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Blow-Up Theorems for Nonlinear Wave Equations 

Robert T. Glassey 

O. Introduction 

Consider semi-linear wave equations of the form 

~2u -Au=f(u) A =Laplacian= ~ ~ (,) 0t2 i=1 " 

The basic question we ask is: under what conditions on the data and the 
nonlinear function f can there be solutions of (,) which blow-up in 
finite time ? 

Global Existence for solutions to the Cauchy Problem when n= 3 
was first demonstrated by J/3rgens in [9]; his basic assumptions are that 

u 

G(u) = ~f(s) ds is nonpositive, that the data is of finite energy, and that 
0 

f satisfies a growth restriction at infinity. The Cauchy problem then 
has a unique classical solution existing for all time. (No growth restriction 
is necessary when n = 1, as J6rgens has shown in [8] and [10].) A multi- 
plication of (,) by Ou/Ot and an integration over all space shows that the 
energy, E, is a constant independent of time, if the Cauchy data is suf- 
ficiently small at infinity: 

E=J"  I 2 [~u~ + l lVul2-G(u)] dx. 
R n  

Thus automatic a priori bounds are obtained, provided G(u)<=O. If, 
however, G(u) is unbounded above, existence for all time becomes 
suspect. Indeed, Keller in [12] has shown, by comparing the solution u 
of (,) with the solution ~b (t) of the ordinary differential equation ~ =f(~b), 
that (,) has solutions which blow-up in finite time, if G(u)~oo at a 
sufficiently rapid rate as u -o oo. In three dimensions, Keller's comparison 
theorem requires that one of the datum functions remain constant on 
a bounded set; it cannot be extended to dimension n> 3 because the 
Riemann function is no longer positive. Using an extension of Keller's 
idea, J6rgens in [10] has proved a nonexistence theorem for (,). Levine 
[13] has recently obtained some abstract blow-up theorems; his results 
are described at the end of Section 4. However, Berger in [2] and [3] 
13 Math. Z., Bd. 132 
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has demonstrated that even when G (u) ~ ~ ,  (,) may have certain periodic 
solutions ("stationary states"); see the remarks following Theorem 3.1. 

Similar nonexistence theorems have been given for parabolic equa- 
tions of the form 

~u 
Ot .Au=f(u) 

by Kaplan [11] for a bounded domain, and by Fujita ([5] and [6]) for 
the Cauchy problem. In addition, Tsutsumi [18] has established a 
blow-up theorem for the equation 

on a bounded domain when p < 2 + ~. 
We first show that Kaplan's method can be applied to (,) on a bounded 

domain. Next we show that, for n < 3 and for a positive, convex function 
f(u), there is a large class of initial data for which solutions to the Cauchy 
problem for (,) blow-up in finite time. Consideration of the spherical 
means of a solution then shows that this theorem can be extended to 
any dimension n > 3. Finally, Section 5 is devoted to the Cauchy problem 
for the "accretive" equation 

02 u 
a t ~ - - -  A u = f(ut); 

the effect of a positive convex function f is seen to cause blow-up at a 
rate greater than or equal to that found in Section 3. 

The positive integer n denotes the number of space dimensions. 
We shall write 0.) 

Vu=grad x u =  Oxl . . . . .  Ox. 

so that n 

Au =Laplacian u=  ~ ~2u 
,=1 Ox 2 "  

co denotes a unit vector in IR"; dco=element of surface measure on the 
unit sphere in IR"; co.=area of the unit sphere in IR ". 

1. Preliminaries 

In Sections 2-4 we consider the equation 

02u 
Ot 2 A u =f (u) .  
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We shall always assume enough smoothness on the data and on the 
nonlinearity f(u) to assure the existence of a unique local solution to the 
Cauchy Problem (or, in Section 2, to the mixed problem). In this regard, 
see [7-9, 15, 16], and [17]. 

In order to simplify the exposition, we list two assumptions which 
will be made repeatedly. Let S _  IR n and let 2, a, fi denote nonnegative 
constants. The first hypothesis (Hi) concerns the Cauchy data: 

Ou 
(H1) u (x, 0) >__ a, -~ -  (x, 0) __> fl for all x e S. 

Secondly, we specify the nature of the nonlinearity: 

(H2) f(s) is bounded below by a locally Lipschitzian, convex func- 
tion g (s) satisfying 

i) g (s) - 2 s is a nonnegative, nondecreasing function for s_-_ ~; 
ii) g(s) grows fast enough as s ~ + m so that the integral 

To= ~ 2 + f 1 2 - 2 s 2 + 2 S g ( ~ ) d ~  ds (1.1) 

converges. 

Hypotheses (H1) and (H2) will appear in slightly weaker or stronger 
forms throughout Sections 2-5. 

Before proceeding, we prepare a simple lemma on an ordinary 
differential inequality, which will be much used in the sequel: 

Lemma 1.1. Let d?(t)~ C 2 satisfy 

~_>-h(q~) (t_>0) 

with q5 (0) = ct > 0, c~ (0) = fl > O. Suppose that h (s) ~ 0 for all s ~ ~. Then 
a) ~ (t) > 0 wherever c~ (t) exists; and 
b) the inequality 

t <  ~ 2+2  h(~)d ds 
r 

obtains. 

Proof If a) is false, let t = q be the first point where q~(q)= 0. Then 
integrating the differential inequality we obtain 

t 

4 (t)__> 6 (0) + S h ds 
O 

tl  

so that 0 = ~ (tO >= fl + ~ h (c~ (s)) ds.  
0 

13" 
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By the definition of h, q~ (s)> e for 0_< s_< tl. Thus the integral term 
above is nonnegative, and the resulting contradiction proves a). To prove 
b) we use a) and multiply the differential inequality by q~ (t) to get 

q~ q~q~ h(q~), 
o r  

dt �89 h(~)dr >=0. 
Thus 

4~(t) 

(~(t))2>--fl 2+2 S h(~)d~ 
~t 

and, since q~ (t)> O, we may separate variables and integrate to obtain b). 

2. Bounded Domain 

The blow-up problem on a bounded domain is the easiest mathemati- 
cally, for the method of proof, which closely follows that of Kaplan ([11]), 
is independent of both the spatial dimension and the Riemann function 
of the wave operator. 

Let Q___N" be a bounded open set with smooth boundary 0f2. 
Consider the mixed problem 

92u 
c3t~T--Au=f(u) (xef2, t>O) (2.1) 

u(x, t)=O for xeO0, t>__O, 

with given smooth Cauchy data. Let ~ (x) denote the first eigenfunction 
for the problem 

a 0 + ~ , = 0  (xeO) (22) 

under the Dirichlet condition ~ = 0  on 0t2, and let P=Pl  be the cor- 
responding first eigenvalue. By a classical theorem (see [4], Vol. I, 
pp. 451-455) we may suppose that ~b(x)>0 in f2. 

We assume that 

i) u(x, 0)>0, u,(x, 0)>0 for all x~O; there exist x o, xt~f2 such that 
U(Xo, 0)>0, u,(xl, 0)>0. 

ii) (Hz) holds with 2 =#, 

~= IO(x)u(~,O)dx; 13= ~O(x).,(x,O)&. 

(Note that both ce and 13 are positive by hypothesis.) 
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We may now prove 

Theorem 2.1. Let u(x, t) be a C z solution of (2.1) for which i) and ii) 
are satisfied. Then 

lim sup J u (x, t) l = + oo 
t ~ t ~  X 6 f 2  

for some finite time to <--_ To, where T O is given by (1.1). 

Proof Let • (x) be as defined by (2.2). Without loss of generality, we 
may assume that ~/, is normalized: 

I O (x) d x = 1. 
f2 

Let 
r I O(x) u(x, 0 dx, 

multiply (2.1) by ~ and integrate over tZ Since uaC 2, we obtain 

f o u . a x = ~ =  IqJAudx+ IOf(u)dx.  

By Jensen's inequality and ii), we have 

Of(u) dx>= ~ 0 g(u) dx>=g(f O u dx)=g(q~) 

since ~ is normalized. Now 

O A u = V . ( O V u ) - V . ( u V O ) + u A ~ ;  

using this and the boundary conditions satisfied by u and 0, we see that 

~ O Au ax= I uA~, dx= - ,  ~ ,O dx= - ~ ( t ) .  
fa ga 

Thus we arrive at 
q~ +U q~_-__g(4) 

with 

r = I 0 (x) .(x, o) dx = ~ > 0; ~(0) = ~ ~ (x) u,(x, 0) dx = ~ > O. 
fa 

Hypothesis ii) implies that Lemma 1.1 is applicable with h(s)= g (s)-i~ s; 
therefore o.,[ ]0 

eg 

and thus qS(t)develops a singularity in a finite time to < To, where 

To= la,z+flz-~ts2+2 g(~) d~ ds. 



188 R.T. Glassey 

Finally, since q~ (t) > 0, we have 

r = I~(t)l = [ S ~ (x )  . ( x ,  t) 
12 

<sup [u(x, t)l ~ 0(x) dx 

=sup lu(x, t)l, 
x ~  

which proves the theorem. 

Corollary. For each p, 1 <-<_ p <= oo, 

II.(t)ti L~)=( S lu(x, t)l" ax)'/~ 
J2 

blows up in finite time. 

The proof of the corollary is simply to apply H/51der's inequality to 
the term 

12 

Remarks on the Proof. 1. As Kaplan has noted ([11]), A may be 
replaced by any uniformly elliptic self-adjoint second-order operator 

with smooth coefficients au(x ). 

2. The same result holds if the boundary condition is of the form 

u(x, t )=~(x,  t) for x~c~f2, t=>0 

provided ~(x, t)>0 for all xeaf2, t>=O. To demonstrate this, we need 
only show that the term 

- S v . ( .  v r  
~2 

is nonnegative. Now ~ obeys the maximum (minimum) principle, and 
assumes its minimum value (zero) on ~0. It follows that V~ is directed 
toward the interior of ~2, so that 

a~P<0 on ~f2, 
~3v- 

where v = outer normal to ~f2. Then clearly 

- ~. V.(uVC,)dx=- ~. r 
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3. The corresponding problem with general linear homogeneous 
boundary conditions on u can be treated similarly. We define r as 
the first eigenfunction of A 4' +/ l  4' = 0 in f2, satisfying the same boundary 
conditions as u on 0f2. 

For example, if the boundary condition is 

Ou 
- - =  0 (xe c9•), 
~v 

we choose 
4' (x) = const = (measure ((2))-1 ==_ (m (f~))- ~ 

and accordingly 
1 

r S 4'(x)u(x, t) d x -   u(x,t)ax. 

We then easily obtain q~ >g(@, and proceed as above. 

3. Cauchy Problem, n-< 3 
We consider now the Cauchy problem for the equation 

t32u 
0t 2 Au=f (u )  (x6lR", t>0)  (3.1) 

for n=< 3. Only the case n = 3 will be analyzed; the method is similar when 
n = l  or2. 

The proof in Section 2 cannot be extended to the Cauchy problem 
by integrating over all space, since no such positive eigenfunction exists. 
However, Fujita in [-5] and [-6] was successful in modifying this method 
for a parabolic equation of the form 

0u 
0-7- - A u = f ( u )  

by exploiting the fact that the Green's function for the "heat"  operator 
is positive in any dimension. Only for n < 3 is the Riemann function for 
(3.1) positive. In Section 3 we shall show that a combination of the 
methods of Kaplan and Keller provides a nonexistence theorem for (3.1). 

For any R > 0, define 

~0(x)=-- s i n - -  for Jx[=r<R, (3.2) 
r R 

where c > 0  is chosen so that f r dx= 1. Let #=n2/R2;  we assume 
that Ixl __<Jl 

i) (H 0 holds for arbitrary e>0 , /3>0 ,  with S=  {xe~d: Ixl < R  +2  To}, 
where T o is given by (1.1) with 2=/~; 
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ii) A u (x, 0) > 0 for all x ~ S; 

iii) (H2) holds with 2 = #  in the following weakened form: the func- 
t ion g(u) is assumed convex only for u > ~. 

Under  these condit ions we shall prove 

Theorem 3.1. Let u(x, t) be a C 2 solution of (3.1) for which i)-iii) 
hold. Then 

lim su<p [u (x, t)[ = + 
t~t~ [xl=R 

for some finite time to < To. 
Remark. When n=3 ,  Keller (cf. [12], p. 528) assumes that on some 

set I x -  Xo [ < T, the data  satisfies 

u(x, 0) = ~ = const.;  u,(x, 0) > fl = const. 

which, when fl > 0, is a special case of (Hi). 

Proof The solution u(x, t) of (3.1) satisfies the following nonlinear  
integral equat ion:  

1 j 1 ~ f(u(y,z))dSyd~ u(x,t)=Uo(X,t)+~-~ t - T  I~-~l=t-~ 

where Uo(X, t) is the solution of the linear equat ion with the same data  
as that  of u when t = 0. Thus 

t ~u 4 1  Uo(X,t)=~-~ ~ ~ - ( x+cn t ,  O)dc~+ ~ u(x+~ot, O)dco 
,~ i~1= 1 7~ I~1=i 

1 
+ - -  S Au(y,O)dy. 4r~t b_xl<_t 

F r o m  i) we clearly have Uo (x, t) > a + flt  for I xl < e + To, 0 < t < To. 

We now claim that  u(x, t)>c~ for [xL<R, O<t<To. Let  C(xo, To) 
be any backward  characterist ic cone, the x-coordinate  of whose vertex Xo 
satisfies I Xol_<- R. We shall show that  u (x, t) > ~ in C(Xo, To) using Keller 's 
method.  Then, since x o was an arbi t rary point  in I xl < e ,  we will have 
proved the claim. Suppose the assertion u (x, t )>  ~ in C(xo, To) is false. Let  

t 1 = inf{ t :  u(x, t ) < ~  in C(x o, To)}, 

and let (xl, tl + e), with sufficiently small e, be a point  in C(xo, To) where 
u (x 1, t I + e) < ~. Then from the integral equat ion we have 

u(xl, tl +~)-c~=Uo(Xt,  ti + ~.)- c~ 

1 rl+~ 1 
f(u (y, z)) dSy d z. 

t 1 + e - ' c  b-xd=tl+~- ,  
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Now I x, I ~ R + To, so that u0 (xl, tl + e) - ~ > fl tl by the above. Using (H2) 
and the definition of the point tl, we have 

u (x l ,  tl + ~) - ce 

1 
" ~  1 J" g (u (y, ~)) dS, d z 

> C +  I [g(u(y, z))-g(r dS,, dz 
= t t 1 -FF . . - -T  i y _ x l l = O + e _  , 

where C > 0  depends on fl, tt, e, and the (positive) value of g(e). We now 
split this integral into two components, one over the set u > c~; the other 
over the complement of this set. Whenever u>c~, g(u)-g(a)  is non- 
negative, so we may restrict our attention to the region u <~. There, 
since g is Lipschitzian, we have 

u (xl, tt + a) - c~ >= ~ K ( u -  ~ ) m l n O i  - C, 

where ( u -  e)min is the least value of ( u -  e) in the backward characteristic 
cone C(xl, t, + e) for t > t,, and where K is proportional to the Lipschitz 
constant for g. Taking e < 1/K and applying the above to the point in 
C(xl, tl + e) where (u - ~) assumes its minimum, we get 

thus 
(u - ~)mi, > C + e K(u - g)min ; 

C 

= 1 - e K  

which is impossible. Hence no such point t, exists, and the claim is proved. 

Now let 0 (x) and # be as defined above. Then 

AO+/ t r  in [x l<R;  

0 vanishes on Ix] =R,  and 

&/J t <0 .  dr  fxl=g 

We multiply (3.1) by ~(x) and integrate over Ixl __<R; with 

 ,(x)u(x,t)ax 
Ixl<-_R 

we obtain 
d?= ~ ~ J a u d x +  ~ ~, f (u)dx.  

Ixl=<g Ixl <=R 

Now u(x, t)~cr for lxl_-<R, 0~t__< To; thus 

S Of(u) dx>-> - ~ ~g(u)dx>g(Ca) 
Ixl <=R Ixl-<R 
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by the convexity of g and Jensen's inequality. Using the properties of 
and the fact that u is a positive solution, we get 

~ A u d x =  ~ [ V . ( ~ V u ) - V . ( u V ~ ) + u A ~ ] d x > _ > _ - # ( a ( t ) .  
Ixl<-R [xl<R 

Therefore ~ + # q~ > g (q~) with 

r J q,(x)u(x,O)dx-~,>=~; r S 4,(x)u,(x,O)dx=-fl~>/3. 
Ixl<=R Ixl<=a 

Lemma 1.1 now applies with h ( s ) = g ( s ) - #  s; we find that ~b(t) blows up 
in a finite time t o < T~, where 

_ ~ [ +f12 #sZ_+_2 s ]- �89 ds. 
CL 1 I_ ~1 . I  

It remains only to show that T~ < To. For  this purpose, set 

= fl~+2 g (~ ) -#~ )d~  ds. 

Then from iii) we have that T*(e, fl) decreases as e,/3 increase. Hence 
since el >e,/31 >/3, we find that 

T 1 = T* (~1, flO < T* (~, fl) = T o. 

Thus ~b (t) blows up in a finite time to =< To. Then 

q~(t)=lq~(t)]=< sup lu(x,t)] S O ( x ) d x =  sup ]u(x,t)l 
I~I <=R Ixl < R Ixl <R 

which completes the proof. 

Corollary. For each p, 1 < p < ~ ,  the expressions 

( ~ lu(x, t)l"dx) 1/p 
Ixl=<R 

blow-up in finite time. 

Two comments on this result are now in order. First, note that the 
integral defining T o converges if g(s)>s  1+~ as s-~ov for arbitrary e>0.  
Secondly, a brief comparison of this result and the work of Berger in [2] 
and [3] should be made. Berger considers (3.1) with 

f ( u ) = - m 2 u + u l u l  ~ (re>O, ~>0) 
and seeks stationary solutions; that is, solutions of the form 

u (x, t) = d z, v (x) 
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where 2 is real and v(x)~O as Ixl--,~. His results show that, for n=3,  
stationary solutions exist with v (x)-~ 0 exponentially as ]xl ~ oe if and 
only if [21 < m and 0 < o-< 4. Clearly hypothesis iii) is satisfied for such an 
f(u) if u~> m 2 +I~ for u > e (i. e. if e is sufficiently large). However, due to 
the special form of stationary solutions, hypothesis i) on the data cannot 
be satisfied by the function v(x), since for such solutions u(x, 0)=v(x); 
u t (X, 0) = i 2 v (x). 

4. Cauehy P r o b l e m - E x t e n s i o n  to Dimension n_> 3 

We again examine the Cauchy problem for the equation 
a2u 
Ot 2 Au=f(u) (x~IR", t>0)  (4.1) 

where now n > 3. As noted above, the Riemann function for the wave 
operator is no longer positive for n > 3, so the proof in Section 3 cannot 
be extended as it stands. In Section 4 we shall show that consideration 
of the "spherical means" of a solution circumvents this difficulty, and 
furnishes a blow-up theorem for (4.1). When n=3,  Theorem3.1 is 
stronger than Theorem 4.1, since in the latter we require that the function 
g (s) be everywhere convex. 

To begin, let xoElR" and let r>0.  The spherical mean of u about x o 
is defined by 

K(r, t)= ~ 1  ~ U(Xo+cor, t)dco. (4.2) 
CO,, Io~l= 1 

Let a, b (with 0 < a < b <  oo) denote constants which will be specified 
below. Define tp (r) to be the first eigenfunction, and I*, the corresponding 
first eigenvalue, of the ordinary differential boundary-value problem: 

n - 1  ., n - 1  
r ~ +~.2 ~+#~b=O (a<r<b) (4.3) 

O(a)=O(b)=0.  

(The choice of ~0 will be explained later.) Since the theorem below is 
our major result, we list our assumptions explicitly: 

i) a) for arbitrary a > 0,/3 > 0, 

u(x,O)>=~,u,(x,O)>=/3 for x~S={x:a-To<=]xl<=b+ To}, 
where 

b) the data are subharmonic on S; i.e. 

Au(x, O)>O, Au,(x, O)>O for all x~S 
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ii) f(s)  is bounded below by a locally Lipschitzian convex function 
g (s) satisfying 

a) g (s) - 2 # s is a nonnegative, nondecreasing function for s > , ;  

b) f (s)  grows fast enough at infinity so that To < ~ .  

Our goal is to prove 

Theorem 4.1. Let u(x, t) be a C 2 solution of (4.1). There exists a 
positive constant I"o, depending only on n, with the property that: if i) and ii) 
are satisfied for any constants a, b with b > a > T O (ro + 2), then 

lim sup u(x , t ) ]=+oo 
t~t~ a<lx[<=b 

for some finite time t o <__ T o. 
Before proceeding, we shall establish several lemmas in order to 

simplify the proof. First we show that (4.1) can be reduced to a one- 
dimensional problem; this is the content of 

Lemma 4.1. Let ~(r, t) be defined by (4.2) with Xo =0. Then ~ satisfies 

02U (n-l) OF 02F 1 
- - -  f(u((or, t)) a(o. 

Ot 2 r Or Or 2 (On lw}= I 

Proof. From direct computation, we obtain 

02F 1 
- u , , ( ( o r ,  t ) d ( o ;  

Of 2 (O n lr 1 

O F  1 ~ cn. Fu((or, t ) d ( o = - - i  ~ v . Vu(y,t)dSy 
Or (on ]to[=l (on rn-1 [y[=r 

1 
Au(y, t) dy; 

-- (onrn--1 ]yi<r 

02ff --(n--l)  ~ Au(y , t )dy+  ! ~ Au(y, t)dSy 
Or 2 -- (on rn [y[<-_r (on rn-1 [y]=r 

- ( n -  1) O~ 1 
- r c~r t -~ ,  ~ Au((or, t)d(o, 

1,o1=1 

hence the result. 

Corollary. The partial differential inequality 

02 F (n - -  1) OF 02 F 

~t  2 r Or t~r2 ~_~ g (F) 

obtains. 
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The corollary is an immediate consequence of hypothesis ii) and 
Jensen's inequality. 

The Riemann function for the operator on the lefthand side of (4.4) 
is well-known and yields 

Lemma 4.2. ~(r, t) satisfies the following nonlinear integral equation: 

~(r, t) =~(r, O)+t~t(r, O) 
t , + ( , - ~  [ I 

+ ~ ~ R(~,r;r,t) [ I {Au(co~,O)+zAu,(cor 
0 t-(t--r) ~-n ]~1=1 

+ f ( u ( ~  r ~))} dco] d~ d~ 

where the kernel R, the Riemann function, is given by 

R(~,  ~; r, t ) =  
F n 1 n - 1  

n--1 ' 2 
[(~ + r ) ~ _  ( ~ _  t)2] 2 

(r - r) 2 - (~ - t): ) 
; 1 ; (~ + r) 2 _ ( ~ _  t) 2 

with F denoting the hypergeometric function (cf. [1], Chapter 15). 

Proof. That R is given as above follows from [73, p. 135 and 150. Let 

v (x, t) = u (x, t ) -  u (x, 0 ) -  t u, (x, 0). 

Then v(x, 0)=0,  v,(x, 0)=0, v,(x, t)=u,(x, t), and 

Av= Au(x, t ) -  Au(x, O)-t  Au,(x, 0); 

thus 

With 

v n -  Av = Au(x, 0)+ t Aut(x, O)+ f(u(x, t)). 

~(r , t ) - - - - !  y v(~r,t)dco 
COn I<ol= 1 

we find as in Lemma (4.1) that 

02~ ( n - l )  ~ 02~ 

?t  2 r ~r ~r 2 

l 
- - - -  ~ {Au(o~r,O)+tAut(cor, O)+f(u(cor, t))}dco 

con I~l= i 

with ~(r, 0)=g,(r, 0)=0. Using Riemann's representation formula, and 
rewriting the result in terms of i (r, t), we obtain the lemma. 

We show next that sufficiently far away from its singularity r = 0 of 
(4.4), R is positive: 
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L e m m a  4.3. There ex i s t s  a posi t ive cons tant  to, depending only on the 
dimension It, such that the R i e m a n n  func t ion  is nonnegat ive  in the backward  
character is t ic  cone 0 <_ z < t, 14 - r l < t - z, i f  r > t (r o + 1). 

ProoJl For  r as chosen above, the coefficient of  F in R is clearly 

positive, so it suffices to show that  F - - "  1 ; z >_0, where we 
have put 2 ' 2 ' - 

(4 - r) 2 - (~ - t) 2 
z =  (4 + r )  2 - ( ~ - t / 2 "  

F r ~ 1 7 6  n-12 ' n-12 ; 1 ; 0 ) = 1 "  

Moreover ,  note that  - 1 < z < 0 .  We will show that for r as chosen above, 
z may  be made  as close to zero as desired; then by the continuity of F, 
we will be done. N o w  

('c--t)2--(~--r)2 Zl ~ 0  
- - z =  (~ + r ) 2 _ ( z _ t )  2 --  z2 _ 

with z t > 0 ,  z2>0 .  We have 

Zl<=(t--z)2<=t2; 

since ~ > r - -  (t -- r) > r -- t > r o t, it follows that  

~ + r > 2 r o t + t ;  thus 

zz -- (~ + r) 2 - (z - 0 2 > (2 r o t + t) 2 - t 2 > 4 r 2 t 2 . 

< z 1 < t 2 1 
Hence  0 = ( - - z ) =  -~-2 = ~  - 4ro2, complet ing the proof. 

Remark .  There are special values of  n for which R is positive in the 
full region r >  t. Fo r  instance, when n =  5, we have 

F ( 2 , 2 ; 1 ; z ) = k ~  ~ (F(k+2))2 z k 
F ( k +  1) k! = ( k + l ) 2 z k  

= k=O 

l + z  

(1 - z )  a 

which is positive because - 1 < z < 0  whenever r > t. However,  when n = 7, 
the corresponding function is 

F(3, 3; 1;z)= k+l)2(k+2)2z  k 
k=0  

3 I- 4 24z 24z 2 l =(4(1-z))- [ +l_--Z~+~] 
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which changes sign as z traverses the interval ( -  1, 0). Thus, in general R 
will not remain positive, and Lemma (4.3) will be necessary. 

Corollary. Under assumptions i) and ii), 

~(r, t)__>a>0 for any a, b satisfying 

b>r>a>-(ro+2) To, O<_t<T o. 

Proof Using Lemmas (4.2), (4.3), hypotheses i) and ii), and the con- 
vexity of g, we obtain 

t r + ( t -  r) 

~(r,t)>~(r,O)+t~z(r,O)+ ~ ~ R((,z;r,t)g(~(~,z))d~dr 
0 r - ( t - ~ )  

for such values of (r, t). We have in the above a positive kernel and a 
locally Lipschitzian function g(s) which is positive for s>a .  Thus we 
may proceed exactly as in Theorem 3.1 to complete the proof. 

Now let ~k(r) be as defined by (4.3). Note that the operator acting on 
~, is just the adjoint of the "meanvalue" operator (in r) appearing on the 
left side of (4.4). Under the change of variables 

n--1 
~k(r)=r 2 q~(r) 

the equation for �9 assumes the self-adjoint form ~ " +  [ p -  (v 2 -  �88 r -2]  
= 0  of the Bessel equation (see [1], p. 362, Formula 9.1.49), where 
v 2 =�88 ( n - 2 )  z. Thus from [4], Vol. I, p. 454, ~(r) is of one sign on [a, b], 
so clearly the same is true for ~k (r). We will assume that ~k (r) > 0 on [a, b] 
and, moreover, that 

b 

S ~(r) dr = 1. 

We may now establish the theorem: 

Proof of Theorem 4.1. Given n, let r o be the number determined in 
Lemma 4.3. Let a, b satisfy b>_r>__a> To(ro +2), and let ~,(r) be as above. 
From the corollary to Lemma 4.1, we have 

C3t 2 r 3 r  c3r 2 ---~--g (~)" 

Multiply this by $(r), and integrate over [a, b]. With 

b 
c~(t) = ~ ~(r) O(r, t) dr 

a 

we obtain 

$ >iOg (~ )d r+  ( n - 1  ~,~,+O~, ~ dr. 
a a \ r 
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We again use the convexity of g in conjunction with Jensen's inequality 
to obtain 

b 

~ g(f) ~ dr >=g(c~). 
a 

The remaining terms are integrated by parts: 
b b b 

~ Of..dr=Ou.I b- I O' u. dr=- ~ @'f. dr 
a tt a 

b b 

= - 0 ' @ . +  ~O"far>= SO"~,a," 
t l  a 

since ~ > 0  by the corollary to Lemma4.3, and since, by choice of 0, 
0'(a) >0, ~'(b)<0. The second term is treated similarly: 

n - 1  Off. dr = n - I  O~l~_(n_l)jf \ V  ---~-~9 dr 
a I" r 

b 

\ r - ~ y - O )  dr. 

Thus we have 

. r O'+-~j--O) dr, 

o r  

Note that 

4; +~,,~>_-g(~). 

b 

~(0)= ~ ~(r, O) ~/,(r) d r - ~  1 >=~; 
a 

b 

~(o)= ~ ~,(r, o) O(r) dr--th_->t~. 
a 

Lemma 1.1 applies with h(s)=g(s)-t~s,  and shows that 4~(t) becomes 
infinite in a finite time to < T~, where 

Since cq => ~, fll ->- fl, we have by the same reasoning as in Theorem 3.1 that 
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Using ii)a), we find that 2g ({ ) -2 / t  {>g( ( )  for {>~. Thus 

d s = r  o. 
g{ 

The proof is then completed by noting that 
b 

O<~b(t)= J'~(r, t) O(r) d r <  sup I~(r, t)[ 
a a<-r<-b 

< sup sup lu(cor, t)r sup ]u(x,t)[. 
a<r<=b Iro[= 1 a<=lxl<b 

To extend this result, we now show that the sign of the nonlinear 
term f (u )  is irrelevant, provided f is an even function. Consider the 
Cauchy problem for the equation 

tgZu 
c3t2 A u +  f ( u ) = O  (xsIR", t>0).  (4.5) 

Let i) and ii) be replaced by 

i') a) for arbitrary e > 0, fl > 0, 

u(x,O)<-~, u,(x,O)<-~ 

for x e S, where S and To are as given in i); 
b) the data are superharmonic on S. 

ii') f ( s )  is an even function which is bounded below by a locally 
Lipschitzian convex function g(s) satisfying ii)a) and ii)b). 

We then have 

Theorem 4.2. Let  u(x,  t) be a C 2 solution of(4.5). There exists a positive 
constant ro, depending only on n, with the property t ha t : / f i ' )  and ii') are 
satisfied for  any constants a, b with b > a > T o (r o + 2), then 

lim sup l u(x,t) I = + o o  
t~t~ a~Jxl<=b 

for  some f ini te  time t o <= T o . 

Proo f  Let v(x, t )= - u ( x ,  t); then the equation for v becomes 

g32 v 
at 2 - A v = f ( v )  

because f is even. Under this simple "sign inversion", i') and ii') become 
hypotheses i) and ii) of Theorem4.1. It follows that supx Iv] blows up 
in a finite time; hence, so does supx lu[. 

Note that this result applies equally well to the case n<  3. 
14 Math. Z., Bd. 132 
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We now give a brief description of Levine's result [13]. Here the 
abstract equation 

dZ u 
P dt 2 - A( t )u+F(u)  

u(0)=Uo, u,(0)=vo 

is analyzed, where u is a Hilbert space-valued function of t and A(t) 
is a symmetric, nonnegative linear operator, and where P is a positive 
symmetric operator. If (., .) denotes the inner product in the Hilbert 
space, then Levine concludes, under certain assumptions on A(t), F(u), 
and the data, that 

lira (u(t), Pu(t))= + oo 
t ~  T -  

for some T<oc  which can be estimated from above. His method is 
completely different from that above, and has definite advantages; not 
only does it apply to a much more general class of problems than the 
nonlinear wave equation, but also the necessity of knowing the (point- 
wise) positivity of a solution is avoided. Levine's hypotheses on the 
nonlinear function are perfectly suitable for superlinear power functions 
F(u)=f(u). If, however, f (u)=e" or, say, F(u)=u ,2 e , they may be more 
difficult to verify. In contrast, such nonlinearities are subsumed in the 
hypotheses of Theorem 3.1. Note also that in the special case of the non- 
linear wave equation, the underlying Hilbert space is L2(IR" ), so that 
Levine concludes that 

lim S u2 (x, t) dx = + o0, T< o0. 
t ~  T -  R~ 

On the other hand, our results are "local" in the sense that we show for 
each p, 1 =< p = o% the expressions 

Ilu(t)[Ip, R - (  ~ lu(x,t)lPdx) lip 
fxl~a 

all develop singularities in finite time. 

5. An "Accretive" Equation 

We now turn our attention to the Cauchy problem for the equation 

~2u A u = f ( ~ u )  ~3t2 ~ (xelR", t>0) .  (5.1) 

I f f  is decreasing and sf(s) <= O, the theory of monotone operators provides 
the existence of global weak solutions for (5.1); see, for example, [17], 
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p. 101. In this section we shall show, using previous methods, that i f f  is 
positive and convex, (5.1) has solutions which blow-up in finite time. 

First we consider the case n=3.  For any given R>0 ,  let if(x) be 
defined by Eq. (3.2). Our assumptions are similar to those of Theorem 3.1; 
namely 

i) for arbitrary fl > ~ > 0, 

u,(x, 0)->_3 > u(x, 0)_->~ > 0  

for all x ~ S = {x: ] x[ < R + T O }, where T O is given by (1.1) with 2 =/ t  = rc2/R2; 

ii) A u (x, 0) >_- 0 for all x ~ S; 

iii) (H2) holds with the following additional conditions: g(s)>=0 for 
all s, and the function 

g(s)-(~+ 1) s 

is nonnegative and nondecreasing for s > ~. 

Under these conditions we can prove 

Theorem 5.1. Let i)-iii) hold for a C 2 solution u(x, t) of (5.1). Then 

lim sup tu(x, t)[ = + co 
t-~t8 [x]<R 

for some finite time to < To. 

Proof. By hypothesis and the integral equation satisfied by the solu- 
tion u, we have immediately that u (x, t) _-> 0 for Ix[ _-< R, 0__< t__< To. With 

4'(t) = ]" u (x, t) 0 (x) dx 
Ixl<R 

we see that ~b (t) > 0 for t < T O and that 

~+~c~> ~ f ( u t ) ~ d x >  S g(ut)~dx 
[xl <=g Ixl_-<R 

Note that >g(Ixl~R u, O dx)= g(c}). 
~(0 )=  ~ r 

Ixl <R 

4;(0) = I 0 (x) u,(x, o) d~ = ~, = 
Ixl<-_R 

and that fil > 0q. We now claim that 4; (t)> ~b (t) wherever ~b exists. If this 
assertion is false, let t = q  be the first point where 4;(q)=~b(tl), and set 

a(t) = ~)(t)-- ~(t). 

Then by the definition of q, we have a(t)>=O on [0, tl]. For O < t < q ,  
we use this to get 

0 = qS- q~ >g(q~)-p qb- 4;_>_g(q~)- (# + 1) q~. 
14" 
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Moreover, the nonnegativity of a(t) on [0, h ]  implies that 

do(t)>=c~(t)>--_O 

for such t; thus ~b(t) is increasing and therefore 

c}(t)>=c~(t)>=al >=a for O<_t<_q. 

It then follows from iii) and the above that #(t)>=0 on [0, q] ,  from which 
we obtain 

0 = a(tl)  >= ~(0) =/~1 - ~ 1  > 0 .  

This contradiction shows that the point t 1 does not exist, and proves 
the claim. Thus, since g(s) is nondecreasing for s>c~, the differential 
inequality 

q~ + #  ~b_>-g(6) =>g(qS) 

obtains. We are now reduced to the situation of Theorem 3.1, and the 
proof proceeds as before. 

Corollary. Under the same conditions, 

O~t t) sup (x, [xl _-<a 

also blows up in a finite time t2 < to < To. 

Proof. Since 0 < q5 (t)< 4; (t) wherever ~b exists, we have 

~u t), 4;(t) = I~ (t) l < sup - -  (x, 
= ixl<=R 6~t 

which proves the corollary. 

The method is similar when n > 3. We again consider the mean values 

~(r, t)= ~ 1  ~ u(or ,  t ) d o  
On I•1= 1 

and obtain the partial differential inequality 

~t 2 r dr Or 2 

by the convexity of g. The Riemann function for the operator on the left 
above is given by Lemma 4.2. Thus we may again determine the number ro 
given by Lemma 4.3, which implies the positivity of the kernel in the 
integral representation. It then follows immediately from the assumed 
subharmonicity of the data and the positivity of f that ~ (r, t)->_ 0 for the 
same (r, t) as in the corollary to Lemma 4.3. The proof then goes through 
as above, with the additional assumption that u,(x, 0)> u (x, 0) for all x ~ S. 
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