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Summary. Recently, Mankiw-Whinston (1986) and Suzumura-Kiyono (1987) 
have shown that socially excessive firm entry occurs in unregulated oligopoly. This 
paper extends this "excess entry" results by looking into strategic aspects of cost- 
reducing R & D investment that creates incentives towards socially excessive invest- 
ments. In the first stage, firms decide whether or not to enter the market. In the 
second stage, firms make a commitment to cost-reducing R&D investment. In the 
third stage, firms compete in output quantities. It is shown that the excess entry 
holds even in the presence of strategic commitments. 

1 Introduction 

Contrary to "a widespread belief that increasing competition will increase welfare 
(Stiglitz (1981, p. 184))," recent studies have revealed that competition may some- 
times be socially "excessive". In particular, Mankiw and Whinston (1986) and 
Suzumura and Kiyono (1987) have shown that socially excessive firm entry may 
occur in unregulated oligopolistic markets) This happens because entry is 
occasionally more desirable to entrants than to the society, as new entry creates an 
incentive for incumbent firms to reduce their outputs. This result was established 
in a partial equilibrium framework for symmetric Cournot oligopoly. 2 

'~ This is the synthesized version of the two earlier papers, Okuno-Fujiwara and Suzumura (1988) and 
Suzumura (1991). We are grateful to Professors J. Brander, D. Cass, M. Majumdar, A. Postlewaite, J. 
Richmond, A. Sandmo, B. Spencer and J. Vickers for their helpful comments and discussions on earlier 
drafts. Needless to say, they should not be held responsible for any remaining defects. Financial supports 
from the Japan Center for Economic Research, Tokyo Center for Economic Research, the Japanese 
Ministry of Education, and the Institute for Monetary and Economic Research, the Bank of Japan are 
gratefully acknowledged. 
1 See, also, Perry (1984) and Weizsficker (1980a; 1980b). 
2 Konishi, Okuno-Fujiwara and Suzumura (1990) have generalized this result with general equilibrium 
interactions, whereas Lahiri and Ono (1988) have shown that this paradoxical result essentially survives 
with heterogeneous firms by proving that eliminating minor firms increases social welfare through the 
improvement of average production efficiency which overwhelms the undesirable effect of a change in 
market structure. 
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The purpose of the present paper is to add a new dimension to this literature 
by looking into strategic aspects of cost-reducing R & D investment that may create 
incentives towards socially excessive investment. We consider an oligopolistic 
competition played in three stages. In the first stage, firms simultaneously decide 
whether or not to enter the market. In the second stage, firms make an irrevocable 
commitment to R & D  investment, which affects production cost in the third stage 
where firms compete in quantities. Since R & D  investment'is a fixed commitment, 
firms' investment decisions are affected by strategic considerations. 

In the first half of the paper, we analyze the second and the third stage game, 
with a number of firms fixed. Brander and Spencer (1983) analyzed this game in a 
Cournot duopoly setting and showed that the level of investment is higher at the 
strategic equilibrium than that at the non-strategic equilibrium. They also showed 
that investment is sometimes socially excessive as it exceeds the level that maximizes 
second-best social welfare? In this paper, we identify the causes of this excessive 
investment and generalize their results in several respects. First, we shall focus on 
the excessive investment at the margin and decompose the welfare effect of an addi- 
tional investment into the commitment effect and the distortion effect. Second, by 
invoking the concept of strategic substitutes due to Bulow et al. (1985), we shall 
provide a clear interpretation of the excessive investment result. 4 Third, we shall 
establish an increase in the number of firms is likely to cause a socially excessive 
investment. 

In the latter half of the paper, we shall consider the full-fledged three stage game. 
Under a set of rather weak assumptions, we shall show that the excessive entry a la 
Mankiw-Whinston and Suzumura-Kiyono is extended even with the existence of 
strategic investment. 

The structure of the paper is as follows. In Sect. 2, our model is formulated. 
Section 3 considers the second and the third stage games with a fixed number of 
firms, and decomposes the welfare effect of a change in R & D  investment into the 
commitment and the distortion effects. In this section, we shall show that, under 
fairly mild conditions, the strategic R & D  investment is socially excessive at the 
margin if the actual number of firms exceeds a certain critical number. Section 4 
extends our analysis to the full three stage model and a marginal reduction of 
the number of firms from the free entry level is shown to improve social welfare 
under a slightly more restrictive set of assumptions. Proofs are gathered in Sect. 5. 
Section 6 concludes the paper. 

2 Distortion and commitment effects: The homogeneous product case 

2.1 Consider an industry where operating firms produce a homogeneous product. 
Firms engage in three-stage competition. There are infinite number of potential 

3 Note, however, they assumed the Cournot competition with product differentiation, while in this paper 
we assume the Cournot competition with homogeneous products. See also d'Aspremont and Jacquemin 
(1988) and Suzumura (1990) which analysed the role of R&D spillovers and cooperative research 
associations in the framework of two-stage oligopoly models. 
4 Brander and Spencer (1983, p. 227) assumed, in effect, that products are strategic substitutes. See, also, 
Besley and Suzumura (1989), Eaton and Grossman (1986) and Fudenberg and Tiroie (1984) for other 
contexts where this assumption plays an essential role. 



Symmetric Courno t  oligopoly 45 

entrants. In the first stage, firms decide whether or not to enter the market in a 
predetermined sequential order. In the second stage each firm makes a strategic 
commitment to cost-reducing R&D, whereas firms compete in terms of quantities 
in the third stage. 

In this paper, we will utilize three different equilibrium concepts. Given any 
arbitrary number of firms and R&D investment profile, the third stage Cournot- 
Nash equilibrium is defined. Given an arbitrary number of firms, the second stage 
subgame perfect equilibrium is defined when the relevant game is defined by the 
second and the third stages of the entire game. Finally, the first stage free entry 
equilibrium is defined as a subgame perfect equilibrium of the entire game. The focus 
of our analysis is the welfare performances of the second stage symmetric subgame 
perfect equilibrium and that of the first stage free entry equilibrium. 

2.2 The inverse demand function for the product is p = f(Q), where p is the price 
and Q is the industry output. The cost-reducing R&D and the output level of firm 
i is denoted by x~ and q~, respectively, and the variable cost function of firm i 
is represented by c(x~)qg, where the function c(.) is assumed to be identical for all 
firms. 

For each specified number of firms n > 2 and each specified profile of R&D 
commitments x = (xl, x z , . . . ,  x,) > 0, the third stage payoff function of firm i is given 
by 

(2.1) hi(q; x; n): = {f(Q) - c ( x i ) } q  i - x i ,  

where q = (qx, q2 . . . . .  q,) and Q = ~ qj. For notational simplicity, we assume that 
j = l  

the R&D level xz is measured by the expenditure for equipment installations. Let 
qN(x; n) denote the third stage Cournot-Nash equilibrium corresponding to the 
specified (x; n). 

We assume throughout that qN(x; n) is unique, symmetric and positive if the 
R&D profile x is symmetric and positive. 5 We also assume: 

A(1): f(Q) is twice continuously differentiable with f'(Q) < 0 for all Q > 0 such that 
f(Q) > O. Furthermore, there exists a constant 6o > - ~ such that 

(2.2) 6(Q):- = Qf"(Q) > 60 for all Q > 0 with f(Q) > 0. 6 
f,(Q) = 

A(2): c(x) is twice continuously differentiable and satisfies c(x) > O, e'(x) < 0 and 
c"(x) > 0 for all x > O. 

For any output profile q = (ql, q2,--., q.), R&D profile x = (xl, x 2 . . . . .  x.) and 

5 An n-vector y = (Yl, Y2,.--, Y,) is symmetric ifyl = Yi for all i , j  = 1, 2 , . . . ,  n, whereas y is positive ify~ > 0 
for all i = 1 ,2 , . . . ,n .  
6 The elasticity 6 of the slope of inverse demand function plays a crucial role in many contexts Of 
oligopolistic interaction. See Besley and Suzumura  (1989), Seade (1980a, 1980b), Suzumura  (1990), and 
Suzumura  and Kiyono (1987), among  others. 
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the number  of firms n, we define 

02 . 
~i(q; x; n): = ~25_z 7z'(q; x; n) 

oql 
62 

~ij(q;x;n): = = - -  ni(q;x;n) (i #j; i,j = 1,2 . . . . .  n). 
t3q~3qj 

Note  that flij(q; x; n) is the crucial term that  determines whether  the second 
stage strategies are strategic substitutes (fl~j(q; x; n )<  0) or strategic complements 
(flij(q; x; n) > 0). 7 It will be assumed that: 

A(3): The second stage strategies are strategic substitutes so that flij(q; x; n) < 0 holds 
for any (q;x; n) (i v~ j; i, j = 1,2, . . . ,n) .  

Remark 1. A(1) admits the following class of inverse demand functions with 
constant  elasticity of f '(Q): 

f (Q)= [ a - b Q  ~ i f 7 = 6 + 1 3 0  
(2.3) 

a - b . l o g Q  i f 6 =  - 1 ,  

where a is a non-negative constant  and b is a positive (resp. negative) constant  if 
y < 0 (resp. 7 > 0). Note  that (2.3) includes a linear demand (7 = 1) as well as constantly 
elastic demand (a = 0), so that  it still accommodates  a wide class o f "normal"  inverse 
demand functions. 

Remark 2. The assumption of strategic substitutability is quite natural  to require 
in our  present context, since it is equivalent to assuming the downward  sloping 
reaction functions in the third stage quanti ty game. 

Remark 3. It is easy to verify that  

(2.4) C~i(qN(x; n); x; n) = 2f'(QN(x; n)) + q~(x; n)'f"(QN(x; n)) 

(2.5) flij(qN(x; n); x; n) = f'(QN(x; n)) + q~(x; n)'f"(QN(x; n)) 

hold, where QN(x; n) :- ~ q~Y(x; n). If x is symmetric ~i and flij are identical for all i 
j=l  

and j. In this case, invoking (2.2) we can rewrite (2.4) and (2.5) into 

(2.6) ~(x; n) = n -  1 .f'(QN(x; n)).(2n + 6(QN(x; n))) 

(2.7) /~(x; n) = n -  l ' f ' (QN(x;  n))'(n + 6(QN(x; n))) 

respectively, where ~(x; n ) : -  ~i(qN(x; n); x; n) and r n): =/~i(qN(x; n); x; n) for nota- 
tional simplicity. Therefore, A(3) implies that: 

(2.8) n + 6(QN(x; n)) > 0 

for any x and n > 2, where use is made of A(1). Note  that (2.8) is satisfied for any 

7 For the concept of strategic substitutes and complements, see Bulow, Geanakoplos and Klemperer 
(1985). See, also, Eaton and Grossman (1986) and Fudenberg and Tirole (1983). 
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n > 2 if and only if 

(2.8") 2 + 6(QN(x; n)) > 0 

holds. Note also that A(1) and (2.8) guarantee that ~(x; n) < 0 holds for any (x; n). 

2.3 Under the assumption of an interior optimum, the third stage Cournot-Nash 
equilibrium qN(x; n) is characterized by 

(2.9) f (QN(x;  n)) + q~(x; n) . f ' (QN(x;  n)) = c(xi) (i = 1, 2 . . . . .  n). 

The first aim of our analysis is to ascertain how the Cournot-Nash output 
q~(x; n)ibehaves in response to a change in x i, x.i (i # j )  and n. Defining ~o(x; n):_ = 
(O/Oxi)q~(x ,n) and 0(x;n): = (O/8xj)qin (x; n) (i # j), straightforward computations 
assert the following: 

Lemma 1. For each symmetric  x and n, 

(2.10) (O/On)q~(x; n) = q/n(x; n).fl(x; n) < 0 
~(x; n) + (n - 1)/~(x; n) 

(2.11) ~o(x; n) = c'(xi) �9 {,(x; n) + (n - 2)fl(x; n)} > 0 
A(x; n) 

c'(x,) 
(2.12) 0(x; n) . . . .  fl(x; n) < 0 

zl(x; n) 

hold, where 

(2.13) A(x; n):- {~(x; n) -/~(x; n)}" {~(x; n) + (n - 1)/~(x; n) } > 0. s 

2.4 We now turn to the second stage game. For each specified n, the first stage 
pay-off function of firm i is given by 

(2.14) Hi(x; n) = ni(qN(x; n); x; n). 

If we denote the Nash equilibrium of the second stage game by xU(n), it is clear that 
{xN(n),qN(xN(n); n)} is nothing other than the second stage subgame perfect equili- 
brium among n firms. We assume throughout that xN(n) is unique, symmetric and 
positive for each n. 

Assuming an interior optimum, xN(n) is characterized by 

(2.15) {f(QN(xU(n); n)) - c(x~(n))}.(O/~xi)q~(xN(n); n) + q~(xN(n); n) 

"{f '(QN(xN(n); n))'(a/Ox,)QN(xN(n); n) -- c '(x~(n))} -- 1 = 0 (i = 1, 2 , . . . ,  n). 

a Since fl(x; n) < 0 and ~(x; n) < 0 hold under A(1) and A(3), it follows that 

(1") ~(x; n) + (k - 1)fl(x; n) < 0 (k = 0, 1 . . . . .  n) 

holds. Note that (1") is a sufficient condition for the local stability of the myopic adjustment process 
O 

(2*) (li=a.--ni(q;x;n) ( i=  1,2 . . . . .  n) 
aq~ 

where O~ denotes the time derivative of ql, and a > 0 stands for the adjustment coefficient. 
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Invoking (2.9) for x = xN(n), (2.15) reduces into 

(2.16) - c'(x~(n))'q~(xN(n); n) - 1 

= {f(QN(xN(n); n)) -- c(x~(n))}. ~" (O/t3xl)q~(xN(n); n) (i = 1, 2 , . . . ,  n), 
jgzi 

which proves to be crucially important in what follows. 

2.5 Consider now the profits Hi(xN(n); n) earned by firm i at the second stage sub- 
game perfect equilibrium among n firms. According to the classical eniry/exit 
dynamics, the number of firms n will increase (resp. decrease) whenever Hi(xN(n); n) > 0 
(resp. < 0), viz., 

(2.17) h > 0 (resp. < O)~Hi(x~(n);  n) > 0 (resp. < 0), 

where h denotes the time derivative of n. 
Let the equilibrium number o f  f irms ne be defined as the stationary point of the 

dynamic process specified by (2.17): 

(2.18) Hi(xS(ne);ne) = 0 (i = 1,2,...,ne). 

Then {he, xU(n~), qU(xN(n~); he) } constitutes the first stage free entry equilibrium. 

2.6 To gauge the welfare performance of the industry, we define the net market 
surplus function by 

Q n 
(2.19) W(q; x; n):-- ~ U(R)dR - Z {c(xj)qj + xj}, 

0 j = l  

where Q = ~ qj. 
j = l  

If the government can control this industry in its entirety from the viewpoint of 
social welfare maximization, the best that can be done is to impose the socially first 
best R&D, xr(n), and the socially first best output, qV(n), on each incumbent firm 
and to choose the f irst  best number of  firms, n s. These are defined by 

(2.20) f (nqV (n) ) - c(xV (n) ) = 0 

(2.21) - c'(xF(n))'qV(n) - 1 = 0 

(2.22) ny: = arg max W(qV(n), xF(n); n). 
n > l  

Realistically speaking, however, such a first best policy is hard to implement, 
since firms are thereby imposed to produce in deficit. If the government cannot 
control firms' competitive strategies, however, the best that can still be done may 
be to choose the second best number of  firms: 

(2.23) ns: = arg max W(qN(xN(n); n); xN(n); n). 
n > l  

That is, let n s firms freely compete to establish the second-stage subgame perfect 
equilibrium {xN(ns); qN(xN(ns); ns)). 
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In the short-run, however, the government may not be able to control the 
number of firms. It may be forced to control the R & D  level of each incumbent firms 
to the second best level, xS(n), defined by 

(2.24) xS(n): = arg max W(qN(x; n); x; n). 
x > 0  

Despite its obvious relevance and appeal, such second best policies may still be 
difficult to implement. Because of uncertainty on the precise nature of the functions 
involved, it may be prohibitively hard to identify where exactly xS(n) is located. 
What is required is a policy prescription which does not presuppose the availability 
of detailed knowledge on the nature of demand and cost functions involved. This 
is precisely what we look for in the next sections. 

3 Commitment effect, distortion effect and the number of firms 

3.1 In this section, we assume the number of firms, n, is uncontrollable but R & D  
investment is under the government's control. Let WN(x; n) be the net market 
surplus with outputs evaluated at the third stage Cournot-Nash equilibrium: 

Q~V(x;n) 

(3.1) WN(x;n): = ~ f ( Q ) d Q -  ~ {c(xj)q~(x;n) + xj}. 
0 j = l  

Suppose (O/axi)WN(xN(n);n)< (resp. >)0 .  Then a marginal decrease (resp. a 
marginal increase) of firm i's investment at the second stage subgame perfect equili- 
brium increases social welfare, so that the investment at the subgame perfect equili- 
brium is socially excessive (resp. socially insufficient) at the margin. 

To understand what determines the crucial term (t~/Oxi) WN(xN(n); n), it is useful 
to decompose it into the commitment effect Ci(xN(n);n) and the distortion effect 
Di(xN(n); n). To be concrete, the commitment effect is defined by 9 

(3.2) Ci(xN(n); n):- -- c'(x~(n))'qr/(xN(n); n) -- 1, 

which, in view of (2.16), can be reduced into 

(3.3) Ci(xN(n); n) = #i(xN(n); n)" ~ (O/t~xi)q~(xN(n); n). 
jg:i 

The distortion effect, on the other hand, is defined by 

(3.4) Di(xN(n); n):= ~ #j(xN(n); n).(t3/Oxi)q~(xN(n); n), 
j = l  

where/zj(xN(n); n):=- f (QN(xN(n); n) ) -- c(x~(n) ) denotes the marginal distortion of firm 

9 In the absence of strategic commitment ,  the problem of social welfare maximization takes the form of 
Q n 

maximizing S f ( R ) d R -  ~, {c(xj)qj + x j} with respect to {(qi; x~)}7= 1- The first-order condit ions are 
0 j = l  

then f(Q) - c(x~) = 0 and - c'(xl)q~ - 1 = 0 (i = 1, 2 . . . . .  n). Note  that the latter condition suggests that  
C~(xN(n); n) becomes non-zero only by the presence of strategic commitment, which motivates our  termino- 
logy. 
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j, which is independent of firm index j at the symmetric equilibrium, By simply 
adding Ci(xN(n); n) and Di(x~(n); n), we obtain the crucial term (8/C~x~)WN(xN(n); n). 

In view of symmetry of x and (2.11)-(2.13), 

(3.5) Ci(xN(n); n) = (n -- 1)'#(xN(n); n).O(xN(n); n) < O, 

(3.6) Di(xN(n); n) = #(xN(n); n)- {~o(xN(n); n) + (n -- 1). 0(xN(n); n)} > 0, 

where p(xN(n); n):- pj(xN(n); n) > 0. Therefore (O/Sxi)W~(xN(n); n) consists of two 
components with opposite signs. 

3.2 It may be useful to illustrate our decomposition of the marginal welfare effect 
with the help of Fig. 1. At the original symmetric subgame perfect equilibrium, each 
firm produces q*:=q~/(xN(n);n) with the marginal cost c*:=-c(x~(n)), and the 
industry output is Q* :-= nq*. If firm i unilaterally increases its investment by a small 
amount e > 0, its marginal cost is reduced to c**:= c * - e { -  c'(x~(n))}. Products 
being strategic substitutes, this increase in firm i's aggressiveness reduces other firms' 
output, so that firm i's residual demand curve shifts up. As a result, industry output 
increases to Q**, and output of firm i increases to q** 

p, c 

j, 

Aq 

"x "~  

,~ ......... _~,, 1~ ". 

/ ,, \, marginal revenue~ residual demand 
i ~ for firm i ~ for firm i 
, I +. I i 
i i 

i i 

i i * + 
i i i 

+ i i 

0 q~'x qi** Q* Q*~ 

Fig. 1. Distortion effect and commitment effect. 

) qi' Q 
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The net welfare gain from this change consists of 

The change in consumers' surplus = area Ap**B' - area Ap*B 

= area Bp*p**B' 
and 

The change in profits = (area B'p**c*D' + area Cc*c**C' - ~) 

- area Bp*c*D, 

which, after neglecting terms of second order infinitesimal, boils down to 
(area B'EDD') + (area Fc*c**F' - e). It is clear that the first term is nothing other 
than our distortion effect, whereas the second term corresponds precisely to our 
commitment effect defined by (3.2). 

Thus, the distortion effect, which is nothing but the familiar sum of marginal 
distortions, represents the welfare loss caused by the exercise of firms' monopolistic 
power on consumers. Clearly, an increase in investment that increases the industry's 
total supply will generate a positive distortion effect. On the other hand, the commit- 
ment effect measures the extent to which a firm can extract additional profits by 
capturing other firms' market share by taking advantage of a better third stage game 
structure via an increase in investment in xl. The total effect on economic welfare 
depends on the relative strength of these conflicting effects. 

3.3 In the rest of this section, we shall elucidate that the commitment effect is likely 
to dominate the distortion effect, so that the term (O/Oxi)Wn(xN(n); n) is likely to 
become negative, if the number of firms is sufficiently large. In view of (3.5), (3.6), 
(2.6), (2.7), (2.11) and (2.12), and noting A(1) and (2.13), the condition for 

(c~/c~xi) WN(xN(n); n) = Ci(xN(n); n) + Di(xN(n); n) < 0 

can be reduced into 

- (n - 1).-{ n) (3.7) 1 J < 0, 

which can be further reduced into 

(3.8) n 2 - 2n + (n - 1)6(QN(xN(n); n)) > 0. 

By virtue of A(1), (3.8) holds whenever 2(n):- n 2 - 2n + (n - 1)6 o > 0 is satisfied. 
Let N(6o)>O be the largest root of the quadratic equation 2(n)=0.  Then 
(g~/Sxi) W~(xN(n); n) < 0 holds if n > N(6o). Thus: 

Theorem 1. Under A(1), A(2) and A(3), there exists a positive number N (6o) such that 
(O/axg)WN(xn(n); n)< 0 holds, viz., the strategic cost-reducing investment is socially 
excessive at the margin if n > N(6o). 

An important question still remains. How large is the critical number N(6o) 
which appears in Theorem 1? In the case of concave inverse demand functions, it 
is easy to see that N(60) = 2. In the case of constantly elastic inverse demand func- 
tions, N(6o) will increase as the elasticity t /of the inverse demand function increases, 

but for all values oft/satisfying 0 < t /<  1, we have 1 < N(6o) < 2 + x//2. Thus, N(6o) 
remains fairly small for these important classes of situations. 
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3.4 It may be useful to graphically illustrate why the number of firms, n, plays an 
important role in deciding social excessiveness of investment. Define the third stage 
reaction function of firm i by 

(3.9) ri(Q_i; x~ arg max {f(qi + Q - i ) -  c(x~ }qi, 
qi>0 

where Q_i: = ~ qj, and an investment profile x~ =- 0 o o (x 1, x2,.. ., x ,  ) is fixed. Then the 
jvzi 

cumulative reaction function Ri(Q; x~ ) is defined by 

(3.10) qi = RI(Q; x~ if and only if ql = ri(Q - qi; x~ 

By construction, the industry output in the third stage Cournot-Nash equilibrium 
QN(x~ n) is the fixed point of the mapping 

Rj(Q;x~ viz., QN(x~ = '~, Rj(QN(x~176 
j = l  j = l  

Figure 2 describes the original third stage equilibrium E ~ as a point where the curve 

Rj(Q; x ~ cuts the 45 ~ line. 
j = l  

Suppose now that firm i increases its investment marginally. Then the aggregate 

cumulative reaction curve will shift up to ~ Rj(Q; x)), where Rj(Q; xJ)= Rj(Q; x ~ 
j = l  

R.i (Q; xj) " ,  

! �9 

N i � 9 1 4 9  
qj(O;n) 

I I � 9149  

o 
N 0 q {:z ;n) qN(xl~n) 

Fig. 2. Cumulative reaction curves. 

'% 
�9 

% 

) Q 
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for all j 4: i, so that the industry output increases by QN(x~; n) - QN(x~ n), whereas 
o for all the output of firm j (j r i) decreases by q~V(x~ n ) -  q~V(xl; n), where xj = xj 

j r i. The ratio between the two, I-QN(xl;n)- QN(x~176 qJV(xl;n)] 
which closely approximates - (O/axi)q~(x~ n)/(~/8xi)QN(x~ n) in (3.7) if an increase 
of firm i's investment is small enough, is provided by the slope of the cumulative 
reaction curve. 

Figure 2 describes a situation where the inverse demand function is linear, so 
that the reaction curve is also linear whose slope is independent of the number of firms 
n. In this case, as n becomes large, (~/Oxl)WN(x~ n) clearly becomes negative, and 
the equilibrium investment becomes socially excessive at the margin. 

3.5 Before closing this section, a final remark is in order. Since our welfare criterion 
need not be concave in general, a marginally welfare-improving investment may in 
fact be a "wrong" move from the global viewpoint. However, it is possible to 
compare level of the second-best investment directly with that of the second stage 
subgame perfect equilibrium if our model is parametrizable, viz., the inverse demand 
function as well as the cost function is constantly elastic. Quite consistent with our 
analysis so far, it can be shown that there exists a critical number of firms as a func- 
tion of the elasticity ~/of the inverse demand function, say n*(r/), such that the subgame 
perfect equilibrium level of investment exceeds the second-best level if n > n*(q). The 
critical number is given by n*(r/):_= [(r/+ 3) + ~/{(r/+ 3) 2 - 4(r/+ 1)}]/2 < r/+ 3, 
which remains fairly small for a wide range of ~/. 

4 Excess entry in the long run 

4.1 If the industry is left unregulated for a long time, the first stage free entry equili- 
brium with n e firms, viz., {he, xN(ne), qN(xN(n~); he)} will be attained. What, then, will 
be the welfare-improving policy that the government can enforce? 

If the government can enforce the marginal cost pricing, it is easy to verify that 
the welfare-maximizing policy is to restrict the number of firms to either zero or 
one and impose the marginal cost pricing on the operating firm. Namely, we have 
the following: 

Theorem 2 (First-best excess entry). Assume that A(2) holds. Then a small reduction 
in the number of firms n unambiguously improves first-best social welfare in the sense 
that 

(4.1) (d/dn) W(qe(n); xV(n); n) < 0 

holds as long as n > 2. Indeed, the first-best number of firms nf is either 0 or 1. 

4.2 Since enforcing the marginal cost principle is next to impossible for the 
actual government, we should examine how the second-best welfare function 
W(qN(xN(n); n); xN(n); n) will be affected when the number of firms changes by a small 
amount. 

Differentiating W(qN(xN(n); n); xN(n); n) totally with respect to n, we obtain 

(4.2) (d/dn) W(qS(xN(n); n); xU(n); n) 

= Hi(xU(n); n) + n (f(QN(xN(n); n)) -- c(x~(n))}'(O/an)q~(xU(n); n) 

+ , .  {C(xN(n); n) + O(xN(n); n)}'x~"(n). 
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Note  that the first term in the RHS of (4.2) is zero when it is evaluated at n = ne 
by virtue of the definition (2.18) of ne, whereas the second term evaluated at n = ne, 
viz, 

(4.3) #(xN(ne); ne)'(8/~3n)q~ (xN(ne); he) 

is always negative by virtue of A(1), (2.9) for x = xN(n~) and Lemma 1. Note  also 
that (4.3) is the crucial term which leads to the excess entry theorem of Mankiw and 
Whinston (1986) and Suzumura  and Kiyono  (1987) in the context  of no strategic 
commitment.  

The third term in the RHS of (4.2) is specific to the oligopoly models with strategic 
commitment.  Its first component  evaluated at n = ne, viz. C(xN(ne); he) is what  we 
called the commitment  effect in Sect. 3. Its second component  evaluated at n = ne, 
viz. D(xN(n~); ne) is the distort ion effect. 

As was shown in Sect. 3, C(xN(ne);n~)< 0 and D(xN(n~); n~)> 0, so that the 
presence of strategic commitment  seems to introduce some ambiguity in signing 
(4.2). If we replace A(1) by the following slightly stronger assumption, A(I*), how- 
ever, we can establish an unambiguous result. 

A(I*): f (Q) is twice continuously differentiable with f'(Q) < O for all Q > 0 such that 
f(Q) > O. Furthermore, the elasticity of f '(Q) is constant, say, 5(Q) = 6.1~ 

With this, we can establish: 

Theorem 3 Second-best excess entry at the margin). Assume that A(I*), A(2) and 
A(3) hold. Then a small reduction in the number of firms at the first stage free-entry 
equilibrium unambiguously improves the second-best social welfare in the sense that 

(4.4) (d/dn) WN(qN(xN(ne); n~); xN(ne); n~) < 0 

holds as long as n e >= 1 - 6. 

Thanks to Theorem 3, under the assumed conditions, the exit of an incumbent  
firm at the first stage free-entry equilibrium is welfare-improving at the margin in 
the secondbes t  sense even if we do not  know where exactly nf and n~ are located. 
Note  that the crucial inequality ne >= 1 - 6 is obviously satisfied if the inverse demand 
function is concave, so that 6 > 0 holds. 

5 Proofs 

(a) Proof of Lemma I 

Differentiating (2.9) with respect to n and rearranging terms using ~(x; n) and fl(x; n), 
we obtain 

(5.1) {:t(x; n) + (n - 1)fl(x; n)} .(8/Sn)q~(x; n) = - q~(x; n)' fl(x; n), 

which yields (2.10). The negative sign of (8/Sn)q~/(x; n) is due to A(1) and A(3). 

~o See Remark t following the statement of A(1). 
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To prove (2.11) and (2.12), we differentiate (2.9) with respect to x~ and xj (i :~j), 
respectively, and rearrange terms using co(x; n) and 0(x; n) to obtain 

(5.2) ~(x; n).~o(x; n) + (n - 1)'fl(x; n). 0(x; n) = e'(xi) 

(5.3) fl(x; n)' co(x; n) + {7(x; n) + (n - 2)fl(x; n)}" 0(x; n) = 0. 

Solving (5.2) and (5.3) for co(x; n) and 0(x; n), we obtain (2.11) and (2.12). The signs 
of co(x; n), 0(x; n) and A(x; n) are determined by A(3), (2.6) and (2.7). [ ]  

( b )  Proof  o f  Theorem 1 

The sketch of the proof is given in the main text and hence it is omitted. []  

(c )  Proof  of Theorem 2 

Differentiating W(qr(n); xF(n); n) totally with respect to n, we obtain 

(5.4) (d/dn) W(qe(n); xF(n); n) = {f(nqF(n)) -- c(xF(n))} �9 qe(n) -- xV(n) 

+ nq~"(n) �9 { f (nqV(n ) ) -  c(xV(n))} 

+ nxV'(n) �9 { - e'(xV(n))'qV(n) - l}. 

Invoking (2.20) and (2.21), we are then led to conclude that 

(5.5) (d/dn) W(qF(n); xF(n); n) = -- xV(n), 

which is always negative, as was to be established. []  

( d )  Proof  of  Theorem 3 

Step 1. By virtue of A(1), (2.9) for x = xN(ne), (3.5) and (3.6), it can easily be verified 
that the sign of (4.2) coincides with that of 

(5.6) a (n ) : -  (3/c3n)q~(xN(n); n) + x~'(n).{co(xU(n); n) + 2(n - 1). 0(xU(n); n)} 

at n = ne. Invoking Lemma 1, A(n) can be further reduced into 

(5.7) 
1 

A(n) = 
aN(n) + (n - 1)fiN(n) 

"I - q/U(xU(n); n)'flN(n) + 
[ 

 N(n) - (,) ) 
o:U(n) - flU(n) Y 

where aN(n): = ct(xU(n); n) and flU(n):-= fl(xN(n); n) for short. By virtue of (2.6) and (2.7) 
for x = xU(n) and A(I*), it follows that 

(5.8) 

where 

(5.9) 

(5.10) 

sgn A(n) = sgn[A + B.x~'(n)], 

A -- q~(XN(n); n)'f'(QU(xN(n); n))'(n + c5) < 0 

B = c'(x~(n)).{n(n - 2) + 6(n -- l)}. 
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Note that A > 0 follows by virtue of (2.8), but the term { n ( n - 2 )  + 6 ( n -  1)} is 
positive only when n > N(6), as was shown in (3.8). 

Step 2. We examine some properties of the second stage payoff function Hi(x; n) 
with the purpose of evaluating x~'(n) which appears in (5.8). To begin with, simple 
yet complicated computation using (2.2), (2.4), (2.5), A(I*) and Lemma 1 establishes 
that 

(5.11) Hi(x; n): = (c3/c~xi)Hi(x; n) 

= - c'(xi)'q~(x; n).r - 1 

holds, where 

(5.12) 
n - 1  n + 6  

~(n):- 1 -t > 0 
n l + n + 6  

in view of (2.8). 
Differentiating (5.11) partially with respect to xl and xj (i #j) ,  respectively, we 

obtain 

(5.13) Hii(x; n):-= (02/c~x2)H'(x; n) 

rt N X" = - ~(n)" {c (xi)'qi ( , n) + c'(xi)'~o(x; n)} < 0 

(5.14) Hij(x; n):- (c'~2/c'~xic~xj)Hi(x; n) 

= - r n) 

e'(x3"(n + 6) 
= ~(n)'c'(xl) < 0 (i 4:j) 

f ' (QN(x;n)) .n . (n  + 1 + 6) 

where the last equality of (5.14) is obtained in view of (2.6) and (2.7). Note that the 
second order condition for profit maximization at the second stage game requires 
that Hii(xN(n); n) < 0 holds, while A(2), Lemma 1 and (5.14) ensure that i . Hij (x  , n) < 0 
(i # j )  holds for any (x; n). Therefore, the second stage strategies are warranted to 
be strategic substitutes if the third stage strategies are. 11 

Differentiating (5.11) partially with respect to n and noting that 

2n 2 + 26n + 6(6 + 1) 
(5 .15)  ~ ' (n)  = 

n2(1 + n + 6) 2 

follows from (5.12), we can finally obtain 

(5.16) (O/3n)FIi(xU(n); n) = c'(x~V(n)).q~V(xN(n); n) (1 -- n){2(n + 6) 2 + 6} 
he(1 + n + j)z 

Step 3. By definition, xN(n) is characterized by 

(5.17) 171(xN(n);n)=O ( i =  1,2 . . . .  ,n). 

11 It is the latter half of A(I*) that is responsible for this nice property. In general, this property does 
not necessarily hold. See Besley and Suzumura (1989) and Suzumura (1990). 
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Differentiating (5.17) totally and invoking symmetry ,  we obta in  

(5.18) x~' (n) = (~/&)Hi(xN(n); n) 
Hii(xU(n); n) + (n - 1)Hi~(xN(n); n)" 

In view of (5.18), (5.8) is reduced into 

k (5.19) sgnA(n)=sgn[H u AIIu (n--1)A'IIuzB'HIn-] 
+ ( n -  1)Hij H u + ( n -  1)H u J 

where Hii:- Hii(xS(n); n), Hu:=- Hi~(xN(n); n) and Hi,:- (O/c~n)II~(xN(n); n). 
It  follows that  (5.9), (5.13) and (5.14) assure the first term of the right hand side 

of (5.19) is unambiguous ly  negative. Thus, for the sign of A(n) to be negative, a 
sufficient condit ion is 

(5.20) F ( n ) : -  (n - 1)A.H u - B'Hin < O. 

Invoking  (5.9), (5.10), (5.14) and (5.16), a s t ra ightforward calculation yields 

F(n) = qi(n)" {c'(n)} 2"(n - 1).n(n) (5.21) 

where 

(5.22) n ( n ) : - ~  (n2-6)2 " {n(n-2)+6(n-1)} ' {2(n+6)2+6}}  

qi(n):- q/U(xN(n);n) and c'(n): = ' u c (x, (n)). 
In view of (5.21), if n > 1, the sufficient condit ion for A(n) to be negative boils 

down to the condi t ion that  O(n) to be negative. In view of (5.12), a s t ra ightforward 
computa t ion  yields that  

(5.23) O(n) = c~a(n)/[nZ'(n + 1 + 6 ) 2 ] ,  

where 

(5.24) q~a(n): = - 4n a - 86n z - 6(56 - 2)n - 6 2 ( ~  + 1), 

Step 4. The p roof  of Theorem 3 is complete  if we can show that  r < 0 as long 
as n > 1 - O. Since ~ba(n) < 0 holds for all n > 0 if 6 > 0, we have only to examine the 
case where 6 < 0. With this goal in mind, let n*(6) stand for the largest real root  of 
the cubic equat ion r = 0. The  coefficient of the highest order  term of this cubic 
equat ion being negative, we have 1 - 6 > n*(6) if all of Ca(n), r and q~(n) are 
negative at n = 1 - 6. This is indeed the case, as we have 

and 

qSa(1 - 6) = 2(6 - 2) < O, 

~)r6(1 - -  6 )  ~- - -  62  Jr- 66 - 12  < 0,  

0 (1 - 6 )  = - 8 ( 3  - a )  < 0 

for 6 < 0. If  n > 1 - 6, we have n > n*(6), so that  we obta in  ~pa(n) < 0, as was to be 
verified. [ ]  
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5 Concluding remarks 

In this paper, we have examined the welfare performance of oligopoly with strategic 
commitments, which culminated into the excess entry results. The second best excess 
entry at the margin, which is the main result of this paper, is based on three explicit 
assumptions. The first assumption is on the admissible class of inverse demand 
functions. Despite its restrictive nature, we should note that a wide class of demand 
functions satisfies this assumption, as it does accommodate all linear inverse 
demand functions as well as all constantly elastic inverse demand functions. The 
second assumption is on the nature of cost reduction technology, which seems to 
be on the safe ground. The third assumption is on the nature of strategic inter- 
relatedness of competitive measures. Within a model of quantity competition, the 
assumed strategic substitutability seems to be widely recognized as a normal case. 
Despite its rather paradoxical implications, therefore, our welfare verdicts cannot 
be flatly discarded as pathological. The fact that our results hold even in the presence 
of strategic commitments seems to enhance its relevance rather substantially. 

It goes without saying that there are other implicit assumptions on which our 
results hinge. To cite just a few, quantity competition rather than price competition, 
exclusive focus on the symmetric equilibria, no uncertainty in cost-reducing R&D, 
and no product differentiation and no R & D  spillovers can be referred to. It is almost 
certain, and in some cases demonstrably certain, that the mileage of our excess entry 
results are severely limited by these implicit assumptions. Nevertheless, the fact 
remains that the arena where our results do have their bites is in no sense negligible. 
Presumably, we are in need for more careful analyses of the role of competition as 
an efficient allocator of resources. The purpose of this paper will be served if it 
succeeds in bringing this simple point home. 
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