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Abstract  An algorithm of optimal design of supports includ-
ing their number , position and stiffness is proposed . The num-
ber of supports constitute topological design parameters , their
positions correspond to configuration parameters . Both , elastic
and rigid supports are considered and the optimization is aimed
to minimize the total structure cost . The topology bifurcation
points correspond to generation of new supports . The topological
sensitivity derivative is used in deriving the optimality conditions
. The optimization procedure provides number of supports , their
position and stiffness of both supports and beam segments.

1 Introduction

The present paper provides an extension of previous opti-
mal design formulations for beam structures including po-
sition and stiffness of supports (Mréz and Rozvany 1975;
Rozvany 1975; Szelag and Mréz 1978; Mréz and Lekszycki
1982; Garstecki and Mréz 1987; Dems and Turant 1997). We
shall introduce the topological design parameter, namely the
number of supports , increasing with the beam length. Sim-
ilar to a previous study for trusses (cf. Bojczuk and Mréz
1997), the optimal design path is considered with one size
parameter increasing. The topology bifurcation is combined
with the usual optimization for optimal support location and
cross-sectional stiffness distribution using the optimality con-
ditions and sensitivity gradients (e.g. Mréz and Haftka 1994).
In Section 2, the design parameters are introduced and
optimality criteria are derived for elastic supports. The opti-
mality conditions for rigid supports are discussed in Section
3, and illustrative examples are presented in Section 4. The
present method can easily be generalized to more complex
structures, where topology, configuration, and cross-sectional
optimization can be carried out in the uniform way.

2 Optimality conditions for elastic support design

2.1 Design parameters

The design parameters for beam structures can be classi-
fied into three classes, namely stiffness, topological, and con-
figuration parameters. The stiffness parameters are repre-
sented by beam segment stiffness EI, and support stiffness
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k = EA/¢ where I and A denote the moment of inertia and
cross-sectional area. The topological parameter corresponds
to the number of supports which can vary with the beam
length. The virtual topology variations are considered in the
design process. Figure 1 illustrates the variation of topology
in the case of elastic or rigid supports. In Fig. 1a the elastic
support is added, in Fig. 1b the existing elastic support is
substituted by two elastic supports. Similarly the rigid sup-
port addition and substitution is illustrated in Figs. 1c and d.
The topology variation in Fig. la corresponds to the addition
of a support of stiffness k which is regarded as a topological
parameter. Similarly, for rigid supports, the support genera-
tion is associated with the support reaction R (Fig. 1c). The
positions of actually existing supports constitute the config-
uration parameters.
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Fig. 1. Variation of support topology: (a) introduction of an elas-
tic support; (b) introduction of a rigid support; (c) substitution of
the existing elastic support; (d) substitution of the rigid support

2.2 Optimality conditions for generation of elastic supports

Consider first the case of the generation of new supports. The
optimal design is aimed at minimizing the cost of structures
for specified global compliance, thus

min C,
A(z),s,k
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subject to
Hy—I<0, (1)

where A(z) denotes the cross-sectional area of the beam, k
is the stiffness of new support, s denotes the parameter spec-
ifying the location of the support, IT denotes the potential
energy and C is the cost of the structure expressed as follows:

£
C:c/E'Ad:c+CS(Ic), @)
0

where c is the unit cost of beam material, £ denotes Young’s
modulus and Cg(k) denotes the support cost.
This cost can be assumed as a sum of two partial costs,

)

stallation cost 0(2). The material cost can be assumed as
the linear function of the support stiffness

namely the support material cost Cgl and the support in-

C,g‘l) = cgqk, 3

where cg, is the specific cost. The installation cost is a non-
linear function of support stiffness, for instance
[ -C
C(2) _ (csp—csa)k-——L—SzkosakZ, k <k, @)
s C_Sp_gcﬂ kg, k> k.

Alternatively, this cost can be assumed in the form

CL(S’Z) = aarctan % . (5)

The total cost of the elastic support is now expressed as fol-
lows (cf. Fig. 2):

csp—c
cSpk——S‘g—k?&kz, k<kg,

cs=cP+c@ = { ©)

csok + 250 kg, k> kg,

or in the form (cf. Fig. 2b)

_ o, @ L3
CS..CS +C.S‘ _csak+aarctanks, (7)

where CSps kg, kg and « are positive cost parameters. The
derivatives of the cost functions with respect to k£ are

CS5p—C8,
6528&2 cgp — “rpk, k<ko, )
Ok €Sq > k> kg,
and
0Cg akg
k) = —2 = — 9
csk) = 25 ot iR (9)
where by analogy to the first function, we have
@
csp = ¢5(0) = cgq + s (10)

Thus the derivatives of two cost functions decrease and tend
to the same asymptotic value cg,.

aj
Cs
4
ko 'k
3C
Cs=5rs
Csp
Csa-
{
|
1 -
Ko k
b)

Fig. 2. Variation of support cost and of its derivative for varying
stiffness k: (a) cost function specified by (6); (b) cost function
specified by (7)

The potential energy of a supported beam is

I{w,wg, A, s, k) =

DO b=

¢ ¢
EIn? de + ~kw? — qudz, (11
2 0
0 0

where w(z) is the beam deflection field, wy denotes the de-
flection at the support, x denotes the beam curvature, g(z)
is the distributed transverse loading, and EI is the flexu-
ral beam stiffness. The optimal design problem (1) can be
formulated as follows:

maxglink c*, (12)
’S’

where

£
c*= c/EAd:l:+CS(k)+
0
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1
Ay - %/Elnzdx+§kw%—/qwdm , (13)
0 0

and A > 0 is the Lagrange multiplier. The optimality condi-
tions with respect to A4, s, k and A are

I *
C——/\TLKZZZIO, %—:666; =0,
1
CS(IC)‘“?\WO: )
£ £
%/Efnzd:c-{-%kw%—/qwdzzﬂg, (14)
0 0

where the following relationships were used:

I=pA", g% =npA" ! = n—fz, (15)
and n depends on the cross-sectional parameter variation.
The first condition specifies the curvature for the optimal
design of a varying cross-section. The second condition de-
termines the position of a new elastic support. Following
Mréz and Rozvany (1975) and Mréz and Lekszycki (1982),
the first derivative of the potential energy with respect to the
position, is

I
on = RE , (16)
95 {5=s4 z=8¢
where § = —w' is the deflection siope. It is seen that at the

optimal support there is § = 0. Moreover, R denotes the re-
action of support and for the elastic support R = kwg. The
third condition provides the optimal support condition. Not-
ing that cg(k) varies within the interval [cg,, cgp], attaining
maximum at & = 0, the condition for introduction of support
can be expressed in the form

1 2c
cSp——§)\w22,::0, or wp:\/%, (1)

where wp is now the maximum beam deflection occurring at
k = 0. The value of deflection wp specified by (17) provides
a level (or sensor) line on the deflection diagram. When the
deflection line w = w(z) touches the level line wy = const., a
new support is generated at the tangency point. As cg tends
to a steady value cg,, the second deflection line is specified

2
Cfa < wp, (18)

Wq =

which provides the minimal deflection value. The support
stiffness is selected so that the actual deflection satisfies the
optimality condition (14)3 and for k > kg, the deflection
at support is given by (18). Thus except the regions near
the rigid end supports, the deflection line between elastic
supports lies within domain wg, < w(z) < wp. Figure 3
illustrates this concept of optimal design. The line w = wy
plays the role of a “sensor line”, generating new supports, and
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the line w = wy provides the deflection value at supported
points for support stiffness exceeding the critical value kq.

On the other hand , when cg = const., the optimal solu-
tion, already discussed by Szelag and Mréz (1978), provides
distributed support conditions (cf. Fig. 4). The beam is sup-
ported over the segment —a/2 < s < a/2 with two concen-
trated supports at the points of the end segments.
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Fig. 3. (a) Introduction of first elastic support; (b) introduction
of a consecutive elastic support
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Fig. 4. Optimal support solution for a beam with constant cost
derivative cg, associated with constant deflection w = w, at the
supported portion

For a prismatic beam, EA = const., EI = const., the
Lagrangian (13) takes the form

C* = cEAL + Cyg(k)+
1 / 1 f
g - §E1/n2dx+ 5kw§—/qwdx , (19)
0 0

and the optimality conditions are

£
cZ———l—/\nI/fczdx:O,
0

2”7 A
*
om _ 97 _pgl -0,
0s Js =g

1
cg(k) - 5,\wg =0,

£ £

1 1

EE'I/K:2 dz + §kw% - /qw dz = Iy . (20)
0 0
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The generation of new supports follows the same rules as in
the previous case.

The present analysis can be related to the topological
derivative concept discussed by Bojczuk and Mréz (1997).
Namely, admitting virtual topology variation by introduc-
tion of support of vanishing stiffness, the derivative of the
Lagrangian with respect to support stiffness equals

ilon 1, o 1

= = — 2w =co — ZAw?

% | c5(0) 3AW0 = ¢s, 2)\w0 , (21)
and this derivative becomes nonpositive when 1/ 2)\w(2] > g,
Thus the suppori of vanishing stiffness can be introduced
when the deflection curve touches the sensor line which is
the locus of the vanishing topological derivative.

2.8 Conditions for support substitution

Consider now a different mode of topology variation , by as-
suming new supports to be generated at the two local max-
imum deflection points by removing the material from the
existing neighbouring support (Fig. 5). Denote by k; and wy
the existing support stiffness and deflection at the support
position 1. Similarly, denote by k9, k3 and by wg, w3 the new
support stiffnesses and deflections at the new support posi-
tions 2 and 3. Initially, we have k1 = kyg, £ = kg = k3 = 0,
8k = 8kq = bk3, so during the exchange of material between
supports 1 and 2, 3 there is

k1 +ko+ky=kyp, O6ko+bky=—0bk,

or
k1 +2k=kyg, 26k=—06ky. (22)
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Fig. 5. Substitution of the single support by two supports

The Lagrangian associated with the support substitution
process has the form

£
c* = c/EA dz + C (k) + W (kg) + ¢V (kg)+
4]
+Cg2)(k2) + C§2)(k3) + que)(klo, ko) + A |-

1 1
/E‘I.‘c2 dz + 5k1w% + §k‘2w% +
0

DO

4
shsud — [quda ] , (29)
0

where

C%z)(klo), kg < k19

2
Cg )(’fz), ky > kyp

denotes the cost function of the support installation related
to the total exchange of support 1 by support 2 (Fig. 6), and
Cél) and ng) are defined properly by (3) and (4) or (5). In
view of (22) and taking into account that

Cge)(klo), ko) = (24)

() ()
ac _ 9C§ . 5)
by |kmo O lp=o

we now obtain, instead of (21), the relationship

oc*

Lyi2 o2 2

k=0

representing the condition of the initiation of the support
substitution process of the form

1
¢Sp— CSa = Zx(wg +uwi —20?) <o0. (27)

The optimal positions of supports 2 and 3 are specified by
the conditions analogous to the second condition (14).
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Fig. 6. Cost function of support installation related to total ex-
change of two supports for: (a) cost function specified by (4); (b)
cost function specified by (5)

3 Optimality conditions for rigid supports

The introduction of a rigid support involves finite variation
of both static and deflection fields. This case can be studied
as a limit transition for an elastic support design by requiring
cge = 0, wg = 0 for k£ — co. However, it is more convenient
to reformulate the support cost in terms of its reaction.

The optimization problem has a form similar to previously

min C,
A(z):sk



subject to
Iy, -1 <0, (28)

where s; denotes the position of the k-th support, and the
structure cost equals

£ K
C:c/E‘Adz+ZCRK. (29)

The support cost is now expressed in terms of the reaction B
as follows (cf. Fig. 7):

Cr=CRotcral R, (30)

where C'pg is the initial cost of support installation, and cp,
is the specific cost.
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Fig. 7. Cost function for rigid support

The Lagrangian and the optimality conditions are now

¢ K

C* = c/EAdaH— Y Cppt
0 k=1

4 £
X |- ;—/Elmzdx——/qwdz , (31)
0 0

£ 1
%/EI&de—/qwdx:HO. (32)
0 0

The optimality conditions (32) provide optimal beam
stiffness distribution and optimal support position. To spec~
ify topology variation by introduction of an additional sup-
port, we shall consider the final increment of the Lagrangian
C*, namely

AC* = AC — \AIT (33)

and examine the condition of topology variation AC* < 0.
Assume that the cross-sectional areas of the beam are
fixed; for a design with K existing rigid supports, the K + 1
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support is introduced. The potential energy increase due to
the action of this support equals

All = %R%}rlwo , (34)

where R(I?) 1 1s the reaction of the new support and wq de-
notes the beam deflection at the support point before its in-
troduction (Fig. 8). It is seen that the maximal increase of
the potential energy corresponds to maximal displacement
wyp at the support K + 1. Denoting by Rj the support re-
actions before introduction of the (K + 1)-th support, the
actual values of reactions are

R;;n)sz+ARk, k“:l,Q,...,K-[‘l, (35)

where Ry 1 = 0, R&?—)l—l = ARy 1. The variation of the
cost of the structure now equals

K41
AC=Cpro+cpy ¥ (| Rp+AR, |- | Ry ), (36)
k=1

and the variation of the Lagrangian is expressed as follows:

K41
AC* =Cro+epe 3 (| Rp+ ARy | — | Ry )~
k=1
1, pn)
§ARI(+1U)0 . (37)
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Fig. 8. Variation of the potential energy induced by the introduc-
tion of a rigid support

The condition for introduction of new support now takes the
form

AC* <0,

or

K41
2CR0o + 2¢pq kzl (| Rp+ ARk | — | Ry |)

wy >

; (38)
ML

Assuming, in a particular case, that all reactions have the
same orientation, we have

K K+1
S Rp= Y R = const., (39)
k=1

k=1
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and

K+1
> ARy =0. (40)
k=1

Then the condition (38) is simplified and can be expressed as
follows:

1
Cro - 5/\R(n) wg <0,

K+1
or
2C
wy > 2L (41)
/\R(")
K+1

The conditions (38) and (41) replace the condition (21) de-
rived in the previous section for the case of the introduction
of an elastic support of vanishing stiffness. Now, however, a
finite state variation occurs and the optimal support position
z = s may differ from the initial position £ = sy at which
the condition (38) or (41) was applied.

Let us generate a solution for a beam loaded by the unit
reaction force R = 1 applied at z = sg. Denote by wq(z, sg),
ko(z,s0), and Mg(z, sg) the deflection, curvature, and bend-
ing moment fields for this solution. The deflection, curvature,
and bending moment fields due to applied loading to a beam
without the additional support are denoted by w;(z), &;(z),
and M;(x). The condition of rigid support at & = sy is ex-
pressed as follows:

w(sg) = wi(sg) — R{sp)wo(sp,50) =0, (42)
and provides the value of the reaction

w‘i(sﬂ) (43)

Rlso) = wo(sg, 50)

The deflection, curvature, and bending moment fields for the
support position £ = s are now

w(z, s) = w;(z) — R(s)wy(z,s),
M(z,s) = M;(z) — R(s)My(z,s),
k(z, ) = k4(z) — R(s)kg(z, s) . (44)

The optimal support position corresponds to vanishing de-
flection and slope at the supports, so we have

w(s,s) = wi(s) — R(s)wy(s, 5) =0,

ul (s, 5) = wi(s) ~ R(s)wg(s, 8) = 0. (45)
Writing

wi(s) = wi(sp) + w(s0)As,

w;-(s) = w’i(sO) + w;;’(SO)AS,

Sw
wo(s, 5) = wo(se,s0) + [wlo(soyso) + "5;0‘(50,30)] As,

!
wy(s, s) = wo(sg, 50) + {%’(So,so) + 6—50(80,50)] As, (46)

where As = 5 — sp and dwy/ds, dw)/ds denote sensitivity
derivatives with respect to the new support position s. From
(45) it follows that

As =

[wﬁ'(So)U)o(So, s0) — wi(s0)wp(so, 50)]
{w,-<so) [0, 50+ 52850, 50) -

ow -1
%(80)8—30(80,80) - wﬁ'(So)Wo(So,so)} ,
"= e -

w;(s0) + wi(s0)As _
wo(s0,50) + [W'(So,so) + QFH;Q(S();SO)} As

(47)

In order to obtain sensitivity derivatives, we use Betti’s
principle. For the beams of Fig. 9a and the action of unit
force R =1 at two positions ¢ = sy, z = s we can write as
follows:

1-wo(s,s0) =1 wp(sp,s). (48)
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Fig. 9. (a) Sensitivity of displacement with respect to transla-
tion of force R = 1; (b) Sensitivity of the slope with respect to
translation of force R =1

Taking into account (46)3, we have

wo(s, sp) = wo(sg, 50) + wo(so, sp)As,



Ow, »
wo(s0,8) = wo(sg,50) + ‘(9?0(50,80)48, (49)

and finally the sensitivity derivative equals

Jw
55 (50,50) = w50, 50) - (50)

Analogously, for the beams of Fig. 9b loaded by the concen-
trated unit couple Mg = 1 at £ = sy and the unit force at
z = s, we have

1~wa(s,so):1-w'0(so,s), (51)
and taking into account that

wa(s, 50) = wq(50,50) + wy(sg,s)As,

Hu!
w(s0,5) = wp(sp, sp) + EQ(SO:SO)AS: (52)

the sensitivity derivative is

dul
“gf(so,SO) = wj(sg, 50), (53)

where w), is the slope of the beam loaded by the unit couple
My =1.

The formulae derived provide the transition from the ini-
tial support location at x = sy to the corrected location
z = s, satisfying the optimality condition.

The conditions (38) or (41) of support generation do not
account for variation of the beam design due to introduced
support reaction. In fact, by introducing support the beam
cost has decreased. Using the first optimality condition (32),
the beam cross-sectional area function can be expressed as
follows:

1/(nt1)

1. M*z) , (54)

Az) = [—An

28c E?

where M = M; for the initial design and M = M; — RMj for
the modified design with introduced support. The value of
the Lagrange multiplier A for each case, can be determined
by substituting (54) into the third optimality condition (32).
Denoting the respective designs specified by (54) by A4;(x)
and A(z), we have

£ £
ACY :C/E(A—Ai)diﬂ =c/EAAd:L', (55)
0 0

and instead of (33), we can analyse variation of the total
cost AC. In view of (36) and (55), the topology variation

condition is now
V4
AC =epg +J/cEAAd:c+
0

K41
cra D (| Rp+ AR, | — | R ) <0, (56)
k=1
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This provides the improved assessment of the condition of the
new support introduction. The iterative procedure can be
developed, for which the support location and beam redesign
are carried out consecutively.

For a prismatic beam EFA = const., EI = const., the first
optimality condition (20) provides

I
1. I 9 1
c£—§)\nA/m da:“cé——Q)\n
0

£
! 2
0
and the cross-sectional areas A; and A can be calculated from
(57) in terms of M;(z) and M(z) = M;(z) — RMy(z). The
inequality (56) can then be used in formulating the condition,
when a rigid support should be introduced.

The considerations for the second type of topology varia-
tion, i.e. substitution of the single rigid support by two new
supports, are similar to the case considered previously and
are not discussed here.

4 Illustrative examples

In this section we shall present several examples illustrating
the general theory of optimal support design including the
number of supports as an essential design parameter. The
support introduction and support substitution modes will be
considered.

4.1 Example 1. Optimal support of an infinile, uniformly
loaded beam

Consider an infinite prismatic beam (EA = const., ET =
const.) loaded by the lateral pressure g (Fig. 10). As the
boundary conditions have no effect, the optimal support so-
lution will provide the segment length £ between uniformly
spaced supports.

Mo Mg Mg Mg
___%& 52L4$ﬁ$ lg% l“_q:_l_u___

LZ
q /24 @
Wy [ ] a2

Fig. 10 Static analysis of the single segment of elastically sup-
ported beam

4.1.1 Elastic supports. The problem of optimal segment
length can be stated as follows:

¢
in Cy = cBA + -Cy(k),
in Ca=c +5Cs(k)
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subject to
il
g - 7 <0, (58)

where Cjj denotes the beam and support cost per unit length,

Hg is the potential energy density per unit length and I7
is specified by (11) for the beam segment. The respective
Lagrangian is now

1 n
Ci=cEA+ ZCs(IC) +A (II{;’ - 7) ) (59)

and the associated optimality conditions take the form

c—ﬁn)\A/n dz =0, cs(k)~—/\w0__0

1 1901
7
gg-7=o, (60)

where wq denotes the displacement at the support (Fig. 10).
The equilibrium of the segment requires that

qf el k'LUO =0, (61)

As the solution is periodic with respect to the segment length,
in view of the symmetry condition the deflection slope 8y
should vanish at the supported cross-section, thus

6y =0, (62)

and the solution for a segment provides the bendihg moment
distribution identical as for a beam clamped at both ends,
thus
2
g
My = —=—. 63
0 5 (63)
The derivative of the potential energy with respect to seg-
ment length consists of two terms: the first of the same form
as for the translation of a clamped end (cf. Mréz and Rozvany
1975; Szelag and Mréz 1978; Mrdz and Lekszycki 1982), and
the second related to deflection of elastic supports, namely

om _ 1 b B0 — _1M5 g
a0~ g U TR, T TR T T T

24 2
S (64)
9838EI _ &
We also have

I 4

1 2. qus

[ #an= g [ = s (65)

0
Substituting (62)-(65) in the optimality conditions (60), we
obtain
1 q264
— ZAn—————— =
27 7120BE2 A

242
es(k) = AL — o)

27 k2
O . 2@3 q2
L3 S NS S
s +3 H0+/\288ﬁEA”+/\k 0,
1 % 142¢
_i_ev gt =H6i, (66)
2 720BEA" 2 k

where Cg(k) and cg(k) are given by (6) and (8) or (7) and
(9). The four unknowns ¢, A, k and X can now be specified
from (66).

Introduce the nondimensional parameters

n=CD)(CO), €= Ca/CY, & =8y,
§3=A[Ay, &4 =k/Kyp .

Assume that ¢ = 10 kN/m, E = 2105 MPa, the energy den-
sity Hg = —0.625 J/m, the width of cross-section b = 0.04 m,
the coeflicient of cross-section variation n = 3, the unit cost
of the beam material ¢ = 1 | l/gNm) and the coefficients
of nondlmenswnal parameters Cy 108 (1/m], {g = 1 m,
Ag =1072 m?, and Ky = 108 N/rn. The support cost has
the form described by (6), where cg, = 1 m/N, cgp/cs, = 6.
Figure 11 presents values of the nondimensional total cost per
unit length &7, and €9, &3, &4 for different values of parameter
n characterizing the cost of the support installation. Let us

note that for the linear cost function cs(k) = cgk, ng) =0,
the optimal solution provides £ = 0 and the beam is sup-
ported by uniformly distributed linear spring supports.

4.1.2 Rigid supports. The optimal support problem can now
be formulated as follows:

inC,
wak
subject to
md - % <0. (67)
The Lagrangian and the optimality conditions are now
I
Ch=cEA+ %CR(R) + (Hg - 7) , (68)
and
—n/\A /fc dz =0,
i 1801
~ 7 C'Ro-i-)\ —II — AZ 57 =0,
I
- =0, (69)

where R = ¢f is the support reaction. Following the analysis
of the previous case, the set (69) can be presented in the form

1 254
Ly,
27 " 7208E2 A7+
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Fig. 11. (a) Optimal nondimensional total cost in function of
support installation cost parameter 5; (b) optimal nondimensional
cross-sectional area, span between supports and support stiffness
in function of parameter

1 il
~ O AsgoaEan = 0
1 g2t d
" 2720BEA™ T M, (70)

and the solution provides the values of £, A and A, namely

14408(—1T) (nCpo\ "] "HY
and
i g2 (nC 0>4 1/(n+4) |
1440BE(~1IE) \ 4cE
" n(=1d) | 14408E(~118) ( 4cE ) (72)

The present example provides the characteristic segment
size in the structure, which depends on the cost function,
the level of energy density, the value of the loading and the
stiffness modulus of the beam.
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4.2 Ezample 2. Optimization of elastic support in a finite
beam

Consider the optimal design of a simply supported beam of
length ¢, uniformly loaded over its span. Assume the beam
to have a rectangular cross-section of width b and height A,
where h is to be determined from the condition of the optimal
design for specified global compliance (—IIy). For the cost
function (6) the condition of support introduction (17) is sat-
isfied for some value of £. Then the support is introduced at
the beam centre. However, for increasing ¢, the design may be
further transformed by the support substitution mode when
the condition (27) is satisfied. The central support will be
replaced by two supports located symmetrically with respect
to the beam centre.

To illustrate such an evolution assume £ = 1 m, b = 0.04
m, h=0.1m,q=10kN/m, E = 2.10% MPa, ¢ = 1[1/(Nm)],
¢sq =1 m/N, cgp/eg, =6, kp=2- 107 N/m.

The cost of the initial design presented in Fig. 12a, with-
out taking into account the cost of rigid supports at the ends,
is

c® = cEAl=8.108. (73)

The sensor line, calculated from (17), equals wy, = 1.677-10~4
m and the maximum deflection occurring at the centre of the
beam can be expressed in the form

5 gt —4
wo = gor = 19531074 m. (74)

We have that wg > wp and the condition of topology modi-

fication is satisfied. The new elastic support is introduced at

the centre of the beam. The optimality conditions (20} pro-

vide that the new height and stiffness of the elastic support

are h(1) = 0.0347 m and k(1) = 6.991- 107 N/m (Fig. 12b).
The new cost of the structure is

CW = cEAW g 4 og kD) 4 82”50y 5975108 (75
Sa 2 0

The maximum deflections occurring in points located at the
distance £; = 0.244 m from the ends of beam are equal
wgl) = 1.774 - 10~* m and the elastic support deflection
is w(()l) = 0.877 - 10~* m. The new sensor line equals

w;gl) = 2.149 - 10~* m and now the condition of topology
modification by the introduction of an elastic support is not
fulfilled, but the condition (27) of the substitution of a single
support by two supports is satisfied. Solving for this topol-

ogy the optimality conditions (20), we have r(2) = 0.0205 m,
and the new elastic supports of stiffness k(2) = 3.854. 107

N/m are located at distances xgz) = 0.318 m from the ends
of the beam (Fig. 12¢). The cost of the beam is now

c® = cpA®g 42 (cSa ) 4 S5~ s kO) _
3.411-10%, (76)

The deflection of the beam centre is w(()z) = 1.764 - 10~%
m, the deflections of elastic supports are wgz) =0.974- 10_4,
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Fig. 12. The evolution of elastic support: (a) the initial design;
(b) the beam with the central elastic support; (c) the optimal
support of the beam

(2) _

and the local maximum deflections occurring at points z,
0.163 m from the beam ends are wgz) =1.601-10"% m. The

sensor line is w§,2) = 2.386-10~% m, and now no condition
of support modification is satisfied. This means that the
design shown in Fig. 12c is optimal. The cost of the optimal
design is c(®) /0(2) = 2.346 times smaller than the cost of
the initial design. The distance between elastic supports is
zg = £— 2.@&2) = 0.374 m and is slightly bigger than that
for the infinite beam of the the same cost, material, and load

parameters (zgnf) = 0.290 m).

4.3 Ezample 3. Optimization of rigid support in e finite
beam

Consider the prismatic beam with the same length, load and
boundary conditions as in the initial design in Example 2
(Fig. 13a). Assume the cost of supports in the form described
by (30), where C'gg = 0.25- 108, cg, = 104 [ 1/N].
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Fig. 13. Optimization of beam with its rigid support: (a) the
initial design; (b) test introduction of the support; (c) optimal
configuration of structure with one additional support; (d) test
introduction of two supports; (e} the optimal structure

el

The aim is to determine optimal rigid support and height
of a rectangular cross-section for the specified global compli-
ance (—IIp), assuming that locations of supports at the ends
and width of cross-section are fixed.

The cost of the initial design (Fig. 13a), is

() = cEAL+9(CRo + cga R) = 9.5 - 108, (77)

where R = 1/2¢f = 5 kN and the cost of supports is 15.8% of
the total cost of the beam. The Lagrange multiplier, calcu-
lated from (57) , equals A = 4.27-108 [1/(Nm)], the maximum
deflection wy is expressed by (74) and the corresponding re-

action force (Fig. 13b), is B\ = 6.25 Kn. Now we have

2
wy > 8L (78)

and the condition (41) of introduction of new rigid support
is satisfied. The optimality conditions (57), (32)2 and (32)3
provide the structure shown in Fig. 13¢, where A1) = 0.0286
m, Rgl) = 6.25 kN; the actual reactions at the ends are

R() =1.875 kN and the Lagrange multiplier is A(t) = 1.22.
108 [1/(Nm)]. The cost of structure is now

M = cBAW 1130 pg+ega 2RV + M) = 4.039.108 .(79)

The points of maximum deflections wgl) =2164-10"% m

are located symmetrically at the distance zgz) =0211m
from the beam ends and corresponding reaction forces are
R = 2.76 kN (Fig. 13d). The condition of the simultaneous
introduction of two rigid supports arising from (32), which
has the form

¢} CRro
wy’ 2 A(l)Rgi) ) (80)



is satisfied. The optimality conditions (57), (32)2, (32)3 pro-
vide A(2) = 0.0099 m, A(2) = 0.42. 108 [1/(Nm)] and the
optimal positions of additional rigid supports specified by
the distance :cgz) = 0.225 m from the beam ends (Fig. 13e).

The reactions of supports are R(2) =086 kN, R§2) =275
kN, Rg2) = 2.76 kN, and the cost of the structure is

C® = cBA®D 24 5CRy + e 2R + R + 287 =

3.038-108. (81)

Now, the condition of topology modification (41), or the more
precise condition (56), and conditions of support substitu-
tion are not satisfied. This means that the design shown
in Fig. 13e is optimal. The cost of the optimal design is
C(O)/C(2) = 3.13 times smaller than the cost of the ini-
tial design. The length between internal rigid supports is
25 = 0.5(¢ — 22(2) = 0.275 m and it is slightly bigger than
for the infinite beam of the same cost, material and load pa-

rameters (xgnf) = 0.259 m).
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Fig. 14. Evolution of the optimal design for increasing values of
the length parameter

Figure 14 presents the nondimensional cost 7 = C/C(O)
variation for increasing values of the length parameter £ =
£/8y, where €5 = 1 m. It is seen, that for £ = £, = 0.31
the introduction of a new support at the middle of the beam
provides the designs associated with the lower cost curve.
The states at which a new topology of support are generated
will be called the topology bifurcation points. It is natural
to expect that for increasing £, the consecutive bifurcation
points will appear. In our case these bifurcations occur for
€0 = 0.58, €3 = 0.82, etc., and they correspond to the
beam with two and three additional supports. It is impor-
tant to note that despite of discontinuity in state fields and
design variables induced by rigid support introduction, the
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cost function is continuous and only its topological derivative
exhibits discontinuity

5 Concluding remarks

The method of the simultaneous optimization of topology,
configuration, and cross-sectional dimensions of beams, in-
cluding support design in order to minimize the cost func-
tion, was presented in this paper. The cost of the structure
is assumed as the sum of the beam material cost and the
cost of supports, including the cost of support installation.
New supports are introduced in the optimal position and the
conditions of support generation are formulated.

The proposed optimization procedure may not correspond
to the global minimum. However, it provides new possibilities
to generate more effective optimal designs and can easily be
implemented with the use of any structural analysis method
and of any optimization code. The approach presented here
may also be used for maximum stiffness design with cost con-
straints, as well as for other types of optimization criteria and
constraints, and can easily be generalized to more complex
structures.
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