
Econ. Theory 4, 605 616 (1994) Economic 
Theory 

�9 Springer-Verlag 1994 

Monotonicity and envyfree assignments* 
Ahmet AIkan 
Department of Management, Bogazigi University, Bebek 80815, Istanbul, TURKEY 

Received: June 5, 1992; revised version August 18, 1993 

Summary. Given any problem involving assignment of indivisible objects and a 
sum of money among individuals, there is an efficient envyfree allocation (namely 
the minmax money allocation) which can be extended monotonically to a new 
efficient envyfree allocation for any object added or individual removed, and 
another (the maximin value allocation) extendable similarly for any object removed 
or person added. Still, the efficient envyfree solution is largely incompatible with 
the resource and population monotonicity axioms: The minmax money and 
maxmin value allocations are unique in being extendable. 

1. Introduction 

Resource monotonicity and population monotonicity have been put forward as 
recommendable norms in the division of commonly claimed resources (Roemer 
(1986), Thomson (1983)). Resource monotonicity requires for instance that no 
member  of a fixed population should be worse off in case resources expand, and 
population monotonicity requires the opposite in case the population expands but 
resources stay fixed. Compelling as they appear  as equity standards, these criteria 
turn out to be rather strong, in ways not entirely evident at first sight. Various 
characterizations have shown, in fact, that monotonicity axioms lead to solutions 
of the welfare egalitarian type (Kalai (1977), Kalai and Samet (1985), Thomson 
(1983), Dut ta  and Vohra (1991), Sprumont (1992)), suggesting in particular that they 
are likely to be incompatible with other standards. For instance, Moulin and 
Thomson (1985) have exposed how such an incompatibility exists between resource 
monotonicity and the no-envy criterion (Foley (1967), Kolm (1972)), perhaps the 
most  prominent notion of equity in the literature (Thomson (1990)). Their demon- 
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stration holds on the domain of resources which are divisible and between which 
there are complementarities. Our purpose in this paper is to uncover the extent of 
(in)compatibility between the resource/population monotonicity criteria and envy- 
freeness on the domain of assignment problems. 

An assignment problem consists of n individuals having common claims on m 
indivisible objects and a sum of money X. Each individual is to receive a bundle 
containing (at most) one object and some money from X. Alkan, Demange and 
Gale (1991) have extensively studied this problem, and in particular shown that the 
set of efficient envyfree allocations is always nonempty, when valuations are 
continuously increasing in money and no object is of infinite value. 1 

Our investigation here continues a line of query initiated by ADG (1991) and 
hinges on a criterion which incorporates monotonicity requirements on all 
one-member variations in the set of individuals or objects. The criterion asks whether 
there always exist extendable efficient envyfree allocations for an assignment 
problem, in the sense that, following any one-member variation in the problem, a 
new efficient envyfree allocation can be found which makes everyone better off or 
everyone worse off, as the context would require. 

We present two sets of results. Together they chart out the extent of compatibility 
between the monotonicity criteria and (efficient) envyfreeness on the present 
domain. The first set shows that two particular selections from the efficient envyfree 
solution are extendable in one of two directions respectively, while the second set 
shows that all other allocations fail in this regard. The efficient envyfree solution is 
thus seen to be "largely" nonmonotonic. Simple examples show, in fact, that there 
may exist no envyfree allocations which fulfil the monotonicity criteria under 
two-member variations. 

To describe our results in further detail, let us first point out that envyfreeness 
implies efficiency when m ___ n 2, but not otherwise. As ADG (1991) have shown, 
though, envyfreeness can be strengthened by a condition, which holds vacuously 
when m > n, and then efficiency is a consequence. Efficient envyfree allocations may 
exist, on the other hand, which are not strongly envyfree in this sense. Let the value 
of a bundle to an individual be the pure-money equivalent of that bundle for the 
individual and call V the set of all value vectors (in the space of individuals) which 
are realizable by strongly envyfree allocations. Again as shown in ADG (1991), any 
social welfare function of the minmax/maxmin variety defines a single-valued 
selection from V, and the same holds if one replaces V by the set of all money vectors 
(in the space of objects) which pertain to strongly envyfree allocations. Two among 
these selections, namely the maxmin value allocation and the minmax money 
allocation, turn out to have the special status in comparative statics mentioned 
above. 

In fact, ADG (1991) showed for the case m = n that, if one starts out with the 
minmax money allocation, then for any object to be added to the initial set, a 
strongly envyfree allocation can be found in which no one is worse off. Our first 

1 The efficient envyfree set in fact is genetically multivalued and has a connectedness property that can 
be seen as generalized convexity (ADG (1991). 
2 This was shown by Svensson (1983) 
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theorem here extends this fact to all one-member variations and with no restriction 
on m, n. It says that the minmax money allocation is upper extendable, i.e., one may 
accommodate  a unidirectional change in welfare for any addition of an object or 
for any removal of an individual (Theorem 1 a), and that the maxmin value allocation 
is lower extendable, i.e., the same holds for any removal of an object or for any 
addition of an individual (Theorem lb). 3 

Our  second set of results establishes counterparts to Theorem 1. Theorem 2a 
states that, given any assignment problem (with m _> n), for any envyfree allocation 
other than the minmax money allocation, there exists an object whose addition 
makes at least one individual worse off in any new efficient envyfree allocation. ~ 
The minmax money allocation is thus unique in being upper extendable. Interestingly, 
the situation is different for extendability in the other direction. We present an 
assignment problem where all envyfree allocations are lower extendable. As 
analogue to Theorem 2a, nevertheless, a weak uniqueness result holds for the 
maxmin value allocation, which we state as Theorem 2b: There exist assignment 
problems where all lower extendable allocations are confined to an arbitrarily small 
subset of the envyfree set. 

In our model, presented next in Section 2, objects may be desirable or 
undesirable and neither the total amount  of money nor individual moneys are 
restricted in sign. It  is evident that in this broad framework, the proper direction to 
postulate for changes in welfare would depend on the context, in particular the sign 
ofm - n. The extendability criterion we formulate, in Section 3, brings together what 
is pertinent in this regard. In Section 4 we establish some properties of the minmax 
money and maxmin value allocations, which we use in proving the main results in 
Section 5. Section 6 contains an example of incompatibility with two-member 
variations and closing remarks. 

2. The assignment problem and the efficient envyfree solution 

An assignment problem is a triplet (P, O, X) where P is a finite set of individuals, 0 
is a finite set of objects, and X s R  (the real line) is an amount  of money. We denote 
(~, x) a bundle consisting of object ~ and x units of money. We use the notation (~b, x) 
for a bundle containing no object and call ~ a null object. We assume that, for every 
individual A and bundle (~, x), there exists an amount  of money ~pA(~, x), called the 
value of (~,x) to A, such that A is indifferent between (~,x) and (~,~pA(~,x)). We 
assume that the functions ~pA(~, x) are continuous and strictly increasing in x. A 
dummy is an individual for whom all objects are null objects.. 

Let A = (P, O, X) be an assignment problem. Let h = max { ]O[ - I PI, 0} and 
k = max { I PI  - I 0 [, 0}. Denote P* the union of P with h dummies, and denote O* 
the union of O with k null objects. An assignment for A is a triple (/~, v, x) where x is 
a money vector associating x~ units of money to each ~ O * ,  # is a bijection between 
P* and O*, and v is the value vector given by vA = ~PA(/~(A), x,r for each A~P*. 

3 Tadenuma and Thomson (1989) obtained Theorem lb for the case n = 1. 
4 For the quasilinear domain, i.e., where individuals' valuations of bundles are separable in money 
homogeneously for all objects, ADG (1991) have obtained this fact by an argument special to the domain. 
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An assignment (#, v, x) is feasible if EA~pXta(A) = X and efficient if, in addition, there 
is no feasible assignment (#', v', x') such that v' > v. 5 A feasible assignment (#, v, x) is 
envyfree (resp., strongly envyfree) if 

v a >_ Cpa(O:, X,) for all 0~O*, 

for every AEP (resp., for every A~P*). (Note that an envyfree assignment (p, v, x) is 
strongly envyfree if and only if x,o = max {x, 1 ~ 0 }  for all o ~ O  -I t (P) ,  a condition 
which is vacuously true in case [P[ > [O 1.) We call (v, x) a feasible, efficient, envyfree 
or strongly envyfree allocation, if there is an assignment (It, v, x) with the same 
property. 

Let ~ / b e  the set of all assignment problems. The efficient envyfree solution is a 
correspondence on ~r which we will denote ~, where q~(A) is the set of all efficient 
envyfree allocations for every A. We define the strongly envyfree solution ~ *  ~_ 
similarly. ADG (1991) have shown that q~ *(A) -r ~ for every A - (P, O, X) ~ d .  We 
point out for emphasis that, while q~(A) = ~*(A) when IP[ >_ [O1, there may exist 
efficient envyfree allocations which are not strongly envyfree as well as envyfree 
allocations which are not efficient when ]PI <10].  

Our purpose is to examine the monotonicity of q) with respect to variations in 
the set of individuals or objects. We shall make frequent use of the following fact 
which states q~* is monotonic with respect to variations in money in a strong 
manner. 

Money Monotonicity Theorem (to be abbreviated MMT): Let A = (P, O, X)E~r 
Consider the family of assignment problems {A(6) 13 ~ R } where A(3) = (P, O, X + 6). 
For  any ~isg>*(A), there exists a path of allocations {~(3)16eR} continuous in 6 
where ~(0) = ~, ~(6)s ~*(A(6)), and ~(3) >> ~(3') whenever 6 > 6'. 

A milder version of this theorem had been given in ADG (1991). Essentially the 
same argument applies here; we omit the proof. 

3. A monotonicity criterion: extendability 

Our focus will be on a monotonicity criterion that involves one-individual or 
one-object variations in A = (P, O, X ) s ~ .  Consider any solution ~ on the domain 
~ .  The criterion demands that there always be an allocation ~ ~ ~(A) which permits 
a unidirectional change in welfare for any one-member variation in A, in the sense 
that a ~F- allocation can be found after the variation making everyone better offor 
everyone worse off relative to ~. The proper direction to postulate here naturally 
depends on the type of variation, such as whether it is the addition or removal of 
an object, then whether the object is desirable or nondesirable, then also on the sign 
of Iel - [ 0 1 ,  similarly on whether the variation is the addition or removal of an 
individual, then on whether the individuals are taking part in benefit or burden. 
Our definition below brings together all such particularities. 

We call an object ~ desirable (resp., undesirable) if g0 A (cq x) is strictly greater (resp., 
smaller) than x for all x sR  and for all individuals A. 

5 We use the vector inequalities >, >, >>. 
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Notation: F o r  any  vector  z, denote  z M, z m the m a x i m u m  and min imum componen t s  
of  z respectively. Given  any A = (P, O, X ) e ~ ' ,  denote  A u A, A u ~, A - A, A - ~ the 
ass ignment  p rob lems  (P w {A }, O, X), (P, 0 u { ~}, X), (P - { A }, O, X), (P, O - { ~}, X) 
respectively. In  the definition below, we will somewhat  abuse no ta t ion  and  write 
v > v' for value vectors v, v' of two assigment  problems A, A' to mean  v a > v] for 
every individual A who is present  in both  A and A'. 

Definition: Let ~u be a solut ion on the domain  ~r Let A = (P, O, X ) ~ r  

An al locat ion (v, x)~ q~(A) is upper extendable if 

(i) for any desirable (resp., undesirable) ~r O, there exists (v', x ' )e  ~ ( A  u ~) such that  
v' > v if I PI < I O I and v' >> v (resp., v' << v) if I PI > I OI, and 
(ii) for any  A e P ,  there exists (v ' ,x ' )e  ~ ( A  - A) such that  v'>> v if xM > 0, v' = v if 
x M = 0, and  v' << v if x M < O. 

An al locat ion (v, x)e  LP(A) is lower extendable if 

(i) for any desirable (resp., undesirable) cocO, there exists (v', x ' )e  ~P(A - c~) such that  
v' < v if [P[ < IO[ and v'<< v (resp., v' >> v) if [PI > 101, and 
(ii) for any  ACP, there exists ( v ' , x ' ) e T ( A w A )  such that  v'<<v if v,, > 0, v ' = v  if 
vm = 0 ,  and v'>>v if v,. < 0. 

We say that  T is extendable if for every Ae , .q  there exists in T(A)  an al locat ion 
which is upper  extendable  and an al locat ion which is lower extendable.  

We will show in Section 5 that  the efficient envyfree solution �9 is extendable.  

4. The minmax money and maxmin value allocations 

The following two selections f rom O* turn out  to have a pivotal  role in our  
investigation. Let  A = (P, O, X ) ~ r  

Definition: Call an al locat ion (v, x)~ O*(A), 

(i) minmax money al locat ion if x u < x~t for all (v', x ')~ O*(A), 
(ii) maxmin value al locat ion if v m >_ v'~ for all (v', x ')~ O*(A). 

Let (p, v, x) be a s trongly envyfree ass ignment  for A. A In-path from A ~ P* to ~ ~ O* 
is a sequence of k distinct pairs (Ai, a l )~P* • O* for some k/> 1, where 

A = A  1, O~:~k, ~ i : ] g ( A i )  for l < i < k ,  

and VA, = gOA,(a i_ 1, X . . . .  ) for 1 < i < k. 
We call any ~EO* with x~ = x~t a max object and any A ~ P *  with v a = v,, a min 

individual. 

Lemma 1: (i) If(#,  v, x) is a m inmax  money  assignment,  then there exists f rom every 
A ~ P *  a p-pa th  to some max  object. (ii) Assume all a~O are desirable. I f  (#, v, x) is 
a m a x m i n  value assignment,  then there exists to every ~eO*  a #-pa th  f rom some 
min individual. 6 

6 The converse statements are also true (Alkan (1989)). 
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Proof: We shall only prove (ii) here. The argument for (i) is analogous and has been 
given in ADG (1991) for the case IPI = IOI. 

Let (/2,v,x) be a maxmin value assignment for A. Let O' be the set of all ~ O *  
to which there exists a/2-path from some min individual. In particular, all min 
individuals are in P' - /2(0') .  Suppose the lemma is false, i.e., O* - O' is nonempty. 
Note that v A < q~A(~,X,) for any A ~ P *  -- P'  and any ~ O ' .  

Since all ~ 0  are desirable, any dummy in P* is a min individual and so belongs 
to P', in particular P* - P' ___ P. If P' consisted exclusively of dummies, then we 
could slightly increase x, for ~ O' without violating feasibility or strong envyfreeness, 
which would then increase v~ contrary to the fact that (v, x) is a maxmin value 
allocation. So P ' n  P is nonempty. 

By MMT now, we can slightly increase x, for every ~ O '  and slightly decrease 
x, for every ~ ~ O* - O', while maintaining feasibility and strong envyfreeness, again 
contrary to (v, x) being maxmin value. So O' = 0".  �9 

Lemma 2: If (/2, v, x), (/2', v', x') are strongly envyfree assignments for A and P' = 
{A~P*IVA > v~}, O ' =  {~O*lx= > x'~}, then/2(P') =/2'(P') = O'. 

Lemma 2 is a version of the so-called Decomposition Lemma; for proof, see ADG 
(1991). We use it in the proof below as well as in the next section. 

Lemma 3: If (v*, x*) is a minmax money allocation and (v, x) is any other strongly 
envyfree allocation for A, then there exists an ~EO* such that x, > x* = x~.  

Proof: Let ~* = (/2", v*, x*) be a minmax money assignment and ~ = (/2, v, x) be any 
strongly envyfree assignment for A such that x ~ x*. Suppose the lemma is false. 
Then O' - { ~ O *  ]x~ < x*} contains all ~*-max objects, in particular any object in 
/2*(P* - P). So, by feasibility, O* - O' is nonempty. 

By Lemma l(i), there exists an individual A~/2*(O')  such that v* = ~Oa(~, X*) for 
t some ~ O *  - O'. By Lemma 2,/2(A) - ~'~O'. Thus, VA = ~PA(~', X,,) < ~PA(~, X,,) < V* 

since x,, < x*, and ~* is envyfree. On the other hand, v* = r x*) < ~oA(~, x,) sirice 
* < x,. So VA < q~a(~, X,), contradicting ~ is envyfree. �9 X~ 

One deduces directly from Lemma 3 that there exists a unique minmax money 
allocation for each A~zr (Note that x = x' if and only if v = v' for any pair of 
allocations (v,x),  (v',x')eq)(A).) One would likewise see that maxmin value 
allocations are unique when all ~eO are desirable. This single-valuedness property 
has been established in ADG (1991) for a broader class of selections from q~ on the 
domain where ]P] = ] O [. 

5. Extendability and the efficient envyfree solution 

For simplicity, we present our first result below under the assumption that all objects  
are desirable. Following the proof, we shall remark how it carries over to the domain 
where undesirable objects are allowed as well. 

Theorem 1: The efficient envyfree solution is extendable: 
a) The minmax money allocation is upper extendable. 
b) The maxmin value allocation is lower extendable. 
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Proof: Let A = (P, O, X ) e M .  

a) Let ~ = (#, v, x) be a minmax money assignment. To see that ~ fulfils criterion (i) 
of upper extendability, take any object fl(~O. Let xp be the smallest money such 
that v B = ~oB( fl, x0) for at least one individual B ~ P .  By Lemma 1(i), ~ has a/a-path 
(A1, cq),. . . ,  ( A t ,  a k ) w h e r e  A 1 = B and xct k = x M. Case  I:]PI > I Ol. Since all objects 
are desirable, it must be that ak is a null object and x M > x~. Alter ~ to ~' by giving 
B the bundle (fl, xp), A i the bundle (at-1, x~,_ ,) for i > 1, and all remaining A e P  the 
same bundles as in ft. Note that fi' is an assignment with the same value vector as 

and is strongly envyfree for (P, 0 w fl, X - XM + Xp). The desired conclusion follows 
from MMT. Case 2: JP[-<IO]. If X M > X ~ ,  apply the same reassignment and 
reasoning as above. If on the other hand x M < xo, the assignment ~ (plus giving 
(fl, x u )  to the new dummy) is still strongly envyfree for Aufl .  

To see that ~i fulfils criterion (ii) as well, take any B e P .  By Lemma 1(i), ~ has a 
/a-path as above. After ,~ to ~' by giving A i the bundle ( a , _ l , x ~ , _ , )  for every i >  1 
and all remaining A e P  the same bundles as in ~i. Again ~' is an assignment with the 
same value vector as ~ and is strongly envyfree for ( P -  B, O, X -  XM). The 
conclusion follows from MMT. 

b) Let ~ = (/~, v, x) be a maxmin value assignment. (i): Take any f l eO.  By Lemma 
l(ii), ~ has a/a-path (A 1, ~t t) . . . . .  (Ak, Ctk) where vA  1 = v,,, and ak = ft. Case 1: [ P[ _> [ O [. 
Giving A1 the bundle ($,v,,), and reassigning along this path as in the above 
paragraph, one gets a strongly envyfree assignment for (P, O -  fl, X -  x~ + vm). 
Since fl is desirable, xa < tpA,(fl, Xa)_< VA,----Vm, and the conclusion follows from 
MMT again. Case 2: [P[ < [O[. Since all ~eO are desirable, A1 is a dummy, i.e., 
vm = VA, = X~ = X M. Drop fl, A 1 and reassign along the #-path. One has a strongly 
envyfree assignment for (P, O - fl, X - xa + xM). Apply MMT. 

(ii): Take any B(EP. Let fl be an object in O* such that tpB(fl, x~) _> ~o~(~,x~) for 
all cteO*. By Lemma l(ii) again, h has a #-path as above. Give B the bundle (fl, x~), 
reassign along the #-path, and in case I PI >_ IOI give A1 the bundle (~b, vm), in case 
I e l  < I O I drop (the dummy) A ~. In each case, one has a strongly envyfree assignment 
tor (P w B, O, X + vm). The proof follows from MMT. 

Remark 1: On the general domain where undesirable as well as desirable objects 
are allowed, one may check the proof above that Theorem la and lb continue to 
hold in the cases } P[ __< I O ] and I P I > [ 01 respectively. For the remaining cases 
]P[ >1OI and IP[ <10 I, respectively, let us call (v, x)e ~*(A) a minimum pure money  
allocation if x~, < x"  for any cocO* - O and a m a x i m u m  d u m m y  value allocation if 
va > v~ for any A ~ P *  - P,  for all ( v ' , x ' ) e ~ * ( A ) .  Then, Theorem Ia and lb hold via 
these (single-valued) selections respectively; for details, one may see Alkan (1989). 
Note that, the minimum pure money allocation is the minmax money allocation 
when all cteO are desirable and the minmin money allocation when all ~eO are 
undesirable. Likewise, the maximum dummy value allocation is the maxmin value 
allocation when all ~eO are desirable and the maxmax money allocation when all 
c~eO are undesirable. 

We now turn to our second set of results which establish that the minmax money 
allocation is unique in being upper extendable and that, in a weaker sense, the 
maxmin value allocation is unique in being lower extendable. 
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Theorem 2 a): Let A = ( P , O , X ) e ~ t  where [PJ >_ [O] and all ~eO are desirable. If 
(v, x) is an envyfree allocation distinct from the minmax money allocation for A, 
then there exists a desirable object cor such that (v', x')eq~(Aw~o) implies v~ < vA 
for some A e P ,  i.e., (v, x) is not upper extendable. 

Proof: Let ~* -- (p*, v*, x*) be a minmax money assignment and ~ = (p, v, x) be any 
envyfree assignment for A such that v :~ v* (and so x :~ x*). Since all ~eO are 
desirable, v* > x~ for all AeP .  Pick a 6 > 0 such that v* > x~t + 6 for all A e P  and 
x, + 6 < x~t for all ~eO* with x, < x*.  Next let k be a positive scalar greater than 
(VA -- V*)/(X~ -- X~t ) for all A e P  and for all ~eO* such that x, r x* .  We shall prove 
the theorem by introducing a new object co, defined for all A e P  by 

(1) q~A(~0, X) = max {v* + k(x - x~u ), x + 6} 

and showing that there exists no allocation in q~(Au co) in which everyone is at 
least as well off as in ~. Note that co is a desirable object. 

We shall first treat the case ] P[ = [ O [. Suppose to the contrary that ~' = (p', v', x') 
is an efficient envyfree assignment for A w co such that 

t (2) v A > VA for all A e P  

The proof is in three steps. Step (i) shows that p' must assign co to some individual 
in P (i.e., not to a dummy). Step (ii) shows that this individual must not be worse 
off in ~' than in ~*, while Step (iii) shows the opposite. From this contradiction, the 
theorem follows for [PI = [O[. (As we shall point out in the end, the case [P[ > [O[ 
is less involved. For  instance, Step (i) then holds vacuously.) 

Step ( i )  I~'ffo) - BeP .  
If not, ~' (ignoring (co, x ' )  and the dummy) is an efficient envyfree assignment 

for A. But then since ~ is efficient, (2) implies v~, = v, and consequently, x o = x. By 
Lemma 3, there exists an object/3cO with 

(3) x~ > x;  = x~. 

Then, using (1) and (3), ~0a(o),x~) = q~A(e),Xa) > V* + k(xo -- x* )  > v* + ((v A -- v])/ 
( x a -  x*)) ( x p -  x ~ ) =  va = v~ for every A e P .  In particular, A =/~'(/~) would be 
better off receiving (co, x}) instead of (/~, x~), contrary to efficiency of ~'. 

Step ( i i )  v'~ > v~. 
By Step (i), there is an object r/tO such that #'(q)r We claim 

(4) x, _> x*.  

Consider any e e O - r /  and let # ' ( e )=A.  Then, from (2) and envyfreeness, 
q~A(ot, x ' , )=v'a>va>q~a(ct ,  x ,)  so x ' , > x , .  On the other hand, by feasibility, 
x'~ + ~o_ ,X ' ,  = x ,  + 2 o - , Z , .  Hence x~, _< x,. Therefore, if (4) were false, us!ng (1), 
we would get v~ = ~oB(co, x ' )  _< ~on(~o, x,)  = max {v* + k ( x ,  - x*) ,  x,, + 6} < 
max {v* + ((vn - v*)/(x,  - x*))  (x~ - x*), x*} = max {vn, x*}. But, max {vn, x*} = 
vn, since by envyfreeness, (3), and the desirability of/3, vn _> q~n(/~, xa) > ~on(/~, x*) > 
x*.  So v~ < vn contradicting (2). End of claim. 

Let P' = {AePlv]  < v*}. Take any A e P '  and let p*(A) = e. Using envyfreeness 
r and (2), q)A(O~,Xrt)~VA'~VA<V~"~-qlA(O~,X~) hence x , < x ,  so from (4) e C r /  in 
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particular/~'(~) - A'~P.  Then, using envyfreeness, q~a(cr x',) _< v a < v* = r162 x*) so 
x '  < x* which implies v A, = ~OA,(0r X'~) < q~a,(~, X*) < V*,, that  is A'~P'.  

Call/~*(P') = O'. We have just shown that  #'(O') _~ P'. Of  course [O'1 = [P'I so in 
fact f f (O ' )=  P'. Therefore, if B were in P', if(B) would be an object in O', 
contradict ing p'(B) = ~o. Hence BCP'. 

Step ( iii ) v' n < v*. 
This will follow from our  claim 

(5) x~, < x~,, 
t t tor then, using (1), v n = ~0n(og, xo, ) < q~n(co, xu)  = max {v* ,x*  + fi} = v*. 

If x,o > x u ,  by feasibdlty, assigns at least one individual A an ~ with x,  < x , ,  
but then using envyfreeness and (1) v a = q~a(cr x ' , )<  ~oa(cr x * ) <  v* = ~oa(~o, x * ) <  
r x~,), cont rary  to envyfreeness, therefore 

(6) x "  < x* .  

Now let ~*(fl) = C. F rom (3) and Lemma 2, Vc > v~, so from (2) 

t (7) v c > v* .  

This implies i f ( C ) C w  for if not  from (6) and (1) v c = r x'~)< r x * ) =  v* 
~ '  r , , contradict ing (7). Call #'(C) = v. F rom (7) and envyfreeness, tCc ( , xv) = v c > v c >_ 

~Oc(V, x*) so x'~ > x*. With this inequality at hand now, we get (5) simply by repeating 
the argument  in the first sentence of this paragraph.  This establishes our  claim and 
the proof  is over for the case I P[ = [ O I- 

To  conclude, let us state how our  proof  above also applies for the case {PI > [O[. 
As already mentioned,  Step (i) holds vacuously. Step (ii) is shorter  because the first 
paragraph is now unnecessary for the argument  in the second paragraph and can be 
skipped altogether. Step (iii) holds identically. 

Remark  2: We ment ion that  Theorem 2a admits a relatively simple proof  with 
respect to strongly envyfree allocations, that  is, if one replaces the set q~ in the 
statement with ~* .  For  emphasis, let us repeat that q~*(A) is often a proper  subset 
of q~(A) when [P[ < IOI. It is therefore not  surprising that our  p roof  is more  
complicated for the case I PI = [OI than for I PI > I OI. We shall conjecture here that, 
the minimum pure money  allocation is the unique upper  extendable allocation, 
when I P[ > IOI and undesirable as well as desirable objects are allowed. Let  us also 
remark that  the remaining case I PI <[OI  poses some difficulties not  confronted in 
our  p roof  above and it might be that the minmax money  allocation is not  the unique 
upper  extendable allocation when I PI < IOI. (As already mentioned,  A D G  (1991) 
have proved Theorem 2a on the quasilinear domain.  The proof  in that  case is much 
less involved but  appears not  to lend itself to a generalization onto  the nonlinear 
domain.) 

No te  that  the character izat ion obtained in Theorem 2a uses only criterion (i) of 
upper  extendability. As powerful a character izat ion does not  obtain via criterion 
(ii): Consider  the problem ({A,B}, {~}, 0) where ~0a(~,x) = 2 + x and q~(~, x) = x. 
An assignment here is (efficient) envyfree if and only if A gets (~, - x), B gets (~b, x), 
and x~[0,  1]. The  minmax money  allocation, where x = 0, is the unique allocation 
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which fulfils criterion (ii) in case A leaves, since B would be worse off with respect 
to any other  initial allocation. On the other  hand, all allocations fulfil criterion (ii) 
in case B leaves. 

Interestingly, an analogue of Theorem 2a does not  hold for lower extendability. 
Here in fact is an assignment problem all of whose efficient envyfree allocations are 
lower extendable. 

Example  1: Consider  the problem A = ({A, B}, {~, fl}, 0) where ~OA(~, X) = q~B(fl, X) = 
3 + X and q~n(fi, X) = (p~(a, X) = 1 + X. Note  that  an assignment fi for A is envyfree if 
and only if A gets (a, x), B gets (fl, - x ) ,  and x ~ [ -  1, 1]. Take any such assignment 
~(x). It is s traightforward to check that  ~(x) fulfils criterion (i) of lower extendability. 
We show below that  ~(x) also fulfils criterion (ii) and so is lower extendable. 

Let  C be any individual and consider A• C. Restrict x~[0,  1] and consider the 
money vector (x~,xt~,x4~)= (x, - x ,  3 -  x) where the moneys add up to Y =  3 -  x. 
Note  that, A prefers e while B is indifferent between fl and ~b. Therefore,  if C does not  
strictly prefer ct, then one has an envyfree assignment for Y > 0, and so ~(x) fulfils 
criterion (ii) by MMT.  So suppose C strictly prefers a. Now decrease x,  in the 
money  vector (x, - x, 3 - x) by 6 > 0 until either A or C prefers one of fl, ~b, and 
note that at this point  an envyfree assignment exists for Y = 3 - x - 6. Check that  
6 < 2x, for A prefers q5 at 6 = 2x. Thus  Y _> 0 and so fi(x) meets criterion (ii) by M M T  
again. (The case x e [ -  1,0] is treated identically.) �9 

There obtains for lower extendability, nevertheless, a weak uniqueness result 
which we next state. It will suffice to restrict a t tent ion to the class ~ of all assign- 
ment problems A =({A,B},  {a}, 0 ) e d  where the set of envyfree value vectors, 
V(A)-= { v l ( v , x ) e 4 ) ( A ) } ,  is a linear segment in R2+ of at least unit length. (Let 
d ( v ,  v') = I vA - v'~l + I v .  - v~l.) 
Theorem 2 b): Denote  (v*, x*) the maxmin value allocation. For  any ~ > 0, there 
exists an assignment problem A ~  such that, if (v, x)~ O(A) and d(v, v*)> e, then 
VA > VA for all ( v ' , x ' ) e q ~ ( A u B ' )  where B' is a replica of B, i.e., (v ,x )  is not  lower 
extendable. 

Proof:  Consider  AeC~ with q~A((~, X) = X, q)n(a, X) = (1/1 - 26)(1 - 6 + 3x) for x < 1 
(and some 6 ~ (0, 1/2)). Note  that  an assignment for A is envyfree if and only if A gets 
(~b, x), B gets (~, - x), and x~ [0, 1]. Thus, V(A) is the linear segment with endpoints  
((1 - 6)/(1 - 26),0) and v* = (1, 1). 

Check that  A w B' has a unique envyfree allocation, in which B or B' gets the 
bundle (~, - 2 + 26), the other  two individuals get (~b, 1 - 6) each, and so everyone 
attains the value 1 - 6. Thus, if (v, x)~ q~(A) is lower extendable, then v A < 1 - g. 
That is, as one computes, v must lie in the segment whose endpoints are (1 - 6, (1 - 6)z/ 
(1 - 26)) and (1, 1), i.e., d(v, v*) = Iv A - 1[ + [vs - 11 < 6(1 - 6)/(1 - 26) - e. �9 

6. Concluding remarks 

We have shown that, while there always exist two particular allocations in the 
efficient envyfree solution which permit  monoton ic  extensions for all one-member  
variations in the set of individuals or objects, in one of two directions respectively, 
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no other allocations have this property. These results thus identify the boundary of 
compatibility between envyfreeness and population/resource monotonicity in the 
assignment problem and show that the efficient envyfree solution is largely 
nonmonotonic. As illustrated below, compatibility in fact disappears entirely under 
two-member variations. 

Example 2: Initially, there is one individual A holding an object a of zero value to 
him. Then, individuals B and B' join, each of whom attaches a value of 3 to ~. The 
(efficient) envyfree solution is a singleton: Either B or B' gets ~ and pays the other 
two individuals 1 each. A is better off. No-envy is incompatible with population 
monotonicity. (An analogous example given in ADG (1991), with a two-object 
'variation, shows that no-envy is incompatible with resource monotonicity.) 

In closing, we mention a reference and offer an observation regarding solutions 
to the assignment problem which do meet the monotonicity criteria. As Moulin 
(1992) and Mo and Gong (1990) have shown, on the quasilinear domain, there is 
an efficient solution to the assignment problem which is both resource and 
population monotonic, namely the Shapley Value solution, determined on the TU 
assignment game where the worth of a coalition is defined as the maximum total 
value its members can attain if they alone had access to all the resources. The 
underlying fact is that the game is concave. The monotonicities hold, in fact, for any 
weighted Shapley Value solution. Outside the quasilinear domain, however, the 
(NTU) assignment game is typically nonmonotonic, and not surprisingly, Shapley 
Value type solutions (e.g., the Kalai and Samet (1985) egalitarian solution) do not 
fulfil the monotonicity criteria. We record here the following example on how 
extreme a prescription the population monotonicity axiom, for instance, may here 
lead to. 

Two individuals A and B have equal claims on one object ~. The value of (a, x) 
to A is 100 + x for all x, and to B is 100 + x for x > 0 while 100 + 10x for x < 0. 
Then, if one requires population monotonicity along with the axioms of efficiency 
and equal treatment of equals (i.e., identical individuals should fare identically), A 
should get the object (by the efficiency axiom) and transfer no more than 10 to B 
meaning that he himself achieve at least 90. (Proof: First, consider a with A absent 
and k + 1 copies of B present. By equal treatment of equals, each B should achieve 
the value 100/(10k + 1). Next consider ~ with A and k + 1 copies of B present. Then, 
A should get a, and by population monotonicity transfer no more than 100/(10k + 1) 
to each B, himself achieving at least 100 - 100 (k + 1)/(10k + 1), which equals 90 in 
the limit. So, when k = 0 initially, A should achieve at least 90 hence transfer no 
more than 10 to B.) Note that the efficient value frontier in R 2 here consists of all 
splits of 100 and one may feel hard put to justify why B should end up getting (so 
much) less than A. For concreteness, consider the following instance of this 
assignment problem: A and B receive as inheritance an object that has a market 
value of 100 thousand dollars. Neither individual finds any use value in the object 
and so each would sell it if he/she were the recipient. The two individuals are in fact 
all alike except that A lives in a dollar country while B lives in a country the currency 
of which exchanges against the dollar at the official rate of 1 for inflows but at the 
black market rate of 10 for outflows. 
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