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Summary. We consider increasing processes {X(¢):¢ = 0} of class L, that
is, increasing self-similar processes with independent increments. Let A(¢) be
an increasing positive function on (0,00) with A(0+) =0 and h(co) = oo.
By virtue of the zero-one laws, there exists ¢ (resp. C) € [0,00] such that
lim inf (resp. limsup) X (¢)/A(¢) = ¢ (resp. C) a.s. both as ¢ tends to 0 and as
¢t tends to oco. We decide a necessary and sufficient condition for the exis-
tence of A(z) with ¢ or C =1 and explicitly construct x(¢) in case h(t) exists
with ¢ or C = 1. Moreover, we give a criterion to classify functions A(z) with
¢ (or C) =0 and A(t) with ¢ (or C) = oo in case A{¢) does not exist with ¢
(or C)=1.
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1 Introduction and results

Distributions of class L on RY are defined in Gnedenko and Kolmogorov [8]
for d = 1 and in Sato [11] for general d. A necessary and sufficient condition
for a distribution on R¥ to be of class L is that it is self-decomposable. Sato
[12] introduces self-similar processes with independent increments and proves
that their distributions are of class L and that conversely, for each distribution #
of class L, there exists a unique (up to equivalence in law) self-similar process
with independent increments such that its distribution at time 1 is #. So he
calls a self-similar process with independent increments a process of class L.
Moreover he investigates in [12] the sample function behavior of increasing
processes {X(#)} of class L, comparing it with increasing self-decomposable
processes {Y(¢)} under the assumption that X(1) and Y(1) have the same
distribution. In this paper we shall extend his results on the sample function
behavior of increasing processes {X(¢)} of class L not only in the case of
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limsup of X(¢)/h(¢) but also in the case of liminf of X (¢)/A(t) for positive
increasing functions /4(z) both as ¢ tends to 0 and as ¢ tends to oo. In case
{X(#)} is an increasing stable process, {X(#)} and {Y ()} are equivalent in
law and the problems which are treated in this paper were already solved by
Fristedt [4,6]. Our key lemmas (Lemmas 3.1,3.2,4.3, and 4.5), which give
estimates of the values of liminf and limsup of X(¢)/A(t), are originally due
to Sato [12] but some of them are improved technically. The unimodality and
some analytical properties of distributions of class L, which are proved by
Sato and Yamazato [13], Wolfe [16] and Yamazato [17], play important roles
in our discussion. Also an integral equation of the density function of one-
sided infinitely divisible distribution, which is introduced by Steutel [15], is
employed as a basic tool.

A stochastic process {X(¢): ¢ = 0} with values in IR¢, which is defined on
a probability space (2, %, P), is said to be a process of class L with exponent
H if it satisfies the following three conditions (i), (ii), and (iii):

(i) {X (@)} is self-similar with exponent H, that is, for every ¢ > 0, {X(cf)}

and {¢” X (1)} have the identical finite-dimensional distributions.

(ii) {X(#)} bas independent increments, that is, X(t,) — X (%), X (&) —
X(t),...,X(ty) — X(t;,~) are independent for 0 < fh < 1 <t < -+ < &y

(iii) Almost surely X(¢) is right-continuous in ¢ = 0 and has left limits in
t> 0.
Here H is a positive constant. Note that a process of class L is not assumed
to have stationary increments. A probability measure u on RY is said to be
self-decomposable if, for every a € (0,1), there exists a probability measure i,
such that the characteristic functions fi(z) and fi,(z) satisfy

(1.1) fi(z) = fi(az)i(z) for z € RY.

A stochastic process {¥(¢):¢ = 0} with values in R? is said to be a self-
decomposable process if it is a Lévy process and the distribution of Y(¢) is
self-decomposable for each ¢. In this paper we use the words “increase” and
“decrease” in the wide sense. From now on, let d =1 and let {X(¢)} be an
increasing process of class L with exponent 1, which is not a deterministic
motion. Note that the exponent of a process of class L can be changed by
time change. Let u be the distribution of X(1). Then u is self-decomposable
by Sato [12] and the characteristic function fi(z) is represented as

(12) ) = exp(¥(@) w(z>=ivoz+:fo(e"”—l)x*k(x)dx,

where vp = 0 and k(x) is a nonnegative decreasing function on (0,c0) with
Joo(1 + )" k(x)dx < oo. Denote 2 = k(0+). If 4 < co, we define the func-
tion K;{x) on (0,00) as

(1.3) K(x) = (x A 1))'exp( fl (/l—k(u))u_ldu) .

xA1

Define the functions F(x), G(x), and G,(x) for a € (0,1) as

(1.4) F)=PX(1) £x),  G@x)=PE() z x),
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and
(L5) Go(x) = P(X(1) — X(a) 2 x).

Let f(x) and g(x) be measurable functions on (0,00). A relation f(x) ~ g(x)
is defined as Iim,_.., f(x)/g(x) =1. A relation f(x) =< g(x) is defined as
lim sup,_, ., | f(x)/g(x)| < oo and liminf, o | f(x)/g(x)] > 0. Let fo(x) be a
measurable function on (0, c0), which is positive on (4, c0) for some 4 = 0. A
function f(x) is said to be slowly varying if, for every p > 0, lim, .o fo(px)/
Solx)=1. A function fy(x) is said to be rapidly varying if, for every
p > Llimy oo folpx)/ fo(x) =0 or oco. A function fy(x) is said to be-
long to the class OR if, for each p > 1,limsup,_, fo(px)/fo(x) < oo and
liminf, .., fo(px)/fo(x) > 0. Denote by #, the totality of positive increas-
ing functions A(¢) on (0,00) with 2(0+) = 0 and lim,_, 5 A(¢) = co. By virtue
of the zero-one laws, there are ¢ (resp. C) € [0,00] for A(¢) € #°; such that

(1.6) lim inf (resp. lim sup)X (#)/h(t) = ¢ (resp. C) a.s.

both as time ¢ tends to 0 and as ¢ tends fo oo. Main problems with which we
shall be concemned are as follows:

(1) What is a necessary and sufficient condition for the existence of
h(t) € #y satisfying (1.6) with ¢ or C = 17

(ii) In case A(t) satisfying (1.6) with ¢ or C = 1 exists, how is A(¢) given?

(iii) In case A(¢) satisfying (1.6) with ¢ or C = | does not exist, what is
a criterion to classify functions A(¢) with ¢ (or C) =0 and A(¢) with ¢ (or
C) = o0?
In the case of liminf we shall answer the problems above completely. Denote
by ##, the totality of functions A(t) € #, such that 4(z)/t is decreasing on
(0,1) and increasing on (1,00). In the case of limsup we shall answer the
problems above for functions A(¢) in 5#;. Namely our results are as follows.
The functions Hy(z) and Hy(t) below are explicitly constructed in Sect. 2. The
function Hy(t) belongs to 3y and the function H;(¢) to #.

Theorem 1.1 (i) If vo > 0, then
(L.7) liminf X(¢)/t =7y; as.

both as t | 0 and t — co.
(i) If yo =0 and A = oo, then

(1.8) liminf X(¢)/Ho(¢) =1 as.
both as i | 0 and t — co.

Theorem 1.2 Lez A(t) € Hy. Suppose that vg =0 and i < oc.
Q¥

(1.9) flflK;,(h(z)/z)dz < oo (resp. = 00),
Q

then

(1.10) Iir{lléan(t)/h(t) =00 (resp. =0) aus.
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(i) If
(1.11) jﬂot‘lK,l(h(t)/t)dt < o0 (resp. = o),
then 1
(1.12) litrgir.}fX(t)/k(t) =00 (resp. = 0) a.s.

Remark. 1.1 Let h(tye #,. Define X(¢)=X(t)— yo¢t. Note from Proposi-
tion 4.5 of Sato [12] or Lemma 4.3 that

limsup X(2)/t = oo and limsup X(2)/A(t) = limsup X(¢)/h(t) as.

both as ¢ | 0 and as ¢ — oco. Thus, in the case of limsup of X(¢)/A(¢) for
h(t) € #1, we may assume without loss of generality that vy = 0.

Theorem 1.3 Suppose that k(x) € OR and yo = 0. Then we have
(1.13) limsup X(2)/Hi(¢) =1 as.

both ast | 0 and t — cc.

Remark. 1.2 Suppose that yo = 0. If k(x) is either rapidly varying or there is
b > 0 such that k(x) = 0 on (b, 0), then k(x) ¢ OR and (1.13) holds both as
t]0and ¢t — oo.

Theorem 1.4 Let h(t) € #1. Suppose that k(x) € OR.

i If
(1.14) flt"lk(h(t)/t)dt < 00 (resp. = 00),
0
then
(1.15) lim sup X (¢)/h(¢) = 0 (resp. = c0) as.
£10
() If
(1.16) Tt"lk(h(t)/t)dt < o0 (resp. = 00),
1
then
(1.17) lim sup X (¢)/A(t) = 0 (resp. = c0) as.

Remark. 1.3 If there are a slowly varying function /(x) on (0,00) and a
nonnegative number o such that

(1.18) k(x) =<x"*I(x),
then k(x) € OR and Theorem 1.4 holds.

Organization of this paper is as follows. In Sect.2 we define the func-
tions Hy(t), Hi(t), and h,(¢), and state known facts which are necessary for
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the proof of the theorems above. In Sect. 3 we prove Theorems 1.1, 1.2, and
one more theorem, which is a law of iterated logarithm type. In Sect. 4 we
prove Theorems 1.3 and 1.4. In Sect. 5 we give an example of the theorems
above. Section 6 is an appendix; we prove there Proposition 4.1, which is
stated but not proved in Sect. 4, together with a Tauberian theorem.

We add that sample function behavior of increasing Lévy processes {Z(¢)}
is investigated in the case of limsup of Z(¢)/h(¢) by Fristedt [5, 6] and in the
case of liminf of Z(¢)/h(¢) by Fristedt and Pruitt [7]. But the latter case is not
solved completely even for increasing self-decomposable processes. Compar-
ison with the sample function behavior of increasing self-decomposable pro-
cesses will be discussed in the future.

2 Preliminaries

We continue to assume that {X(¢)} is an increasing process of class L with
exponent 1, which is not a deterministic motion, and y is the distribution of
X(1). A probability measure # on R is said to be unimodal with mode a if

.1) ndx) = f(x)dx + cd,(dx) ,

where ¢ = 0,5,(dx) is the delta measure at a, and f(x) is increasing on
(—o0,a) and decreasing on (a,00). If n is unimodal, we denote the mode
by a,; we choose the least mode as a, when the set of modes of 7 is not
a one point but a closed interval. At first we state unimodality of u. A re-
markable fact that all self-decomposable distributions are unimodal is proved
by Yamazato [17]. But we do not use the two-sided case.

Lemma 2.1 (Sato and Yamazato [13] and Wolfe [16]) The distribution u is
absolutely continuous and unimodal. Denote a density function of p by f(x).
Then the following holds:

(1) f(x)=0o0n (—00,7) and f(x) >0 on (yy,0).
(ii)) If yo=0and 0 < 2 < 1, then a, = 0.
(i) If yo=0and 1 < A £ oo, then a, > 0 and f(x) is continuous on R.

Hereafter, let f(x) be the density function of .

Lemma 2.2 (Steutel [15] or Sato and Yamazato [13]) Suppose that yg = 0.
Then we have

(2.2) xF(x) = jx"F(u)a’u—f~ fF(x—u)k(u)du
0 0

and

(2.3) xf(x)= 0jif(x — wk(u)du .

We define a constant 4; as
(2.4)
1 0 o0
A;=T0O+ 1) exp {/lf(e"“ — D 'dutd [ e u du— [ k(uyu! du} .
0 1 1
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If 1 < oo, then the behavior of F(x) as x | 0 is determined by K;(x) as
follows.

Lemma 2.3 (Sato and Yamazato [13]) Suppase that yg = 0 and A < oo. Then
we have

(2.5) F(1/x) ~ A K;(1/x) .

Now let us define the function Hy(¢) under the assumption that y5 = 0 and
A = o0, Noting (iii) of Lemma 2.1, we can choose a real number b such that

(2.6) 0<b<QQla)nl, k(b) =2 and 4f(2b) < 1.

Further we can find a continuously differentiable function ky(x) on (0,5) such
that kg(0+) = o0, k(x) = ko(x} > G, and k§{x} < —I on (0,5). Define a pos-
itive function gg{x) on (G,6) as

b k’
@7) mu>=-f;@%£55u

Since go(x) is stuctly decreasing on (0 b) and go(0+) = (see Lemma 2.4),
there exists the inverse function g; '(x) of go(x) such that do (x) is positive
and strictly decreasing on (0, 00). We define Hy(?) as

(2.8) Holt) = 195 (11og 1])
Lemma 2.4 Suppose that 79 =0 and A=o00. Then gy(0+)=00 and Hy(t) € H,.
Proof. We find from (2.3) and (iii) of Lemma 2.1 that

2.9) auf(ay) Z xf(x)= jf(x —w)k(u)du = ko(x)F(x)
0

for 0 < x < b. Hence we see that

ko(”)

b
900H) = —J e e ™

Obviously the function Hg(¢) is positive on (0,00) and increasing on (0,1),
and Ho(04+) = 0. Let u(z) = 1~ Hy(¢). Then we find from (2.8) that

0 <u(t) £b on(0,0) and go(u(t))=1logt on [l,00).
Differentiating the equation above, we get

ka(u(1))

Noting that 2u(z) < 2b < a,, we see as in (2.9) that

(2.10) HY(1) = u(t) + n [1,00).

u(t)
() fQu(t)) Z [ fQu(e) = y)k(y)dy Z u(t) f(u(t))ko((2)) on [1,00).
Q
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Hence, using (2.9) and 4£(2b) < 1,
PUOW@OF o o ey o(u(e)) > ~2-'u(e) on [1,00).
ea)

Therefore, we obtain from (2.10) that Hj(¢) > 27'u(t) > 0 on [1,00) and
hmy_, o0 Ho(t) = co. It follows that Hy(?) € #%. The proof of Lemma 2.4 is
complete.

Next we consider the following condition of regular variation:
(Ry) k(x) =x"*I(1/x) on (0,00), where 0 < o < 1, and I(x) is slowly
varying as x — oo satisfying that, for some p > I,
(2.11) (I(px)/I(x)—Dlog I{x) = 0 asx — 0.
We define a slowly varying function /(x) as

(2.12) U ) = sup w V)

=<

Let v=((2 —a)/a) V log(|log ¢| vV 1). Under the condition (R,) on k(x) we
define a function %,(¢) on (0,00) as

(2.13) (1) = (1 — o)) 1™ (1 — o) Vrp= U=yl o (0, 1]
and
ha(t) = hy(1) V [1((1 = 2)/o) I TPT(1 = o) o020y on (1,00) .

Then obviously A,(t) € #;. The following lemma is a direct consequence of
Theorems 1.5.13, 2.3.3, and 8.2.2 of Bingham et al. [1].

Lemma 2.5 Suppose that the condition (R,) holds and that vy = 0. Let f =
1/(1 — «). Then we have

(2.14) —~log F(1/x) ~ (1 — )™ I(1 — a)’x* 1Py
and
(2.15) Iel(x)*) ~ I(x) for each a e R .

We state Corollary 2.0.6 of Bingham et al. [1] as Lemma 2.6.

Lemma 2.6 Let g(x) be a positive decreasing function on (0,00). Then g(x) €
OR if and only if, for some p > 1, lim inf,_ o g(px)/g(x) > 0.

Finally let us define the function /() under the assumption that, for every
a€(0,1), Go(x)¢ OR and yo = 0. We shall see in Sect. 4 that if k(x)¢ OR
and yo = 0, then this assumption holds. Denote a; = (k + 2)~! for integers
k = 0. Then, by Lemma2.6, there are two sequences {uz}g2, and {px}°,
satisfying that ug = 1, u; is increasing and limy_,o, u; = oo, py is decreasing
and limy;_o pr = 1, and

(2.16) ,,i G ()G (p ' u)] ! < 0.
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Denote r; = [Gak(pk‘luk)]'l. Define a decreasing sequence {cx}52, such that
co=1,

(2.17) log(car/cors1) =#;, and cCogp1Ur = Copsamgs1 for £ = 0.
Also define an increasing sequence {d}g2, such that do =1 and

(2.18) log(dy.1/dy) =m for k = 0.

We define Hi(t) as follows:

(2.19) Hy(t) =tuy on [copyr,ct] and  [dy,dri1),

H () = Hi(cop1) = Cok1tie 0N [Co512,Copv1]

for all integers k = 0. Then obviously Hi(z) € 1.

3 The case of liminf X (¢)/A(z)

We shall prove all lemmas and all theorems in this section only for ¢ | 0;
the proof for ¢ — oo is similar and omitted. At first we shall prove two basic
lemmas which play essential roles for the proof of Theorems 1.1 and 1.2.

Lemma 3.1 Let A(t) € 5.

W If
(3.1) jt_lF(h(t)/t)dt < 00,
then
(32) lim inf X()/h(1) 2 1 as.
(i) If
(33) ?fot_lF(h(t)/t)dz < 00,
then
(3.4) lim inf X(1)/h(1) Z 1 as.

Proof. Let a be an arbitrary real number in (0,1), We have

P(X(t) £ k() 2 P(X(a"?) £ ah(a™))
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for "' <t < a". Hence

S P (@) £ Ph(a™)
n=0

S a7l -0 [ PO S W)
n=0

antl

HA

<(1-a)! Oflt‘IF(h(t)/t)dt < 0.

So, by the first Borel-Cantelli lemma, we see that
(3.5) X (@) > (") as.
for all large n. Note that X(a"*!) > a?h(a") implies
X(t) > &?h(t) for o™ <t < d”.
Hence we obtain (3.2) from (3.5) and from the arbitrariness of a in (0,1).
Lemma 3.2 Let h(t) € ).

N/
(3.6) jt‘lF(h(t)/t)a’t =00,
then °
3.7) Iitrtll(%nf X()/h(t) £1 as.
(i) If
(3.8) Tt’IF(h(t)/t)a’t =00,
1
then
(3.9) lim inf X()/h(1) £ 1 as.

Proof. Without loss of generality, we can assume that sup,. , A(2)/t < yo + 1
since, if necessary, we can change A(¢) by A(¢) A {((yo + 1)¢) in (3.6) and (3.8).
Let a be an arbitrary real number in (0, 1). We have

P(X(t) < h(t)) £ P(X(@" ") £ a’h(a")) fora™' <t < d”.

Hence

(3.10) 3 P(X (") £ a k(@)

n=0

v

S a1 -a) [ PX() < h(t))dr
n=0

antl!

v

a(l —a)™! flt_lF(h(t)/t)dt =00,
0



358 T. Watanabe
Denote 4, = {w: X(a"!) < a 2h(a")}. Let m and n be integers satisfying
0 £m < n-—1 and define
S(m,n) = P(X(a’™') — X(a"™") > a=*h(a’) for all j satisfying
msjsn—1).

We shall prove the following assertion.

(a) There exist increasing sequences {my};2, and {m¢}72, such that
0 Zmp £n— 1, and my,np — o0 and S(my,n) — 0 as k — oo.
Suppose, on the contrary, that there exists 6 > 0 such that S(m,n) = ¢ for
all sufficiently large integers m and n. Then we see from the independence of
increments that

%) ] n—1 ¢
1gP< UA,,)g S P U4) n4,
n=m+1 n=m+1 J=m

> 3 PU)Sm) 26 S P(dy).

n=m+1 n=m-+1

This contradicts (3.10) and hence the assertion (a) is true. Denote S(k) =
S(my,ny) and

T(k) = P(X(a’™") > a=2h(a’) for all j satisfying m; < j < —1).
Define
pi(x) = P(X(a/ 1) = X(@* %) > a *h(a’) — x for all j satisfying
mp £ j S ng—2).
Note that 0 £ pr(x) < 1 and pi(x) is increasing in x. We shall prove that
(3.11) klirr;o T(k)=0.

Denote the distribution of X(1) — X(a) by # and the distribution of X (a" %) —
X(a% 'Yy by ni for k = 0. Let v = a 2h(a™~") and let wy = a " h(a™1).
Then S(k) and T(k) are expressed as

(3.12) SU) = [ pemdx) = | pr(a®2x)n(dx)
and
(3.13) T4k = | pe(@ x)u(dx) .
W
Note that

S(k) = pu(a@*2N) [ n(dx) > 0 for N = (yo+ 1)a.
N

Hence the assertion (a) implies that

(3.14) Jim pi(@*2N)=10 for every N = (70 + 1)a .
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On the other hand, note that

N %)
T(k) < [ pu(@* 2N)p(dx) + [ p(dx).
0 N

Hence, letting k¥ — oo and then N — oo, we get (3.11) by (3.14). Denote
By = {o: X(¢) £ a *h(t) for some ¢t € (0,a™)} .

Note that the set By is decreasing as & increases and satisfies P(B;) = 1 —
T(k). Hence we see from (3.11) that P([);=, Bx) = 1, which yields that

limlgnf X(O/H(t) < a2 as.
t

Therefore, we obtain (3.7) from the arbitrariness of @ in (0, 1). The proof of
Lemma 3.2 is complete.

Proof of Theorem 1.1 We first show (i). Let A(¢) = yz. Since
1 |
[t F(h(t)/)dt = [T F(p)dt =0 for 0 <y <y,
0 0

we see from Lemma 3.1 that

(3.15) limlénf X))/t =z yo as.
t
On the other hand, since
1 1
S F(h@t)/tydt = [T F(y)dt = oo for yg < 7,
0 0

we get by Lemma 3.2 that

(3.16) limlénf X))/t £y as.
t
Hence we obtain (1.7) from (3.15) and (3.16). Next we prove (ii). Suppose
that yo = 0 and 4 = co. Note that
1 Ho(l) Ho(1)
[ F(Hy(2)/) dt = — [ Fgyuydu=— [ k() fko(u)* du < oo .
0 0 0

Hence we see from Lemma 3.1 that

(3.17) liml(i]nf X()/Hy(t) =2 1 as.
t

Let ¢ be an arbitrary real number in (1,2). We obtain from (2.2) that

(6—1)x
OxF(0x) > [ F(0x —uwk(u)du = k((6 — D)x)(0 — DxF(x) .
0
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Since £((0 — 1)x) = ko(x) on (0,b),
1 Ho(1)
[t F(OHy(t)/t)dt = — [ F(Ou)go(u)du
0 0
1 Ho) gur (Quykl(u)
T8y uF(wko(u)?

Hy(1) k{)(u)
o kolu)

Hence we see from Lemma 3.2 and from the arbitrariness of 8 in (1,2) that

0—-1
0 du = 0.

(3.18) lim inf X(0)/Ho(r) £ 1 as.
t

Combining (3.17) with (3.18), we establish (1.8). The proof of Theorem 1.1
is complete.

Proof of Theorem 1.2 Suppose that yp = 0 and 1 < oo. Define

(3.19) I(h) = Oflt‘lK;h(h(t)/t)dt for A(t) € #y .

Then we see from Lemma 2.3 that

(3.20) I(h) < oo if and only if flle(h(t)/t)dt < 0.
0

Note from the regular variation of K,(x) that
(3.21) I(h) < oo if and only if I(dh) < co for every 6 > 0.

Therefore Theorem 1.2 is proved by the use of Lemmas 3.1 and 3.2

Next we show a theorem of a law of iterated logarithm type under the
assumption (R,) defined in Sect. 2.

Theorem 3.1 Suppose that the condition (R,) holds and that yy =0. Then
we have

(3.22) lim inf X(¢)/h(t) =1 as.

both as t | 0 and t — oo.
Proof. By virtue of Lemma 2.5 we find that

1
(3.23) [t F(8hy(t)/t)dt = 0o for every & > 1
0

and

(3.24) flr*lF(aha(t)/z)dt < oo for every d € (0,1).
4]
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Hence we obtain (3.22) from Lemmas 3.1 and 3.2. The proof of Theorem 3.1
is complete.

4 The case of limsup X (¢)/h(¢)

At first we prove some lemmas which are necessary for the proof of
Theorems 1.3 and 1.4.

Lemma 4.1 Let g(x) be a nonnegative and decreasing function on [a,c0). If
aL£A<BEDand AL C <D, then

1 D
D_beg(x)dx.

B
@.1) . [otrds 2

Proof. Define
(4.2)
xf(u)=A4+B—-A4Au and xuw)=CH+D-Cu for0 2 u<gtl.

Then x3(u) = x1(#) = a and

1 B 1 1 D
—— [ g(r)dx = [ gOa(u))du = [ glr))du = - [ glx)dx
B4 A 0 [t} D C

a

Lemma 4.2 Let 0 <a £bh < 1.
(i) Suppose that yo = 0. Then we have

(4.3) G(x) — G(x/a) = MyGa((1 —a)x) on [0,00),

and

(44) aGa(x) = NpGp((1 — b)x) on [0,00).
(1) We have

(4.5) ?oxlea(x)dx < 0.
1

Here M, and N, are positive constants depending only on a and b, respec-
tively.

Proof. Suppose that yy = 0. Denote the distribution of X(1) — X(a) by u,. Let
Ka(dx) = fo(x)dx + a*bo(dx) .
Since

Fo)=a! Zc’ fuld = )/ (laydy + " f(x/a),

we get

@6) G =a '] fya)dy [ fulx — v)dx+ ' [ f(xa)dx
0 u u

ufa

= [ f()Go(u — av)dv + G(u/a) .
0
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Hence

ufa

@7 G(u) — G(uja) = [ f(v)Gs(u — av)dv = KG,(u) on [1,00),
0

where K = |, ' 7(v)dv. We can choose a positive number 4 such that 4 > a,
and G(4) < 1/4. Then we get, for # = 24/(1 — a), that

u/a

(4.8) [ f@)Go(u—av)dv=J +Jr +J5,
0

where

u (u—A)/a
Jo= [ f(0)Golu—av)dv, = [ [0)G(u—av)dv,
0 u

and
ula
B= [ f0)G(u—av)dv.
(u—4)/a
Note that

Ji £ Gl —a)), N S Go(A)(G(u) — G(u/a)) < (1/4XG(u) — Gu/a)) .

and, from Lemma 4.1, that

ula — (u A)/a

J-
3 ula —

IIA

f f@)dv £ (1/2)(G(u) — G(u/a)) .

Hence we obtain from (4.6) that
{4.9) G(u) — G(ufa) £ 4G, (u(1 —a)) foru = 24/(1 —a),
which implies (4.3). We see from Lemma 4.1 that

1 x/a 1 x/b

ff(u)d“ S /b ff(u)du forx 2 a,.

Hence by (4.3) and (4.7)
(4.10)  aGu(x) < K 'a(G(x) — G(x/a)) < K7 b(1 — b) 'MyGy((1 — b)x)
for x 2 a, V 1, which means (4.4). We get by (4.7) that

(4.11) Tx;lGa(x)dx < K—lj"ou—l(G(u) — G(u/a)) du
1 1

1/a
=K' [u'Gu)du < o0.
1

Obviously (4.5) is true for yo > 0. Thus we have proved Lemma 4.2.
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Hereafter, as in Sect. 3, we shall prove all lemmas and all theorems only
for ¢ | 0. The following lemma is essentially due to Sato [12].

Lemma 4.3 Let h(t) € #,.

i If
(4.12) flt"Ga(h(z)/t)dt =00 for some a € (0,1),
9
then
(4.13) imsup X(¢)/h(¢) = 1 as.
10
(i) If
(4.14) ofot"lG,z(h(t)/t)dt =00 for some a € (0,1),
1
then
4.15) limsup X(¢)/h(t) 2 1 as.

[—00

Proof. There exists a sequence {#,}52, such that

=

M <t < d" and sup  Go(B(E)/t) < 2G,(h(1y)/t,) .

gl <<t

Hence

@16)  oo= [ GO < 32 a0 T Gyt dr
0 n=0

ar+l

<2~ DS Galh(tn)fe)
n=0

which implies that

4.17) 2 Galh(t)/t) = 50
or
(4.18) io Gulh(tans: )ftms1) = 0.

Since both cases of (4.17) and (4.18) are treated in the same way, we assume
(4.17), which is equivalent to

S P(X (1) — X(atan) 2 htan)) = o0 .

n=0
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Note that {X(£2,) — X(at2,)}32, are independent. Hence, by virtue of the sec-
ond Borel-Cantelli lemma, we have

(4.19) X(tyn) — X(atan) Z h(1n) 1o

which means (4.13). The proof of Lemma 4.3 is complete.
Lemma 4.4 Ler h(t) € #1. Suppose that

(4.20) flt_lGa(h(t)/t)dt < oo for every a €(0,1).
0

Then there exists a function h.(t) € #y such that h.(t) =< h(t) on (0,1) and,
Sfor some & € (0,1),h,(e " 1)/h(e™") £ & holds for every integer n = 0, and

1
(421) 171G, (hu(t)/t)dt < co  for any a € (0,1).

0
Proof Put 0 < f < 1 and e~ # = 5. Denote My = e*Ph(e*) for integers k =
0. We define ¢(¢) on (0,e7*] as
(4.22) dr(t) = Myt .

Note that ¢x(e *) = h(e™). In the following, we shall define an increasing
sequence {k,}°, and a function /.(¢) by induction. On [1,00), we may define
h.(t) € | arbitrarily.

(1) We define as

(4.23) ko=0 and A.(t)= $o(t) Ah(z) on[e”!,1].

(I) Let n = 1. Assume that k,_; and A.(f) on [e ", 1] are already defined.
We define k, and £.(¢) on [e~"~1, e~"] considering two possible cases.

Case (i). Suppose that

(4.24) ha(e™™) = i, _y(e ") < h(e™") .

Then we set

(4.25) by = ko1 and  hu(t) = dr,_, () AR(t) on e e,
Case (ii). Suppose that

(4.26) hoie™™y=h(e").

Then we set

(4.27) ky=n and h.(t) = ¢, (1) ANR({) on[e " e "].

Thus the definition of {k,} and A.(¢) is complete. It is easy to see that
he(t) € #1 and h.(¢) = h(t) on (0, 1]. Since

dr(e™ e =e P =5 fornzk,
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we have
h(e " Y (eT") £ foreveryn = 0.

Thus only nontrivial fact to be proved is (4.21). For the proof of (4.21) we
first assume that, for some m and n with n < m,

(4.28) y=n=ky = =ky <kppr=m+ 1.

In general {k,} can be divided into finite or infinite parts such as {4.28). Note
that

(4.29) Pu(e™™) S h(e™™) and  ¢u(e™™ ') = h(eT" ).

Since ¢,(¢) and A(t) are continuous on [¢ !, e~], there exists the least num-
ber 0 on [e™™~!, 7] satisfying the equation ¢,(0) = k() so that (1) = h(t)
on [e~”"!, §]. Noting that

hi(t) = ¢u(t) A b(t) on [e "],

we have
(4.30) f 171G (h(D)/t) dt
e-m—l
s f t“lGa(h(t)/t)cfszef 7 Gy @a(t)/1) dr
e—m—1 9

Since h(t) € 51, it follows that

(431) e he™™ 1y = K(8)/9,
and hence

e " 1L
(432) [ 7'GUgu(t)/)dt = (1= B)"" [ 57'Guls)ds

0 enh(e—n)

em+1h(e_m‘l)
A=Y [ 5T'Guls)ds,
e h(e~ ")

where we set s = M,t#~!. Recalling (4.5) of Lemma 4.2 we see from (4.30)
and (4.32) that

(4.33)
1

[t Go(hu(t)/t)dt < flt"’Ga(h(t)/t)dt+ (1-p! ?os_lGa(s)ds < 00
0 0 A1)

for every a € (0,1). Thus we have established Lemma 4.4.
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Lemma 4.5 Let h(t) € .

o If
(4.34) flt"lGa(h(t)/t)dt < oo for every a € (0,1),
then 0
(4.35) limsup X(1)/h(t) < 1 as.

@G If "
(4.36) Tt‘lGa(h(t)/t)dt < oo for every a € (0,1),
then 1
(4.37) limsup X (£)/h(f) < 1 as.

—00

Remark. 4.1 For the proof of (i1}, we do not have to prove the analogue of
Lemma 4.4, since h(at) = ah(t) for every a > 1 and every ¢t = 1 whenever
h(t) € Hy.

Proof of Lemma 4.5 We can assume from Lemma 4.4 that there exists
3¢ (0,1) such that (e " 1)/h(e™") < § for every n = 0. Hence, for each
£ €(0,1), we can choose sufficiently small a € (0,1) such that

(438) S h(xa") < (14 e)h(x) for 0 <x < 1.
n=0

Let 0 < b < 1 and a = b with a positive integer N. Note that, for b/ <
t < b,

(439)  P(X(1)—X(a) Z A1)/t) = P(X(1)— X(a) = h(b"*)p/*).

Hence
(4.40)
00 1
[logh| Y. P(X(b7) — X(ab’) = (' T)/b) < [ Gu(h(t)/t)dt < oo .
Jj=0 0

Therefore, by the first Borel-Cantelli lemma,

(4.41) X)) — X(aby < W(b"T" )b as.
for all large j. Since « = bV, we see that, for every n = 0,
(4.42) X(a"b7) — X (@b < Wa"b/ )b as.

for all large j. Suming up (4.42) in » from 0 to oo, we obtain from (4.38) that

(4.43) X'y < b7t f Wb < b7 4 AW TY)  as.
n=0
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for all large j. This implies that
X(@) £ b7 (1 + k(1) as.

for all small z. Hence from the arbitrariness of & and ¢ we conclude that (4.35)
halds.
For the proof of Theorems 1.3 and 1.4 we state a proposition, whose proof
18 given in Appendix. Let # be an mfimitely divisible distribution on [0, 00).
Then the Laplace transform Ly(z) is expressed as
(444)  Ln@) = oxp(B(z)),  BE) = —yz 4 [ (e — Dv(dx),
0

where y = 0 and fooo x(1 +x)"'v(dx) < co. The measure v is called Lévy
measure of 1. Denote ¢(u) = [ v(dx) and g(u) = f;o n(dx) for u > 0.

Proposition 4.1 (i) ¢(x) € OR if and only if g(x) € OR.
(i) If ¢(x) € OR, then g(x) = ¢(x).

Remark. 4.2 Proposition 4.1 is an analogue of Theorem 1 of Embrechts et al.
[3], which states that the following assertions (i), (ii) and (ni) are equivalent:

(1) n is subexponential.

(i1) 1 — ¢(x)/P(1) is subexponential on [1,00).

(i) g(x) ~ ¢(x).
Obviously there is an infinitely divisible distribution # on [0,00) such that it
is not subexponential but g(x) € OR. On the other hand, we see from their
final example of [3] that the lognormal distribution # is an infinitely divisible
distribution on [0, 00) such that it is subexponential but g(x) ¢ OR. It follows
that the converse of the assertion (ii) of Proposition 4.1 is not necessarily true.

Remark. 4.3 The distribution of X(1) — X(a) for a € (0, 1) is infinitely divis-
ible with Lévy measure v,. Denote ¢ {u) = f‘ f’o vo(dx}. We have, by Proposi-
tion 4.1 of Sate [12],

ufa

ba(u) = [ x 'k(x)dx for every a € (0,1).

Proof of Theorem 1.3 Suppose that k(x) € OR and 7, = 0. Then we see from
Proposition 4.1 and Remark 4.3 that G,(x) $OR for every a € (0,1). We con-
finue to use the notations in Sect. 2. We find from (4.5) of Lemma 4.2 that

—1
oo Cak+i o Y

(4.45) > [ TG ydt =Y [ sTIG(1/s)ds
k=0 cpp 12 k=0  —1

ukﬁ-l

= [x'G,(x)dx <
1

for every a € (0,1). If 0 < a,, < a, then, by (2.16) and (2.17),

(4.46) i Cka T G (H (/) di < ioj 7k t”lGak(Hl(z)/t)dr < 0.

k=m ¢y k=m cyeqy
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Hence
1
[t G (Fh(t)/t)dt < oo .
0

Thus, by Lemuma 4.5,
(4.47) limsup X(¢)/Hi(t) £ 1 as.
£10

On the other hand, for every p > 1, there exists an integer # such that p~! <
(1 —ay)p,'. We obtain from (4.4) of Lemma 4.2 that

o0 2%k
(4.48) Ny o [ 171G (p7 Hi(0)/t) ds
k=n copy1 .
oo O 00
=Y [ T'aG (o Hit))dt = ap = 0.
k=n Cok+1 k=n

Hence we see from Lemma 4.3 and from the arbitrariness of p that
limsup X(¢)/Hi(¢) = 1 as.
t10

Combined with (4.47), this establishes (1.13). The proof of Theorem 1.3 is
complete.

Proof of Theorem 1.4 Suppose that k(x) € OR. Then we find from Proposition
4.1 and Remark 4.3 that

(449)  Gu(x) €OR and Gu(x) = ¢u(x) < k(x) for every a € (0,1).
Define

(4.50) J(h) = flt"lk(h(t)/t)dt for h(t) € H#1 .
0

Then we see from (4.49} that

(4.51)

1
J(h) < oo if and only if [ 'Gu(h(2)/t)dt < 0o for every a € (0,1).
1]

Note from k(x) € OR that
(4.52) J(h) < oo if and only if J(8h) < oo for every 6 > 0.
Therefore Theorem 1.4 is proved by the use of Lemmas 4.3 and 4.5.

5 Example

Let us give an example of the theorems above. Sato [12] handled the following
example with 1 = 1 and proved (iii) for ¢ | 0. It is interesting that the limsup
in the equation (5.5) does not depend on A.



Increasing processes of class L 369

Example 5.1 Let h(t) € # 5. Suppose that yp = 0 and k(x) = Ze™™ on (0,c0)
with 4 > 0.

o
(5.1) flfi—lh(z)A dt < co (resp. = 00),
0
then
(5.2) 1int1lgnf X()/h(t) = oo (resp. =0) as.
(i) If
(5.3) Tt‘)'”h(t)}“ dt < 0o (resp. = 00),
1
then
(5.4) li;xl inf X(¢)/h(t) = oo (resp. =0) a.s.
(iii) We have
(5.5) lim sup X(¢)/(tlog(llogt|Ve)) =1 as.

both as # | 0 and ¢ — oo.

Proof. The distribution 4 is a I distribution, that is, u(dx) = ('(2)) " 'x* e *dx
on [0,00). Hence we have

(5.6)  F(ljx)~QAFG) 'x™ and Gx) ~ (T(A) 2 e,

Hence the assertions (i) and (ii) are proved by using directly Lemmas 3.1
and 3.2. Define H(t) = tlog(]log ¢| V e) on (0, 00). Then H(z) € #°,. Though
the assertion (iii) bolds for Hj(¢) instead of H(z), the function H(t) is

much simpler than H(¢). We see from (5.6} that, for every a € (0,1) and
every ¢ > 1,

(5.7) fl 7 G (cH(t)/t)dt < fl 7YG(cH (/) dt < oo .
0 0

Hence, by Lemma 4.5,

(5.8) lim sup X(¢)/H(t) £ 1 as.
110

We find from (4.3) and (5.6) that, for every a € (0,1),

(5.9) K, le™ < G,((1 —a)x) on [1,00),
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where K, is a positive constant depending only on a. Hence we obtain that
1

(5.10) [t7'G.((1 — )H(t)/t)dt = 0o for every a € (0,1).
0

We get by Lemma 4.3
(5.11) lim sup X(1)/H(t) = 1 as.
110

Therefore, we have established (iii) for ¢ | 0. The proof of (iii) for t — oo is
similar and omitted.

6 Appendix

We prove a Tauberian theorem and, using it, show Proposition 4.1. Let # be a
nonnegative integer and let s > 0. For a measurable function g(x) on (0,cc)
with [~ e™**|g(x)|dx < oo for every s > 0, we define

(6.1) L,g(s) = }Oe_”x”g(x) dx .
0

Theorem 6.1 Let n be a nonnegative integer and let g(x) be a positive de-

creasing function on (0,00) with fol g(x)dx < .
(i) The following conditions (a),(b), and (¢) are equivalent:

Jy ug(u)du

@) S g0

Jlw 'L, g(1fu)du
®) P T (D)
(c) " g(t) < Lug(1/t).

(i1) g(x)€OR if and only if (a) in () holds for some nonnegative integer n.

Remark. 6.1 We find from Theorem | of de Haan and Stadtmiiller [9] that,
under the assumption that g(x) is nonnegative and increasing on (0,00), the
three conditions g(x) € OR, L,g(1/t) € OR, and t""g(¢) = L, g(1/t) are equiv-
alent for every n = 0. Actually it is proved by them for » =0, and conse-
quently true for general n. Cline [2] obtains an analogous Tauberian theorem
for subclasses ER and IR of class OR under the same assumption on g(x).
On the other hand, we prove Theorem 6.1, which has similarity to the results
above, under the assumption that g(x) is positive and decreasing on (0, 00).
In our case, the condition L,g(1/t) € OR is always true for each n = 0, and
hence the condition g(x) € OR is equivalent to the condition L,g(1/f) € OR
for no n = 0. Further the condition g(x) € OR is not necessarily equivalent to
the condition t"*1g(¢) = L,g(1/t) for all n = 0.
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Proof of Theorem 6.1 At first we prove the equivalence of (a) and (¢) in (i).
We have

o0 1
s L, g(s) = [ e ug(ufs)du = g(1/s) [ e “u" du.
0 0

Denote ¢, = j;)l e *u" du. Then
(6.2) 1" g(t) < ¢ 'Lg(1/t) on (0,00).
Note that

(6.3)
Lag(1/1)
l”“g(t)

= }Oe‘”x"g(tx)/g(f)dx
0

4 1
- Jou"g(u)du

AT f
= ln“Hg(l‘) -

1 o]
< [x"g(tx)/g(t)dx + [ e *x" dx
0 1

Hence (a) implies (c). Conversely, since

Lg(ljn) 1 Jou"g(u)du
tn+1g(l«) = tn+lg(t)

(¢) implies (a). Hence (a) and (c¢) are equivalent. Obviously (a) and (c) implies
(b). Secondly we prove that (b) implies (¢). Let

[
M = sup Jiw ' Lag(1ju) du
> 1 L,g(1/t)

Since L, g(s) is decreasing,

L u Lyg(fw)du _ (log N)L,g(1/1)

Log(l/(NeY) = Lyg(1/(Nt))

for N >1 and# = 1. Hence, choosing N such that M < (2¢)~'log N, we get

(6.4) M

1\%

(6.5) Lag(1/t) < (2e)7'Log(1/(Nt)) for 1 2 1.

Suppose that (c) does not hold. Then we see from (6.2) that, for sufficiently
large 7 > 1,

(6.6) T"Hg(ry £ BN™ (! + 1)L, g(1/T).
Since
NT YA

NT
Ju"g@ydu = [u"g(uydu+ [ u"g(u)du < eL,g(1/T)+ g(TYNT)"",
0 0 T
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it follows that

(67)  (NT) "*DL,g(1/(NT))

NT oo
= (NT)="D [ WDy g(uydu + [ e u"g(NTu)du
0 1

IA

e(NTY VL, g(1/T) + g(T)(n! + 1).
Hence we obtain from (6.5),(6.6), and (6.7) that
(68)  Log(1/(NT)) < eL,g(1/T) + (! + D(NT)"'g(T) < L,g(1/(NT)).

This is a contradiction. Thus we have shown that (b) implies (c). The proof
of (i) is complete. The assertion (ii) is evident from Karamata’s thcorem for
OR. (see Theorem A2(b) of Seneta [14] or Theorem 2.6.5 of Bingham et al.
[1].) The proof of theorem 6.1 is complete.

Proof of Proposition 4.1 Without harming generality we can assume that y = 0
and v does not vanish identically. The equality (4.44) implies that

(6.9) Log(s) = s '(1 —exp(P(s))) and P(s) = —sLod(s).

Hence
(6.10) Log(s) = i‘l (D (—=sY " (Lod(s)) on (0,00).
Z

Denote u;(s) = s/~ (Lo$(s))/. Differentiating » times term by term and mul-
tiplying (—1)", we get

6.11) Lg(s) = Lud(s) + R(s) forn =0,

where

(6.12) Ru(s) = 32 (GO M1y~ (dfds)"us(5)
=2

We can easily see that
(6.13) L,o(1/t) < flx’"qb(x) dx for every m = 0.
0
Let Z, = {0,1,2,...}. Let
Aj={p:p=(po, P1,---»Pj) € Z7 pp £ j—1, and kzijopk = n}
for j = 2 and n = 0. Then we have

2 j—ro-1 Jj
614 @l s £ (7)) T T L6,

ped; pilpal--
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If 2 £ j < n, then we have by (6.13)

(1/t) P [T Ly (L) T, Jy xPe(x)dx

(6.15)

L, (/1) T fotx”gb(x)dx '
On the other hand, if j = n+ 1, then
(6.16)
(1/0)/ P T Ly d(1/2) 1 Lg, 0(1/1)

= ((1/D)Lod(1/1)) ™"

=P, d(1/t)

[Tz Jo <% (x) dx
t”‘PO—’f(;x”d)(x)dx

Lng(1/t)

= ((1/0)Log(1/1)) ™

with some nonnegative integers ¢, satisfying po + Z;’:l gr = n. Note from
limy_,o, @(x) = 0 that lim,_, o (1/¢)Lo@p(1/t) = 0 and, by using de I’Hopital’s
rule, that

(617) tim e JoXP9@dx (l/t)f(x/t)pk¢(x)dx—

t—oo fj=po= 1f0 1d(x) dx = f—*ooz 1 k+1,0
for j = 2. It follows that lim, o R,(s)/(L¢(s)) = 0 for n Z 0, and hence

(6.18) Log(1/t) ~ L,(1/t) forn = 0

To prove Proposition 4.1 we consider two possible cases. First, suppose that
@(xp) = 0 for some xy > 0. Then, by Sato [10], g(x) is rapidly varying, and
hence g(x)¢OR. Secondly, suppose that ¢(x) is positive on (0, 00). In this case
Proposition 4.1 can be proved by using (6.18) and Theorem 6.1. The proof of
Proposition 4.1 is complete.
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