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I Integral Equations 
and Operator Theory 

N O N - S E L F A D J O I N T  P E R I O D I C  D I R A C  O P E R A T O R S  W I T H  
F I N I T E - B A N D  S P E C T R A  

V.Tkachenko 1 

We prove that  skew-symmetric potential matrices generating Dirac operators with finite- 
band spectra are dense in the space of all skew-symmetric matrices. 

1. S t a t e m e n t  of  t h e  p r o b l e m  and  r e su l t  

We consider Dirac operators 

L = J  d 
dx + Q(x),  x ~ IR, 

where J and Q(x) are 2 x 2 matrices, J = const, with 

(1.1) 

j2 = - I ,  JQ(x) + Q(z)J = o, Q(x + ~r) = Q(x), (1.2) 

I being the unit matrix.  For 2-vectors F = col{.fl,f2} 6 C 2 and 2 x 2 matr ix  W, let 
llfH = (if, j2 + 1f212)1/2 and 

IlwIt : sup  I I w F I I .  
Ilfll_<l 

Denote by s x) and s x), respectively, the spaces of 2-coordinate vector functions 
F(t) = col{f~(t), f2(t)} and 2 x 2 matr ix  functions W(t) with finite norms 

IIFIk~(0,~) : HF(e)[I 2 a , HwJk~.~{0,~) = I lw( t )H ~ a 

We denote b y / 9  the class of all operators (1.1) satis~,ing (1.2) and such that  Q 6 s 
Let U(x, A) be the solution of the Cauchy problem 

JU'(z, t)dz + Q(x)U(x, t) = IU(x, A), 

U(O, ~) : Z, 
(1.3) 

and let U( t )  = U(Tr,),) be the monodromy matrix of operator L 6 /9 .  It is well known that  
the spectrum a(L)  of L in the space L2(IR) is described by the relation 

~(L) = {~ c c :  ~(~) e [-1,1]} 
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where A(A) = 1/2 Tr U(A) is the Hill discriminant of L. Since A(A) is an entire function, 
the spectrum is a union of analytic arcs with end-points a.t A's such that  A(A) = +1 and 
which intersect at A's such that  A(A) E [-1,  1], A'(A) = 0. 

Let 73+ be the subclass of 73 formed by all operators with Hermitian symmetr ic  potential 
matrices Q(z)  = Q*(x). Every operator L from 73+ is selfadjoint in L2(1R) and its spectrum 
is real. Moreover, it is well known [1] that  the spectrum has a band structure: 

where 

~(g)=  0 [~+,~;,+~J 
n = - o o  

+ 

. . . .  #n-1 < ~g < ~+ </~7,+1 < . . . ,  
and the Hill discriminant A(A) is a monotonic function on intervals [#+, #~+1], which takes on 
values 4-1 at their end-points. The adjacent intervals (#~, #+) are called spectral gaps, and if 
they collapse, except finitely many of them, then the spectrum is finite-band: it is composed 
of finite number of intervals and two infinite rays. Using the method due to Marchenko and 
Ostrovskii [2], Misyura [3] proved that potential matrices generating Hill operators from 73+ 
with finite-baud spectra are dense in the subspace of all potential matrices generating 73+ 
with respect to the norm of s r,). 

The aim of the present paper is to prove a density theorem for the subclass 77_ of 79 
formed by all operators with skew-symmetric potential matrices, i.-e., matrices satisfying 

Q(x) = -Q*(z ) .  (1.4) 

Dirac operators of class 79_ became a subject of special interest (cf. [4], [5], [6]) since Zaharov 
and Shabat [8] found that they are L parts of the Lax L - A pairs for non-linear Schrgdinger 
equation in the focusing case. 

Since the spectrum of a general non-selfadjoint Dirac operator does not lie on a line, the 
notion of finite-band spectrum has no straight-forward geometric meaning, and to clarify it 
we first state a proposition from [9] describing all monodromy matrices of operators belonging 
to 73_. In what follows we choose a basis in C 2 such that  

0 
J =  - 1  

T h e o r e m  1.1. For a 2 x 2-  matrix U(A) to 
L E D_ it is necessary and sufficient that it has 

u(~) = ] C( /~ ) 
s(A) I 

1 
0 " 

be the monodromy matrix of some operator 
the form 

~*(A) (~.5) 

where c(A) and s(A) are entire functions of exponential type ~r, e*(A) = e(~), s*(A) = s(~), 
and the following conditions are satisfied: 

i) the representations 

~(,~) = cos A~- + I ( A ) ,  s(A) = sin ,\~ + g(,~) (1.6) 
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are valid with f ,  g C P W .  where PW~ is the space of all entire functions of exponential 
type not exceeding % endowed with the norm 

IIfllpw = I/f//L2(~t); 

it) the identity holds 
~(a)~'(A) + 4) , )~ ' (A)  - 1; 

iii) for each x E [0, lr], the integral equations 

(1.7) 

z :  

~rir(t) + f I(r(s)F(s, t) ds = 0, 0 < t < x, 
0 

and 

with kernels 

3: 

~r + f Kr(s)~(s,  t) as 
0 

= 0 ,  O < t < x ,  

and 

( 
F(x, t) = ~ ~res 

k " s*(Xk)=O 
(~ Y(x, ~)Y~r(t, /~)) - 1 y ( x , k ) Y T ( t , k ) }  , 

" c ( & )  = o 

and X(t)  = col{cos )~t, sin At}, Z(t) = co l{ -  sin At, cos At), have only the trivial solution in 
c~(o,x). 

It follows from (1.7) that Ic(X)) _< 1 and A(/~) �9 [--1, 1] for real a's. Therefore, IR C or(L), 
and it is easy to deduce from Theorem 1.1 that  IR = c(L)  if and only if Q(x) =_ O. For 
Q(x) 7~ 0 the spectrum contains non-real points. These may be either "spines" symmetr ic  
with respect to the real axis and intersecting it at points A such that A'(A) = 0, or finite 
analytic arcs not connected with the real axis. 

We shall say that  L ~ T~_ is an operator with the finite-band spectrum if for all .Vs, except 
finitely many of them, A'(A) = 0 implies A(A) = :t:1. According to our definition, L E ~D_ 
is an operator with the finite-band spectrum if and only if the part  of its spectrum outside 
some disc does not contain either spectral spines or isolated arcs, and hence is reduced to 
two rays lying on the real axis. Another definition of finite-band spectrum for non-selfadjoint 
operators was introduced a.nd investigated by Oesztezy and Weikard (cf., I101-[131); in tile 
present situation both definitions coincide. 

Our aim is to prove that  the set of potential matrices generating Dirac operators from 
2?_ with finite-band spectra is dense with respect to the norm of s in the subspace 
of all potential matrices generating �9 More precisely, we prove the following statement.  

T h e o r e m  1.2. Given an operator Lo �9 I9_ with a potential matrix Qo �9 s 7r) and 
an arbitrary number c > O, there exists a matrix Q~ �9 s generating an operator 
Lr �9 2:)_ with finite-band spectrum and such that IIQo - Qd]@2(o,~) -< e. 
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Instead of operators L E 59-, Theorem 1.1 permits us to consider their monodromy 
matrices. Given an arbitrary' operator L0 E 59_ with a potential matrix Qo E s 
we make small perturbations of its monodromy matrix U0(A) to arrive at a matrix Ud,\) 
corresponding to some operator L~ ff D_ with a potential matrix Q~ ff s rr) and finite- 
band spectrum. To perform these perturbations we use analytic techniques developed in 
[14], [15]. The control of difference between potential matrices Q~(x) and Qo(z) is based on 
the following proposition that is also proved in [9]. 

T h e o r e m  1.3. If L~ and L2 are two operators from class 59_ with potential matrices 
O~(x) and Q2(z), and ,)~U~(A) and U2(A) are their monodromy matrices, respectively, then 

IIU~ - U2[l~,w <_ I'21IQ] - O~]]cb(o,= ) exp(l(l[q[[G(o,~,)) 

where IlUll~w is the maximal 7)W-norm of elements of U(,\), q(*) = max{lIQ,(t)ll, IIQ~.(t)ll} 
and K is independent of Li, Qi, i = 1, 2. 

If, on the other hand, U(A) is an entire matrix function of the form (1.5) with elements 
c(A) and s(),) satisj~in 9 conditions i)-iii) of Theorem l . t ,  then there exists a nv.mber K 
such that for each s~fficiently small number e > 0 every entire matrix function V(A) of the 
same form (1.5), satisfying ii) and I]U - V[[pw <_ e also satisfies conditio,zs i) rind iii), and 
if Qu(z) and Qv(:c) are potential matrices of corresponding operators from. D_, then 

IIQu - Q v l k b ( 0 , ~ )  ~ z~ll~' - v l l ~ w .  (1.8) 

The main difficulty in proving Theorem 1.2 is that the parametrization of operator L C 
7:)_ given by Theorem 1.1 uses functions c(A) and s(A), while the notion of finite-band 
spectrum is related to the Hill discriminant A(A) _---- (c(A) + c*(,\))/2. If c(A) = c*(A), then 
,._5(A) = c(A) and, given an arbitrary e > 0, we can construct a function cd), ) = c2(),) 
with all critical values equal to +1, except finite]y many of them, with Hc~ - cllT, w <_ e 
and 1 - c~(A) > 0,)~ E IR. It follows now that a factorization 1 - c~(A) = s~(A)s~(,\) is 
possible with Hs~ - s[]7,vv <_ Ke. The pair c~(A), s,(A) generates the Dirac operator L~ ff 59_ 
with a potential matrix Q~(z) such that IIQ~ - 011~b(0,~) -< K~. The Hill discriminant of L, 

coincides with c,(A) and therefore the spectrum of L~ is finite-band. 
Unfortunate/y, the case c()~) = c*(),) is not generic: it is easy to derive from Theorem 1.3 

that the set of matrices corresponding to operators with c(A) r c*(A) is open with respect to 
the norm of/J~,2(0, ~) in the space of all matrices generating D_. To prove Theorem 1.2 in a 
general case, we construct in Sec. 3 an auxiliary operator L~ which is a "spoiled" version of 
initial operator Lo. The spectrum of L, is not finite-band. Moreover, all its spectral spines 
do not degenerate, but since the elements of its monodromy matrix have a well-controlled 
asymptotic behavior, we are able to make an additional small perturbation to obtain an 
operator with finite-band spectrum. 

2. A class of entire functions of exponential  type  ,~ 

Denote by ~ the class of all entire functions u(),) of exponential type re,, which are real 
on the real line, satisfy the condition u2(3,) < 1 for real values of A, and which may be 
represented in the form 

u(A) = cosA~ + f(A) (2.1) 
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with f e P W ,  and {f(n)}~__~ E g~. 
L e m m a  2.1.If f E "PW~, then 
i) for every H > 0 the relation 

lira f(A) = 0 

holds; 
ii) for every sequence {a ,} ,Z_~ with X, - n = o(1) as I< ~ ~ and every R > 0 the 

condition 

s max If(t)t 2 < oo 
,~=_~ It-xd__R 

is fulfilled. In particular, 

] f ( M ) l  ~ < ~ .  
7Z-------OO 

Proo f .  Without  loss of generality we assume H > 2R and use the well-known "subhar- 
monic" arguments (cf., [7]). Since f E 7~W~, the functions f• = e• belong to the 
Hardy spaces in {~ = x + iy : -r > 0}, and if PH = {A: I~l _< H} then 

: ) f I.f(x+iy)[2dxdy < e2~Hf [.f+(x+iy)12dy+ If-(x+iy)12dy 
P2H ~1, -2H 

d x < ~ .  

On the other hand, tf(A)l z is a subharmonic function in C and hence 

/~ 2r: 

i If(x + iy)l:dxdy = f rdT f If(A + rd~ > ~ R  2 If(~) l  2. 
d(~,n) o o 

For every A G PH the disc d(A, R) = {# : ]# - h I _< R} is located inside the strip --P2H and 
the integral on the left-hand side here vanishes as IAI --+ oo proving part i) of Lemma 2.1. 

If t E d(),~, R) and In[ is sufficiently big, then d(t, R) C d()~, 2R) C P2H and 

max [f(t)] 2 < (TrR2) -1 / [f(x + iy)12dacdy. 
t~d( ~,R) 

Since AN -- n = o(1) as ]hi ~ 0% there exists ~ number N > 0 such that every point of the 
strip Pert is covered by not more than A T discs d(An, 2R). Therefore 

m&x If(t)I 2 <_ N(rrR2) -~ f If(x + iy)t2dxdy < 0% 
P2H 

which completes the proof of Lemma 2.1. 
L e m m a  2.2.If s(A) = sinArc + f(A) with f E PIV~ and {~}~=_~  is the zero sequence 

of s(A), then {'~n -- n}nC'~ E e 2. 



330 Tkachenko 

P roo f .  First we note that outside the exceptional set 

E = 5 d(n,10 -1) 
n ~ - - o o  

an estimate I sin a~l _> cexp(~l~AI) is valid with some c > 0. Hence 

lira .f ( A ) 
lal-c~.,x~E ~ = 0, 

and by the Rouch4 Theorem zeros An of s(A) with big pn] are inside E. For every such 7~ we 
have 

IA~ - n I < If(k,,)l max < CII(A~)I , 
- -  {t{~lO-1 - -  

and the statement of Lemma 2.2 follows from Lemma -o.1. 
Lemma 2.3. The Hill discriminant of operator L E ~-  belongs to class ~. 
Proof. Let L be a Dirac operator from class ~_ and let U(A) be its monodromy matrix 

(1.5) with elements c(A) and s(A) and with properties described in Theorem 1.1. The Hill 
discriminant A(~) = (c(k) + C(A))/2 has the form A(A) = cos k~r + h(A) where h �9 PV~.. 
If we set v(k) = (c(A) - c*(A))/2i, then v �9 P�89 both A(A) and v(1) are real for real A's, 
c(A) = A(A) + iv(A), c*(k) = A(A) - iv(A), and equation (1.7) yields 

1 - A ' ( A )  - ~ ( A )  - 4 , ~ ) ~ ' ( A )  = 0 ( 2 . 2 )  

implying, in particular, 0 _< A2(A) _< 1, % �9 IR. 
A Let A = { ~} . . . .  be the zero set of s(A) with account taken of multiplicities. It follows 

? oo ~ 2  . . . .  from Lemma 2.2 that {A~ - 2} . . . .  �9 If we substitute A = An in (9 9) and apply Lemma 
2 X ~ g l .  2.1 to the function v(A), we will find {1 - A2(An)}~=_r = {v (, ~)} . . . .  �9 Since &(Am) 

is asymptotic to ( -1) 'L  we have 

Ih(Adl _< z~" (--ff~ T ,-s - ( ( - ~ Y  - cos An~) _< K(Iv(A~){ ~ + IAn - ,~1~), 

and {h(An)}~=_~ �9 ,~1. According to the Taylor formula 

A~ 

h(A,~) - h(,~) = h'(~)(An - ~) + / h"(~)(A~ - ~)~.  
n 

t oo {d2  Since h' �9 P W ~ ,  Lemma 9_.2 yields {h (~)} . . . .  �9 In addition, W'(A) is bounded in the 
strip P] and hence IA(A~)-A(,~)I _< Ih ' ( ,~)(A~-,~) l+KlA~-nl  :. We conclude {h(n)}~%_~ �9 ~1 
completing the proof of Lemma 2.3. 

In this section we study small deformations of functions belonging to 7-{. 
Let .M(u) = {t~}~%-o~ be the sequence of all critical points of u �9 7-/, i.e., the sequence of 

all solutions of equation u'(A) = 0 with account taken of multiplicities. It follows from (2.1) 
that -Tr-au'(A) = sin A~r + g(A) with 9 �9 P V ~  and hence by Lemma 2.2 the representation 

#.  = n + &, n = 0,4-1,4-2, . . .  (2.3) 
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is valid with {Sn}~=_~ E 12. It is easy to see, using (2.1), that  if rnn is the nmlt ipl ici ty  of 
#n E Ad(u) as a zero of u ( 1 ) - u ( # , ) ,  then mn = 2 for all n's with possible exception of finitely 
many of them. Subst i tut ing A = n into (2.1) we find {u(n)-(-1)n}n~=_~o = {/(n)}~=_oo E e 1 
and again using the Taylor formula to es t imate  u(#~) - u(n) we obtain 

1(-1) '~ - u ( # ~ ) l  2/m" < oc. rt~--oo 
Let OT~(u) be the sequence of all critical values of u E 7-t, i.e., 

It is evident that  if/x~ = #k ,n  r k, then % = %. 
Denote by R(u)  the subset of all integers such that  critical points #~ E 3.4(u) with 

n E ~ ( u )  are real. Since u(a)  is a real function for real A's, for each integer n g~ 7~(u) 
we have 77~ E M ( u )  and u(g,,) = u(#~). Wi th  sets M ( u )  and ~ ( u )  being defined, let 
us introduce the set ~(u)  of sequences {%}~=-,o of complex numbers with the following 
properties: 

1. I f#n  = #k ,n  7 ~ k, then 7~ = ")'k; 

2. If n E 7~(u), then .~'y~ = 0 and ~/~ < 1; 

3. For every n ~ 7~(u), there exists p = p(n) such that  ~-~ = #p(~) ,~  = 7p(,,) and 
p(p(n)) = n. 

T h e o r e m  2.1. Give,, a function Uo E 7-t with A4(uo) = {#,,o}~%_~ and CT~(uo) = 
{7~,o}~=-~, there exists a number K > 0 such that for  every sufficiently small e > 0 and 
every sequence of complex numbers {7~}~~176 E G(u0) such that 

l'Yn - 7n,012/m" _< c (2.4) 

there ezists a function u~ E 7~, with the set of critical values CT~(u~) = {7~}~=-~ and such 
that l j  ~ )1/2 

P r o o f .  Theorem itself and its proof are variations on the themes discussed in [14] and 
[15]. Here we will describe construction of u~(t), skip details repeating [14] and [15} and give 
arguments requested by the present situation. 

Let N" be the set of all integers n for which the numbers #~ are pairwise different and 
"/~ ~ 7n,0, and containing both n and p(n) if n ~ ~(u0) .  For n E H ,  we set a~ = 3'~ - "7~,0, 
choose a small number p~, p~ >_ 2a,~, and denote by f~ the closed curve 

e~ = {~ :  luo(a) - V'-,ol = P=}. (2.6) 

We assume that  g~ is positively oriented with respect to its interior aJ +, and that  #,,o lies 
inside w +. 
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It is evident that  for each n ff As and sufficiently small e in (2.4) every function vn(A) = 
(+(uo(A) - % , o ) )  ~/m" is a shift function in w,+. For n E 7~(Uo)N.'V the numbers #~,0 and 
%,o are real, the curve & is symmetric  with respect to the real axis and, defining vn(fl), 
we choose the sign + or - such that  v~(A) is real for real A ff ~.'+ If, on the other hand., 
n C HXT~(uo), then "~#~ # 0, g~ = #v(~) E M(u0),  and we can assume that  {~ = Cp{, 0 and 

+ ~(~)  = ~,(,)(~), A e ~ .  
With e > 0 sufficiently small, the curves & do not intersect, and we can assume 

Is 1/rnn ~-~ I&l <- e p 5  m~ 

f /  ds (2.7) I t - z l _ <  __el~-zl, t, z e & ,  

where IC,d is the length of & and the integral is taken over the shortest arc linking t and z 
in &. Besides, 

i n f { l t -  zl, t e & , z  E & , n  r m.} > l(-~ln - m I. (2.8) 

Here and in what follows K denotes some number determined by the function u0(A) and not 
depending on A, n, & ,  p~. 

+ The function v~(A) is analytic in the domain w +, real for real A ff ~+ and maps w~ 
one-to-one onto the disc d~ = {w:  Iw - %,ol <- P~/'~'}. We define in d~ the function b~(w) 
inverse to v~(A) and set 

( ( 1  ~ . v : ~ " ( A ) " ~ ' / m "  / 
~(~ )  = b,~ v~(A) \1  y T ~ ) j  j ' ~ ff &' (9.9) 

with the sign opposite to that in the definition of v~(A) and with positive values of the root 
for real A G w +. 

Since Iv~(A)l m" = p~ for A ff & and I~,~pK~I < 1/2, the function a,(A) is an analytic 
diffeomorphism of & onto itself satisfying the relations 

~ ( ~ )  = (~(~), ~ ~ &, 

o r  

(~(i)  = ~,(~)(A), ~ c &, 
and, according to (2.9), 

~ ~(~o) ,  (2.10) 

~ ~ ( ;o ) ,  (2.11) 

(~o(A) - 7.,o) - ~'n 

Using (2.9) and the identity b,~(vn(,\)) = A, A E &, we find that  there exists a constant K 
depending only on the function uo(A) and independent of ~ and p~ such that  the estimates 

f o ~ ( A ) - ~  I < e l ~ l p #  m~ 

I~z(A)I < A'I~,,I;S/'~o-' 

hold. If r~(A) is the diffeomorphism inverse to o,=(A), then 

tT=(A)- AI <_ el~=l< '/~'o 
I< (A) -  ~1 _< el~. lp~'  ~ ~ e=. (2.~3) 

Iff'(~)l _< IQ~IP~ ~/'~-~ 
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Let us set now 

where 

U(A) = 1 + &~pg2(u0(A ) - %.o) + ~/~,0 A e w + (:2.14) 

uo(~) A ~ ~ -  

~ - = C \ ~ + ,  ~+ c l o s U  + 
I.O n . 

hE.&" 

The function U(A) is analytic outside cOw- and takes on the critical value % at the point 
Pn,o E a +. The boundary values 

U_(A) = lim U(#), U+(3,) = lim U(#), A C cOa) +, 
u--+)~,~Ew - u ~ . , / , E w  + 

satisfy the relation 
U+ta~(~)) = U_tA), A ~ 0w t .  

To transform U(A) in an entire function, let us construct two shift functions (iS+(z) and 
(I)-(z) analytic in w + and va-, respectively, satisfying the glueing condition 

�9 + (~ (z ) )  = r  z ~ cOw 2. (2.12) 

Suppose that these are functions of the form 

r = z + ~+(z),  r  = z + ~ - ( z )  (2.16) 

where ~+(z) and ~ - ( z )  are representable by their Cauchy integrals 

I / ~+(~) ~+(~)=~ i-~d~' ze~+, (2.17) 
n E H  p 

~-(z) = - E ~ f <(*) ~t, z ~ ~-. (2.is) 
n E A r  - ' ' g n  t - -  Z 

It follows from (2.12) and (2.16), that 

+ oz ~ (.(z)) - ~;(z) =/3~(z) (2.i9) 

with 
9~(z) = z - a~(z). (2.20) 

Denote by Z;~, n E N', the Hilbert space of all complex-valued functions on g~ with the norm 

II~ll~ ; I ~ , ( t ) l ~ l d t l  , 
n 

where, as above, Ig~/is the length of ~ ,  and introduce the Hilbert space Ib 2 of all functional 
sequences e = {~ ,~ (z )}~ ,~ ,~  e C~, with the norm 
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According to (2.12), I~,(=)l _</~l~lp'./'"-' ~ zq~P/'~', and if B = {/3~(z)},~eAr, then 

\ 1/2 

IIBII < zr E I~ = / ' ' )  �9 
nEJV" 

Using the Plemelj formula, we obtain 

- ~ t - z  k v " 2 ~ r i j t - z  

and since 

.~ t_--zTdl=0, zc . , - ,  

(2.21) 

with 

K~(~,t)=5-( ~:(t_) 1_ ) t,~ee., (2.24) 
2~i \ a ~ ( t ) -  an(z) t z ' 

~V' 1 e l ( a ~ ' ( t )  1)pk(t)dt,~<, (2.2.5) 

f~ ~n 

, ~ 1  / c~k [t)" a v e r ) ' ' -  cg~(z)'3k(t)dt' ~'[B]~(~) = k~  ~ e e~. (2.27) 

Let us prove that  F = {%(z)}~s,~ E IL 2 and obtain an est imate for ItPI/, To this end we 
prove that there exists a number K determined by the function uo E 7g such that  

f Ig , ( z , t )qo~( t )d t  < A'io-,,Ipnl-~l[~,~ll,,, ~. ~ gn, (2.28) 
gn 

IIIell _< K~, (2.29) 

(2.26) 
and 

then 
1 + 1 + , 1 , ~ ( t ) d t = O ,  

P-n 

Here and in what follows the prime means that the n-th term is omitted from the sum. We 
replace z in (2.22) by c~n(z), set t = c~k(s) for the k-th integrand, add the resulting identity 
to (2.21) and use (2.19) to find that  ~ -  = {~(z)}ne~." is a solution of equation 

~ ( z )  - [ K ~ ( z , t ) p n ( t ) d t  - ]R[O]~(z) = %(z) ,  z E Q. (2.23) 
In 

Here the kernel K~(z, t) and the operator IR are defined by the formulas 
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I1~1[ ~ i~, (2.30) 
where 

~5 = tO'hi 2 / m " )  = I")% -- 7n,O[ 2/m= 

We start with representing K~(z, t) in the form 

z<.(. . , t)=- ~"(s)(~-s)as ( t - z )  ~'~(~)a~ , ~,t e e., 
z 

with the integrations over the shortest arc of G joining z and t. Relations (2.7) and (2.12) 
yield the estimate 

proving (2.28). To prove (2.29), let us introduce the operator 

IP0[~]~(z)=k ) 2 ~ i J a k ( t ) - a ~ ( z )  dt, zEe~,  O={pk( t )}keHcIL ~, 

and represent it in the form 

, 1 1 [ 
1P0[O]~(z) = ~ k - n 27ri J ~k(t) dt + p,(z) ,  (2.31) 

kEA" gk 

where 
, ~/I  / (a.(z)(.a~(_z) --- ~ '~ t ) -~ ~--- k ) -  n) - (ak(t) - k) p.(z) : k~  ~,k(t)dt 

tk 

The sum in (2.31) is the n-th coordinate of the discrete Hilbert transform of the sequence 

ek (2.32) 
0 kCH, 

and since [ski _< Kleklll~kllk, its ]LKnorm is bounded by KellO][. To estimate the latter sum 
r -  1link we note that if z e G, t E G, then Ia~(z) - #~,ol < I{p~/m", l a k ( t ) -  #k,oI <_ ~pk which, 

being combined with (2.3), yields ]a~(z) - n I <_ Kpf f  m~ + ~ ,  lak(t) - k I <_ Kp  1/'~ + & with 
5 ~ g2. { . }  . . . .  6 Using (2.8), we obtain 

1link 
' ~ , - - . ' (Pk  + ~k)G 

Ipdz)l < I((p~/m" + & ) E  leklll~%llk + K 2_. . . . .  II~,kll~. (2.33) 
- k~A: ke~ Ik--~l ~ 

Therefore 

Z II,~ll~ _< K2~2[[~tl2 
nfiJV 
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proving Iln%[r E4ir 
(2.29). 

To prove (2.30) we use the representation 

~[~]~(z) = ~o [%, ( z )  + q,,(-') 

where qs = {(a~.(t) - 1)pk(t)}~ew and 

, 1 / (aN(z) - z) - (ak(t) - t) 

~k 

Similar to (2.33) we have 

Iq,~(z)l < I (  ( a n p , ~  levi I I ~ l l ~  + 
\ k~A r 

Applying this estimate to q) = {a~.(t)~k(t)}kEar we arrive at 

cyk( t ) dr. 

,l~'~lp~/'~'-lleklll~kllk ) 
kEH 

which yields (2.30). 
For every n E H the Hilbert operator is bounded in space Z;~ by a constant K not 

depending on n, i.e., 

1 of - p~(t) at < lfll~nll ~. t - :  - 
n 

Combining these estimates with (2.28) and (2.29) we find that  if B = {/3~(z)}~ea," is defined 
by (2.20) and P = {?'n(Z)}ne~r is defined by (2.24), (2.26) and (2.27), then IIFII < KIIBII < 
Ke. Therefore operator ]K defined by the relation 

IK[~]~(z) = / K ~ ( z , t ) ~ p ~ ( t ) d t  + IR[~]~(z), z E ~ ,  

gn 

is bounded in IL 2 and 
I1~11 _< I((< + sup I ~ l p ; : ) .  (2.34) 

nEH 

Since the number K in (2.34) does not depend on ~ and p~, we can assume that  
KIGnIp~: < 1/4 and choose e in (2.4) so small that Kr < 1/4. Now we are ready to 
construct functions q~+(z) and (I)-(z) satisfying (2.15). 

First, given a function u0 C 7~ and the number K being fixed as described above, we 
define B = {fl,(z)}~e..v by :'elations (2.20) and F = {7~(z)}~car by (2.24), (2.26) and (2.27), 
and according to (2.23) consider the equation 

(~ - ~ )  ~ = r .  (2.35) 

Since I]lI,:ll _< 1/2, this equation has the unique solution q) = {cp~(z)}~eH E IL 2 and the 
est imate II~ll _ 211FII _< I(e is valid. Repeating arguments from [15] we prove that  the 
functions (I)+(z) and (I)-(z) defined by (2.16) with 
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and 

k E A f  - g k  - -  Z 

are the shift functions in w- and w +, respectively, satisfying (2.15). 
Denote by &- and s the images of w- and w + with respect to ~ - ( z )  and ~+(z),  and 

by ~ - ( z )  and fl+(z) the inverse maps. Let 

f u(a-(~)) ~ -  (2.38) u(a+(~)) ~ �9 ~,+ 

where U(~) is defined by (2.14). If ~ �9 0 ~ - ,  then there exists n �9 Af such that z = ~-(A) E 
0~z +, and 

iim u~(#) = U(z) = uo(z). 

On the other hand, according to (2.15), ~q+(t) = c~(z). Looking now at t as a point of c)~ + 
and using (2.14) we find 

lim u~(#) = U(an(z))  = Uo(Z). 
, u E & + , , u ~  

Therefore u~(~) is an entire function. Let us prove that it satisfies conditions (2.5). 
To this end we choose a > 2 such that the set w + is located inside the strip {A : IImtl < 

a}, and find for z = t + i s ,  tsl >_ 2a, t E IR, an entire n such that n -  1/2 < t < n + 1/2. If 
n EAf, we write (2.36) in the form 

1 fo2i~(t )dt_ ~ ' sk +r (2.39) 
~- (z )  - 2~ri J t - z k---Z-s 

in k = - o z  

where sk is defined by (2.32) and 

, 1 f ( k - i ) + ( z - n )  

If n r  the integral in (2.39) is redundant. Since Iskl < Klgkli]9~lIk , and the discrete 
Hilbert transform is a bounded operator in g2, we have 

~ . - ~  l 8 k _ _ _ 

k ~  ~ < K E Iskl ~ < K sup lekl2rlr ~ < K~llr 2. 
n = - o o  kEAZ kEAZ 

Since I-.~zl = Isl > 2a, then I t - z  t > 1for  t E /~ and I t - z  I > K l k - n ]  for t Egk, k C n .  
Therefore 

1 / ~(t) dt 
n 

and we conclude that 

I~-(z)l -< x , ,  n - 1 / 2 _ < R z < n + l / 2 ,  I ~ z I > 2 a ,  (2.41) 
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with II{x~}~ . . . .  ~ I1,~ ~ K 4 ~ I I .  Since I1r -< 2Ilrll __< E~., we obtain 

max I : - (=) t  < ZC~ll,~ll _< zt '~  ~ 
I'~zl>2a 

and 

(2.42) 

/ I ~ - (  t + 2ai)]2 dt < I(~H~H 2 <_ K2e 2. 

~R 

For sufficiently small  e we have t(~ < l < a, and hence {z : ]Imz I > 3a} C c3-. It means  
tha t  for z = t + is, s = 3a, t E [n - 1/2, n + 1/2], there  exists  A = r + i5, [51 _> 2a, such 
tha t  z = G- (A)  = k + p - ( A ) ,  and hence 3, = 9 , - (z ) .  It follows from (2.42) tha t  Ip- (A)[  < 1 
and hence N), ff I n -  3/2,  n + 3/2]. It pe rmi t s  us to use (2.41) to ob ta in  the  es t imates  
[ a - ( z )  - z I = IA - ~ - ( A ) I  = I ~ - ( A ) [  _< ~n-1 + x~ + xn+]  and 

I ~ ( z ) t - - I ~ o ( f ~ - ( : ) ) l  _< C e x p , z l f ~ - ( z ) t - <  C e x p ; l ~ l .  

Therefore  u~(z) is an ent i re  funct ion with exponent ia l  type  not  exceeding z ,  and 

f I~(t + 3ai) -Uo(t + 3ai)12 dt = f lUo(f~-(t + 3a/)) - ~o(~ + 3ai)12 dt <_ 
1R 

_< It" m a x  [Uo(S)l 2 s tX~-I + X~ + Xn+ll 2 -~ A'II~II ~ _< A ' ~  ~ 
['~sl<-4a n : - ~  

which proves the  first e s t ima te  in (2.5). 
To prove the second es t ima te  in (2.5), we assume that. the  number  e is smal l  enough for 

the  2p~/m~ - neighborhoods  of domains  c~ +, n ff A f, do not  intersect .  For n E N" let us choose 
an a rb i t r a ry  number  A,~ E a,,- such tha t  d i s t (A , ,w  +) = pn l̂/mn" If n ~ N' ,  we set A~ = p~.o 
and note  tha t  [I{A~ - } . . . .  IJl~ -< It ' ,  and IA~ - t  I > I ( [ k - n l , t  E gk,n r k. W i t h  A~ being 
fixed, we set z,~ = (I)-(A~) and,  according to (2.38), ob ta in  u~(z~) = Uo(~2-(z,~)) = uo(An). 
Since the  funct ion Uo(A) belongs to class ~ ,  it has the  form Uo(a) = cos ~ra + fo(A), fo E 
PW~.,  {fo(n)}~~176 E g~. Hence u~(z~) = cos ~A~ + fo(a~)  and u~(z~) - uo(z,~) = uo(A,~) - 
Uo(Z~) = (cos 7cA~ - cos ~rz~) + (fo(a~) - fo(z~)) which yields an e s t ima te  

I ~ ( z ~ )  - ~ o ( ~ ) 1  < I ;  ( IA= - z~llA= - ,~1 + IA~ - =~l ~ + IA~ - ~=[ m~.~ r  
- \ t-..,01_<~ ) 

Ins tead  of the  first inequal i ty  in (2.40) now we have 

1127ri J t~(t)- A~ dt ,~ _< A'Ie,,IP2/'~" II~n I1,, _< K l l~ , , l l , , .  

Using again (2.36) and the second inequal i ty  f rom (2.40) which is valid for z = A~ we 

II{x~)~_--~llz= _< K~. These inequal i t ies  together  with L e m m a  2.1 appl ied  to the funct ion 
]~ �9 "PW~ imply  an e s t ima te  

I~'~(z,,) -u0 ( : -n ) l  < Zt'~. (2.43) 
1 } = - o o  
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Besides, due to the choice of An, we have I1{~ -'~}~=-~11l-" --< z~" with K not depending on e. 
The second inequali ty (2.5) now follows L e m m a  2.1 applied to u'~(A) - u ; ( ) , )  and from (2.43). 
We arrive at the representat ion ~ ( t )  = cos ;r,~ + .f~(),), .f~(A) = f0()~) + (*~(A) - 'uo(,~)) which 
shows that  u~ E ~ .  

Let us now check that  u~(,~) takes on real values for real ,Vs. 
First we note  tha t  if n E 7r and ,\ E g=, then (2.10) holds and according to 

(2.24) we have I(,~(z,t) = - I (~(2 ,  t-). On the other  hand, if n E JV'\T~(u0) and z . t  E 
g,,, then 2,{ E gp(~), a~(,~) = %(~)(~), and I f~(z , t )  = --Ifp(n)(2, t). Since p(p(n)) = n 
and the complex conjugation inverts the orientation on g=, we find IR{~]~(z) = IR[~*]~(g), 
IP[O],(z) = IP[<15"].~(2) where O*(z) = (I)(2), and IR and IP are defined by (2.25) and (2.27), 
respectively. Since r = ~(z),  we obtain from (2.26) 7~(z) = 7~(z), and hence the unique 
solution (I) of (2.35) has the proper ty  ~" = O. It follows now from (2.36) and (2.37) that  
((D+(z)) * = (D+(z), (~ - (z ) )*  = O- (z ) ,  which means that  (I)+(z) and ~ - ( z )  are real for real 
,Vs. Therefore ur is also real for real )Cs. 

Let fi~ be a critical point of 'ur According to (2.14) and (2.38), either u;(f~- ( t~))  = 0 
or u{)(f~+(t;~)) = 0, depending on either fi~ E :5- or t;~ E &+, respectively. In the former 
case u~(fi~) = Uo(#~,o) = 7=,o, while in the latter case u~(t~) = 7=,o + a~ = 9'~, which proves 
that  the sequence CT~(ur of critical values of u~(,~) coincides with {7~}~___oo. 

'+ disjoint. In part icular,  it implies According to our previous assumption,  domains w~ are 
that  if n ~ T~(u0), i.e., #~,o is not real, then dist(w +, IR) > 0. There  exists only finite number  
of such #~,o and for all of them and all sufficiently small e > 0 we have ~((I):~(#~,0)) r 0. 
Therefore, if/~= is a real critical point of u~(A), then n E T~(uo), t;~ = r177 with real #~,o, 
and lu,(~,~)l  = I'Y~I <- 1. Hence ~ ( ~ )  _< 1 for A E IR which completes the proof of Theorem 
2.1. 

R e m a r k  1. Let • ~ • oo {~ ,o}  . . . .  and z,g(A) and {#~ } . . . .  be the zero sequences of t - 
1 - u2(A), respectively. Later, in the proof of Theorem 1.2~ we will need an es t imate  

- # . }  . . . .  I]l~ _< Ke (2.44) 

for a part icular  case of the sequence {7~}~=-oo with 

%~.0 I ~ t - < M  
~ =  ( - 1 )  ~ I ~ I > M .  

(2.45) 

To prove it we note that  #~ = ~5-(#~,o) if n ~ N' ,  and #+ = #~ = #~ = 0+(#~,o) if n E N'.  
Since I#~,0 - #~,012 -< K I ( - 1 )  ~ - 7~,o1, we have for n E JV" an es t imate  

I#~ • • - #~,ol < I#~ - #~.ot + 1~ ,0  • - - # , , ,o l  _< a ' ( l~ ,+(#= .o ) l  + I~,d~/=). 

For t E gk, k ~ A f, w e  have tt - #~,0I _ > K[k - n[ and, similar to (2.41), I~P- (#~.0)I :~ -< r~ for 
n ~ N' ,  and I~+(#~,0)1 _< z~'llC~ll~ + ~= for n E N" with It{-=}~=-~ll,= _< K~. It {ollows from 
(2.13), (2.20) and (2.37) 

which yields (2.44). 
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R e m a r k  2. Since p~,o - n ~ 0 as Inl --* ec, for all sufficiently large M and In] > M 
every disc {A: ]A - n[ _< 10 -4} contains domain w + . If for such n we have [A - n] = 10 -3, 
then dist(A,f~) _> 9 x 10 -4, and similar to (2.42) an estimate holds 

]~2-(A)l < I'[e, IA - n I = 10 -a. (2.46) 

3. A n  a u x i l i a r y  o p e r a t o r  

Let an operator Lo E 7)_ be given, and let c0(A) = cos Mr + fo(A) and so(A) = sin At, + 
g0(A) be the entries of its monodromy matrix. According to (1.7), the identity co(A)c;(A) + 
So(A)s;(A) - 1 holds. If 0o(A) = Co(A)c;(A), and Uo(A) = 20o(A/2) - 1, then 0 _< 0o(A) _< 
1, lu(A)l < 1 for real A's and u0(A) = cos A~r + Fo(A) where 

Fo( A ) = 2( fo( A/2) + .fo(A/2)) cos At,/2 + 2 fo( A/2 )fg ( A/2 ). 

The function 00(A) takes on real values at real A's, and it follows from part i) of Theorem 
1.1 that Fo E 7~W~. For every integer n we have 

Fo(2n + 1) = 2fo(n + 1/2)f~(n + 1/2), Fo(2n) = 2(-1)~(fo(n) + fo(n)) + 2fo(n)fo(n ). 

~ * ' I t  o ~  According to Lemma2.3, A0(A) - (co(A)+c;(a))/2 E "H and therefore {f0( z )+f ;  ( )} . . . . . .  E 
gl. In addition, Lemma 2.1 applied to the function fo(A/2) shows that {f0(n + 1/2).f~(n + 
1/2)}~=_~ E gl  {fo(n/2)fg(n/2)}~=_~ E g~ and we conclude that u0 E ~ .  

Let, as before, C~(u0) = {%,0}~=_~ be the sequence of all critical values of u0(A). Given 
a number e > 0, let us choose M = M(e) such that 

I ( - 1 )  ~ - %,o[ < e, (3.1) 

and define the sequence F = {%}~___~ E g(u0) by (2.45). According to (3.1), the estimate 
(2.4) holds and by Theorem 2.1 there exists a function u~ E 7~ for which F is the sequence 
of critical values and (2.5) is satisfied. 

According to (3.1), all critical points of ur with possible exception of finitely many 
of them, are real and simple, and the corresponding critical values are -t-1. It means that 
h(A) = (u'~(A))~(1 - u~(A)) -~ is a meromorphic function with real values on the real line. 
Moreover, (2.1) shows that h(A) is a rational function and limlal_~o h(A) = 7r, L The function 

h ~  is continued as a single-valued analytic function outside some disc {A: IAI < r}, and 
the representation holds 

= ~ + A-i:, [A[ > r, 
k----1 

with real numbers ak, k _> 1, [akl _< r k. On the other hand, for real A's we have 
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and 

/ h ~ { 2 k r r + c o + a r c c o s u r  I ) ~2k ~ 1 ~ #2k+1 
dt = ( 2 k + 2 ) ~ + c o - a r c c o s u c ( 1 )  #2k+1 _< t_<#2k+2 

A0 

where {#~}~__~ is the sequence of critical points of u((t) ,  and arccos t E [0, r,]. Hence 

( ur = cos ~r l + a l l n l + b 0 +  1 > r. (3.2) 

Since u , ( t )  is an entire function, we conclude that aL = 0, and comparing (3.2) to (2.1) we 
find cos ~rb0 = 1. Therefore u~(t) = cos ~r(1 + S( t ) )  where S ( t )  is analytic in { t :  I11 > ~}, 
real for real l ' s ,  and l ima_~ S ( t )  = 0. 

Let us now set 
1 + u~(21) 1 - ur 

0,(t)  - 2 ' r162 - 2 (3.3) 

The zero set 4- {#~ } . . . .  of 0r coincides with the set of points at which ur takes on 
value -1 .  It means that ~_ff~,re" :kl~j~=_~ is tile set of points at which u~(l) takes on the value 
--1. 

According to the construction of the function u~(t) and Remark 1 to Theorem 2.1 there 
exists a factorization 0r = c~(t)c~(t) with c~(t) = cosTrt + f , ( t )  such that 

Ico(t)  - ~ ( 1 ) 1  ~ dl  < Ke .  (3.4) 

Similar arguments yield factorization 9 , ( t )  = s , ( t ) s : ( t )  with s~(1) : sin r , t  + g , ( l )  such 
that 

I~0(1) - ~,(1)1 ~ d t  < K ~ ,  (3 .5)  

and we obtain the matrix U,(t)  of the form (1.5) generated by the functions c(t)  = c~(t) 
and s( t )  = s~(1). It follows now 

0~(t) = cos 2 7r(t + S(A)), ~ ( 1 )  = sin 2 rr(t  + S(1)), I t l  > ~, 

with R(1) = S(2t ) /2 .  Hence 

c,( t )  = o (1 )  cos ~ ( t  + s (1 ) ) ,  <(t) : a - ( t )  cos ~,(:, + s ( l ) ) ,  

where G(1) is analytic in { t  : I11 > ~}, a( t )c ' ( t )  = 1 and l im~_~(G(1) - 1) = 0. 
Therefore, G( t )  = 1 + icl/t  + c2/t 2 +. . .  with some real number eL. Now we set A~(1) = 
(c,(t)  + <(1)) /2 ,  v~(t) = (c~(t) - c*~(t))/2i and and since A~(A) _< 1 for t 6 IR, we obtain 

A~(I )  G(A) + G'(A) C? 
- 2 cos r + S( t ) )  = (1 - ~ + . . . )  cos r , ( t  + S( t ) )  (3.6) 

v~(1) - c(~) - ~"(~) 2{ cos ~(~ + s(,\)) : (+...) cos ~(~ + s(1)) (3.7) 
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with a real C1. 
Assume now tha t  c<(A) # c2(A). In this case there exists a non-real  zero i, = z + i y ,  y # O, 

of c~(A). It follows from the representa t ion  

A~ A 
cr = const  11 

. . . . .  n + 1 / 2  

tha t  for any real  y '  # 0, IY'I < lYl, the ffmction c(A) = c~(a)(a - v ' ) t a  - v ) - ~ , v  = x + / y ' ,  
satisfies t~(a)l < 1, l~(,\)l _< Ir and hence 1 - c(A)c~(A) _> 1 - c,_(A)c'~'(A) > 0 for real A's. 
We conclude t ha t  there  exists  an ent i re  funct ion s(A) such tha t  c(A)c'(A) + s(A)s*(A) =_ 1, 
and for all sufficiently small  values of b - Y'[ we have I [c -  eoll~,w <_ Ke,  Ils - so}lvw _< Ke. 
Moreover,  since ~?(u - u') = 0, we have 

_ /c 
c(A) = G(A) - "'~ cos~,(A + S ( t ) )  = (1 + -2 + ' "  .) cos,~(A + S(1) )  

where c = cl + 2-~(u - u'), and with a p roper  choice of u' we can assume tha t  c r 0. S imi lar  
to (3.6) and (3.7), we set 

~(A) = c(A) + c-(A) c 2 
.) - (1 - ~77 + . . . ) cos  ~,(A + S(A)) (3.S) 

~(A) = c(A) - c'(A) c 
~i : (7( + ) cos ~,(,\ + s (A) ) ,  (3.9) 

and for real A's we obta in  

0 _< ~ - A ~ ( A ) -  vffA) : ~ - 1 - i V  + . . .  cos ~ ~,(A + S ( A ) ) -  V + '  c~ ~(A + s (A) )  

which implies  C 2 k c 2 > 0. 
The  pa i r  of funct ions c(A) and s ( i )  defines, according to Theorem 1.3, the opera to r  

L E 19_ with the Hill d i scr iminant  A(A).  Since [c(A)l < 1 for real  l ' s ,  we have ]A(A)j < 1 
for such A's, which means  tha t  all possible  spines in the spec t rum of L do not degenerate .  

4. P r o o f  o f  T h e o r e m  1.2 

The  most  s imple  is to i)rove Theorem 1.2 if the function co(A) =- c(A) in (1.5) is real 
for real A's. In this  case Ao(A) = co(A) = Co(A),Vo(A ) = 0, and Ag(A) + so(A)s;() , )  -= 1. 
Given a fixed sufficiently smal l  ~ > 0, we choose sufficiently big integer M > 0 to sat isfy 

^ o o  inequality (3.1) where r' = { y~.o} . . . .  is the sequence of cr i t ical  values of Ao(A), and 
using Theorem 2.1 find a function A~ C "H, HA~ - Aol]v w < Ke,  with all cr i t ical  values 
equal  to :t:1 except  finitely many  of them.  Using Remark  1 to Theorem 2.1 we obta in  
represen ta t ion  1 - A~(A) = sr with [Is~ - s0]lrw < Ke.  According  to Theorem 1.3, 
the  pa i r  c~(A), s~(A) with c~(A) = At(A) generates  the opera to r  L, ff 1)_ with the f in i te-band 
spec t rum and po ten t i a l  m a t r i x  Q~(z) sat isfying I[Q0 - Q~IIL~.~(0.~.) -< Kc.  

Let now co( l )  :/; c;(A). Then  there  exists  a t  least  one non-real  zero of co(A) and according 
to Sec. 3 we can assume tha t  for an ini t ia l  opera to r  Lo 6 l )_  the  represen ta t ions  

ao(A) -- c0(A) + r C ~ 
2 - (i - ~V + ) cos ~(A + s(A)) (4.1) 
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~ o ( A )  - c o ( A )  - c a ( A )  c 
2i - (~  + "  ') cos 7r(A + S(A)) (4.2) 

are valid with C 2 > c 2 > 0. In addition, ]Ao(A)J < 1 for real A's. 
In what follows we will use the following proposition. 
L e m m a  4.1. Let v(A) be an entire function of exponential type ~r, bounded on the real 

line, whose zeros {u~,0}~=_~ are real, ezcept finitely many of th, ern, and satisfy ,'elation 
t)'=,0 - n -  1/21j,~ < oc. and let {#.,o}~=-o~ be a sequence of numbers which are real, except 
finitely ,zany of them, and satisfy Ibm,0 - nil,= < ~o. Denote by Mo a number such that 

Z I# . , 0 -  ~1 ~ < 10 -~ 
M>Mo 

and define 

vM(A) = ~(A) [I ~ -- A 
Jnl>M Un,O -- "\' 

where M is an integer, M > M0, the numbers #~ are real, and 

Z I ~  - ~,01 ~ < 10 -6. 
M>Mo 

Then [vM(A)J < If  for all real A 's with If  not depending either on M or the set {#~}M_>M. 
P r o o f .  Without  loss of generality we can assume that  M0 is sufficiently large integer 

and #~ < u~,o < #~+1, u-~,o < tz-~ < z,-,~+l,o;n > Mo. If U is the 10-a-neighborhood of the 
zero set of v(A), then there exists a constant K > 0 such that  

Since J#, - nJ < 2 x 10 -3, the lines {A : J-~A] = M + 1/4} do not intersect U, and since 
I#- - A] < Jy~,o - AI for {A: INAI = M + 1/4} and JnJ > M, we obtain 

Iv~l(A)l < Ke ~)'~l 1-I # ~ -  A < I(e<aal 
J,~I>M U~,o -- A -- 

By the Phragmen-Lindelgf Theorem we obtain 

tv.,v(.\)l _< Ke ~f~N, 

Denote sM(A) the entire function 

n - A  # ~ - A  
SM(A) = A I"I l-I 

o<jnj_<M n IN>M n 

J~A I = M + 1 / 4 .  

I~?AI _< M + i/4. 

_ _  ~ l Oo Since I#n - nJ < 9 x 10 -a there exists a constant K not depending on either M 01' {t.~} . . . .  
such that  

K - ] e ' f l ~ l  _ < JsM(,\)J < Ke  'q~AI, A ~ V, 

where V is the 10-2-neighborhood of the zero set of SM(A). Now we have IvM(a)s,#(a)l < 
I~', I~a l  = M + 1/4. Since v~1(A)s~)(A) is analytic and bounded in {A: I~AI _> M + 1/4}, 
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the same Phragmen-L inde l6 f  Theorem shows tha t  e s t ima te  IvM(A)I < K is valid for all real 
A's, which proves L e m m a  4.1. 

As soon as an opera to r  Lo ff D_ is given, the functions Ao(A), Vo(,\) and So(A) are fixed, 
as well as some numbers  are fixed re la ted  to them.  Namely,  if A is real, then  Ao(A) = 
cos ATr + o(1), Ag(A) = -~r ~ cos Av, + o(1) as IA[ -* oc, and since the  e l emen ta ry  es t ima tes  
I sin A,~I _> ~ 2 0 - ~ ( ~ -  ~2-~20-~) ,  20 -~ _< IAI _< 2-'; I cos A~,I_ ( ~ -  ~'2-110-~), IAI _< 10 -1 
are valid, there  exists  No such tha t  for I,~1 >-- No the  es t ima tes  

1 - AgO\ ) _> ~ 2 0 - ~ ( 1  - ~ 2 0 - ~ ) ,  2 -1 _ I A -  nl -> 20-1, ITtl > ]Vo, (4.3) 

lAg(A)[ _> ~2(1 - 3v, 22-210-~),  I A -  n t < 10 -~, ]n] > No, (4.4) 

are fulfilled. Fur the rmore ,  if {#~,o}~_ ~ is the sequence of all cri t icaI points  of Ao(A), 
and • oo Ao2(A), then we can assume I#~,o nl < {#~,o} . . . .  is the  sequence of all zeros of 1 - 
10-4, I~ ,o -~ l  < 10 -~, I,zl > No. In addi t ion ,  fixed are all numbers  K from Theorem 2.1 with 
uo(A) = Ao(A), the number  K from (2.44) and (2.46), the numbers  Mo and A" f rom L e m m a  
4.1 with v(A) = vo(A), {~,~,o}~=_~ being the zero sequence of Vo(A) and { ~ , o } , % _ ~  being the 
sequence of cr i t ical  points  of 1 -  A~(A). The  first inequal i ty  in (2.5) implies  [A~(A) -  Ao(,\)[ < 
I (e  and (4.2) implies  [(A + i)vo(A)[ _< A" for all real ,Vs. Of course we can assume tha t  all 
these K~s are equal  and No > 102~rK. 

From now on we fix sufficiently small  r > 0 such tha t  r~'Ke < 10 - ' i ,  r > Mo + No, the 
inequal i t ies  (2.5) are fnlfilled with uo(3,) = Ao(A), and using (4.1) and (4.2) find an integer  
rn. > r + 103K such tha t  

r a i n  (1 - P'o~(A)) > c~-(1 - ~) l,~l > .~ ,  ( 4 .5 )  
~.\=o, la -n l< l / ' 2  - -  7~ ~ ' - -  

while 

max ~(A) < c~(l + ~______i) r'~l > '~- (4.6) 
~a=o.la-~t_<l/2 - n 2 ' - 

If necessary, we can increase rn in such a way tha t  1 - Ao2(,\) takes its min imal  value on the 
interval  I~ = {A: IA - n t < 1/2}, lnl > m, at  a point  X~.o with  tXT~.o - nl < 10 -1. F ina l ly  we 
assume 

p,,o(A)l ~ d,~ < ~. (4.7) 
jar 

With  m being fixed, we choose an a rb i t r a ry  integer M > e - l rn  sat isfying (3.1), define 
,.y c ~  {,~} . . . .  according to (2.45) and use Theorem 2.1 with Uo(A) = Ao(A) to ob ta in  the 

funct ion A~ E ~ ,  tlAr - Ao[l~w _< I(c ,  with all cri t ical  values q'~ = ( - 1 )  ~, In I > M. Let us 
now const ruct  a funct ion re(A), real for real A's, sat isfying live - Vo[[rw _</(e  and such tha t  

1-A~2(A)-v~(A)_>O, ~A--0 .  (4.8) 

To this end,  let us set w~(A) = (1 - 2r Since '-Xo2(A) < 1 and 1 - Ao2(A) - vo(A ) _> 0 
for all real A's, the s t rong inequal i ty  1 - A~(A) - w[(A) > 0 holds for all e > 0. As M ---* + ~  
the sequence of funct ions A~(A) converges to Ao(A) uni formly on compac t  sets, and we fix 
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sufficiently large M for the  inequal i ty  1 - A2(A) - w~(A) > 0 to be valid for A e [ - r n ,  rn]. 
Let  us prove the same inequal i ty  for X E [ - M  - 1 + 10 -1, M + 1 - 10-1]. 

Assume tha t  [A - n I = 10 -3,  I,~l > M.  Since Ke <_ 10 -4, then  according to R e m a r k  
2 to Theorem 2.1 we have (in nota t ions  of Sec.2) I~-(~)1 _< 10 -~. Hence i r  - n I _< 
la - nl + I~-(a)l  _< 10 -2, and if now iX - nl = 10 -~, then  ), E s  We conclude tha t  the  set 

r  U { A : I A - n I < 1 0 - ' }  (4.9) 
Irq> M 

is conta ined  inside the  set  &- .  According  to (2.38), if k belongs to this  set,  t hen  A<(A) = 
A 0 ( f L ( A ) ) ,  which impl ies  tha t  1 - A~(A) takes its min ima l  value 1 - Ao2(X~,0) on an interval  
I ~ , m  _< /hi _< M at i ts inner  point  X.~ = r  and its m in ima l  value on {A : 10 -~ _< 
A + M + I  _< 2 -~} and {X: - 2  -~ _< A - M - 1  _< - 1 0  -~} i s n o t  l e s s t h a n  1-A20(X_~,I_~,0) and 
1 2 - Ao(XM+~>o), respect ively.  I t  follows now from (4.5) tha t  if e i ther  A E I~, m _< in] _< M, 
or X E [ - M  - 1 + 10 -~, - i l l  - 2 -~] N I -M-~  or X E [M + 2 -~, M + 1 - 10 -~} n /M+I, 
then  1 - A2(A) >_ C2(1 - e)n -2. We compare  this  e s t ima te  to (4.6) and since C~(1 - e) _> 
c2(1 + e)(1 - 2e) 2, we find tha t  the inequal i ty  

1 - A~(A) - w~(A) > 0, A E [ - M -  1 +  1 0 - ~ , M  + 1 - 10-~], (4.10) 

is valid. 

As a m a t t e r  of fact ,  this  inequal i ty  cannot  hold for all 3,'s wi th  IXI _> M as reques ted  by 
(4.8). Indeed,  let  :~ ~ u ~o {#~ } . . . .  be the  zero sequence of 1 - A~2(,\), and let again { ,,o} . . . .  be 
the zero sequence of bo th  v0(X) and w~(X). According  to (2.48), tt~ + = #~,  Inl > M ,  and it 
follows f rom (3.8) and (3.9) t ha t  ## = n + o(1), v.0 = n + 1/2 + o(1). Hence 

u_~,0 < #-+~+1 = #-~, < u-~<,0, v~-l,0 < #+ = #~ < v.,0, n > M, 

and 1 - A2(A) = 0 at  points  close to k = n, while zeros of w<(A) are close to k = n 4- 1/2. 
Therefore  (4.10) cannot  be t rue  for all sufficiently big real k's.  

To ob ta in  (4.8) we in t roduce  ins tead  of w<(A) the  function 

A - # +  (4.11) ,'<(;') = ~<'<(;~) II  A 
lnl>M -- ~/,,o 

In other  words,  to define v~(A), we move all zeros of w~(A) loca ted  in {A : IA[ > M} along 
the real axis in the  d i rec t ion  of X = 0 unt i l  they  mee t  their  next  neighbor  f rom the  zero set 
of 1 - A2(A). Let us now prove tha t  (4.8) holds. F rom now on we assume tha t  3, is real.  

I f - M - I < A < M + I  a n d l n i _ > M + l ,  t h e n l A - # + f l A - v  ol -~ < l ,  and for such ), 
we have Iv<(a)l _< Iw<(a)l. Using (4.10) we obta in  

1 - -  A ~ ( / ~ )  - v2 ( /~ )  ~_~ 1 - -  / ~ ( / ~ )  - 1D2(/~) ~__ 0,  /~ ~ [-a,l - 1 -t- 10  - 1 ,  M --t- ] - 1 0 - 1 1 ,  

For In[ > M + 1 we have 1 2 + 2 + A < ( , % ) =  O,A<(#{)A'<(#{)  �9 + ' + - - v<(vn)  = = v < ( v n > < ( v , , ) =  
0, (1  2 + ,, - A<(#n) )  = - 9 A J , , + ~ A " r  Since #+ r  we find using (2.44) t ha t  tlt + \ r ~ T z  l C k r  "n. l "  ~ 

nl -< I#+,o - #+l-I- I#~+o - n I _< ICe + 10 -4 _< 10 -a  which pe rmi t s  us to use (4.4) wi th  A = y+.  
By v i r tue  of the  S. Berns te in  theorem [7] we have IA'~'(A) - =a (~) l  _< _< 10-~, and 



346 Tkachenko 

,',, + , , ' ;  + ; , ,  + , , v  + using (4.4) we obtain the est imate iA<(v..)[ >_ IAo(V.)I - IA{@. )  - Ao(f , . ) l  >- r'2( 1 - 
3~r72-110-2),lnl > m,. On the other hand, by the same S. Bernstein theorem we have 
I(1 - A~(A))'" I < 8rc 3 for all real ,Vs. Using the Taylor formula, we obtain 

dt 1 A~(I) + " + i f - = - A < ( v . ) A ~ ( v . , ~ ) ( A - / ) 2 + [  ( 1 - A 2 ( 0 ) ' " ( . \ - 0  -~ kS-~r,  21.,k-#+]2 
s,+ 

f i - # ~ t _ <  10-', bt > m. 

Since the function (A + i)wr and the sequences {~',~,o},~176 {V,,,o}~ . . . . . .  and {V~}+ . . . .  oo 
(the latter being in the capacity of {V~}~%-oo) satisfy conditions of Lemma 4.1, and since 
v<(.\) is defined by (4.11), we have [(A + i),<(,~)1 -< E .  Hence I~;'(,\)1 < 4~'~SC(lal + 1) < for 
real A's and 

(2Kr, 2) 2 
A<(a), I,~ ,<1-< lO <, bl > ,m ,~(A)_< ~-7 l a -s41~-<~h~ ~-<1-  2 

I f  IA - nt < 20 < and  1< > M ,  t h e n  IA - v , t l  _< 1 ,~ - "~1 + i v  + - n i  { 20 < + 2 • 10 -3  < 10 < , 
and according to the previous inequality we obtain ] - A~(A) - v2(A) > O. On the other 
hand. if 2 -~ > [1 - n I > 20 -~, I,zt > M: then according to (4.3) we have 1 - ~,<2(A) > 
l1 - A 2 ( A ) ] -  IA2(,~) - '-X02(,\)l > g290-2(1 - g220-2) - 2Ke > 522-220 -2 > 10 -4, tVe(A)i 2 

K2(I,~I + 1) -2 < S ? m  -2 _< 10 -~ _< s - _~(,\) ,  which completes the proof of (4.8) for all 
A E N .  

Let us now prove a.n estimate 

lit'< - ~'oll~'w -< S(e .  (4 .19-)  

It is sufficient to prove an inequality Nv< - w < ] l ~ ,  < Ke. For X C [ - r e , m ]  we have 

I(A + i)(v~(A) -w~(A))l = ( A + i ) w < ( l ) ( 1 - e x P l , q > M  ~ l n ( l + V ~ ' ~  ' t - - ' 7 ~ , ] ]  

Since, for such ,Vs and b l  > 3J, 

, ~ , o _ - ~  < 
A - -  W n .  0 - -  

and since m M  -1 < e, m > e -2. we  obtain 

2 1 < 
M - m 4 '  

+f n,O - -  ,U ,n  

Inl>M 

( t t ' Y ' ~ ' ~  

I~I>M bl>M 
where K does not depend oil kJ. Therefore 

+ 
n2 ) 

_< Kc, (4.13) 
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To estimate the "tails" of integrals we use (4.7) and the inequality Ivr _< K]~ + il -~ and 
obtain 

f Ivr ~'d~<-2 / Iv~(A)l 2 d ~ + 2  / Ivo(A)I2dA<2(K2m-l+ee) <-4K=e2 
IXl_>.~ IXl_>m lal>_'~ 

which together with (4.13) proves (4.12). 
We define now c~(1) = A~(a)+ ivy(a) and obtain 1 - A ~ ( a ) -  v~(a) = 1 -c~(A)c[(,\) >_ O. 

Since Ila~ - ~011~ _< Ic~ and (4.12) is fulfilled, we have IIc~ - ~oll~w _< Ice, and there exists 
a factorization 1 - c~(a)c*~(a) = s~(A)s*~(a) with llsr - SoiI~,w _< Ix'e. The pair of functions 
c~(),),s~()~) generates the operator L~ E 7)_ with the finite-band spectrum and potential 
matrix Qo(z) satisfying IIQ~ - Qollc~,~<o,~l -< Ice, 
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