. This means that  the design shown 
in Fig. 13e is optimal. The cost of the optimal design is 
C(~ = 3.13 times smaller than the cost of the ini- 
tial design. The length between internal rigid supports is 

Xs = 0.5(s - 2x~ 2))" = 0.275 m and it is slightly bigger than 
for the infinite beam of the same cost, material and load pa- 

, (inO 
rameters (,x S = 0.259 m). 
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Fig. 14. Evolution of the optimal design for increasing values of 
the length parameter 

Figure 14 presents the nondimensional cost 7/= C/C(O) 
variation for increasing values of the length parameter ~ = 
s163 where s = 1 m. It is seen, that for ~ = {c/ = 0.31 
the introduction of a new support at the middle of the beam 
provides the designs associated with the lower cost curve. 
The states at which a new topology of support are generated 
will be called the topology bifurcation points. It is natural 
to expect that  for increasing ~, the consecutive bifurcation 
points will appear. In our case these bifurcations occur for 
~c2 = 0.58, ~c3 = 0.82, etc., and they correspond to the 
beam with two and three additional supports. It is impor- 
tant  to note that  despite of discontinuity in state fields and 
design variables induced by rigid support introduction, the 
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cost function is continuous and only its topological derivative 
exhibits discontinuity 

5 Concluding remarks 

The method of the simultaneous optimization of topology, 
configuration, and cross-sectional dimensions of beams, in- 
cluding support design in order to minimize the cost func- 
tion, was presented in this paper. The cost of the structure 
is assumed as the sum of the beam material  cost and the 
cost of supports, including the cost of support  installation. 
New supports are introduced in the optimal position and the 
conditions of support generation are formulated. 

The proposed optimization procedure may not correspond 
to the global minimum. However, it provides new possibilities 
to generate more effective optimal designs and can easily be 
implemented with the use of any structural analysis method 
and of any optimization code. The approach presented here 
may also be used for maximum stiffness design with cost con- 
straints, as well as for other types of optimization criteria and 
constraints, and can easily be generalized to more complex 
structures. 
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