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Integral Equations
and Operator Theory

NON-SELFADJOINT PERIODIC DIRAC OPERATORS WITH
FINITE-BAND SPECTRA

V.Tkachenko !

We prove that skew-symmetric potential matrices generating Dirac operators with finite-
band spectra are dense in the space of all skew-symmetric matrices.

1. Statement of the problem and result

We consider Dirac operators

L=J%+Q(m), z€R, (1.1)

where J and Q(z) are 2 x 2 matrices, J = const, with
JP=—1, JQ(z)+Q(2)J =0, Qz+7)=Q(z), (1.2)

I being the unit matrix. For 2-vectors F = col{fi, o} € €* and 2 x 2 matrix W, let
1F]l = (1A +1£2*)* and
W = sup [|[WF].
IIFlI<1

Denote by £3(0,z) and £},(0, ), respectively, the spaces of 2-coordinate vector functions
F(t) = col{f1(t), f2(t)} and 2 x 2 matrix functions W(¢) with finite norms

T 1/2 z
1Flleg0m = ( JIFor dt) o IWlleg 00 = ( [iwe dt)

We denote by D the class of all operators (1.1) satisfying (1.2) and such that Q € £3,(0, 7).
Let U(z, A) be the solution of the Cauchy problem

{ JU'(z, Ndz + Q(z)U(z, N) = AU(z, \),

1/2

(1.3)
U0,x) =1,

and let U(A) = U(r, A) be the monodromy matrix of operator [, € D. It is well known that
the spectrum o (L) of L in the space L*(IR) is described by the relation

o(L)={ e C: A € [-1,1]}
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where A(A) = 1/2 Tr U(A) is the Hill discriminant of L. Since A()) is an entire function,
the spectrum is a union of analytic arcs with end-points at X’s such that A(X) = +1 and
which intersect at A’s such that A(X) € [~1,1], A’(A) = 0.

Let Dy be the subclass of D formed by all operators with Hermitian symmetric potential
matrices Q(z) = Q"(x). Every operator L from D, is selfadjoint in L*(IR) and its spectrum
is real. Moreover, it is well known [1] that the spectrum has a band structure:

oo

o(ly= U [t

n=—0oo

where
+ - + -
'Slun—1<un S/‘Ln</"n+1<“'1

and the Hill discriminant A()) is a monotonic function on intervals [u}, x.,], which takes on
values +1 at their end-points. The adjacent intervals (p;, p;}) are called spectral gaps, and if
they collapse, except finitely many of them, then the spectrum is finite-band: it is composed
of finite number of intervals and two infinite rays. Using the method due to Marchenko and
Ostrovskii (2], Misyura (3] proved that potential matrices generating Hill operators from Dy
with finite-band spectra are dense in the subspace of all potential matrices generating D,
with respect to the norm of £3,(0, ).

The aim of the present paper is to prove a density theorem for the subclass D_ of D
formed by all operators with skew-symmetric potential matrices, i.-e., matrices satisfying

Qlz) = —Q*(a). (L4)

Dirac operators of class D_ became a subject of special interest (cf. 4], [5], [6]) since Zaharov
and Shabat [8] found that they are L parts of the Lax L — A pairs for non-linear Schrédinger
equation in the focusing case.

Since the spectrum of a general non-selfadjoint Dirac operator does not lie on a line, the
notion of finite-band spectrum has no straight-forward geometric meaning, and to clarify it
we first state a proposition from [9] describing all monodromy matrices of operators belonging
to D_. In what follows we choose a basis in €2 such that

BN

Theorem 1.1. For a 2 x 2- matriz U()) to be the monodromy matriz of some operator
L € D_ 1t s necessary and sufficient that it has the form

o ] »

T =1 e

[
*
—_
S
N

I

o
—~

>

¥

where ¢()\) and s()\) are entire functions of exponential type 7, c*(A) = ¢(A)
and the following conditions are satisfied:
i) the representations

e(Ay =cos AT+ f(X), s(A) =sinAx + g(A) (1.6)
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are valid with f, g € PW, where PW, is the space of all entire functions of exponential
type not exceeding 7, endowed with the norm

I/ lew = 11 fll 2 oo

it) the identity holds
c(A)e*(A) + s(A)s™(A) = I; (1.7)

wi) for each z € [0, 7], the integral equations

KT(t) +fKT(s)F(s,t)ds =0, 0<t<q,
0

and .
KT()+ [ KT()G(s,t)ds =0, 0<t<a,
0

with kernels

Flz,ty=) {res ( C*(/\) Yz, /\)YT(t,/\)) - lY(:L‘, NG k)},
F =0 A T
and
Gz, t)=~%" {res (S‘()‘)Z(m, Nz, /\)) - lZ(z, k+ E)ZT(t,k + l)} ,
7 U o e(A) n 2 2
and X(t) = col{cos At,sin M}, Z(1) = col{—sin A¢,cos At}, have only the trivial solution in
L2(0, ).

It follows from (1.7) that |c(A)] < 1 and A(X) € [-1,1] for real M's. Therefore, R C o(L),
and it is easy to deduce from Theorem 1.1 that R = ¢(L) if and only if Q(z) = 0. For
Q(z) # 0 the spectrum contains non-real points. These may be either “spines” symmetric
with respect to the real axis and intersecting it at points X such that A'(A) = 0, or finite
analytic arcs not connected with the real axis.

We shall say that L € D_ is an operator with the finite-band spectrum if for all Ms, except
finitely many of them, A’(A) = 0 implies A(A) = #1. According to our definition, I € D_
is an operator with the finite-band spectrum if and only if the part of its spectrum outside
some disc does not contain either spectral spines or isolated arcs, and hence is reduced to
two rays lying on the real axis. Another definition of finite-band spectrum for non-selfadjoint
operators was introduced and investigated by Gesztezy and Weikard (cf., [10}-]13]); in the
present situation both definitions coincide.

Our aim is to prove that the set of potential matrices generating Dirac operators from
D._ with finite-band spectra is dense with respect to the norm of £%,(0,7) in the subspace
of all potential matrices generating D.. More precisely, we prove the following statement.

Theorem 1.2. Given an operator Lo € D with a potential matriz Qo € L3 ,(0,7) and
an arbitrary number € > 0, there erists a matriz Q. € L3,(0,7) generating an operator
L, € D_ with finite-band spectrum and such that ||Qo — Qellcz,0m < €

2,
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Instead of operators L € D, Theorem 1.1 permits us to consider their monodromy
matrices. Given an arbitrary operator Lg € D_ with a potential matrix Qo € £3,(0,7),
we make small perturbations of its monodromy matrix Up(A) to arrive at a matrix U (})
corresponding to some operator L, € D_ with a potential matrix Q. € £3,(0,7) and finite-
band spectrum. To perform these perturbations we use analytic techniques developed in
[14], [15]). The control of difference between potential matrices @, (z) and Qo(z) is based on
the following proposition that is also proved in [9].

Theorem 1.3. 7f L1 and Ly are two operators from class D_ with potential matrices
@1(z) and Q2(z), and if U1(A) and Us()) are their monodromy matrices, respectively, then

1Uy = Uallpw < K|Q1 — Qall ez, 0,m exP(K gl c2(0,m))

where ||Ul|pw is the mazimal PW-norm of elements of U(M), q(t) = max{[|@Q1(2)||, |Q=(t)|}
and K is independent of L;,Q;,i = 1,2.

If, on the other hand, U(X) is an entire matriz function of the form (1.5) with elements
c{A) and s(X) satisfying conditions i)~iit) of Theorem 1.1, then there exzists o number K
such that for each sufficiently small number € > 0 every entire matriz function V() of the
same form (1.5), satisfying i1) and ||U — Vi|pw < € also satisfies conditions 1) and ii1), and
if Qu(z) and Qv(z) are potential matrices of corresponding operators from D_, then

Qu = Qvllzz 0 < KIIU = Vilpw. (1.8)

The main difficulty in proving Theorem 1.2 is that the parametrization of operator L €
D_ given by Theorem 1.1 uses functions c{A} and s(}), while the notion of firite-band
spectrum is related to the Hill discriminant A(X) = (c(A) + ¢*(A))/2. If ¢(A) = ¢*(}), then
A(A) = ¢(A) and, given an arbitrary ¢ > 0, we can construct a function c.(A) = ¢;(})
with all critical values equal to 1, except finitely many of them, with |lc. — cllpw < €
and 1 —cZ(A) > 0,X € R. It follows now that a factorization 1 — ¢?(A) = s.(A)sZ(\) is
possible with ||sc — sfipw < Ke. The pair ¢, (1)), s.(\) generates the Dirac operator L, € D_
with a potential matrix Q.(z) such that ||Q. — @ £2,0m) S Ke. The Hill discriminant of L,
coincides with ¢, () and therefore the spectrum of L, is finite-band.

Unfortunately, the case ¢{A) = ¢*(}} is not generic: it is easy to derive from Theorem 1.3
that the set of matrices corresponding to operators with c(A) # ¢*(A) is open with respect to
the norm of £ ,(0, x) in the space of all matrices generating D_. To prove Theorem 1.2 in a
general case, we construct in Sec. 3 an auxiliary operator L, which is a “spoiled” version of
initial operator Lo. The spectrum of L is not finite-band. Moreover, all its spectral spines
do not degenerate, but since the elements of its monodromy matrix have a well-controlled
asymptotic behavior, we are able to make an additional small perturbation to obtain an
operator with finite-band spectrum.

2. A class of entire functions of exponential type =

Denote by H the class of all entire functions u(A) of exponential type =, which are real
on the real line, satisfy the condition u?(A) < 1 for real values of A, and which may be
represented in the form

u(A) = cos Aw + f(A) (2.1)
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with f € PW, and {f(n)}2_,, € ..
Lemma 2.1.If f € PW,, then
i) for every H > 0 the relation

A--*Og,ll{‘:»"nleH fA) =0
holds;
i) for every sequence {A,}2_ .. with A\, —n = o(1) as |n] — oo and every R > 0 the
condition -
2
2 max, @) <o

is fulfilled. In particular,

oo

> 1) < e

N==00

Proof. Without loss of generality we assume H > 2R and use the well-known “subhar-
monic” arguments (cf., {7]). Since f € PW;,, the functions fi(\) = ™ f(A) belong to the
Hardy spaces in {A =z + iy : £y > 0}, and if Py = {) : |SA| £ H} then

2H
/ |f(z + 1)|*dady < e’”"/ (/ |f(z + i) [P dy +

PQH R

E;,\.o

|f-(z + iy)|? dy) dz < co.

On the other hand, |f(})|? is a subharmonic function in € and hence

27

R
| Ve +in)Pdedy = [ var [ 150+ re)Pdo > m B FO)
0

d(\R) 0

For every A € Py the disc d(A, R) = {1 : |u — A| £ R} is located inside the strip Py and
the integral on the left-hand side here vanishes as |A\| — oo proving part ) of Lemma 2.1.

If ¢t € d(A., R) and |n| is sufficiently big, then d(t, R) C d(A,,2R) C Py and

2 2\ —1 . 2
teg&f}a) [f(OF < (= R7) / If(z + wy)|*dzdy.
d(Am,2R)

Since A, —n = o(1) as |n| — oo, there exists a number N > 0 such that every point of the
strip Pog is covered by not more than N discs d(\,,2R). Therefore

oo

n;w T FOF < N(m?)—lP / [f(x + iy)Pdedy < oo,

which completes the proof of Lemma 2.1.

Lemma 2.2.If s(A) = sinAr + f(A) with f € PW, and {\,}2
of s(A), then {A, —~n}=__ € 2

n==—o0

oo 18 the zero sequence
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Proof. First we note that outside the exceptional set

E= {J d(n,10™)

n o

an estimate |sin Aw| > cexp(n|SAl) is valid with some ¢ > 0. Hence

f0)

sin Aw

-0,

1m
[M—ooAEE

and by the Rouché Theorem zeros A, of s(A) with big |n| are inside E. For every such n we
have

[An = n <{fF(A)] m < Ol

and the statement of Lemma 2.2 follows from Lemma 2.1.

Lemma 2.3.The Hill discriminant of operator L € D_ belongs to class 'H.

Proof. Let L be a Dirac operator from class D_ and let U(A) be its monodromy matrix
(1.5) with elements ¢(A) and s(A) and with properties described in Theorem 1.1. The Hill
discriminant A(A) = (¢(A) + ¢*(A))/2 has the form A(A) = cos Ax + h(A) where h € PW...
If we set v(A) = (c(A) — ¢*(A))/24, then v € PW,, both A())} and v(}) are real for real Xs,
c(A) = A(N) +1v(A), ¢ (A) = A(X) — dv(A), and equation (1.7) yields

ma>
jt]<to-t |sin 7t

1 - A%A) —v3(A) = s(A)s™(A) =0 (f

Lo
Lo
=

implying, in particular, 0 < A%(A) < 1,) € IR.

Let A = {A,}22 __, be the zero set of s(A) with account taken of multiplicities. It follows
from Lemma 2.2 that {)\, —n}22__ € 2. If we substitute A = A, in (2.2) and apply Lemma
2.1 to the function v(A), we will find {1 — AZ(A, )}, = {v¥(A)}2_., € &% Since A(\,)

is asymptotic to (—1)", we have

1- AQ()‘H)

1+ A0 (v(Aa)i* + [Aa = nf*),

[R(A)| < K —((~1)" —cos Apm)| S K

and {h(A,)}_., € 1. According to the Taylor formula

n=-0o
An

B() = h(n) = K(m)( = 0) + [ B()( = 5)ds.

T

Since k' € PW,, Lemma 2.2 yields {A'(n)}3 _., € #*. In addition, 2”(}) is bounded in the
strip Py and hence |A(A,)—R(n)| < [F(n)(An—n)l+ K|\, —n|?. We conclude {A(n)}32.__ €
completing the proof of Lemma 2.3.

In this section we study small deformations of functions belonging to H.

Let M(u) = {pn}22_,, be the sequence of all critical points of u € H, i.e., the sequence of
all solutions of equation u'(A) = 0 with account taken of multiplicities It follows from (2.1)
that —7~'w/(A) = sin Ar + g()) with g € PW, and hence by Lemma 2.2 the representation

Un =1+ by, n=0,=%1,£2,... (2.3)
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is valid with {6,}2__ € 2. It is easy to see, using (2.1), that if m, is the multiplicity of
dn € M(u) as a zero of u{A)—u(p. ), then m,, = 2 for all n's with possible exception of finitely
many of them. Substituting A = n into (2.1) we find {u(n)~(-1)"}22_ = {f(n)}2_, €

and again using the Taylor formula to estimate u(p,) — u(n) we obtain

S (= 1) = u(e) P < oo,

n=—od

Let CR(u) be the sequence of all critical values of u € H, i.e.,
CR(W) = {7n : 1o = ultn), pin € M(u)}.

It is evident that if u, = g, n # k, then 4, = .

Denote by R(u) the subset of all integers such that critical points g, € M(u) with
n € R(u) are real. Since u()) is a real function for real A’s, for each integer n ¢ R(u)
we have i, € M(u) and u(E,) = u(g,). With sets M(u) and R(u) being defined, let
us introduce the set G(u) of sequences {v,}52_., of complex numbers with the following
properties:

-0

1. I pn = ps,n # k, then v, = vi;

(o)

. Ifn € R(u), then Sy, = 0 and 72 < 1;

(%)

. For every n ¢ R(u), there exists p = p(n) such that &, = fpwm),Tn = Ypm) and
p(p(n)) = n.

Theorem 2.1. Given a function ug € H with M{ug) = {pino}32_., and CR(uo) =
{0} .., there exists a number K > 0 such that for every sufficiently small € > 0 and
every sequence of compler numbers {v,}52__ € G(ug) such that

< i 1 — vn.o|2/m")l/2 <e (2.4)

=00

there exists a function u. € H, with the set of critical values CR(ue) = {¥n}52_o, and such
that

o

o 1/2
(/ [uo(A) — ue(M)[? d/\) < Ke, > Juo(n) ~ uc(n)| £ Ke. (2.5)
[=9) n=—

Proof. Theorem itself and its proof are variations on the themes discussed in [14] and
[15]. Here we will describe construction of u()), skip details repeating [14] and [15] and give
arguments requested by the present situation.

Let A be the set of all integers n for which the numbers p, are pairwise different and
Yn # Yno, and containing both n and p(n) if n € R(uo). For n € A, we set 64 = Y — Yn0,
choose a small number p,, p, > 20,, and denote by £, the closed curve

£y = {) : Juo(X) = Ymol = pn}- (2.6)

We assume that ¢, is positively oriented with respect to its interior w}t, and that g, lies
inside w.
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It is evident that for each n € A and sufficiently small € in (2.4) every function v, () =
(£(uo(A) — Yn0))/™ is a shift function in w?. For n € R(ug) A the numbers g, o and
vno are real, the curve £, is symmetric with respect to the real axis and, defining v,(A),
we choose the sign + or — such that v,(A) is real for real A € w}. If, on the other hand,
n € M\R(uo), then S, # 0, F, = ppn) € M(ug), and we can assume that €, = {y(z) and
va(}) = vp(my(X), A € W

With e > 0 sufficiently small, the curves £, do not intersect, and we can assume

K~ pymn < |E,| < Kpl/me
t
- 2] < U ds| < Klt—2|, 1, =€y,

where |¢,] is the length of £, and the integral is taken over the shortest arc linking ¢ and =
in {,. Besides,

(2.7)

inf{|t — z|, t € ln,2z € b,n # m} > K7l n —m]. (2.8)
Here and in what follows K denotes some number determined by the function uo(A) and not
depending on A, n, o,, pn.
The function v,()) is analytic in the domain wj, real for real A € w} and maps w
one-to-one onto the disc d, = {w : |w — 0| < p}/™}. We define in d, the function b, (w)
inverse to v, () and set

—mn 1/mn
an(x)=bn(vn(x)<—1—ﬂ-“’"—“—))) ) Ned,, (2.9)

1 F Tup;?ome(A

+
n

with the sign opposite to that in the definition of v,()) and with positive values of the root
for real X € w.

Since |v,(M)|™ = p, for A € £, and |o,p;?| < 1/2, the function a,(A) is an analytic
diffeomorphism of £, onto itself satisfying the relations

an(X) =an(X), A€l n e R(u), (2.10)

or

an(X) = apmy(A), A €L, n¢ R(u), (2.11)
and, according to (2.9),
(uO(/\) = Tn 0) ~ On
uplan (X)) = — :
ot = T o)~

Using (2.9) and the identity b,(v,(A)) = A, A € £, we find that there exists a constant X
depending only on the function uo(A) and independent of ¢, and p, such that the estimates

lan(A) = Al < Klon|oy/ ™

) +7n,01 )‘ egn-

() =11 < Klow|py e b, (2.12)
laZ(M)] < Kloapg/mn?
hold. If 7,,(A) is the diffeornorphism inverse to a, (), then
[ (A) = Al < I\'Ian[p;l/m"
[T (AN) =1 < Klon|p;? A€ L. (2.13)
(V] £ Kloalpgt/m
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Let us set now

(UO()‘) —Tn O) + Tn
: +mo A€W
U =3 T+ np2(to(A) — qmo) | ™0 « (2.14)
ug(A) A€ w™
where
wT=C\w', wt =clos | ] wt.
neEN

The function U(X) is analytic outside dw™ and takes on the critical value +, at the point
tna € wl. The boundary values

U-(\)= lim U(u), Us(N) = lim U(n), A€ dw?,

s A pEw™ p— A, u€wit

satisfy the relation
Up(am(A)) = U-(X), X € dw}.

To transform U()) in an entire function, let us construct two shift functions ®*(2) and
®~(z) analytic in w* and w™, respectively, satisfying the glueing condition

dt(an(z)) = @7 (2), 2€ dw}. (2.15)
Suppose that these are functions of the form
Ot () =z+¢%(z), O (z)=z+9 (2) (2.16)
where ¥ (z) and 7 (z) are representable by their Cauchy integrals
o*(z) = ;% ‘t’n_( Dar, zeuwt, (2.17)
i 1 ren(t) - .
o (2)—_n§r-_” — dt, zew". (2.18)
It follows from (2.15) and (2.16), that
a(n(2)) — 07 (2) = Ba(2) (2.19)
with
Bn(z) = 2z — an(z). (2.20)

Denote by £2,n € W, the Hilbert space of all complex-valued functions on ¢, with the norm

1/2
1 2
ol = (Tﬂ/ lo(2)] |dt|) ,

where, as above, |£,] is the length of ¢,,, and introduce the Hilbert space IL? of all functional
sequences ¢ = {,on 2) }nenrson € L2, with the norm

joll= (2 ||san||2)m‘

neEN
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According to (2.12), [8.(2)] < Kloy|pl/™"1 < Ko, '™, and if B = {8,(z)}nen, then

1Bl < K (Z |crn|2/mn)l/2.

neN

Using the Plemelj formula, we obtain

1 Pn(t % (t) 55
595+ 5 / St Y ,” dt =0, z €Ly, (2.21)
- keN ©
and since .
Z ! Q'/"(t)dt:O, €W,
neN ‘)7"2 t—
then
)soi( ‘,ﬂl/p” - mf’°’“ dt=0, 2, (2.22)
" keN 2

Here and in what follows the prime means that the n-th term is omitted from the sum. We
replace z in (2.22) by a,(z), set t = ay(s) for the k-th integrand, add the resulting identity
to (2.21) and use (2.19) to find that &~ = {07 (2)}nen is @ solutlon of equation

2 —/Kn(z,t)c,an(t)dt—IR[@]n(z)=7n(z), z el (2.23)

Here the kernel K,(z,t) and the operator IR are defined by the formulas

N al () L
Ku(2,t) = 5~ (an(t) —anlz) t-z

IR[%(Z):Z'—L-/(Q%(,QZ(“ _tiz> or(t)dt, z € 4y, (2.25)

kew ‘27rz£k ) — an(2)
and
olz) = __5n (2) /ﬂ“ dH—/An(z DB dt + PBla(=)  (2.26)
with )
P[Bl(:) = T ———a—(l-—ﬁk(t cel,. (2.27)

e 27777[ ag(t) — an(2)

Let us prove that I' = {7,(2)}aes € IL? and obtain an estimate for ||Tf|. To this end we
prove that there exists a number A determined by the function ug € H such that

< A’lgnfpn,_luﬂﬁn“m 2 €4y, (2'28)

/Kn('z, t)on(t) dt
I

P|| < Ke, (2.29)
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R} < Ke, (2.30)

where

1/2 1/2
o= (T i) = (3 b= o)

neN neN
We start with representing K, (z,¢) in the form

Ko(z,1) = (_/a;;(s)(t—s)ds) ((t_z)/a;(s)ds) , oz tEd,

z

with the integrations over the shortest arc of ¢, joining z and ¢. Relations (2.7) and (2.12)
yield the estimate

L Ko t)dt

proving (2.28). To prove (2.29), let us introduce the operator

< K lflowlp '™ lenlla < Kloalor on]ln

Y 1 @i (t) _ 2
Po[@].(z) = }gf E/m dt, z€ s, @ = {pk(t)}rens € IL%,

and represent it in the form

Po[®]( £)dt + py 2.31
(] g,_n%/w +pa(2), (2:31)

where

L o) =) = (elt) = )
pn(z) - kezj\/ 97 Zk/ (Q’n(Z) — Qk(t))(n _ k) (Pk(t)dt

The sum in (2.31) is the n-th coordinate of the discrete Hilbert transform of the sequence
1

— (t)dt k

57 / ok(t) EN,

A (2.32)
0 k¢ N,

and since [s;| < K [€|||@k|lx, its IL>-norm is bounded by K'¢||®||. To estimate the latter sum
we note that if z € £,, ¢ € &k, then |an(2) — pno| < Kp/™ |on(t) — pro] < K pk/m" which,
being combined with (2.3), yields |a,(z) — n| < Kpl/™ +6,, |ou(t) — k| < Kpj VmE 4 8, with
{6.)% _, € £2. Using (2.8), we obtain

(™ + 8l

lpa(2)] < K(p/™" + 62 Z ulllonlls + K k—nl? [l (2.33)

ren |
Therefore

3 lpall? < K240
ne€N
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proving ||IPo[®]]| € K¢||®||. Applying this estimate to ® = {a}(t)s(t)}res we arrive at
(2.29).

To prove (2.30) we use the representation
R(®]n(z) = Po[¥]u(z) + gu(2)
where ¥ = {(a(t) — 1)@p(t) brea and

/_1_/<an< 2) = (o

( _anz)

)

H»/—\

Qn(z) = (pk(t) dt.

/—\?-

27
keN =TT

Similar to (2.33) we have

-, 1/mn—1 |0k|ﬂl/mk l|€k|H‘r°k||lc
an(z)| S ‘[\ ann " ZwkHIWOkHA + Z _ k]2

keA keEN

which yields (2.30).
For every n € A the Hilbert operator is bounded in space £2 by a constant K not

depending on n, i.e.,
1 nl(t
_./so ) 4
27rz.£ t—z

Combining these estimates with (2.28) and (2. 9) we find that if B = {8,(2)}.en s defined
by (2.20) and T = {7,(2)}nen is defined by (2 24) (2.26) and (2.27), then [T} £ K||B}| <
Ke. Therefore operator IK defined by the relatio

[ln-

/A t)dt + R[®la(z), = € L,

is bounded in IL? and
K| < K(e+ Sgglan}pf). (2.34)

Since the number K in (2.34) does not depend on ¢, and p,, we can assume that
Klozlp;t < 1/4 and choose ¢ in (2.4) so small that Ke < 1/4. Now we are ready to
construct functions ®*(z) and ¢~ (z) satisfying (2.15).

First, given a function ug € H and the number K being fixed as described above, we
define B = {8,(z)}nex by relations (2.20) and T = {7,(2) }nex by (2.24), (2.26) and (2.27),
and according to (2.23) consider the equation

(I-K)®=T. (2.35)

Since ||IK}| < 1/2, this equation has the unique solution ® = {¢,(z)}nex € L* and the
estimate ||®]] < 2||T|| € Ke is valid. Repeating arguments from [15] we prove that the
functions ®*(z) and &~ (z) defined by (2.16) with

o (z) = / 2 cw, (2.36)

ke\f‘““z —Z
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and

=L 5n / tk t, z€wh, G(t) = wr(me(t) + Be(me(t),  (2.37)

keEN

are the shift functions in w™ and w*, respectively, satisfying (2.15).
Denote by @~ and &F the images of w™ and w* with respect to ®~(z) and ®+(z), and
by Q7 (z) and Q¥ (z) the inverse maps. Let

w()) = { E&gg; iii; (2.38)

where U(}) is defined by (2.14). If A € 857, then there exists n € M such that z = Q7 ()) €
Odw}t, and
Jii dp)=U(z) = uo(2).
) = U(:) = w2
On the other hand, according to (2.15), @+ (A) = a,(2). Looking now at A as a point of O+
and using (2.14) we find
li (p) =Ulay = ug(z).
) = Ulea(2) = w2
Therefore uc(}) is an entire function. Let us prove that it satisfies conditions (2.5).
To this end we choose a > 2 such that the set w™ is located inside the strip {) : [ImA] <
a}, and find for z =t +is, |s| > 2a, t € R, an entire n such that n —1/2 <t < n+4+1/2. If
n € N, we write (2.36) in the form

= L [ea(t) =/ Sk . 9
2 et ) Dl s R ) (2.39)
where s; is defined by (2.32) and
(A —n)
" t) dt.
#nl2) kEN 97”/ ) P (t)

If n ¢ N, the integral in (2.39) is redundant. Since |si| < K|¢||¢x||x, and the discrete
Hilbert transform is a bounded operator in #2, we have

5 Sk
Z k—n

keN

2
o0

2

n=—0co

SK) |slP <K sup Ll @)* < Kel|o|f”.
kEN

Since |Sz| = |s| > 2a, then [t —z| > 1 for ¢t € ¢, and |t — 2| > K|k — n| for t € £,k # n.
Therefore

_I_/Wn(t) dt
‘27ri£ t—z

and we conclude that

1 (1] + [ Dl

S Kllalllnlln,  [9n(z)] < K Z [k = nf2 ?

keN

(2.40)

o™ (2)| < xny n—1/2<R2<n+1/2, |S2z| > 2a, (2.41)
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with [{xn}s2_ 1z < Kef|@]]. Since ||@] < 2||T')] € K¢, we obtain

max l7(5)] € Kefo] < K26 (2.42)

and
/[p-(t +2ai)[Pdt < K20 < K2

For sufficiently small € we have K¢ < 1 < a, and hence {z : |Imz| > 3a} C &~. It means
that for z =t +4¢s, s =3a, t € [n — 1/2, n 4 1/2], there exists A\ = 7 + ¢4, [6] > 2a, such
that z = ®=()\) = A + ¢»=(A), and hence A = Q7 (z). Tt follows from (2.42) that ¢~ (A)] <1
and hence RA € [n — 3/2, n+ 3/2]. It permits us to use (2.41) to obtain the estimates
[27(2) — 2] = A = @7 (A)] = le™(M)] < Xn-1 4 Xn + Xnt1 and

Jue(2)] = [uo(@ ()] < Cexp I ()] < Cexpzl.

Therefore u.(z) is an entire function with exponential type not exceeding =, and

/]uE t+ 3ai) — ug(t + 3ai)[*dt = /!uo “(t 4 3ai)) — ug(t + 3ai)|*dt <

<K max Jug(s)® D0 [Xn-1 + X+ Xnn1[ S K@) < K76

|sj<4a =
n=-o00

which proves the first estimate in (2.5).

To prove the second estimate in (2. 5). we assume that the number e is small enough for
the 2pY/™ - neighborhoods of domains w},n € A7, do not intersect. For n € A let us choose
an arbitrary number A, € w™ such that dlst()\n,wn) = pl/mn. I n ¢ N, weset Ay = o
and note that ||[{\, ~n}2_ e < K, and |\, —¢| 2 K|k —nl,t € &, n # k. With A, being
fixed, we set z, = ®~(X,) and, according to (2.38), obtain u.(z,) = ue(Q (2,)) = uo(An).
Since the function ug(A) belongs to class H, it has the form ug(A) = cosmA + fo(A), fo €
PW,, {fo(n)}=_ € €. Hence u(z,) = cos®h, + fo(An) and ue(zy) — uol2,) = uo(An) =
uo(z,) = (coswA, — cos mz,) + (fo(An) — fo(z,)) which yields an estimate

nol<a

oen) = )] € (1 = 2l =l =4 1y =l i (750
Instead of the first inequality in (2.40) now we have \

L[ ooa(t)
271 t- d
K

n

t < K1 lor ™ gnll < Klipaln.

Using again (2.36) and the second inequality from (2.40) which is valid for z = A, we
obtain [A, — 2] = |0 (M) € Kl|l¢nlln + xnon € N, and [Ay — 22| = Xn,n € A with
H{xn )} _oollie < Ke. These inequalities together with Lemma 2.1 applied to the function
3 € PW, imply an estimate

i Jue(zn) — vo(zn)| < Ke. (2.43)

n=—0o0
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Besides, due to the choice of A,, we have |[{z, ~n}32__ ||z < K with K not depending on e.
The second inequality (2.5) now follows Lemma 2.1 applied to ul()) — ug(A) and from (2.43).
We arrive at the representation u.(A) = cos A+ fe(A), fo(A) = fo(A) + (uc(X) — ug(X)) which
shows that u. € H.

Let us now check that u.(A) takes on real values for real X’s.

First we note that if n € R{ue)NAN and A € £,, then (2.10) holds and according to
(2.24) we have N, (z,t) = —K,(2,1). On the other hand, if n € AN\R(uo) and z,t €
£y, then 2,1 € Ly, an(}) = ap(n)(/_\), and K,(z,t) = —Ky»)(Z,7). Since p(p(n)) = n
and the complex conjugation inverts the orientation on £,, we find R[®],(z) = R[®*].(Z),
IP[®].(z) = IP[®"]4(Z) where &*(2) = &(Z), and R and P are defined by (2.25) and (2.27),
respectively. Since 8*(z) = f(z), we obtain from (2.26) v:(z) = 7,(2), and hence the unique
solution @ of (2.35) has the property ®* = @. It follows now from (2.36) and (2.37) that
(®%(2))" = @*(2),(®7(z))* = ®(z), which means that ®¥(z) and ®~(z) are real for real
X’s. Therefore u () is also real for real A's.

Let fin be a critical point of u.(A). According to (2.14) and (2.38), either up(Q~(ji,)) =0
or up(Q*(jin)) = 0, depending on either fi, € &~ or fi, € &, respectively. In the former
case Ue(fin) = Uo(pn0) = Yn,0, While in the latter case u () = Yno + &n = 7, which proves
that the sequence CR(u) of critical values of u,(}A) coincides with {y,}22_..

According to our previous assumption, domains w;} are disjoint. In particular, it implies
that if n ¢ R(uo), 1.e., fin o is not real, then dist(w},R) > 0. There exists only finite number
of such pno and for all of them and all sufficiently small € > 0 we have S(®*(p,0)) # 0.
"Therefore, if fi, is a real critical point of u.(A), then n € R(ug), fin = ®F(itn ) With real Hn0,
and |uc(fin)| = |va| < 1. Hence u?(A) < 1 for A € IR which completes the proof of Theorem
2.1.

Remark 1. Let {uFo}_ and {uF}2__ be the zero sequences of 1 — u4()) and
1 —u?()), respectively. Later, in the proof of Theorem 1.2, we will need an estimate

Huimo = b h2ceolle < Ke (2.44)

for a particular case of the sequence {7,}5° ___ with
p q r=—00

— Tn0 |Tll S M 945
Yo = { (=1) |n| > M. (2.45)

To prove it we note that u = @~ (uZ,) if n ¢ N, and @ = u = pn = O (pno) if n € N,
Since |pEy = pinol? < K|(=1)" = 4n0l, Wwe have for n € A an estimate

= ol <l = ol + lno = o] < K(l0* (a0)] + lo]).

For t € {y,k ¢ NV, we have |t — pino| > K|k — n| and, similar to (2.41), o™ (pZ,)| < 7, for
n ¢ N, and [¢* (uno)| < K\l¢alln + 7 for n € N with [[{m}22__|lr < Ke. Tt follows from
(2.13), (2.20) and (2.37)
) 1/2
(S o) <

which yields (2.44).
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Remark 2. Since p,0 —n — 0 as |n| — oo, for all sufficiently large M and |n| > M
every disc {) : |\ — n| <107} contains domain w; . If for such n we have |A — n| = 1073,
then dist(), £,) > 9 x 107, and similar to (2.42) an estimate holds

le~ (M £ Key  [A=n[=10"" (2.46)

3. An auxiliary operator

Let an operator Ly € D_ be given, and let co(A) = cos At + fo(A) and so(A) = sin Ax +
go(}) be the entries of its monodromy matrix. According to (1.7), the identity co(A)cg(A) +
so(A)s5(A) = 1 holds. If 8o(A) = co(A)eg(A), and ug(A) = 265(A/2) — 1, then 0 < G(N) <
1, lu(A)] <1 for real X’s and uo{A) = cos Az + Fo(A) where

Fo(A) = 2(fo(A/2) + f5(A/2)) cos Ax[2 + 2fo(A/2) f5 (A/2).

The function p(A) takes on real values at real A’s, and it follows from part ) of Theorem
1.1 that Fy € PW,. For every integer n we have

Fo(2n +1) = 2fo(n + 1/Df5(n+1/2), Fo(2n) = 2(=1)"(faln) + J5 (1)) + 2fa(n) f5 ().

According to Lemma 2.3, Ag(A) = (co(A)+¢5(A))/2 € H and therefore { fo(n)+f5(n)}32_., €
£, In addition, Lemma 2.1 applied to the function fo(A/2) shows that {fo(n + 1/2)f5(n +
1/2)}2 . € fl {folr/2) fr(nf2)}_.. € {* and we conclude that uy € M.

Let, as before, CR(uo) = {7n,0}22 ., be the sequence of all critical values of ug(X). Given
a number € > 0, let us choose M = M(e) such that

1/2
(Z I(—l)"—vn,ol) <e (3.1)

In|>M

and define the sequence I' = {7,}52__ € G(uq) by (2.45). According to (3.1), the estimate
(2.4) holds and by Theorem 2.1 there exists a function u, € H for which I is the sequence
of critical values and (2.5) is satisfied.

According to (3.1), all critical points of u()), with possible exception of finitely many
of them, are real and simple, and the corresponding critical values are £1. It means that
R(A) = (wl(A)2(1 — w2(X))™! is a meromorphic function with real values on the real line.
Moreover, (2.1) shows that h(}) is a rational function and limjj—, h(A) = 7% The function

h(A) is continued as a single-valued analytic function outside some disc {A : |A] < r}, and

the representation holds
/ o= a
=7+ Z F, |/\’ >r,

with real numbers ag, k > 1, ]a;| < r*. On the other hand, for real A’s we have

ey

£

1 —u2(A)

€

h() =




Tkachenko 341

and

/ /___clt { 2km + cp + arccos u(A) pok S A < ok

2k + 2)7 4 cp — arccos u(A)  parr1 < A < pogya

where {u,}°2 _ . is the sequence of critical points of u.(}), and arccost € [0,7]. Hence
oG b‘
ue(A) = cosw (A—i—al ln)\+b0+2;1X%> , A>r. (3.2)

Since u (1)) is an entire function, we conclude that a; = 0, and comparing (3.2) to (2.1) we
find cos by = 1. Therefore u(A) = cos 7 (A + S(A)) where S()A) is analytic in {)\ : |A| > r},
real for real A’s, and limy_,, S(A) = 0.

Let us now set
14 u(2X)
2 3

b)) = 1—:“7—(2& (3.3)

8e(\) =

of §.(A) coincides with the set of points at which u.(2A) takes on
is the set of points at which uc(\) takes on the value

The zero set {uf} .
value —1. It means that {22}

~1. -

According to the construction of the function u.(A) and Remark 1 to Theorem 2.1 there
exists a factorization 8.(A) = c.(A)cZ(A) with e(A) = cos A + fo(}) such that
|

o 1/2
(j CO(A)—CE(A)MA) < Ke. (3.4)

Similar arguments yield factorization ¥.(A) = s.(A)s(A) with s.(A) = sinxA + g.(A) such
that

00 1/2
(/ISo(A)—se(A)Isz) < K, (3.5)

oS

and we obtain the matrix U, (A) of the form (1.5) generated by the functions ¢(\) = ¢.(})
and s(A) = s.(A). It follows now

0.00) = cosr(A + S(N), (M) =sin®r(A+S5(0), A >r,
with R()) = S(21)/2. Hence
c(M) =G\ cos (A +S(N),  c(N) = G*(N) cosw(A + S(N)),
where G()) is analytic in {} : [\ > r}, G(A)G*()) = | and lim_e(G()) = 1) = O.

Therefore, G(A) = 1 + ic1/A + c3/A* + ... with some real number ¢;. Now we set A ()) =
(ce(N) + (M) /2,v(A) = (ce(A) — ¢2(A))/2¢ and and since A%(A) <1 for A € IR, we obtain

AN = g(—)‘)——%g*—(/\—)cos T(A+SN)=(1- Z_C)é + .. )cosw(A+ S(A)) (3.6)
w(n) = SR =G s = (24 cos 7(A + S())) (3.7)

2 A
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with a real C.
Assume now that c(A) # ¢(A). In this case there exists a non-real zero v = z+iy,y # 0,
of ¢.{A). It follows from the representation

= const H

n=—0oc¢

)\

that for any real y' # 0, [y'[ < [y|, the function ¢(A) = ¢ (M)A = )X =) v =z + i/,
satisfies c(A)| < 1, |e(M)] < [ec(A)], and hence 1 — ¢(A)c™(A) > 1 —c.(A)c3(A) > 0 for real \'s.
We conclude that there exists an entire function s()) such that ¢(})c (, +s(A)s*(A) = 1,
and for all sufficiently small values of |y — 3’| we have |jc — collpw < K, ||s — sollpw < Re.
Moreover, since (v — v’} = 0, we have
A= ) c
c(A) = G(A) T cos®(A+ S(A)) =1+ < +...)cosw(A+ S(A))

-v
where ¢ = ¢; + 28(» — '), and with a proper clioice of /' we can assume that ¢ # 0. Similar
o0 (3.6) and (3.7), we set

c(A) +c(X) C?

A(/\) = ——'2——— = (1 - 2—/\—2 + .. ) cOS F(,\ + S(/\)) (38)

Ay —c (A
o()) = i-)—iz-c(ﬁ) = (§ 4 Jeos (A4 S(A)), (3.9)
and for real A’s we obtain .

2 2 c? 2 c? 2
0<1-A*A)=v*(A) =1~ ( 1- TQ——F ) cos’ (A + S(A))— <I2— + ) cos® (A + S(A))
which implies C? > ¢? > 0.

The pair of functions ¢(A) and s(A) defines, according to Theorem 1.3, the operator
L € D_ with the Hill discriminant A(X). Since [¢(A)] < 1 for real A’s, we have |[A(M)] < 1
for such A’s, which means that all possible spines in the spectrum of L do not degenerate.

4. Proof of Theorem 1.2

The most simple is to prove Theorem 1.2 if the function co(A) = ¢()) in (1.5) is real
for real A’s. In this case Ag(A) = co(A) = ¢5(A),vo(A) = 0, and AZ(A) + so(A)s3(N) = 1.
Given a fixed sufficiently small ¢ > 0, we choose sufficiently big integer M > 0 to satisfy
inequality (3.1) where I' = {7,0}52__, is the sequence of critical values of Ag(}), and
using Theorem 2.1 find a function A, € H,||Ac — Aollpw < Ke, with all critical values
equal to £1 except finitely many of them. Using Remark 1 to Theorem 2.1 we obtain
representation 1 — AZ(A) = s.(A)s7(A) with [|se — so|lpw < Ke. According to Theorem 1.3,
the pair ¢.(A), s.(A) with ¢ (A) = A()) generates the operator L. € D_ with the finite-band
spectrum and potential matrix () satisfying |Qo — Q. “L” o S Kc

Let now ¢o(A) # ¢g(A). Then there exists at least one non- leal zero of ¢p(A) and according
to Sec. 3 we can assume that for an initial operator Ly € D_ the representations

(A) + () c?

Ag(A) = ——2— = (1 —2—/\2-+...)cosrr()\+5()\)) {(4.1)
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co(A) — 5(}) ¢
vo(A) = ——‘T—“ =(5
are valid with C? > ¢2 > 0. In addition, |Aq(A)| < 1 for real X's.

In what follows we will use the following proposition.

Lemma 4.1. Let v()) be an entire function of exponential type w, bounded on the real
line, whose zeros {vno}22_., are real, except finitely many of them, and satisfy relation
lvno —n =172l < oc, and let {p.p}32_., be a sequence of numbers which are real, except
finitely many of them, and satisfy ||tno — n|liz < co. Denote by My a number such that

> pno —n* <1078
In|>Mp

+ .. )cos (A4 S(A)) (4.2

and define
fin — A

- A

vr(d) = v(A) I]

Inj>ar Ym0

where M is an integer, M > My, the numbers pu, are real, and

" |ttn = paol* < 1078,
In|>Mg

Then |op(A)] < K for all veal M's with K not depending either on M or the set {fin }juj>ar-

Proof. Without loss of generality we can assume that My is sufficiently large integer
and fin < Vno < fing1; Vono < fon < Vopy10,7 2> Mo. If U is the 1073-neighborhood of the
zero set of v(A), then there exists a constant K > 0 such that

K™ <o) < Ke™ Ag U

Since |un —n| < 2 x 1073, the lines {XA : [RA| = M + 1/4} do not intersect U, and since
[t — Al < {rmo — A for {A: |RM =M +1/4} and |n| > M, we obtain

,“n -

loar(A)] < Ker¥ T < Ke™™N R = M+ 1/4.

In|>7V[

By the Phragmen-Lindelof Theorem we obtain
forr(V)] < Ke™PM IRA < M +1/4.

Denote sp(A) the entire function

sar(V) = A H n—A H /zn—/\-

o<ini<ar " a7

Since |pn —n} < 2x 1072 there exists a constant K not depending on either M or {p,}2%__,
such that
K13 < sy (V) S Ke™SN a ¢y,

where V' is the 107%-neighborhood of the zero set of spr()). Now we have juar(X)s3f (V)] <
K, |RA = M +1/4. Since vas(A)s3f (A) is analytic and bounded in {) : |RA| > M +1/4},
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the same Phragmen-Lindelof Theorem shows that estimate |vps(A)] < K is valid for all real
X's, which proves Lemma 4.1.

As soon as an operator Ly € D_ is given, the functions Ag(A), vo(A) and so(A) are fixed,
as well as some numbers are fixed related to them. Namely, if A is real, then Ag(A) =
cos Ar + o(1), AJ(A) = —7wZcos A7 + o(1) as |A] — oo, and since the elementary estimates
[sin Ax| > 72071(1 — #?2712072),2071 < |A] < 27% | cos Ar| > (1 — #22711072),{A| < 107!
are valid, there exists N such that for |A| > N, the estimates

1—AYA) > 7220721 = 7%207%), 27' 2 |A=n|>20"", |n]> Mo, (4.3)
IAG(M)] > 721 = 37%2721072), A —n| <107",  |n| > N, (4.4)
are fulfilled. Furthermore, if {un0}2_., Is the sequence of all critical points of Ag()),

and {uF,}_ . is the sequence of all zeros of 1 — A2(}), then we can assume |pno — n| <
1074, |pEo—n| < 107, {n] > N,. In addition, fixed are all numbers K from Theorem 2.1 with
ug(A) = Ag(A), the number K from (2.44) and (2.46), the numbers My and K from Lemma
4.1 with v(A) = vo(A), {vno}SZ_,, being the zero sequence of vo(A) and {un0}2% ., being the
sequence of critical points of 1 —A2(A). The first inequality in (2.3) implies [A(A) = Ag(N)] £
Ke and (4.2) implies |(A + ¢)vo(A)| < K for all real A's. Of course we can assume that all
these K's are equal and Ny > 1027 K.

From now on we fix sufficiently small € > 0 such that 7*Ke < 107*,e7? > My + Ny, the
inequalities (2.5) are fulfilled with up(A) = Ag(A), and using (4.1) and (4.2) find an integer
m > ¢ %+ 10°K such that

C*H1l-¢)
. Y >z ——, > 1.5
Sl\zo,llT\llr;g]/z(l Ap( M) = nz In| = m, (4.3)
while y |
c oy < T > P
&\:0%2;31/2 v(A) < ne [n] = m. (4.6)

If necessary, we can increase m in such a way that 1 — AZ(\) takes its minimal value on the
interval I, = {A: |A —n] <1/2},in] > m, at a point xno With [xno —n| < 1071, Finally we

assume
1/2
(/ Ivo(/\)|2d/\) <e (4.7)
iz

With m being fixed, we choose an arbitrary integer M > ¢~!'m satisfying (3.1), define

M} _o according to (2.45) and use Theorem 2.1 with ug(A) = Ag(A) to obtain the
function A, € H, J|A, — Ag|lpw < Ke, with all critical values v, = (—=1)?,|n| > M. Let us
now construct a function v.(A}), real for real A’s, satisfying ||ve — vollpw < K¢ and such that

L~ AN =v2(A) 20, IA=0. (4.8)
To this end, let us set w.(A) = (1 — 2¢)vo(A). Since A2(A) < land 1 — AZ(A)—23(X) >0

for all real M's, the strong inequality 1 — A2(A) —w?(A) > 0 holds for all € > 0. As M — +0
the sequence of functions A.(A) converges to Ag(A) uniformly on compact sets, and we fix
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sufficiently large M for the inequality 1 — AZ(A) — w?(A) > 0 to be valid for A € [—m, m].
Let us prove the same inequality for A € [-A/ — 1 + 107", M + 1 — 107].

Assume that |A — n| = 107%,|n] > M. Since Ke < 1074, then according to Remark
2 to Theorem 2.1 we have (in notations of Sec.2) |¢™(A)] < 107*. Hence |@~()) — n| <
A =mn|+]67(A)] <1072, and if now |A —n| = 107, then A € &~. We conclude that the set

C\ U {(A:]r—-n| <107} (4.9)

In|>A1

1s contained inside the set &~. According to (2.38), if A belongs to this set, then A ()) =
Ao(02-(A)), which implies that 1 — AZ(}) takes its minimal value 1 — A2(x,0) on an interval
In,m < |n| < M at its inner point X, = ® (xn0), and its minimal value on {\ : 107! <
A+M+1<2 and {A: =272 < A~M -1 < —107} is not less than 1 — A2(x_pr—y,) and
1 — Ad(xm41.0), respectively. It follows now from (4.5) that if either A € I,,m < |n| < M,
or A € [-M~1410" —M -2 Nl y_yor A€ [M+2M+1—-107"0 I,
then 1 — AZ(A) > C*(1 — €)n~2. We compare this estimate to (4.6) and since C?(1 — ¢) >
c*(1 + €)(1 — 2¢)?, we find that the inequality

1—AZ(A) —w?(X) >0, Ae[-M-1+10"" M +1-107", (4.10)

1s valid.
As a matter of fact, this inequality cannot hold for all X’s with |A\| > M as requested by
(4.8). Indeed, let {pZ}2 _, be the zero sequence of 1 — A%(\), and let again {v,0}52_, be

the zero sequence of both vo(A) and w,(A). According to (2.45), ut = u7,|n| > M, and it
follows from (3.8) and (3.9) that u¥ =n +0(1), v,, = n +1/2 + o(1). Hence

Veno < oy = 41, < Vong,  Vneto < U = g5 < vpo, n > M,

and 1 — A%(A) = 0 at points close to A = n, while zeros of w.()\) are close to A = n £ 1/2.
Therefore (4.10) cannot be true for all sufficiently big real A’s.
To obtain (4.8) we introduce instead of w.()) the function

A=t
A=v

ve(A) = w(N) ]

In|>M

(4.11)

n,0

In other words, to define v.(}), we move all zeros of w.()) located in {\ : |A| > M} along
the real axis in the direction of A = 0 until they meet their next neighbor from the zero set
of 1 — AZ(A). Let us now prove that (4.8) holds. From now on we assume that ) is real.

f-M-1<A<M+1and|n|> M +1, then |A — pf[]A — v, |1 < 1, and for such A
we have (v (1) < |w.(A)]. Using (4.10) we obtain

1= AXA) = 02(X) 21— AXN) ~w?(A) >0, A€[-M-1+10"",M+1- 107"

For [n| > M +1 we have 1 — A2(u}) = v}(if) = 0, A ()AL (p}) = ve(pf)vi(uf) =
0,(1 = AZ(uh)" = =2A.(u)A%(py). Since g = & (1n0), we find using (2.44) that |ut —
n| <|uto—pil+|pto—n| < Ke+107* < 1072 which permits us to use (4.4) with A = pf.
By virtue of the S. Bernstein theorem [7] we have |A”(}) — A#(MN)] < #2Ke < 107, and



346 Tkachenko

using (4.4) we obtain the estimate [AY(pf)| > [AZ(u)| — [AV(el) — Af(eh)| = =*(1 -
372271107%),|n] > m. On the other hand, by the same S. Bernstein theorem we have
[(1 — A%(X))"] € 87 for all real X's. Using the Taylor formula, we obtain

A

L= A0 = [~ AA DO — )+ 3 (1= A20)" (=1 dt| 2 57— P

JThs

A—pl <107 In) > m.
Hn

Since the function (A + i)w.(A) and the sequences {v,0}2% ., {052 oo, and {uF 322 _
(the latter being in the capacity of {u,}2 __.) satisfy conditions of Lemma 4.1, and since
ve(A) is defined by (4.11), we have |(A + ¢Jv ()] < K. Hence |v/()\)] < 47K ([A| 4+ 1) for
real A's and

(2K =%)?
'UQ(A) < — 5

I3 =

IV =P <2107 A = )P < 1= A%, A= put| <107, |n| > M.

If{A—n|{ <2077 and || > M, then (A —pF| <A —n|+|uf —n| <2071+ 2 x 107° < 1071,
and according to the previous inequality we obtain 1 — A?(A) — v2(A) > 0. On the other
hand, if 271 > |A —n| > 207 |n] > M, then according to (4.3) we have 1 — A?(}) >
|1 = A3(N)| = [AZ(A) = AZ(A)] > #7207%(1 ~ =22072) — 2Ke > 22722072 > 1074, o (M)}* <
KA+ 1)"% < K%m~% < 107* < 1~ A2()), which completes the proof of (4.8) for all
A€ R.

Let us now prove an estimate

o — vollpw < Ke. (4.12)

It is sufficient to prove an inequality ||v. — we||pw < Ke. For A € [-m, m] we have

(A + 2)we(A) (l—exp S In (1+M>)]

|n)>M A=t

HA+ ) (v(A) = we (M) =

Since, for such A's and |n| > M,
2

o — it 1
“M-m 4

/\ — Vno

and since mM ™! < e, m > ¢ %, we obtain

SK(Z

In|>M 2n
where K does not depend on M. Therefore

Ot )N () < B T (i

|n|>M

A= g

1

> lvpo —n—1/2] + |uF — n] . M+ v — n]) < Ke

In| n?

[n)>A

1/2
( / 1oe(A) — w(A)? d/\) < Ke. (4.13)
|Al<m



Tkachenko 347

To estimate the “tails” of integrals we use {4.7) and the inequality |v ()] < K|A +¢]7! and
obtain

loe(N) — we (M) dA < 2 / [oe(V)|? dA+2 / lwo( M2 dX < 2 %m™1 + &) < 4K%E

[A[2m [AlZzm fAlzm

which together with (4.13) proves (4.12).

We define now ¢, (A) = A (A) +1v.()) and obtain 1 — AZ2(A) —v?(A) = 1 —c.(A)er(A) > 0.
Since [|Ae — Agllpw € Ke and (4.12) is fulfilled, we have ||c. — coflpw < Ke, and there exists
a factorization 1 — c.(A)c;(A) = s.(A)si(A) with |jse — sollpw < Ke. The pair of functions

ce(A), s¢(A) generates the operator L, € D_ with the finite-band spectrum and potential
matrix Qo(z) satisfying ||Q, — Q0||C%2(0,,,) < Ke.
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