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Summary. Gains from coordinat ion provide incentives for delay. In this paper, the 
extent of delay is studied in a dynamic,  N-person,  coordinat ion game. There is no 
social gain from delay, so an equilibrium with delay is always inefficient. For  fixed 
N, there is no coordina t ion  failure when the period length is short: all equilibrium 
outcomes converge to the Pareto  efficient outcome as the period length converges 
to zero. On  the other  hand, holding period length fixed, there exist equilibria in 
which delay is propor t ional  to N, for arbitrarily large values of  N. In addition, it 
can be shown that the possibility of  delay depends on the "timing" of strategic 
complementarities. However,  under certain conditions, delay is shown to be a 
robust  phenomenon,  in the sense that  "well-behaved" equilibria exhibit infinite 
delay for N sufficiently large. 

Keywords: Coordinat ion,  delay, strategic complementarities, dynamic games. 

O. Introduction 

Firms may delay decisions because they want to coordinate  their actions. For  
example, an investment may  be more profitable if it is made at a time when the 
aggregate level of  investment is high (Shleifer (1986)). Strategic delay can also occur 
because of informational  externalities (Caplin and Leahy (1992), Chamley and Gale 
(1994)), but  here I am only concerned with the coordinat ion motive. A problem 
arises if every firm decides to delay, trying to find the optimal place in the 
decision-making queue, since someone has to go first. A "coordinat ion failure" more  
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London School of Economics, the SUNY at Stoney Brook, the NBER Summer Institute, Northwestern 
University, and the University of Chicago. I would like to thank Nick Yannelis and an anonymous 
referee for their editorial advice. Financial support for this research was provided by the National Science 
Foundation under Grant No. SES 9196061. 
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result. For example, in an economic downturn, waiting until other firms start to 
invest may simply deepen the recession. 

Coordination games have become increasingly popular as a way of modeling 
macroeconomic phenomena (see Cooper and John (1988) for a survey). The salient 
feature of these games is strategic complementarity, i.e., one agent's optimal activity 
level is an increasing function of the general level of activity. In such games, there 
are typically many equilibria and sometimes they can be Pareto ranked. Models of 
"coordination failure" are found in Diamond (1982), Bryant (1983), Heller (1986), 
Shleifer (1986), Chatterjee and Cooper (1989, 1990), Durlauf (1993). 

This paper explores some of the game-theoretic issues that arise in a model with 
delay and strategic complementarities. The analysis requires care because there are 
many equilibria and the results are sensitive to the details of the modeling. Rather 
than study the most general games, I use a dynamic version of a familiar example of 
a static coordination game. Even so, the analysis turns out to be subtle. In fact, 
much of the interest of the paper lies in exploring the conditions that are required 
for delay. 

The basic model has a finite number of players i = 1 . . . . .  N. Each player makes 
a binary decision, whether or not to make an investment of fixed size. The player 
can invest at any date but he can only invest once. Investment has a fixed cost c > 0 
and generates a stream of future revenues. The revenue flow at each date is an 
increasing function of the cumulative aggregate investment and a player's payoff is 
the expected present value of this flow, net of the fixed cost c. A player who never 
invests receives 0. 

Delay is inefficient because players discount the future and there is no social 
gain from delay. In equilibrium it may be optimal for an individual to delay - he is 
better off than if he had invested in advance of other players - but they would all 
be better off if they invested immediately. 

The extent of delay is quite sensitive to the specification of the model and to 
variations in the parameters. The first result, Theorem 1, shows that when the period 
length, which can be taken as a measure of a player's reaction time, goes to zero, 
all equilibrium outcomes converge to the unique efficient outcome. This may suggest 
that making the timing of investment endogenous somehow "solves" the coordina- 
tion problem, but this conclusion would be premature. Theorem 1 depends crucially 
on holding fixed the number of players. Theorem 2, on the other hand, shows that 
there always exist subgame perfect equilibria in which delay is proportional to the 
number of players. So increasing the number of players may increase the difficulty 
of coordination, for any given period length. By varying the parameters of the game, 
we can clearly generate quite different results. 

The extent of delay also depends on the timing of complementarities. The basic 
model assumes that the cumulative investment at date t determines the revenue flow 
at date t. With leadin9 complementarities, where cumulative investment at t + 1 
determines the revenue flow at t, the unique subgame perfect outcome involves no 
delay. With la99in# complementarities, where cumulative investment at t - 1  
determines the revenue flow at t, analogues of Theorems 1 and 2 continue to hold. 

The variety of different results obtained and the evident sensitivity of the model's 
predictions present a confusing picture. It is important to show in what sense delay 
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is a robust  outcome,  to bring some order  out of  this confusion. Suppose we consider 
only the case where complementar i t ies  are con temporaneous  or lagging, the number  
of players is large and the game is per turbed to prevent  perfect coordinat ion.  Then 
for a large class of well-behaved equilibria, it can be shown that  pro longed delay is 
the only possible ou tcome (Theorem 6). This is a fairly s t rong result, and suggests 
condit ions under  which coordina t ion  failure will be robust  in more  general games. 
However ,  the complexi ty  of the analysis of this special case warns us that  more  work  
is needed and that  care must  taken in applying ideas f rom the study of simple 
coord ina t ion  games  to macroeconomics .  

The  rest of the paper  is organized as follows. Section 1 contains a description 
of the model.  The effect of the period length on the equil ibrium set is considered in 
Section 2. The  effect of the number  of  players is considered in Section 3. Section 4 
explores the impact  of the t iming of complementar i t ies .  Section 5 considers a 
per tu rba t ion  of the game and shows that, under  certain circumstances,  only 
prolonged delay is consistent with equilibrium. Some open questions are discussed 
in Section 6. 

1. The basic model 

Consider  a game with N players, indexed by i = 1 . . . . .  N. The play of the game occurs 
at a countable  set of dates, indexed by t = 1 . . . . .  ~ .  Each player has an indivisible 
investment  oppor tuni ty ,  which can be exercised at any date. The uncommi t ted  
players at each date s imultaneously decide whether  to invest. 

In mak ing  their decisions, players have complete  informat ion abou t  the other 
players and the previous moves  of the game. Let xit = 0 if player i has not  invested 
by the end of the date t and let xi, = 1 if he has. The  state of the game at the end of 
the date t is a vector  xt = ( X l t  . . . . .  X N t ) ~ . { O  , 1} N. The history of the game at date t is a 
sequence of states h = (xl . . . . .  x,_ 1), satisfying 

x s > x s _  ~ for s = l  . . . . .  t - 1 .  

Let H t denote the set of histories at date  t and let H = U H ,  denote  the set of  all 
histories. A behavioral strategy for p l a y e r / i s  a function f i : H  ~ [0, 1], wherefi(h)  is 
the probabi l i ty  that  player  i invests at the informat ion set h. Strategies must  satisfy 
the condition: 

[xi , t-  ~ = 1] ~ [L(h) = 0], 

for any history h = (x~,. . .  ,xt_ ~). In other  words, player  i cannot  invest at date t if 
he has a l ready invested at some date s < t. 

Since this is a game of complete  informat ion  and perfect recall, it will be analyzed 
using the concept  of  suboame perfect equilibrium (SPE). 

When  a player  invests, he pays  a fixed cost c > 0 and receives a s t ream of 
revenues which depend on the number  of  other  players who have already invested. 
The player 's  payoff  is the net present  value of this s t ream of payments .  In the basic 
game, strategic complementar i t ies  are assumed to be contemporaneous, that  is, the 
revenue flow at date  t depends on the cumulat ive  investment  at date  t. If  x, is the 
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state of the game at date t, the cumulative investment is 

N 

at = N -  1. Z Xit" 
i = 1  

Cumulative investment is expressed as a fraction of the total possible investment to 
avoid scale effects when N is allowed to vary. This entails no essential loss of 
generality for a fixed value of N. The revenue flow at date t is denoted by v(c~,) and 
the payoff to a player who invests at date t is 

co 

~, 3s-IU(~s)--3t-Ic, 

where 0 < 3 < 1 is the common discount factor. The parameters 3, v and c are 
assumed to satisfy the following conditions. 

Assumption 1. (a) ~" = v(1)/(1 - 3) > c; (b) v(0)/(1 - 3) < c; (c) v(~) is continuous, 
increasing and non-negative. 

Assumption 1 (a)ensures that if all players invest they will make positive profits. 
This is clearly necessary for investment to take place. Assumption l(b) implies that 
any player who invests before everyone else will make a loss, at least initially, when 
N is large. The last part of Assumption 1 ensures that there are strategic 
complementarities. 

Under these assumptions, the unique Pareto-efficient equilibrium outcome is the 
one in which all players invest immediately. Typically, there are also many equilibria 
involving delay. For example, let ~* denote the proportion of players who must 
invest before it becomes profitable to do so. Assumption l(c) implies that ~* is 
uniquely determined by the condition 

v(~*) 
- - s  

1 - 3  

and Assumptions 1 (a) and 1 (b) imply that 0 < ~* < 1. For any N satisfying ~*N _> 2, 
there is a SPE in which every player invests at date 2. The equilibrium strategies 
require all players to invest at date 2 along the equilibrium path and, in any subgame 
involving a deviation, the uncommitted players invest immediately. If a player 
deviates by investing at date 1, the other players react by investing at date 2. By 
assumption, v ( 1 / N )  < (1 - 3)c so the deviating player is worse off. 

2. The effect of period length on equilibrium delay 

Delay is clearly possible, but the amount of delay may not be significant. We see 
this when we consider what happens as the period length becomes vanishingly short. 
Although there are equilibria with delay, they are all approximately efficient. In the 
limit, there is neither multiplicity nor coordination failure. 

The intuition behind the theorem relies on backward induction on the number 
of players who have already invested. Let n* be the smallest integer greater than 
cr If n > n* - 1 players have invested, it is a dominant strategy for all remaining 
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players to invest. Then if n* - 2 players have invested, a player knows that  by 
investing he precipitates a subgame in which n* - 1 have invested and the rest must  
invest immediately.  This puts a lower bound  on a player 's  payoff, once n* - 2 have 
invested, and an upper  bound  on the amoun t  of delay. In the same way, if we assume 
that  all players will invest within a short  period after N - k have invested, we can 
extend the bound  to N - k - 1 and hence by induction to all subgames.  Note  that  
the theorem does not  say anything abou t  the number of periods that  elapse, only 
abou t  the amoun t  of "real- t ime" delay. 

This result is true for all SPE but  the p roof  is given here for an equil ibrium in 
pure strategies. The s t ra ightforward extension to mixed strategies can be found in 
Gale  (1992). Let the period length be : > 0. Then the revenue flow per period is v(~)z 
and the discount factor  is 6 = e -p~, where p > 0 is the fixed discount rate. 

Theorem 1. For  any e > 0 and some ~/> 0, if the period length z < r/, then with 
probabi l i ty  1 - e all players invest within e of the start  of the game, in any subgame 
perfect equilibrium. 

Proof:  If we consider only pure strategy equilibria, the qualification "with probabi l -  
ity 1 - e" in the s ta tement  of  the theorem can be ignored. 

Let F ,  denote the equivalence class of subgames  in which exactly n players have 
already invested. Wi thout  loss of generality, the game can be assumed to begin at 
date 1, with n players a l r eady  commit ted.  When  it is necessary to emphasize the 
period length, write F , ( : )  instead of F, .  Let T,(z) denote the superemum,  taken over  
all SPE of F,(:) ,  of the t ime taken for all players to invest. 

As the induction hypothesis,  assume that  for n = k . . . . .  N, T , (0  ~ 0 as r --* 0. The 
induction hypothesis  is clearly true for k = N - 1. By Assumpt ion  l(a), as soon as 
N -  1 players have invested, it becomes a dominan t  strategy for the remaining 
player to invest immediately.  This means  that  T N_ :(r),= :. 

Suppose the induction hypothesis  is true for k < N. We need to show that  it 
holds for k -  1. If  a positive number  o f  players invest in the game F k_ 1, they 
precipitate a subgame F ,  with n > k - 1. By the induction hypothesis,  delay in this 
game is bounded  by T,(z), so we can prove  the induction hypothesis  for k - 1 by 
establishing a bound on the time until the first player  invests in the subgame F k_ 1. 

The p roof  is by contradict ion.  For  any SPE of F,_ 1, let d denote  the t ime taken 
for the first player  to invest. We want  to prove that  as r converges to zero, d 
converges uniformly to zero for all SPE. Suppose the contrary.  Then we can find a 
sequence of per iod lengths {~r} and corresponding equilibria {fr} with the proper ty  
that  r r converges to zero as r -o oe and dr _> d > 0 for all r sufficiently large. 

Consider  some fixed but a rb i t ra ry  equil ibrium fr  and consider the following 
deviat ion from the equil ibrium strategies. Suppose that  some player, call him player 
1, deviates by investing at the first date, thus precipitat ing the subgame Fk beginning 
at the second date. By hypothesis,  once Fk has started, all the players will invest 
within Tk(Zr) periods. So the payoff  to the deviating player must  be at least 

v(:):, 
exp { --p(Tk(Z,) + z,)} c. 

1 - -  e - p ~  
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On the other hand, in the original equilibrium, the best that can be hoped for is 
that all the players invest after d r time units. In that case player 1 himself does not 
invest until d r time units have passed and his payoff cannot exceed 

exp{-pd~} 1 - e  -pr c . 

To prevent a profitable deviation, then, 

exp { - - p ( T k ( ~ r )  + r,)} 
v(1)z~ { v(1)~, } 

1 - e  - ~  c < _ e x p { - p d ~ }  1 - - e  Prr C , 

for every r. Taking limits as r ~ ~ yields 

- - - - c ~ e  - - c  , 

P 

a contradiction. This establishes the desired result and, by induction, proves that 
T,(~) converges to 0 as z converges to 0, for n = 0, 1,. . . ,  N. �9 

D i s c u s s i o n  

A. Theorem 1 has a family resemblence to no-delay results in the bargaining 
literature. In Rubinstein's (1982) alternating offers model, agreement is instantane- 
ous. In the durable goods monopoly problem (Gul and Sonnenschein (1988)), all 
trade takes place instantaneously in the limit as the period length becomes 
vanishingly short, but only if players use weak Markov strategies. The structure of 
these models is very different, however, and depends crucially on the assumption of 
two players, a continuous strategy space and so on. They also lack the common 
interest property which is characteristic of coordination games. A closely related 
model is found in Admati and Perry (1991). Admati and Perry show that bargaining 
over contributions to a joint project results in almost efficient provision when the 
period length is very short. 

B. We can interpret the period length as a measure of the players' "reaction time". 
The shorter the period length, the faster a player can react to the moves of the other 
players. It is common in the bargaining literature to interpret the period length as 
the time required to make a decision and to assume that this period should be fairly 
short. It is not clear that this is always an appropriate assumption in a macro- 
economic context. "Time to build" implies a lag between the observation of one 
player's completed investment and the completion of another investment. A 
satisfactory treatment of time to build would require an extension of the model, in 
which the players' reaction time is distinguished from the rate at which capital 
formation takes place. See the discussion in Section 6. 

C. Bryant (1983) has pointed out that coordination problems may be solved by 
sequencing decisions. Rauch (1993) applies this idea to location of cities and 
industries. This result follows trivially by backward induction when each player is 
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given a fixed position in the decision-making queue. When the timing of decisions 
is endogenous, players compete for the most advantageous position in the queue. 
Then the game cannot be solved by backward induction and this makes Theorem 
1 far from obvious. 

Farrell and Saloner (1985) analyze several variants of a dynamic game of 
technology adoption. Although issues of timing arise, structural differences (no 
discounting, heterogeneous preferences over the technologies to be adopted, etc.) 
make their results hard to compare with the present setup. In an intriguing aside, 
they suggest that in a variant of their model with "endogenous timing", it cannot 
take more than N periods for N players to commit themselves. In the present 
framework, N players can delay for far more than N periods, as we shall see, so the 
relationship of Farrel and Saloner's conjecture to Theorem 1 is not clear. 

In subsequent work, Farrell (1987), Farrell and Saloner (1988), Farrell and 
Bolton (1990) and Farrell (1993) focused on the use of different mechanisms 
involving communication to encourage efficient adoption of a technology or 
standard. 

D. The use of induction in the proof requires a finite number of players. A game 
with a continuum of players would be quite different. It is natural to assume that a 
game with a continuum of players is anonymous, since strategies are only specified 
up to sets of measure zero. This means players observe only the aggregate 
investment at each date. An equilibrium of the continuum game is a monotonically 
non-decreasing sequence {st} with the property that s t > s t _  1 implies that t 
maximizes 

oo  

s = t  

(By convention, So --- 0). This game has many equilibria. For example, let {st} be 
defined by 

~ t = {  ~ i f t < k  
ift>_ k 

for any t = 1 . . . . .  oo. This sequence defines an equilibrium for any positive integer 
k and any ~ {0, s*, 1 }. There may be other equilibria, but this set illustrates the 
possible variety. The important point to note is that this set of equilibria is invariant 
to the length of the time period, in the sense that holding zk constant as z ~ 0 leaves 
each equilibrium essentially unchanged. 

Krugman (1991) and Matsuyama (1991) study dynamic models of coordination 
with a continuum of players. An intriguing question is whether their results would 
be materially altered if the number of players were finite? 

3. The effect of the number of players on delay 

Theorem 1 suggests that the coordination problem disappears when the players' 
reaction time is very short. This is only half the story, however. Recall that n* is the 
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smallest integer greater than c~*N. Clearly, n* is non-decreasing in N and n* ~ oe 
as N --* oo. Theorem 2 shows how to construct  a SPE in which delay is propor t ional  
to n*. Again, the proof  is by induction. Suppose that once k players invest, the rest 
will delay for n* - k periods and then invest. Now suppose k - 1 have invested and 
the uncommit ted players intend to invest after n* - k + 1 periods. If anyone deviates 
by investing immediately, then in the subgame that starts one period after the 
deviation there exists an equilibrium in which the remaining players will delay for 
n* - k periods. Since players cannot  react to a deviation until at least one period 
has elapsed, the total delay is n* - k + 1 periods and the deviant is no better off. 

Theorem 2. There exists a SPE in which all players invest at date n*. 

Proof :  Let F ,  denote the equivalence class of subgames in which exactly n players 
have already invested when the subgame begins. The notional  starting date of each 
subgame is taken to be date 1. Suppose the subgame F ,  has just begun, that  is, the 
number  of players already invested has reached n for the first time. Define 
equilibrium strategies as follows: 

- :  if n = 1 . . . . .  n* - 1, have all the remaining players invest at date n* - n, as 
long as there is no further deviation; 

- :  if n > n*, have the remaining players invest at date 1. 

Note  that whatever the play of the game, this procedure uniquely defines a best 
response for all remaining players. We can show that this defines a SPE by 
induction. 

For  n > n* - 1, it is a dominan t  strategy to invest immediately so the proposed 
strategies constitute a SPE in F ,  for this case. Suppose that for every n = k . . . .  , n* - 1, 
the strategies define a SPE of F, .  We want  to show that the same is true for n = k - 1. 

The equilibrium strategy for Fk-1 requires every player to invest at date 
n* - k + 1 unless someone invests earlier, in which case the equilibrium strategy for 
the appropria te  subgame applies. If a player deviates from this strategy, he will not  
want  to invest later than date n* - k + 1 because this clearly makes him worse off. 
If he invests before date n* - k + 1, on the other hand, he precipitates the subgame 
F k and all the remaining players will invest n * - k  periods later. Then the best 
deviation for him is to invest in the first period. Because the other players do not  
anticipate his deviation the subgame Fk begins in period 2 and the remaining players 
will therefore invest in period n* - k + 1 as before. His payofff rom the deviation is 

\ 1 - 6  
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the equilibrium payoff. This shows that it does not pay to deviate and, by induction, 
the strategies constitute an equilibrium in every subgame F,. �9 

Corollary. For  N sufficiently large, there exists an equilibrium in which no player 
ever invests. 

Proof: Choose N* to be smallest value of N such that 6"*-iv(l) < c. (Recall that n* 
is a non-decreasing function of N.) Suppose the play of the game has just entered 
the subgame F,.  Choose the equilibrium strategies as follows: 

: if n = 0, players never invest; 
- :  if n = 1 . . . .  , n* - 1, all remaining players invest at date n* - n; 
- :  if n > n* all remaining players invest at date 1. 

For n > 0, these are SPE strategies by Theorem 2. For n = 0, ifa single player invests, 
he precipitates a subgame F t  in which all the players will invest at date n* - 1 but 
since this game begins in the period after he deviates, they are investing in period 
n* of the original game. The payoff to the deviating player is 6 " * - i v ( l ) -  c, which 
is negative for all N > N*. �9 

Discussion 

A. In bargaining models, robust delay occurs when there are more than three 
players (Shaked (1987)) or when players can strike while continuing to bargain 
(Fernandez and Glazer (1991)) or when there are externalities (J6hiel and Moldovanu 
(1992)) or when there is uncertainty about the timing of offers (Ma and Manove 
(1993)). The effect of the number of players does not seem to have been investigated 
beyond games with very small numbers, e.g., two or three players. 

Farrell and Saloner (1985) suggest that in a related game with "endogenous 
timing", it cannot take more than N periods for N players to make their commitments. 
With this motivation, they go on to study an incomplete information game, which 
exhibits delay. As the Theorem 2 and its corollary make clear, there is no need for 
incomplete information to obtain delay in a coordination game. 

Delay also occurs in the war of attrition, but in that case increasing numbers 
reduces delay (Bliss and Nalebuff (1984)). 

B. The proof of Theorem 2 is complicated by the fact that the amount of delay in 
each subgame depends on the number of players left in the game. It is worth noting 
that the naive strategy of requiring every player to invest at date n* is not subgame 
perfect. This is why an inductive argument is required to construct the equilibrium. 

C. The argument used to prove Theorem 2 actually proves a stronger result, 
namely, there exists an equilibrium in which all players invest at date t, for each 
t = l , . . . , n * .  

The equilibria mentioned so far have the property that all players invest at the 
same date. This is not at all necessary. For  example, there exists an equilibrium in 
which player i invests at date i, for all i =  1 . . . . .  n * - 2  and the remaining 
uncommitted players invest at date n* - 1. Because immediate investment becomes 
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a dominant strategy once cumulative investment reaches n*, the investment process 
always ends with a "bang"; but the "build up" can be slow. 

Obviously, this equilibrium will only exist if N < N*. There is a limit to how 
"spread out" investment can be. Consider the case of a pure strategy equilibrium, 
for example, where v(~) ~ 0 for all ~ < c~*. The first player to invest makes losses 
until at least n* players have invested, at which point it becomes a dominant strategy 
to invest. It will be optimal for the first player to invest only if ~T-lv(1) > (1 -- 6)C, 
where Tis the number of periods elapsing between the first player's investment and 
the last player's. 

D. Some care is required in the interpretation of Theorem 2, because it only 
guarantees the existence of equilibria with long delays. There also exist equilibria 
with little or no delay. With this caveat, Theorem 2 tells us two things. First, it says 
that Theorem 1 does not necessarily offer a solution to the coordination problem. 
For any given period length, there may still be significant delays if N is sufficiently 
large. Second, it shows that the severity of the coordination problem depends on 
the number of players involved. This accords with intuition and is something that 
cannot be inferred from the static game. 

4. Leading and lagging eomplementarities 

The results in the preceding two sections illustrate the difficulty of obtaining sharp 
characterizations of the extent of delay. Sharp results are available in some 
circumstances, but they are sensitive to changes in the parameters. 

A further indication of the sensitivity of the predictions of the model appears 
when we change the timing of strategic complementarities. Specifically, consider the 
case of a game with leading complementarities. The extensive form is the same as in 
the preceding section. Only the payoffs differ. Here the revenue flow at date t is a 
function of the cumulative investment at date t + 1. A player investing at date t will 
receive a payoff equal to 

oo  

s = t  

All the other assumptions are maintained. 
With leading strategic complementarities, players have an incentive to invest 

"ahead of the pack". In every equilibrium there is no delay. 

Theorem 3. In any SPE of the game with leading complementarities, all players 
invest with probability 1 at the first date. 

Proof: The proof is by induction. Take as the induction hypothesis that all players 
invest with probability 1 at the first date in any subgame of F,,  for n = k,...,  N. 
This is obviously true for k _> n*. Now consider the game Fk_ 1. Anyone who invests 
at the first date precipitates a subgame F,  at the second date, for some n _> k. By 
the induction hypothesis, any remaining uncommitted players will invest at the 
second date. The feasibility condition, Assumption l(a), together with the form of 
the payoff function, implies that it is strictly optimal to invest at the first date. This 
proves that all players invest at the first date in any SPE of F k_ 1 and the theorem 
follows by induction. �9 
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Discussion 

A. The assumption that revenue flow at date t depends on cumulative investment 
at date t + 1 may seem odd, but it is formally equivalent to assuming that strategic 
complementarities are contemporaneous and investment must occur one period 
before the revenue flow begins. To see this put ~(~) = 6 -  iv(a) and rewrite the payoff 
function as 

0o ~o 

y ' a ~ - ' v ( ~ + ~ ) - a ' - ~ c =  y~ a * ~(c~,)_a,-~c. 
s = t  s = t + l  

The expression on the right assumes that strategic complementarities are contem- 
poraneous, but requires players to invest in advance. 

B. Although the proof of the theorem is simple and conforms to intuition, there is 
nonetheless something a little surprising about  it, if one looks at it in the right way. 
To see this, start with the game with contemporaneous externalities. Now change 
the payoffs by zeroing out the revenue to investment in the first period. For  example, 
let the government tax it away. Will this reduction in revenue increase or decrease 
investment, bring it forward or delay it? It seems surprising that reducing returns 
encourages investment, but Theorem 3 gives the unambiguous answer as long as 
Assumption 1 continues to hold. The explanation, of course, is that a player's 
decision is determined not by the total return to investment, assuming investment 
is still profitable, but rather by the marginal return to delay. 

C. In games with contemporaneous complementarities, many different equilibrium 
outcomes can be supported by appropriate off-the-equilibrium-path responses. The 
uniqueness of equilibrium with leading complementarities is in striking contrast. 
To get this result, one needs both leading complementarities and a finite number 
of players. The reader can convince himself of this by thinking about the continuum 
game. Equilibrium with a continuum of players is defined in the same way as for 
contemporaneous complementarities. There are three types of equilibria with 
leading complementarities, however. In one, all players invest immediately (a t = 1, 
Vt); in another, they never invest (cq = 0, Vt); finally, there is a class of equilibria of 
the form a t = 0, for t < k and cq = ~* for t > k, for any fixed but arbitrary k. The first 
corresponds to the equilibrium in Theorem 3; the others have no counterpart  in the 
finite game. 

The difference between the equilibrium sets of the finite game and the continuum 
game represents a failure of lower hemi-continuity (as opposed to a failure of upper 
hemi-continuity) and so is not very surprising, perhaps. But, once again, it reminds 
us of the possible dangers of assuming a continuum of players without sufficient 
care and attention. 

Lagging complementarities 

Lagging complementarities give players an incentive to invest after most other 
players have invested. However, in contrast to the case of leading complementarities, 
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this does not lead to a unique equilibrium outcome. In fact, analogues of Theorems 
1 and 2 continue to hold in this case. The extensive form is the same as before, 
but the payoff to a player who invests at date t is now 

oo 

s = t  

where ~t is the proportion of players who have invested by the end of date t. Even 
if all players invest at the first date, the effect of this investment on payoffs is not 
felt until the second date, so the discounted revenue flow is 

P = v(o) + 6v(1) + 62v(1) + . . . .  v(o) + 6v(1)/(1 - 6). 

For this reason, the feasibility condition in Assumption l(a) must be changed to 

3v(1) 
v(0) + > c. 

1 - 3  

All other assumptions are maintained. 
The fact that complementarities are "lagging" means the first players to invest 

are at a disadvantage compared with those who invest later, but the same is true in 
the case of contemporaneous complementarities when the investment process 
begins slowly. The same arguments can be used in both cases to show that there is 
no delay in the limit as the period length becomes vanishingly small. Proofs are 
omitted, since the arguments are every similar to those found in Sections 3 and 4. 

Theorem 4. For any ~ > 0 there exists q > 0 such that, in any SPE, with probability 
1 - 5, all players invest within e of the start of the game, whenever the period length 
is less than q. 

Theorem 5. There exists a SPE in which no players invest before date n* - 1. 

The construction used to prove Theorem 5 differs slightly from the proof of 
Theorem 2. In particular, we cannot assume that all players invest at the same date 
(see Gale (1992)). 

Corollary. For  sufficiently large N there exists a SPE in which no player ever invests. 

5. The robustness of equilibrium delay 

The results from the preceding sections emphasize the sensitivity of the equilibrium 
set to changes in parameter  values and the specification of payoffs. These results 
are interesting for the insight they give into the factors affecting delay, but they may 
leave the impression that, while delay sometimes occurs, it is not a robust 
phenomenon. In this section, I argue that delay is, in a precise sense, robust. To see 
why, consider an equilibrium of the continuum game. For simplicity, I only consider 
the case of lagging complementarities, but a similar argument is made informally 
for the case of contemporaneous complemetarities in the discussion at the end of 
this section. 

An equilibrium for the continuum game is a monotonically non-decreasing 
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sequence {at} with the property that a t > ~+ 1 implies t maximizes 
c~ 

~-lv(~s_ 1)- ~-~c. 

Let t be the first date at which ~ > O. Then c~ t_ ~ = 0 and 
ao  or? 

~ 6"-lv(~-1)--b~-1c=c~'-l(v(O)--(1--(~)c)+ ~ 6"-lv(a~-l)--6'c 
s = t  s = t + l  

cx) 

< Y. 6~-lv(~s_~)-6'c,  
s = t + l  

contradicting the equilibrium condition. In other words, since v ( 0 ) < ( 1 -  ~)c, 
players who invest at date t make an initial (flow) loss and would be better offwaiting 
until date t + 1. Since each player thinks his delay has no effect on the other players, 
they will all choose to delay and there will be no investment in equilibrium. 

In a finite game, players have the same incentive to delay because of the lagging 
complementarity, but there is a countervailing incentive to invest early. By investing 
early, a player may encourage others to invest. For  example, consider the SPE in 
which players i = 1 . . . . .  n* invest at the first date and the remaining N - n* invest 
at the second date. In any subgame F,,  the remaining players invest immediately if 
n > n*. If n < n*, the n* - n players with the lowest indexes invest immediately and 
the remaining N - - n *  players invest at the next date. Since players invest in the 
same fixed order in each subgame, a player cannot change his position in the queue 
by delaying. He simply delays his payoff. Although there is a small amount of delay 
in this equilibrium, everyone invests pretty rapidly, no matter how large the number 
of players. 

The critical feature of this equilibrium is that every player in the first group 
regards himself as pivotal, no matter how large N becomes. In the limit, when there 
is a continuum of players, this equilibrium disappears. That is, under the assumption 
of anonymity, there is no equilibrium in which all players invest by the second 
period. This failure of upper hemi-continuity suggests a lack of robustness in some 
of the equilibria. To test this hypothesis, I introduce some "noise" and see what 
effect it has on the equilibrium set. Compared to the previous results, the analysis 
is rather involved, however, and a number of simplifying assumptions are adopted 
to make it tractable. 

The game is assumed to be anonymous, that is, players can only observe the total 
number of players who invest at each date, and not the identity of the individual 
investors. In an anonymous game, a history has the form h = (nl . . . . .  n,_ 1), where 
n, is the total number investing at date t. Since actions only need to be specified for 
those who have not yet invested, a strategy can still be described by a function 
f :  H ~ [0, 1]. 

An equilibrium is monotonic if, at each.date, every player's equilibrium payoff 
is monotonically non-decreasing in the number of players who have already 
invested. Note that all the equilibria constructed so far have been monotonic. 

The game is perturbed to capture the fact that perfect coordination is impossible. 
The simplest way to do this is to restrict players to choosing mixed strategies when 
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they invest. Formally, for some small value ore > 0, when players choose the strategy 
f they receive the payoff corresponding to (1 - eft. For some fixed but arbitrary 
value of e consider a sequence {fN), where fN is a monotonic equilibrium of the 
perturbed game with N players. 

Theorem 6. For  any e > 0 sufficiently small and any information set hEH, fU(h) = 0 
for all N sufficiently large. 

The proof is contained in the appendix. 

Discussion 

A. A weak Markov strategy makes an uncommitted player's probability of 
investment at date t depend only on the date and the cumulative total of players 
who have invested at the previous date. Thus, a weak Markov strategy for player 
i can be represented by a sequence of functions fi  = {fit} where fi~:lq --* [0, 1 ]. Player 
i invests with probability fit(n t_ 1) at date t if he has not already invested and if nt- 1 
other players have invested by the end of date t - 1. A strategy is monotonic i f f i  t is 
monotonically non-decreasing. It is easy to see that if the equilibrium strategies are 
weak Markov and monotonic, then the equilibrium must be monotonic, but these 
conditions are not necessary. 

B. An equilibrium is called symmetric if every player chooses the same equilibrium 
strategy. In Gale (1992), an analogue of Theorem 6 is proved under the assumption 
that equilibria are symmetric rather than monotonic. In particular, there is no need 
to assume that strategies are weak Markov and monotonic. Also, there is no need 
to make use of the trembling hand in the case of symmetric equilibria. Mixed 
strategies provide all the randomness we need. (I am indebted to Sawoong Kang 
for this observation). 

C. The ideas developed in this section can also be applied to games with 
contemporaneous complementarities, but in that case an additional assumption is 
needed to rule out the equilibrium in which everyone invests immediately. This can 
be done by introducing a small incentive to delay until after the first players have 
invested. For  example, we could strengthen the assumption that perfect coordina- 
tion is impossible by putting a limit on the total number of players that can invest 
in any one period. This is meant to capture the idea of capacity constraints on the 
supply of investment goods. If this limit is less than ~*N, there will be a disadvantage 
in being the first to invest. 

Introducing a capacity constraint may seem to be a "large" perturbation of the 
game, but clearly, if the period length is short, this constraint does not by itself 
impose a significant amount of delay. The significant delay comes from coordination 
failure. 

6. Open questions 

For ease of exposition, I have used the simplest possible model in this paper, but 
some of the formal results may extend to a richer framework. For  example, suppose 
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that each player in the game controls K investments, each of unit size. It appears 
that the methods used to prove Theorems 1 through 5 would apply in this context, 
too. In fact, Theorem 1 appears to hold in quite general strategy spaces. Theorem 
6 is more problematical, simply because of the difficulty of extending an already 
complex argument to a richer strategy space. 

Extending the model would allow one to analyze some other interesting 
questions. One limitation of the present framework is that the reaction lag is the 
same as the "time to build": both are equal to one period. This seems unrealistic. 
On the one hand, it is not clear why decisions should be time-consuming in this 
model; on the other, it seems reasonable to assume that physical capital formation 
takes time. In the extended model, we could distinguish between the two lags. 
Allowing a player to control K projects, each of unit size, is formally equivalent to 
assuming the player controls a project of unit size, but can make investments in 
increments of size A = 1/K. In this interpretation, we could add the constraint that 
only one increment per period is allowed, so a unit of investment takes K periods. 
We can then ask what happens as the reaction lag becomes very small, holding 
constant the "time to build". Since r and A vanish at the same rate, we may get 
results that are quite different from Theorem 1, which assumes A is constant as 
converges to zero. 

Another interesting question is what would happen if agents had access to 
institutions that permitted some degree of cooperation. Obviously, if the grand 
coalition could form and impose an efficient outcome, there would be no coordina- 
tion problem. This would not be an interesting resolution of the problem. Indeed, 
any cooperative solution that simply assumes that coalitions behave efficiently is 
begging the question of how the coalition solves its own, internal, coordination 
problem. Nonetheless, as a first cut, it might be interesting to see what happens if 
small coalitions were allowed to form and maximize some aggregate of their 
members' welfare. 

Some insight can be gleaned by considering the model in which each player 
controls K projects. For then each player is like a coalition of K players who have 
agreed to share their payoff equally. What this suggests is that as long as the 
maximum size of the coalitions is bounded above, delay will be robust when the 
number of players is large, which is exactly what one would expect. Of course, one 
would ideally like to make the coalition structure endogenous, to explain which 
coalitions form, to explain what frictions might prevent large coalitions from 
forming and, ultimately, to explain how coalitions solve their own, internal, 
coordination problem. 

The issue of communication also deserves attention. Even in games of complete 
and perfect information there may be a role for cheap talk. However, unlike the 
models studied by Farrell (1987), Farrell and Saloner (1988) and Farrell (1993), there 
is no danger of players making "incompatible" choices and so no gain from 
coordinating through cheap talk. To provide a more interesting role for communic- 
ation one might want to consider games in which a player's investment decision is 
only imperfectly observed by other players, or is only observed with a lag. Players 
would have an incentive to make false announcements to encourage the others. 
Then other players might want to see bricks and mortar  before they were convinced 
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that an investment had taken place. This would be like an increase in the reaction 
lag which, as we have seen, tends to increase the potential for delay. 

Appendix 

Proof of  Theorem 6 

Begin by considering two alternative strategies for a distinguished player, say, player 
1. Strategy A is to invest at date 1, independently of what the other players do. 
Strategy B is to wait until date 2 and then invest, independently of what other players 
do. 

Step I. Consider a fixed but arbitrary equilibrium fN. The first step is to obtain a 
lower bound on the payoff to strategy B. Let VB(n) denote the equilibrium payoff 
to player 1 from investing at date 2 when exactly n players invest at date 1. Let p(n) 
be the probability that n players other than player i invest at date 1. Then the payoff 
from investing at date 2 is 

N - 1  

VB=- ~ P(n)VB(n). 
n=0  

Player 1 cannot be sure of investing at date 2, but he does so with probability 1 - e, 
so the payoff from strategy B is at least (1 - e)Vn. 

Step 2. The next step is to obtain an upper bound on the payoff to strategy A. If 
player 1 invests at date 1, he must make a loss o f / =  v(0) - (1 - 6)c in the first period. 
In that case, his payoff cannot be greater than VA + l, where 

N - 1  

V A - ~, p(n)Va(n + 1), 
n=0  

and VA(n + 1) is the payoff to player 1 from date 2 onwards if n + 1 players (including 
player 1) invest at date 1. Again, player 1 cannot be sure of investing at date 1, but 
if he does not manage to invest, his payoff is bounded above by V, say, so the payoff 
to strategy A cannot be greater than (1 - ~(VA + l) + ~V. 

Step 3. The next step is to show that Va(n) < VB(n) for any n. To do this, consider 
two situations, A and B. In situation A, player 1 and n - 1 players i l , . . . ,  i,_ 1 invest 
at date 1. In situation B, player 1 adopts strategy B and players ix, . . . ,  i, invest at 
date 1. In each case, the number of players who invest at date 1 is the same, but in 
situation A players i , , . . . ,  iN- x are left to randomize at date 2 and in situation B it 
is players 1 and i,+1 . . . . .  is_ ~ who are left to randomize at date 2. Players 
i,+ ~ . . . . .  i N_ ~ use the same probabilities in each situation at date 2, since the game 
is anonymous and in each case the number of investors at date 1 is n. However, 
player i, may choose to invest with probability less than 1 whereas we know that 
player 1 will choose to invest with probabili ty 1. So the total number  of investments 
made by the end of date 2 in situation B will stochastically dominate the total 
number of investments made by the end of date 2 in situation A. Since the 
equilibrium is assumed to be monotonic, the equilibrium payoffs at date 2 are 
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non-decreasing in the total  n u m b e r  of  investors. This implies that  Va(n) _< Vs(n). 
This is the only point  in the p roof  at which we appeal  to monotonici ty .  

Step  4. We can now provide an upper  bound  for V A - V B. Direct  calculat ion gives 
N - - 1  

V A - V 8 <_ ~ (Va(n + 1 ) -  VA(n))p(n ) 
n = O  

N - I  

= V a ( N ) p ( N  - 1) - Va(O)p(O ) + ~ Va(n)(p(n - 1) - p(n)). 
?1=1 

Let p(m) = max  p(n). Since the density function p(n) is single-peaked, 
n 

N - 1  N - 1  

VA(n)(p(n --  1) -- p(n)) <_ ~, VA(n)(p(n -- 1) -- p(n)) 
n = l  n = m + l  

<<. ~ ' ( p ( m ) -  p ( N -  1)). 

Then 

VA - VB <-- ~'p(N -- 1) + V(p(m) --  p ( N  - 1)) = Vp(m). 

S tep  5. Using the inequali ty from Step 4, we can show the sequence { ~ f ~ ( h ) }  is 
bounded  for any fixed history h. The p roof  is by contradict ion.  Consider  the unique 
history h = 0 at date  1. Suppose that  a long some subsequence, which can be taken 
to be the original sequence, ~ ' i f~ (O)  -4 oo. Then p(m)-4  0 as N -4 oo. In  the limit we 
have 

(1 - -  E ) ( V  a + l) + e P -  (1 - e ) V  B _< eF" + (1 - e)l < O, 

for e > 0 sufficiently small. No te  that  e can be chosen independent ly of the 
informat ion set and the number  of players. 

We have shown that  for N sufficiently large, player 1 strictly prefers strategy B 
to strategy A. Wha t  is true for player  1 is true for all of the players, so no one will 
invest at date 1, contradict ing the hypothesis  that  { ~ f ~ ( 0 ) }  is unbounded.  

Essentially the same a rgument  works  for any fixed history h, mutat i s  mutandis,  
since the fraction of players who have already invested becomes negligible in the 
limit. 

Step  6. It  follows f rom Step 5 that, for any fixed h ~ H t ,  the number  of players 
investing at the informat ion  set h is given by the Poisson approx ima t ion  to the 
b inomial  distribution. For  any fixed date t, the cumulat ive investment  a, u converges 
to 0 in probabi l i ty  as N diverges to oo. Clearly, no one will be willing to invest at  
the first date or, by the same argument ,  at any subsequent  date. This completes  the 
p roof  of the theorem. �9 

R e f e r e n c e s  

Admati, A., Perry, M.: Joint projects without commitment. Rev. Econ. Stud. 58, 159-276 (1991) 
Bliss, B., Nalebuff, B.: Dragon-slaying and ballrom dancing: the private supply of a public good. J. Publ. 

Econ. 25, 1 12 (1984) 



18 D. Gale 

Bolton, P., Farrell, J.: Decentralization, duplication and delay, J. Polit. Econ. 98, 801-826 (1990) 
Bryant, J.: A simple rational expectations Keynes-type model. Quart. J. Econ. 97, 525-529 (1983) 
Caplin, A., Leahy, J.: Business as usual, market crashes and wisdom after the fact. Columbia University, 

unpublished (1992) 
Chamley, C., Gale, D.: Information revelation and strategic delay in a model of investment. Econo- 

metrica, forthcoming (1994) 
Chatterjee, S., Cooper, R.: Multiplicity of equilibria and fluctuations in dynamic perfectly competitive 

economies. AEA Papers Proc. 79, 353-357 (1989) 
Chatterjee, S., Cooper, R., Ravikumar, B.: Participation dynamics: sunspots and cycles. NBER Working 

Paper Series No. 3438 (1990) 
Cooper, R., John, A.: Coordinating coordination failures in a Keynesian model. Quart. J. Econ. 103, 

441-464 (1988) 
Diamond, P.: Aggregate demand management in search equilibrium. J. Polit. Econ. 90, 881-894 (1982) 
Durlauf, S.: Non-ergodic growth theory. Rev. Econ. Stud. 60, 349-366 (1993) 
Farrell, J., Saloner, G.: Standardization, compatibility and innovation. Rand J. Econ. 16, 70 83 (1985) 
Farrell, J.: Cheap talk, coordination and delay. Rand J. Econ. 18, 34-39 (1987) 
Farrell, J., Saloner, G.: Coordination through committees and markets. Rand J. Econ. 19, 235 252(1988) 
Farrell, J.: Choosing the rules for formal standardization. UC Berkeley, unpublished (1993) 
Fernandez, R., Glazer, J.: Striking for a bargain between two completely informed agents. Amer. Econ. 

Rev. 81,240-252 (1991) 
Gale, D.: Dynamic coordination games. Boston University, unpublished (1992) 
Gul, F., Sonnenschein, H.: On delay in bargaining with one-sided uncertainty. Econometrica 56, 81-95 

(1988) 
Heller, W.: Coordination failure under complete markets with application to effective demand. In: Heller, 

W., Starr, R., Starrett, D. (eds.) Equilibrium analysis: essays in honor of Kenneth J. Arrow, vol. II. 
Cambridge: Cambridge University Press 1986 

Krugman, P.: History versus expectations. Quart. J. Econ. 106, 651-667 (1991) 
J6hiel, P., Moldovanu, B.: Cyclical delay in bargaining with externalities. University of Bonn, 

unpublished (1992) 
Ma, A., Manov, M.: Bargaining with deadlines and imperfect player control. Econometrica 61, 

1313-1340 (1993) 
Matsuyma, K.: Increasing returns, industrialization and indeterminacy of equilibrium. Quart. J. Econ. 

106, 617-650 (1991) 
Rauch, J.: Does history matter only when it matters little? the case of city industry location. Quart. J. 

Econ. 108, 843 867 (1993) 
Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50, 97 110 (1982) 
Shaked, A.: Opting out: bazaars vs "high tech" markets. London School of Economics, STICERD 

Discussion Paper (1987) 
Shleifer, A.: Implementation cycles. J. Polit. Econ. 94, 1163-1190 (1986) 


