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Summary. We consider increasing processes {X(t)  : t > 0} o f  class L, that 
is, increasing self-similar processes with independent increments. Let h(t) be 
an increasing positive function on (0, e c )  with h ( 0 + ) =  0 and h ( o c ) =  o0. 
By virtue o f  the zero-one laws, there exists c (resp. C) ~ [0, ec] such that 
l iminf(resp,  limsup)X(t)/h(t)= c (resp. C) a.s. both as t tends to 0 and as 
t tends to oc. We decide a necessary and sufficient condition for the exis- 
tence o f  h(t) with c or C = 1 and explicitly construct h(t) in case h(t) exists 
with c or C = 1. Moreover, we give a criterion to classify functions h(t) with 
c (or C) = 0 and h(t) with c (or C) = o0 in case h(t) does not exist with c 
(or C ) =  1. 
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1 Introduction and results 

Distributions o f  class L on IR d are defined in Gnedenko and Kolmogorov [8] 
for d = 1 and in Sato [11] for general d. A necessary and sufficient condition 
for a distribution on IR d to be o f  class L is that it is self-decomposable. Sato 
[12] introduces self-similar processes with independent increments and proves 
that their distributions are of  class L and that conversely, for each distribution t/ 
of  class L, there exists a unique (up to equivalence in law) self-similar process 
with independent increments such that its distribution at time 1 is t/. So he 
calls a self-similar process with independent increments a process" of class L. 
Moreover he investigates in [12] the sample function behavior o f  increasing 
processes {X(t)} o f  class L, comparing it with increasing self-decomposable 
processes {Y(t)} under the assumption that X(1)  and Y(1) have the same 
distribution. In this paper we shall extend his results on the sample function 
behavior of  increasing processes {X(t)} o f  class L not only in the case of  
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limsup of  X(t)/h(t) but also in the case of  l iminf of  X(t)/h(t) for positive 
increasing functions h(t) both as t tends to 0 and as t tends to oc. In case 
{X(t)} is an increasing stable process, {X(t)} and {Y(t)} are equivalent in 
law and the problems which are treated in this paper were already solved by 
Fristedt [4,6]. Our key lemmas (Lemmas 3.1,3.2,4.3, and 4.5), which give 
estimates of  the values of  l iminf and limsup of  X(t)/h(t), are originally due 
to Sato [12] but some of  them are improved technically. The unimodality and 
some analytical properties of  distributions of  class L, which are proved by 
Sato and Yamazato [13], Wolfe [16] and Yamazato [17], play important roles 
in our discussion. Also an integral equation of  the density function of  one- 
sided infinitely divisible distribution, which is introduced by Steutel [15], is 
employed as a basic tool. 

A stochastic process {X(t)  �9 t > 0} with values in IRd, which is defined on 
a probability space (f2, o~,P) ,  is said to be a process of class L with exponent 
H if  it satisfies the following three conditions (i), (ii), and (iii): 

(i) {X(t)} is self-similar with exponent H ,  that is, for every c > 0, {X(ct)} 
and {cHX(t)} have the identical finite-dimensional distributions. 

(ii) {X(t)} has independent increments, that is, X( t l ) -X( to ) ,  X ( t 2 ) -  
X( t l ) , . . . ,X (&) -X( tn - l )  are independent for 0 < to < tl < t2 < . . .  < t,. 

(iii) Almost surely X(t) is right-continuous in t >__ 0 and has left limits in 
t > 0 .  
Here H is a positive constant. Note that a process of  class L is not assumed 
to have stationary increments. A probability measure # on IRd is said to be 
self-decomposable if, for every a C (0, 1 ), there exists a probability measure #~ 
such that the characteristic functions/2(z) and fi~(z) satisfy 

(1.1) fi(z) = fi(az)fia(Z ) for z E IRd. 

A stochastic process {Y(t)"  t > 0} with values in IR a is said to be a self- 
decomposable process if  it is a L6vy process and the distribution of  Y(t) is r 

self-decomposable for each t. In this paper we use the words "increase" and 
"decrease" in the wide sense. From now on, let d = 1 and let {X(t)} be an 
increasing process of  class L with exponent 1, which is not a deterministic 
motion. Note that the exponent of  a process of  class L can be changed by 
time change. Let # be the distribution of  X(1) .  Then # is self-decomposable 
by Sato [12] and the characteristic function fi(z) is represented as 

O<3 

(1.2) fi(z) = exp0p(z))  tp(z) = i~oz + f (e izx - 1)x lk(x)dx, 
0 

where Y0 > 0 and k(x) is a nonnegative decreasing function on (0, oo) with 
j0~(1 +x)-~k(x)dx < oo. Denote 2 = k(0+) .  I f  2 < co, we define the func- 
tion K~.(x) on (0, oo) as 

(1.3) Kj.(x) = (x A 1); 'exp k(u))u -1 du . 

Define the functions F(x), G(x), and Ga(x) for a C (0, 1 ) as 

(1.4) F(x) = P ( X ( 1 )  <= x), G(x) = P (X(1 )  = x ) ,  
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and 

(1.5) Ga(x) = P(X(1)  - X(a)  >= x ) .  

Let f ( x )  and g(x) be measurable functions on (0, co). A relation f ( x )  ~ 9(x) 
is defined as lim~__+~ f ( x ) / 9 ( x ) =  1. A relation f ( x ) ~  g(x) is defined as 
lira s u p x ~  ]f(x)/9(x)[ < oo and l i m i n f x ~  {f(x)/g(x)] > 0. Let fo (x )  be a 
measurable function on (0, co), which is positive on (A, oc) for some A > 0. A 
function fo (x )  is said to be slowly varying if, for every p > 0, l i m x ~  fo (px) /  
f 0 ( x ) = l .  A function fo (x )  is said to be rapidly varying if, for every 
p > 1 ,1im~-+~fo(px) / fo(x)= 0 or oo. A function fo (x )  is said to be- 
long to the class OR if, for each p > 1 , 1 i m s u p x ~ f o ( p x ) / f o ( x  ) < oc and 
lim inf~_+~ f o (px ) / f o (x  ) > 0. Denote by -Jr0 the totality of  positive increas- 
ing functions h(t) on (0, oo) with h (0+)  = 0 and l i m t ~ h ( t )  = ee. By virtue 
o f  the zero-one laws, there are c (resp. C) E [0, co] for h(t) E Jfo such that 

(1.6) lira inf(resp, lira sup)X(t)/h(t)  = c (resp. C) a.s. 

both as time t tends to 0 and as t tends to oo. Main problems with which we 
shall be concerned are as follows: 

(i) What is a necessary and sufficient condition for the existence of  
h(t) E J#o satisfying (1.6) with c or C = 1? 

(ii) In case h(t) satisfying (1.6) with c or C = 1 exists, how is h(t) given? 
(iii) In case h(t) satisfying (1.6) with e or C = 1 does not exist, what is 

a criterion to classify functions h(t) with c (or C ) =  0 and h(t) with c (or 
C) = ~ ?  
In the case of  liminf we shall answer the problems above completely. Denote 
by 2/fl the totality o f  functions h(t) E ~ o  such that h(t)/t is decreasing on 
(0, 1) and increasing on (1,oo). In the case of  l imsup we shall answer the 
problems above for functions h(t) in 2/fi. Namely our results are as follows. 
The functions Ho(t) and Hi( t )  below are explicitly constructed in Sect. 2. The 
function Ho(t) belongs to N o  and the fimction H~(t) to ~f l .  

Theorem 1.1 (i) I f  70 > 0, then 

(1.7) l iminf  X(t ) / t  = 7o a.s. 

both as t + O and t + oo. 
(ii) I f  70 = 0 and 2 = oc, then 

(1.8) l imin fX( t ) /Ho( t )  = 1 a.s. 

both as t .[ 0 and t ~ co. 

Theorem 1,2 Let h(t) ~ J(~o. Suppose that 20 = 0 and 2 < oo. 
(i) I f  

! 

(1.9) f t-tK~.(h(t)/t)dt < eo (resp. = oo ) ,  
0 

then 

(1.10) l imin fX( t ) /h ( t )  = oc (resp. = O) a.s. 
tIo 
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(ii)  I f  

o o  

(1.11) f t-lK,~(h(t)/t)dt < oc (resp. = o c ) ,  
1 

then 

(1.12) liminfX(t)/h(t) = oe (resp. = 0) a.s. 
l - - + O O  

Remark. 1.1 Let h ( t ) C ~ l .  Define X ( t ) = X ( t ) -  y0t. Note from Proposi- 
tion 4.5 o f  Sato [12] or Lemma 4.3 that 

l im supX(t)/t = e~ and lim sup X(t)/h(t) = lim sup f2(t)/h(t) a.s. 

both as t + 0 and as t ---+ oc. Thus, in the case of  l im sup o f  X(t)/h(t) for 
h(t) E YF1, we may assume without loss o f  generali ty that Y0 = 0. 

Theorem 1.3 Suppose that k(x) ~ OR and Y0 = 0. Then we have 

(1.13) limsupX(t)/Hl(t) = 1 a.s. 

both as t 1 0 and t --~ oc. 

Remark. 1.2 Suppose that 7o = 0. I f  k(x) is either rapidly varying or there is 
b > 0 such that k(x) = 0 on (b, oc), then k(x) ~: OR and (1.13) holds both as 
t + 0 and t--+ oe. 

Theorem 1.4 Let h(t) C Jg'l. Suppose that k(x) E OR. 
(i)  I f  

1 
(1.14) f t-lk(h(t)/t)dt < oc (resp. = o c ) ,  

0 

then 

(1.15) limsupX(t)/h(t) = 0 (resp. = oe)  a.s. 
t.L0 

(ii)  I f  

OQ 

(1.16) f t-lk(h(t)/t)dt < oe (resp. = cx~), 
1 

then 

(1.17) limsupX(t)/h(t) = 0 (resp. = oc)  a.s. 
t ~'-~ CX3 

Remark. 1.3 I f  there are a slowly varying fimction l(x) on (0 ,oo)  and a 
nonnegative number e such that 

(1.18) k(x) ~ x-=l(x), 

then k(x) E OR and Theorem 1.4 holds. 

Organization o f  this paper is as follows. In Sect. 2 we define the func- 
tions Ho(t), Hi( t ) ,  and h~(t), and state known facts which are necessary for 
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the proof of the theorems above. In Sect. 3 we prove Theorems 1.1, 1.2, and 
one more theorem, which is a law of iterated logarithm type. In Sect. 4 we 
prove Theorems 1.3 and 1.4. In Sect. 5 we give an example of the theorems 
above. Section 6 is an appendix; we prove there Proposition 4.1, which is 
stated but not proved in Sect. 4, together with a Tauberian theorem. 

We add that sample function behavior of increasing L4vy processes {Z(t)} 
is investigated in the case of limsup of Z(t)/h(t)  by Fristedt [5, 6] and in the 
case of liminf of Z(t)/h(t)  by Fristedt and Pruitt [7]. But the latter case is not 
solved completely even for increasing self-decomposable processes. Compar- 
ison with the sample function behavior of increasing self-decomposable pro- 
cesses will be discussed in the future. 

2 Preliminaries 

We continue to assume that {X(t)} is an increasing process of class L with 
exponent 1, which is not a deterministic motion, and p is the distribution of 
X(1). A probability measure r/ on IR is said to be unimodal with mode a if 

(2.1) tl(dx) = f ( x ) d x  + eba(dx) , 

where c > O, 3a(dx) is the delta measure at a, and f ( x )  is increasing on 
( - o c ,  a) and decreasing on (a, oc). If t/ is unimodal, we denote the mode 
by an; we choose the least mode as a~ when the set of modes of q is not 
a one point but a closed interval. At first we state unimodality of y. A re- 
markable fact that all self-decomposable distributions are unimodal is proved 
by Yamazato [17]. But we do not use the two-sided case. 

Lemma 2.1 (Sato and Yamazato [13] and Wolfe [16]) The distribution # is 
absolutely continuous and unimodal. Denote a density function o f  # by f (x ). 
Then the following holds: 

(i) f ( x ) =  0 on ( - c o ,  70 ) and f ( x )  > 0 on (70, oc). 
(ii) I f  7o = 0 and O < 2 < 1, then a~ = O. 

(iii) I f  yo = 0 and 1 < 2 < oc, then au > 0 and f ( x )  is continuous on IR. 

Hereafter, let f ( x )  be the density function of #. 

Lemma 2.2 (Steutel [15] or Sato and Yamazato [13]) Suppose that 7o = O. 
Then we have 

(2.2) 

and 

(2.3) 

X X 

xF(x)  = f F(u)  du + f F(x  - u)k(u) du 
0 0 

X 

x f ( x )  = f f ( x  - u)k(u) du .  
0 

We define a constant Aj. as 

(2.4) 

A r  - l e x p  2 (e - u -  1)u - l d u + 2 f e - ~ u  I d u _  f k(u)u - l  du . 
1 1 
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I f  ). < 0% then the behavior of  F(x)  as x ~ 0 is determined by K~.(x) as 
follows. 

L e m m a  2.3 (Sato and Yamazato [13]) Suppose that 7o = 0 and 2 < oo. Then 
we have 

(2.5) F( l/x ) ~ A2K2(l/x),  

Now let us define the function Ho(t) under the assumption that 70 = 0 and 
2 = oc. Noting (iii) of  Lemma 2. l, we can choose a real number b such that 

(2.6) 0 < b < (2 t a , ) A  t, k(b) > 2 and 4 f ( 2 b )  < 1. 

Further we can find a continuously dtfferentiable function ko(x) on (0, b) such 
that ko(0+)  = oo, k(x) > ko(x) > 0, and lc~(x) < - I  on (0,b) .  Define a pos- 
itive function go(x) on (0 ,b)  as 

b k;( . )  
(2.7) go(x) = -/ du . 

~ ( u ) k o ( u )  2 

Since go(x) is strictly decreasing on (O,b) and go(O+) = c~ (gee Lemma 2.4), 
there exists the inverse function 9o](X) of  go(x) guch that gol(X) is positive 
and strictly decreasing on (0,oo).  We define Ho(t) as 

(2.8) Ho(t) = tgo](] log t l ) .  

L e m m a  2.4 Suppose that 7 0 = 0  and/t c~. Then g 0 ( 0 + ) = c c  and Ho( t ) E 2/f o. 

Proof  We find from (2.3) mad (iii) of  Lemma 2.1 that 

(2.9) 
Y; 

a~f(a~) > x f ( x ) =  f f ( x -  u)k(u)du >= ko(x)F(x) 
0 

for 0 < x -< b. Hence we see that 

b k;(~) 
g0(0+) >-_ - f  du  = oc  . 

0 aef(au)ko(u) 

Obviously the function Ho(t) is positive on (0, o c )  and increasing on (0, 1), 
and H0(0+)  = 0. Let u(t) = t - lHo( t )  Then we find from (2.8) that 

0 < u(t) <= b on (0, oc) and go(u(t)) = log t on [1, oo ) .  

Differentiating the equation above, we get 

F ( u( t ) )ko( u( t ) ) 2 
(2.10) H~(t) = u(t) + k~(~u(t)) on [1, o o ) .  

Noting that 2u(t)  < 2b =< a,,, we see as in (2.9) that 

u(t) 
2u( t ) f (2u( t ) )  >= f f ( 2 u ( t ) -  y ) k ( y ) d y  > u(t) f (u(t))ko(u(t))  

o 

on [1, oo ) .  



Increasing processes of  class L 355 

Hence, using (2.9) and 4 f ( 2 b )  < 1, 

F(u( t ) )k~ > - u ( t ) f ( u ( t ) ) k o ( u ( t ) )  > - 2 - 1 u ( t )  on [1,~x~). 
k~(u(t)) 

Therefore, we obtain from (2.10) that H~(t) > 2-1u( t )  > 0 on [1,oc)  and 
l i m t ~ H 0 ( t )  = oc. It follows that Ho(t) ~ .3to. The proof o f  Lemma 2.4 is 
complete. 

Next we consider the following condition o f  regular variation: 

(R~) k(x)  = x -~ l (1 /x )  on (0, o c), where 0 < 7 < 1, and l(x) is slowly 
varying as x -+ oo satisfying that, for some p > I, 

(2.11) ( l (px) / l (x )  - 1)log l(x) --+ 0 as x -+ oc .  

We define a slowly varying function l(x) as 

(2.12) X--a(e--c07(X) = sup u-~( l -~) l (u) .  
X~U<OQ 

Let v = ( ( 2 -  cQ/~)V log(]log t] v 1). Under the condition (R~) on k(x)  we 
define a function h~(t) on (0, oo) as 

(2.13) ha(t) = t((1 - ~)/c~)(l-~)/~V(1 - c~)l/~v-(l-~)/~7(vl/~)l/~ on (0, 1] 

and 

h~(t)  = h~(1)  v I t((1 - ~ ) / ~ ) ( l - ~ ) / ~ r ( 1  - ~)J/%-(~-~)/~l(v~/~) ~/~] on  (1, o c ) .  

Then obviously h~(t) c Jfo. The following 1emma is a direct consequence o f  
Theorems 1.5.13, 2.3.3, and 8.2.2 o f  Bingham et al. [1]. 

Lemma 2.5 Suppose that the condition (R~) holds and that 7o = O. Let  fi = 
1/(1 - cQ. Then we have 

(2.14) - l o g  F(1/x )  N (1 - c0c~-lF(1 - ~)/~x~4l(xlr f~ 

and 
(2.15) l (xl(x)  a) ~ l(x) for  each a E 1R. 

We state Corollary2.0.6 o f  Bingham et al. [1] as Lemma 2.6. 

Lemma 2.6 Let  9(x ) be a positive decreasing function on (0, ~x~ ). Then g(x ) 
OR tf  and only if, for  some p > 1, lira i n f ~ _ ~  g(px)/g(x)  > O. 

Finally let us define the function H~(t) under the assumption that, for every 
a ~ (0, 1), G~(x) ~ OR and 7o = 0. We shall see in Sect. 4 that if k(x)  ~ OR 
and 7o = 0, then this assumption holds. Denote ak = ( k + 2 )  -1 for integers 
k > 0. Then, by Lemma2.6,  there are two sequences {uk}k~=0 and {Pk}k~0 
satisfying that u0 = 1, ug is increasing and l i m ~  uk = oc, Pk is decreasing 
and limk-+~ Pk = 1, and 

(2.16) ~ Ga~(uk)[Gak(p;lul~)] - I  < oc .  
k=0 
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Denote rk = [Ga~(pklUk)] -1. Define a decreasing sequence { k}k=0 such that 
co = 1, 

(2.17) log(c2k/CZk+l) = rk, and C2k+lUk = C2k+2Uk+l for k ->_ 0 .  

d Also define an increasing sequence { k}k=0 such that do = 1 and 

(2.18) log(dk+l/dk) = rk for k > 0 .  

We define Hi(t) as follows: 

(2.19) Hi(t) = tuk on [C2k+l,C2k] 

Hi(t) = HI(CZk+I) = C 2 k + l U k  

and [dk, dk+l), 

on [e2k+2, c2k+l] 

for all integers k > 0. Then obviously Hi(t) E ~1.  

3 The case of  l iminfX(t)lh(t) 

We shall prove all lemmas and all theorems in this section only for t j, 0; 
the proof  for t -+ oc is similar and omitted. At first we shall prove two basic 
lemmas which play essential roles for the proof  of  Theorems 1.1 and 1.2. 

L e m m a  3.1 Let h( t ) E ~o. 
(i) I f  

(3.1) 

then 

1 

f t - lF(h( t ) / t )d t  < oo, 
0 

(3.2) lim inf X(t)/h(t)  > 1 a.s. 
t;0 

(ii) I f  

O~ 

(3.3) f t - lF(h( t ) / t )d t  < oc, 
1 

then 

(3 .4)  lim inf X(t)/h(t) > 1 a.s. 
l--+ OO 

Proof Let a be an arbitrary real number in (0, 1). We have 

P(X(t)  =< h(t)) => P(X(a n+2) =< a2h(an+l)) 
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for a n+l <-- t < a n. Hence 

o o  

P(X(a n+2) <= a2h(a n+l)) 
n=0 

OO a n 

= ~ a-"(1 - a) -~ f P(X(t)  <= h(t))dt  
n=0 an+l 

l 
< ( l - a )  -1 f t - I F ( h ( t ) / t ) d t  < oo. 

0 

So, by the first Borel-Cantelli lemma, we see that 

(3.5) X(a n+l) > a2h(a ~) a.s. 

for all large n. Note that X(a n+l ) > aZh(a n) implies 

X(t)  > a2h(t) for a ~+1 < t < a  n. 

Hence we obtain (3.2) from (3.5) and from the arbitrariness of  a in (0, 1). 

Lemma 3.2 Let h( t ) c Y-{o. 
(i) I f  

1 

(3.6) f t - lF(h( t ) / t )  dt = cx~ , 
o 

then 

(3.7) lim inf X(t)/h(t)  < 1 a.s. 
tl0 

(ii) I f  

O(3 

(3.8) f t - iF(h( t ) / t )  dt = oo, 
1 

then 

( 3 . 9 )  lira inf X(t)/h(t) < 1 a.s. 
t----r OG 

Proof Without loss o f  generality, we can assume that supt>o h(t)/t < 70 + 1 
since, if  necessary, we can change h(t) by h(t) A ((7o + 1)t) in (3.6) and (3.8). 
Let a be an arbitrary real number in (0, 1). We have 

P(X(t )  < h(t)) < P(X(a n-l)  < a-2h(a'Z)) for a "+1 < t < a n . 

Hence 
o o  

(3.10) ~ P(X(a n-l)  <= a-2h(an)) 

a n 

->_ ~ a-n(1 -- a) -1 f P ( X ( O  <: h ( t ) ) d t  
n=O an+l 

1 
=> a(1 - a) -1 f t -~F(h(t) / t )dt  = oo. 

o 
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Denote An = {co : X ( a  n - l )  < a-2h(an)}. Let m and n be integers satisfying 
0 - <  m_< n - 1  and define 

S(m,n) = P(X(a j - l )  - X ( a  n-l)  > a-2h(a j) for all j satisfying 

m < = j < = n - 1 ) .  

We shall prove the following assertion. 
m c~ n o~ (a) There exist increasing sequences { k}k=0 and { k}k=0 such that 

0 < m~ < nk -- 1, and mk, nk --+ ec and S(mk, nk) --+ 0 as k ---, oc. 
Suppose, on the contrary, that there exists 6 > 0 such that S(m,n) > 6 for 
all sufficiently large integers m and n. Then we see from the independence of  
increments that 

n n:o+, t J) 

>= P(An)S(m,n) ~ 6 ~ P(An). 
n = m + l  n = m + l  

This contradicts (3.10) and hence the assertion (a) is true. Denote S ( k ) =  
S(mk, nk) and 

T(k) = P(X(a j - l )  > a-2h(a j) for all j satisfying mk =< j =< n k -  1) .  

Define 

pk(x) = P(X(a j - l )  - Y ( a  nk-2) > a-Zh(a j) - x  for all j satisfying 

mk <= j <= nk -- 2 ) . 

Note that 0 < pk(x) < 1 and pk(x) is increasing in x. We shall prove that 

(3.11) lira T(k) = O. 
k---+ e o  

Denote the distribution of  X(1 ) - X ( a )  by 17 and the distribution o fX(a  nk-2) - 
X(a nk-1) by qk for k > 0. Let vk = a-Zh(a nk-1) and let wk = a-nkh(a nk-1). 
Then S(k) and T(k) are expressed as 

o o  (343 

S(k) = f pk(x)Ik(dx) = f pk(ank-Zx)tl(dx) 
v k Wk 

(3.12) 

and 

(3.13) 

Note that 

(2<3 

T(k) = f pk(a nk 2x)#(dx). 
Wk 

O(5 

S(k) > pk(ank-2N) f t l (dx )  > 0 for N > (70 + 1)a .  
N 

Hence the assertion (a) implies that 

(3.14) lim pk(ank-2N) = 0 for every N >= (70 + 1)a .  
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On the other hand, note that 

N oo 

T(k)  <= f pk(ank-2N)12(dx ) + f I~(dx). 
o N 

Hence, letting k --+ eo and then N ---+ oc, we get (3.11) by (3.14). Denote 

Bk = {co : X ( t )  < a-2h(t) for some t C (0 ,a  m~)} . 

Note that the set Bk is decreasing as k increases and satisfies P(Bk) > 1 -- 
T(k). Hence we see from (3.11) that P(Ak~=I Bk) = 1, which yields that 

lira inf  X(t) /h( t )  < a -2 a.s. 
t,~0 

Therefore, we obtain (3.7) from the arbitrariness of  a in (0, 1). The proof  o f  
Lemma 3.2 is complete. 

Proof  o f  Theorem 1.1 We first show (i). Let h ( t ) =  7t. Since 

1 1 
- f t - lF (h ( t ) / t ) d t  = - f t - l F ( v ) d t  = 0 for 0 < 7 < 70, 
0 0 

we see from Lemma 3.1 that 

(3.15) l im inf  X(t ) / t  > 7o a.s. 
t$0 

On the other hand, since 

1 1 

f t  ~F(h(t)/t)dt = f t - ~ F ( 7 ) d t  = oc for 70 < 7 ,  
o o 

we get by Lemma 3.2 that 

(3.16) lim inf  X(t ) / t  < 70 a.s. 
t;o 

Hence we obtain (1.7) from (3.15) and (3.16). Next we prove (ii). Suppose 
that 7o = 0 and 2 = oo. Note that 

HO(1) H O 0 )  

f t -~F(Ho(t) / t )dt  = -  f F(u)g'o(u)du = -  f k~(u)/ko(u)2 du < vo . 
o o o 

Hence we see from Lemma 3.1 that 

(3.17) l im in fX( t ) /Ho( t )  > 1 a.s. 
t;0 

Let 0 be an arbitrary real number in (1,2) .  We obtain from (2.2) that 

(0-1)x 
OxF(Ox) > f F ( O x - u ) k ( u ) d u  >= k ( ( O -  1 ) x ) ( 0 -  1)xF(x).  

o 
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Since k ( ( O -  1)x) > ko(x) on (O,b), 

1 H0d) 
f t-lF(OHo(t)/t) dt = - f F(Ou)9~o(U) du 
o o 

1 H~I) OuF(Ou)k6(U)du 

0 1 H~l) , - ko(u ) .  
>= Jo au= 

Hence we see from Lemma 3.2 and from the arbitrariness of  0 in (1,2)  that 

(3.18) lira inf X(t)/Ho(t) < 1 a.s. 
t+0 

Combining (3.17) with (3.18), we establish (1.8). The proof o f  Theorem 1.1 
is complete. 

Proof o f  Theorem 1.2 Suppose that 7o = 0 and 2 < co. Define 

1 

(3.19) I(h) = f t-lKj,(h(t)/t)dt for h(t) E 3fo . 
o 

Then we see from Lemma 2.3 that 

1 

(3.20) I(h) < (x~ if and only if  f t - l F ( h ( t ) / t ) d t  < oo. 
0 

Note from the regular variation of  K;.(x) that 

(3.21) I(h) < eo if  and only if  I(6h) < cx~ for every 6 > 0 .  

Therefore Theorem 1.2 is proved by the use o f  Lemmas 3.1 and 3.2. 

Next we show a theorem of  a law of  iterated logarithm type under the 
assumption (R~) defined in Sect. 2. 

Theorem 3.1 Suppose that the condition (R~) holds and that 7o = 0. Then 
we have 

(3.22) lim inf X(t)/h~(t) = 1 a.s. 

both as t ~ 0 and t --+ ec. 

Proof By virtue o f  Lemma 2.5 we find that 

1 

(3.23) - f t - lF(6h~( t ) / t )d t  = ec for every 5 > 1 
0 

and 

1 
(3.24) f t - lF(6h~( t ) / t )d t  < cx) for every 5 E (0, 1).  

0 
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Hence we obtain (3.22) from Lemmas 3.1 and 3.2. The proof of Theorem3.1 
is complete. 

4 T h e  c a s e  o f  l i m  sup  X ( t ) l h ( t )  

At first we prove some lemmas which are necessary for the proof of 
Theorems 1.3 and 1.4. 

Lemma 4.1 Let g(x) be a nonnegative and decreasing function on [a, oc). 1If 
a < A  < B  <=D andA  < C < D ,  then 

1 B 1 D 
f g(x)dx > - -  f g (x )dx .  (4.1) B - A  A = D - C  c 

Proof Define 
(4.2) 

x l ( u ) = A + ( B - A ) u  and x 2 ( u ) = C q - ( O - C ) u  f o r 0  < u =< ! .  

Then x2(u) > xl(u) > a and 

1 B ~ 1 1 D 
f g(x)dx = f g(xl (u)) du > f g(xi(u)) du - - -  f g(x) dx .  

B - A A  0 0 D - C c  

Lemma4.2  Let 0 < a <_ b < 1. 
(i) Suppose that 70 = 0. Then we have 

(4.3) G ( x ) -  G(x/a) < MaGa((1-  a)x) on [0, co) ,  

and 

(4.4) aGa(x) <= NbGb((1-  b)x) on [0, oo) .  

(ii) We have 

GO 

(4.5) f x-aG~(x)dx < oc. 
1 

Here Ma and Nb are positive constants depending only on a and b, respec- 
tively. 

Proof Suppose that ~0 = 0. Denote the distribution of X(1) - X ( a )  by /~ .  Let 

l~a(dx) = fa(x)dx  + a2bo(dx). 

Since 
o o  

f ( x )  = a - i f  fa(x - y ) f ( y / a ) d y  + a;'-X f ( x /a )  , 
o 

we get 

(4.6) 
C2~ O 0  OG 

G(U) = a -1 f f ( y / a )  dy f f~(x - y)  dx + a ~-1 f f ( x /a )  dx 
0 u u 

u/a 

= f f (v)Ga(u - av)dv + G(u/a). 
o 
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Hence 

u/a 

(4.7) G(u) - G(u/a) = f f(v)G,~(u - av) dv > KGa(u) 
o 

on [1, oc ) ,  

where K = f ~ f ( v ) d v ,  We can choose a positive number A such that A > au 
and G(A) < 1/4, Then we get, for u > 2A/(1 - a ) ,  that 

(4.8) 

where 

and 

Note that 

u/a 
f f (v)G~(u - av) dv = J1 +.12 + J3, 
o 

(u--A)/a 

J l =  f ( v ) G a ( u - a v ) d v ,  , /2=  f f ( v ) G a ( u - a v ) d v ,  
0 u 

J3 = f f ( v )G~(u  - a v ) d v  . 
(u-A)/a 

J~ < G~(u(1 - a)), J1 <= G~(A)(G(u) - G(u/a))  < (1 /4)(G(u)  - G(u /a ) ) ,  

and, from Lemma 4.1, that 

J3 <= u / a - ( u - A ) / a  u/a u/a - u f f ( v ) d v  < (1/2)(G(u)  - G(u /a ) ) .  
bl 

Hence we obtain from (4.6) that 

(4 .9)  ~(u)  - G(u/a) <= 4 ~ ( u ( 1  - a ) )  for u >= 2A/(1 - a ) ,  

which implies (4,3). We see from Lemma 4.1 that 

1 x/a 1 x/t) 
f f ( u ) d u  =< ~ fx f ( u ) d u  f o r x - >  a , .  

x/a - x x x/b - x 

Hence by (4.3) and (4.7) 

(4.10) aGa(x) < K - ~ a ( G ( x )  - G(x/a))  <= K - l b ( 1  - b)- lMbGb((1 - b )x )  

for x > a~ V 1, which means (4.4). We get by (4.7) that 

o o  o o  

(4.11) f x - l G a ( x ) d x  <= K - i f  u - I ( G ( u ) -  a ( u / a ) ) d u  
t 1 

l/a 
= K - t  f u - ~ G ( u ) d u  < oo .  

1 

Obviously (4.5) is true for 7o > 0. Thus we have proved Lemma 4.2. 
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Hereafter, as in Sect. 3, we shall prove all lemmas and all theorems only 
for t + 0. The following lemma is essentially due to Sato [12J. 

L e m m a  4.3 Let  h(t)  E ~ o .  

(i) If 

1 

(4.12) f t - JGa(h ( t ) / t )d t  = oc for  some a E (0, 1) ,  
0 

then 

(4.13) l imsup X( t ) / h ( t )  > 1 a.s. 
t+0 

(ii) I f  

oo 

(4.14) f t - l G ~ ( h ( t ) / t ) d t  = oo for some a E (0, 1) ,  
1 

then 

(4.15) l imsup X ( t ) / h ( t )  > 1 a.s. 
t---+OO 

Proo f  There exists a sequence {tn}t,~l such that 

a n+l < tn < a" and sup Ga(h(t)/t) < 2Ga(h(t.)/t.). 
an~-I <=t < a  n 

Hence 

(4.16) oc = f t -~G~(h( t ) / t )d t  < a -(~+1) f G~(h( t ) / t )d t  
0 n=O cln+l 

< 2(a-1 _ 1) ~ Ga(h(t , ) / tn) ,  
n = 0  

which implies that 

(4.17) 

o r  

(4.18) 

oo 

Ga(h(t2~)/t2.) = co 
r t=0 

oo 

Ga(h(t2n+l )/t2n+l ) = oo.  
n=O 

Since both cases of  (4.17) and (4.18) are treated in the same way, we assume 
(4.17), which is equivalent to 

P(X(t2n) - X(at2n) >- h(t2n)) = oo.  
n=O 
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Note that { X ( t 2 ~ ) -  X(at2n)}n~o are independent. Hence, by virtue of  the sec- 
ond Borel-Cantelli  lemma, we have 

(4.19) X(t2~)-X(a t2~)  >-_ h(t2~) i.o. 

which means (4.13). The proof  of  Lemma 4.3 is complete. 

L e m m a  4.4 Let h(t) E ~1 .  Suppose that 

1 

(4.20) f t -~Ga(h(t) / t)dt  < co for every a c ( 0 , 1 ) .  
o 

Then there exists a function h,( t )  E 2/fl such that h , ( t )  < h(t) on (0, 1) and, 
for some 6 E (0, 1 ) ,h , (e -~- l ) /h , (e  -~) < 6 holds for every integer n > O, and 

1 

(4.21) f t - lGa(h , ( t ) / t )d t  < co for any a E ( 0 , 1 ) .  
o 

Proof Put 0 < fl < 1 and e -~ = 6. Denote Mk = ek~h(e -k)  for integers k _-> 
0. We define ~bk(t) on (0,e  -k]  as 

(4.22) ~bk(t) = Mk tll . 

Note that ~bk(e - k )  = h(e-k). In the following, we shall define an increasing 
k sequence { n}n=0 and a function h,( t )  by induction. On [1, oc), we may define 

h,( t)  ~ Y f  l arbitrarily. 
(I)  We define as 

(4.23) k0 = 0 and h,( t )  = C~o(t) Ah( t )  on [e - 1 , 1 ] .  

(II)  Let n > 1. Assume that kn-1 and h,( t )  on [e -n, 1] are already defined. 
We define kn and h,( t )  on [e-n- l ,e  -hI considering two possible cases. 

Case (i). Suppose that 

(4.24) h , (e -" )  = Okn_l(e -n) < h(e-~) .  

Then we set 

(4.25) kn = kn-1 and h,( t )  = dpk,_l(t) A h(t) 

Case (ii). Suppose that 

(4.26) h,(e -~) = h(e-n) . 

Then we set 

(4.27) kn = n and h,( t )  = ~n(t) Ah( t )  

Thus 
h,( t)  

on [ e - n - l , e - " ]  . 

on [ e - ' - l , e - n ]  . 

the definition of  {kn} and h,( t )  is complete. It is easy to see that 
E 2/fl and h,( t)  < h(t) on (0, 1]. Since 

r162 = e - z  = 5 for n > k ,  
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we have 

h,(e-n-1)/h,(e -~) < 3 for every n > 0 .  

Thus only nontrivial fact to be proved is (4.21). For the proof  o f  (4.21) we 
first assume that, for some m and n with n < m, 

(4.28) k,~ = n  = k , + l  . . . . .  k,~ < km+l = m +  t . 

In general {kn} can be divided into finite or infinite parts such as (4.28). Note 
that 

(4.29) c)~(e -m) < h(e -m) and O~(e -m-l) >= h(e-m-1). 

Since q~,l(t) and h(t) are continuous on [e -m-I, e-m], there exists the least num- 
ber 0 on [e-m-l,e -m] satisfying the equation q~n(0) = h(O) so that h,(t) = h(t) 
on [e - m - l ,  0]. Not ing that 

h.(t) = ~o~(t) Ah(t) on { e - m - l , e - n ] ,  

we have 

e--n 

(4.30) f t-lGa(h.(t)/t)dt 
e--m--1 

~--n e--n 

< f t-lGa(h(t)/t)at + f t-lG~(qS,(t)/t)dt, 
e--m 1 0 

Since h(t) E ~ ' ~ 1 ,  it follows that 

(4.31) em+Lh(e-m-~) > h(O)/O, 

and hence 

(4.32) 
e -~ h(0)/0 
f t-~G~(~(t)/t)dt = (1 - f l ) - I  f s-lG~(s)ds 
0 enh(e-n) 

em+lh(e - m - I  ) 

< (1 - f l ) - I  f s-lGa(s)ds, 
enh(e -n )  

where we set s = M~t/~-t. Recall ing (4.5) o f  Lemma 4.2 we see from (4.30) 
and (4.32) that 

(4.33) 
1 1 oc  

f t-lGa(h,(t)/t)dt < f t-lGa(h(t)/t)dt + ( 1 - f l ) - i  f s-lGa(s)ds < oc 
o o hO) 

for every a E (0, 1 ). Thus we have established Lemma 4.4. 
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Lemma 4.5 Let h(t) E HI.  

(i) I f  

1 

(4.34) f t-lGa(h(t)/t)dt < oc 
0 

then 

for every a E (0, 1), 

(4.35) limsupX(t)/h(t) < 1 a.s. 
t ; 0  

(ii) I f  

(4.36) f t-lGa(h(t)/t)dt < oo for every a E (0, 1) ,  
1 

then 

(4.37) l imsup X(t)/h(t) < 1 a.s. 

Remark. 4.1 For the proof  of  (ii), we do not have to prove the analogue of  
Lemma 4.4, since h(at) > ah(t) for every a > 1 and every t > 1 whenever 
h(t) E ~gal. 

Proof of Lemma 4.5 We can assume from Lemma 4.4 that there exists 
C (0, 1) such that h(e-n-1)/h(e -~) < g) for every n > 0. Hence, for each 

e E (0, 1), we can choose sufficiently small a E (0, 1) such that 

oo 

(4.38) ~ h ( x a  ~) < ( l + ~ ) h ( x )  for 0 < x  < 1. 
n = 0  

Let 0 < b < 1 and a = b N with a positive integer N. Note that, for b j+l <= 
t < b  j, 

(4.39) P ( X ( 1 ) - X ( a )  > h(t)/t) > P ( X ( 1 ) - X ( a )  > h(bJ+J)/bJ+l). 

Hence 

(4.40) 
1 

[ logb[ ~ P(X(b j) - X ( a b  j) > h(bJ+l)/b) < ft-lGa(h(t)/ t)dt  < oc. 
j=0 0 

Therefore, by the first Borel-Cantelli  lemma, 

(4.41) X(b j) - X ( a b  j) < h(bJ+l)/b a.s. 

for all large j .  Since a = b N, we see that, for every n > 0, 

(4.42) X(anb j) -X(an+tb y) < h(a"bJ+l)/b a.s. 

for all large j .  Suming up (4.42) in n from 0 to e~, we obtain from (4.38) that 

oo 

(4.43) X(b j) < b -1 ~ h(a"b j+~) < b - t ( 1  + e)h(b j+z) a.s. 
,7=0 
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for all large j .  This implies that 

X(t) <= b- l (1  + e)h(t) a.s, 

for all small t, Hence from the arbitrariness of  b and e we conclude that (4.35) 
holds. 

For the proof of  Theorems t.3 and 1.4 we state a proposition, whose proof 
is given in Appendix. Let t/ be an infinitely divisibie distribution on [0,eo).  
Then the Laplace transform Lq(z) is expressed as 

oo 

(4,44) Ltl(z ) = exp(~b(z)), q)(z) = -Tz  + f (e -~x - 1 )v (dx ) ,  
0 

where ~/ > 0 and f ~ x ( 1  +x)-lv(dx)  < oo. The measure v is called L6vy 

measure of  r/. Denote 4(u) = .foo v(dx) and g(u) = f ~  fl(dx) for u > 0. 

Proposition 4.1 (i) ~b(x) ~ OR if  and only if g(x) ~ OR. 
(ii) I f  O(x) E OR, then g(x) ~ 4(x). 

Remark. 4.2 Proposition 4.1 is an analogue of  Theorem 1 of  Embrechts et al. 
[3], which states that the following assertions (i), (ii) and (iii) are equivalent: 

(i) t/ is subexponential. 
(ii) 1 -qS(x ) /4 (1 )  is subexponential on [1,oc). 

(iii) g(x) ~ O(x). 
Obviously there is an infinitely divisible distribution t/ on [0, oc) such that it 
is not subexponential but g(x)E OR. On the other hand, we see from their 
final example of  [3] that the lognormal distribution t/ is an infinitely divisible 
distribution on [0, oc) such that it is subexponential but g(x) ~ OR. It follows 
that the converse of  the assertion (ii) of  Proposition 4.1 is not necessarily true. 

Remark. 4.3 The distribution of  X(1)  - X ( a )  for a E (0, [)  is infinitely divis- 
ible with Ldvy measure yr. Dertote qba(u) = f ,~ v~(dx). We have, by Proposi- 
tion 4. I of  Sato [12], 

u/a 
~ba(U)= f x  lk(x)dx for every a s  

u 

Proof of Theorem 1.3 Suppose that k(x) ~ OR and 70 = 0. Then we see from 
Proposition 4.1 and Remark 4.3 that Go(x) ~OR for every a E (0, 1). We con- 
tinue to use the notations in Sect. 2. We find from (4.5) of  Lemma 4.2 that 

1 

(4.45) ~ c2~+i f t-laa(Hl(t)/t)dt ~ uk = f s-tGa(1/s)ds 
k = 0  C2k+2 k = 0  1 

Uk+l 

oo 

= fx-~Ga(x)dx < oo 
1 

for every a E (0, 1). I f 0  < am <= a, then, by (2.16) and (2_17), 

C2k c,o C2k 

(4.46) f t IGa(Hl(t)/t)dt <= S f t-lGa~(Hl(t)/t)dt < oc. 
k=m C2k+i k=m C2k+l 
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Hence 

Thus, by Lemma 4.5, 

(4.47) 

1 

f t-lG~(Hl(t)/t)dt < oc. 
0 

limsupX(t)/Hl(t) < 1 a.s. 
t+0 

On the other hand, for every p > 1, there exists an integer n such that p - I  < 
(1 -a , )p2  t. We obtain from (4.4) of  Lemma 4.2 that 

oo C2k 

(4.48) Na, ~ f t-lGa,(p-lHl(t)/t)dt 
k=n C2k+l 

C2k 

> ~ f t-lakGak(p[lHi(t)/t)dt = ak = c~. 
k - n  e2k+l k=n 

Hence we see from Lemma 4.3 and from the arbitrariness of  p that 

limsupY(t)/Hl(t) > 1 a.s. 
t/.0 

Combined with (4.47), this establishes (1.13). The proof of  Theorem 1.3 is 
complete. 

Proof of Theorem 1.4 Suppose that k(x) E OR. Then we find from Proposition 
4.1 and Remark 4.3 that 

Ga(x) E OR and Ga(x) ~ 4)~(x) x k(x) for every a E (0, 1). (4.49) 

Define 

1 

(4.50) J(h) = f t-lk(h(t)/t)dt for h(t) E ~ 1 .  
0 

Then we see from (4.49) that 

(4.51) 
1 

J(h) < oo if and only if f t- lGa(h(t)/ t)dt  < oc for every a E ( 0 , 1 ) .  
0 

Note from k(x) E OR that 

(4.52) J(h) < co if and only if J(6h) < oc for every 6 > 0 .  

Therefore Theorem 1.4 is proved by the use of  Lermnas 4.3 and 4.5. 

5 Example 

Let us give an example of  the theorems above. Sato [12] handled the following 
example with )~ = 1 and proved (iii) for t ,[ 0. It is interesting that the limsup 
in the equation (5.5) does not depend on 2. 
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Example 5.1 Let h(t) E Jfo. Suppose that 70 = 0 and k(x) = 2e -x on (0, co) 
with 2 > O. 

(i) i f  

1 
(5.1) ft-;~-lh(t)~dt < oo (resp. = c~) ,  

0 

then 

(5.2) lim inf  X(t)/h(t) = co (resp. = 0) a.s. 
t.~0 

(ii) I f  

(5.3) f t -~ lh(t)J~ dt < oo (resp. = co ) ,  
1 

then 

(5.4) lira inf X(t)/h(t) = co (resp. = O) a.s. 
t - -~  O 0  

(iii) We have 

(5.5) lira sup X(t)/(tlog( t log t I V e))  = I a.s .  

(5.6) F(1/x) ~ ( 2 F ( 2 ) ) - l x  ~ and G(x) ~ (F(2))-ixX-le -x.  

Hence the assertions (i) and (ii) are proved by using directly Lemmas 3.! 
and 3.2. Define H(t) = t log( [  log t[ V e) on (0, oo). Then H(t) E JFl .  Though 
the assertion (iii) holds for Hi(t) instead of  H( t ) ,  the function H(t) is 
much simpler than Hi(t). We see from (5.6) that, for every a E (0, 1) and 
every e > 1, 

(5.7) 
I 1 

f t-lGa(clt(t)/t)dt < f t-~G(cH(t)/t)dt < cxz. 
o o 

Hence, by Lemma 4.5, 

(5.8) lim sup X(t)/H(t) < 1 a.s. 
t+0 

We find from (4.3) and (5.6) that, for every a ~ (0, 1), 

(5.9) KaxX-le -x < G a ( ( 1 - a ) x )  on [1,cx~), 

both as t + 0 and t --+ oo. 

Proof The distribution ft is a Fdistribution, that is, p(dx) = (F(2))-lx;~-le-Xdx 
on [0, c~). Hence we have 
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where Ka is a positive constant depending only on a. Hence we obtain that 

1 
(5.10) f t - l G a ( ( 1  - a ) H ( t ) / t ) d t  = oc for every a E (0, 1).  

0 

We get by Lemma 4.3 

(5.11) lim supX(t ) /H(t )  > 1 a.s. 
t$0 

Therefore, we have established (iii) for t ~ 0. The proof  of  (iii) for t --+ eo is 
similar and omitted. 

6 Appendix 

We prove a Tauberian theorem and, using it, show Proposition 4.1. Let n be a 
nonnegative integer and let s > 0. For a measurable function g(x) on (0, oc) 
with f~,o e_SXlg(x)l dx < oc for every s > 0, we define 

(2O 

(6.1) L~g(s) = f e-SXx'g(x)dx. 
o 

Theorem 6.1 Let n be a nonnegative integer and let g(x) be a positive de- 
creasing function on (0, oo) with f2 g(x)dx < oo. 

(i) The following conditions (a), (b), and (c) are equivalent: 

fou"g(u)du 
(a) sup < cx). 

t>l tn+lg(t) 

f~ u-lL~g(1/u)du 
(b) sup < c~.  

t>l Lng(1/t) 

(c) tn+l g(t) x Lng(1/t). 

(ii) g(x)~ OR if  and only if  (a) in (i) holds for some nonnegative integer n. 

Remark. 6.1 We find from Theorem 1 of  de Haan and Stadtmfiller [9] that, 
under the assumption that g(x) is nonnegative and increasing on (0, oo), the 
three conditions g(x) q OR, Lng(1/t) C OR, and tn+l g(t) .~ Lng(1/t) are equiv- 
alent for every n -> 0. Actually it is proved by them for n = 0, and conse- 
quently true for general n. Cline [2] obtains an analogous Tauberian theorem 
for subclasses ER and IR of  class OR under the same assumption on g(x). 
On the other hand, we prove Theorem 6.1, which has similarity to the results 
above, under the assumption that g(x) is positive and decreasing on (0, o c). 
In our case, the condition Lng(1/t) E OR is always true for each n _-> 0, and 
hence the condition g(x) E OR is equivalent to the condition Lng(1/t) E OR 
for no n > 0. Further the condition g(x) E OR is not necessarily equivalent to 
the condition tn+lg(t) ~ Lng(1/t) for all n __> 0. 
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Proof o f  Theorem 6.1 At first we prove the equivalence of (a) and (c) in (i). 
We have 

s"+~L~g(s) = f e-~ung(u/s)du > g(1/s) f e-"u" du.  
0 0 

Denote ca = f2 e-"u n du. Then 

(6.2) tn+lg(t) < c21Lng(1/t) on (0, oc). 

Note that 

(6.3) 
L,~g(1/t) 
t~+lg(t ) 

oo 

- f e-~x"g(tx)/g(t) dx 
0 

1 

_<- f x~g(tx)/g(t)dx + f e-Xx ~ dx =< J~ u"g(u)du..~ , 
0 l tn+l~t~,  t )  

4-n!. 

Hence (a) implies (c). Conversely, since 

Lng(1/t) >_ e-  1 fo u 'g(u)du 
tn+lg(t ) - t,,+lg(t) ' 

(c) implies (a). Hence (a) and (c) are equivalent. Obviously (a) and (c) implies 
(b). Secondly we prove that (b) implies (c). Let 

f~ u-~L~ g(1/u) du 
M = sup 

t>l L~g(1/t) 

Since L~ g(s) is decreasing, 

eNt  _IL 
(6.4) M >- Jt u ng(1/u)du 

- L . g ( 1 / ( m ) )  

>_ (log N ) L n g ( 1 / t )  

- L .  g ( 1 / ( N t ) )  

for N > 1 and t > 1. Hence, choosing N such that M < (2e) -1 log N, we get 

(6.5) L,~g(I/t) < (2e)-~L~g(1/(Nt)) for t => 1. 

Suppose that (c) does not hold. Then we see from (6.2) that, for sufficiently 
large T > 1, 

(6.6) T"+~g(T) <= (3N~+r(n! + 1))-lL~g(1/T).  

Since 

N T  T N T  

f u"g(u)du = f ung(u)du 4- f u"g(u)du < eLng(1/r) 4- g(T)(NT) ~+l , 
0 0 T 
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it follows that 

(6.7) (NT)-("+I)Lng(1/(NT)) 
NT c<) 

= (NT) -(n+l) f e-U/(Nr)u"g(u)du § f e-Uung(NTu)du 
o ! 

<= e(NT)-(n+l)Lng(1/T ) + g( T)(n! + 1). 

Hence we obtain from (6.5), (6.6), and (6.7) that 

(6.8) Lng(1/(NT)) < eLng(1/T) + (n! + 1)(NT)n+lg(T ) < Lng(1/(NT)). 

This is a contradiction. Thus we have shown that (b) implies (c). The proof 
of (i) is complete. The assertion (ii) is evident from Karamata's theorem for 
OR. (see Theorem A2(b) of Seneta [14] or Theorem 2.6.5 of Bingham et al. 
[1].) The proof of theorem 6.1 is complete. 

Proof of Proposition 4.1 Without harming generality we can assume that 7 = 0 
and v does not vanish identically. The equality (4.44) implies that 

(6.9) Log(s) = s- l (1  - exp(~(s)))  and ~(s) = -sLob(s). 

Hence 

(6.10) Log(s  ) = ~ (j!)-I(-s)J-I(LoO(s))J 
j= l  

on (0, oc ) .  

Denote uj(s)= sJ-l(Lo~)(s)) j. Differentiating n times term by term and mul- 
tiplying ( - 1 )  n, we get 

(6.11) Lng(s) =Lnd~(s)+Rn(s) for n > 0,  

where 

O(3 

(6.12) Rn(s) = ~ (j!)-l(-1)n+J-l(d/ds)nuj(sl- 
j=2 

We can easily see that 

t 

(6.13) LmO(1/t) x fx"cb(x)dx for every m > 0. 
0 

Let 77+ = {0, 1, 2,.. .}. Let 

J 
�9 ~ 7 ]J+ l  n }  A j = { p  p (Po, Pl . . . . .  p j )  C ~ +  ,Po < j - l ,  and ~ p k =  

k=0 

for j > 2 and n -> 0. Then we have 

(6 .14)  [(d/ds)"uy(s)] ~ ~ It! j -- ] sJ--Po--1 H Lpk~9(S)" 
pcAj PO Pl!P2!''" Pj! k=a 
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I f  2 < j < n, then we have by (6.13) 

(6.15) 
(1/t)j-po-1 I ' I J : l  Lp k ~)(1/t) 

L 4)(1/t) 

On the other hand, i f  j = n + 1, then 

tJ-,o-I fo dx" 

(6.16) 

(l/t) j-pO-1HJ 1Lpk~(1/t)  

L~b(1/t) 
1-[~2 l Lqk ~(1/t) 

= ((1/t)Lo4)(1/t)) j-n tn-po-ILn~(1/t) 

yI s 
• ((1/OLo (1/Oy-  k=l 

fo xn4 (x) dx 
H with some nonnegative integers q~ satisfying P0 + ~ j = l  q~ = n. Note from 

Iimx--.o~ ~b(x) = 0 that l i m t ~  (1/t)Lo4)(1/t) : 0 and, by using de l 'H6pital ' s  
rule, that 

(6.17) lim I]~=l..__Ty 7-TZ-U-,, -Tf~  = < lirn ~ 1-I (1/t)f(x/t)PkO(x)dx=O 
t---~oo 

for j > 2. It follows that liras10 kn(s)/(L~c~(s)) = 0 for n > 0, and hence 

(6.18) L~g(1/t) ~L~(1/ t )  for n > 0.  

To prove Proposition 4.1 we consider two possible cases. First, suppose that 
qS(x0) = 0 for some )co > 0. Then, by Sato [10], 9(x) is rapidly varying, and 
hence g(x)~OR.  Secondly, suppose that q~(x) is positive on (0, ec). In this case 
Proposition 4.1 can be proved by using (6.18) and Theorem 6.1. The proof  of  
Proposition 4.1 is complete. 
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