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Abstract. We provide here a systematic comparative study of the relative strength 
and expressive power of a number of methods for program analysis of Prolog. 
Among others we show that these methods can be arranged in the following 
hierarchy: mode analysis ~ type analysis =~ monotonic properties ~ non- 
monotonic run-time properties. We also discuss a method allowing us to prove 
global run-time properties. 

1. Introduction 

1.1. Motivation 

Over the past 9 years a number of proposals were made in the literature for the 
analysis and verification of Prolog programs, based on the concepts of modes, 
types and assertions, both monotonic ones and non-monotononic ones, like 
var(x). The aim of this paper is to show that these methods can be arranged in 
a hierarchy in which increasingly stronger program properties can be established 
and in which each method is a generalization of the preceding ones. 

More specifically, we deal here with the following notions: well-moded pro- 
grams, essentially due to Dembinski and Matuszynski [DeM85], well-typed pro- 
grams, due to Bronsard, Lakshman and Reddy [BLR92], the assertional method 
of Bossi and Cocco [BOC89], the assertional method of Drabent and MaIuszyfiski 
[DrM88]. Moreover we discuss the assertional method of Colussi and Marchiori 
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[COM91], which allows to prove global run-time properties. To render the expo- 
sition uniform, the formalisms and the terminology used will sometimes slightly 
differ from those of the original works. 

We believe that the systematic presentation of these methods of program 
analysis is useful for a number of reasons. First it clarifies the relationship 
between them. Next, it allows us to justify them by means of simpler correctness 
proofs than the original ones. Further, it suggests in a natural way some new 
results about these methods. Finally, it allows us to better understand which 
program properties can be established by means of which method. 

1.2. Preliminaries 

We consider logic programs executed by means of the LD-resolution, which 
consists of the SLD-resolution combined with the leftmost selection rule. An 
SLD-derivation in which the leftmost selection rule is used is called an LD- 
derivation, or simply a derivation. 

We work here with queries, that is sequences of atoms, instead of goals, that 
is constructs of the form ~ Q, where Q is a query. Apart from this we use 
the standard notation of Lloyd [Llo87] and Apt [Apt90]. In particular, given 
a syntactic construct E (so for example, a term, an atom or a set of equa- 
tions) we denote by vars(E) the set of the variables appearing in E. Variables 
are denoted with x, y, z, possibly subscripted, while terms are denoted by r, s, t, 
possibly subscripted. Moreover, we adopt the Prolog convention to denote vari- 
ables appearing in a Prolog program by means of strings starting with a capital 
letter. 

Given a substitution 0 = {Xl/tl,...,x,/t,}, the set {Xl,.. . ,x,} of variables 
is denoted by dom(O) and range(O) denotes the set of variables occurring in 
{tl , . . . , t ,}.  Moreover, vars(O) = dora(O)tO range(O). Finally, a substitution p is 
called renaming if it is a 1-1 and onto mapping from its domain to itself. For two 
atoms or terms el, e2, we denote by mgu(ebe2) a fixed most general unifier (in 
short mgu) of el, e2. Recall that mgu's are equivalent up to renaming, i.e., if 0 
a n d / / a r e  two mgu's of el, e2 then 0 =/~p, for some renaming p. 

2. Well-Moded Programs 

We start by introducing modes. They were first considered in Mellish [Mel81], 
and more extensively studied in Reddy [Red84], [Red86] and Dembinski and 
Matuszynski [DeM85]. 

Definition 2.1. (Mode) Consider an n-ary relation symbol p. By a mode for p we 
mean a function mp from {1 . . . .  ,n} to the set {+, -} .  If  mp(i) = '+', we c a l l / a n  
input position of p and if mp(i) = ' - ' ,  we call i an output position of p (both w.r.t. 
rap). 

We write mp in a more suggestive form p(mp(1),...,mp(n)). By a moding we 
mean a collection of modes, each for a different relation symbol. [] 

Modes indicate how the arguments of a relation should be used. The definition 
of moding assumes one mode per relation in a program. Multiple modes may be 
obtained by simply renaming the relations. In the remainder of this section we 
adopt the following. 
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Assumption 2.2. Every relation has a fixed mode associated with it. 

This will allow us to talk about input positions and output positions of  an atom. 
We now introduce the notion of  a well-moded program. The concept is due to 

Dembinski and Ma/uszynski [DeM85]; we use here an elegant formulation due 
to Rosenblueth [Ros91] (which is equivalent to that of  Drabent [Dra87] where 
well-moded programs are called simple). The definition of a well-moded program 
constrains the "flow of  data" through the clauses of  the programs. To simplify 
the notation, when writing an atom as p(u, v), we now assume that u is a sequence 
of terms filling in the input positions of  p and that v is a sequence of  terms filling 
in the output positions of p. 

D e f i n i t i o n  2 . 3 .  ( W e l l - M o d e d )  

- A query pl(s 1, t l )  . . . .  , pn(Sn, tn) is called well-moded if  for i E [1, n] 

i--I 

vars(si) ~- U vars(q). 
j=l 

- A clause p0(t0,Sn+l) +- -p l (s l , t l )  . . . .  ,pn(sn, tn) is called well-moded if for i c 
[1, n + 1] 

i--I 

vars(si) ~- U vars(tj). 
j=O 

- A program is called well-moded if every clause of  it is. [] 

Thus, a query is weU-moded if 
- every variable occurring in an input position of an atom (i ~ [1,n]) occurs in 
an output position of an earlier (j 6 [1, i - 1]) atom. 
And a clause is weU-moded if 
- (i E [1, n]) every variable occurring in an input position of  a body atom occurs 
either in an input position of  the head (j -- 0), or in an output position of an 
earlier (j c [1, i -  1]) body atom, 
- (i = n + 1) every variable occurring in an output position of  the head occurs in 
an input position of the head (j = 0), or in an output position of  a body atom 
(j c [1,n]). 

Note that a query with only one atom is well-moded iff this atom is ground in 
its input positions. The following notion is due to Dembinski and Maluszynski 
[DeM85]. 

D e f i n i t i o n  2.4. We call an LD-derivation data driven if all atoms selected in it are 
ground in their input positions. [] 

The following lemma shows the "persistence" of the notion of  well-modedness. 

Lemma 2.5. An LD-resolvent of a well-moded query and a well-moded clause 
that is variable disjoint with it, is well-moded. 

Proof An LD-resolvent of  a query and a clause is obtained by means of the 
following three operations: 

- instantiation of  a query, 
- instantiation of a clause, 
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- replacement of the first atom, say H, of a query by the body of a clause whose 
head is H. 

So we only need to prove the following two claims. 

Claim 1. An instance of a well-moded query (resp. clause) is well-moded. 

Proof. It suffices to note that for any sequences of terms s,t 1 . . . . .  tn and a 
substitution or, vars(s) ~_ ~J~ vars(tj) implies vars(sa) c_ [_J~=l vars(tja). [] 

Claim 2. Suppose H, A is a well-moded query and H ~ B is a well-moded clause. 
Then B, A is a well-moded query. 

Proof. Let H = p(s, t) and B = pl(s 1, t l ) , . . . ,pn(sn,  tn). We have vats(s) = 0 since 
H is the first atom of  a well-moded query. Thus B is well-moded. Moreover, 
vats(t) ~ [.J~=l vars(tj), since H ~ B is a well-moded clause and vars(s) = O. 
These two observations imply the claim. [] 

The definition of a well-moded program is designed in such a way that the 
following theorem, also due to Dembinski and Matuszynski [DeM85], holds. 

Theorem 2.6. Let P and Q be well-moded. Then all LD-derivations of Q in P 
are data driven. 

Proof. Note that the first atom of a well-moded query is ground in its input 
positions and a variant of  a well-moded clause is well-moded. The conclusion 
now follows by Lemma 2.5. [] 

The following is a well-known conclusion of this theorem. 

Corollary 2.7. Let P and Q be well-mode& Then for every computed answer 
substitution o, Qo is ground. 

Proof. Let x stand for the sequence of all variables that appear in Q. Let p be 
a new relation of arity equal to the length of  x and with all positions moded as 
input. Then Q, p(x) is a well-moded query. 

Now, a is a computed answer substitution for Q in P iff p(x)tr is a selected 
atom in an LD-derivation of Q, p(x) in P. The conclusion now follows by Theorem 
2.6. [] 

Let us see now how these results can be applied to specific programs. 

Example 2.8. Consider the program q u i c k s o r t :  

qs([X I Xs],  Ys) ~-- 
part(X, Xs, Littles, Bigs), qs(Littles, Ls), 
qs(Bigs, Bs), app(Ls, [X I Bs], Ys). 

q s ( [ ] ,  [ ] )  ~-- . 

pa r t (X ,  [Y I Xs],  [Y I Ls ] ,  Bs) *-- 
X > Y, pa r t (X ,  Xs, Ls, gs ) .  

pa r t (X ,  [Y [ Xs],  Ls, [Y I Bs]) *-- 
X _< Y, part(X, Xs, Ls, Bs). 

part(X, [], [], [])*- . 

app([XlXs], Ys, [XlZs]) *-app(Xs, Ys, Zs). 
app([], Ys, Ys)~- . 
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We mode it as follows: q s ( + , - ) ,  p a r t ( + , + , - , - ) ,  a p p ( + , + , - ) ,  > ( + , + ) ,  
_< (+, +). It  is easy to check that q u •  is then well-moded. Assume now that 
s is a ground term. By Theorem 2.6 all LD-derivations of  qs (s , t )  in q u i c k s o r t  
are data driven and by Corollary 2.7 we conclude that all the computed answer 
substitutions a are such that to- is ground. [] 

In conclusion, mode analysis is sufficient to derive information on groundness 
of  a tom arguments, before or after their selection. Also, as shown in Apt and 
Pellegrini [ApP94] (and on which this section is based), the modes can be used 
to provide sufficient syntactic conditions that allow the occur-check to be safely 
omitted from the unification algorithm in Prolog implementations. 

3. Well-Typed Programs 

3.1. Types and Type Judgements 

To deal with run-time errors we introduce the notion of a type. We adopt  the 
following general definition. 

Definition 3.1. (Type) A type is a decidable set of  terms closed under substitution. 
[] 

Certain types will be of  special interest: 

Lis t  - -  the set of  lists, 
Gae - -  the set of  ground arithmetic expressions (gae's in short), 
Lis tGae  - -  the set of  lists of  gae's. 
Ground - -  the set of  ground terms. 

Of  course, the use of  the type Lis t  assumes the existence of the empty list [] and 
the list constructor [. I. ] in the language, the use of  the type Gae assumes the 
existence of the numeral 0 and the successor function s ( . )  and the use of  the 
type Lis tGae  assumes the existence of  what the use of  the types Lis t  and Gae 
implies. 

Throughout  the paper  we fix a specific set of  types, denoted by Types,  which 
includes the above ones. We call a construct of  the form s : S, where s is a 
term and S is a type, a typed term. Given a sequence s : S -- st : $1 . . . . .  sn : Sn 
of  typed terms, we write s 6 S if for i E [1,n] we have si 6 Si, and define 
vars(s : S) = vats(s).  Further, we abbreviate the sequence stO ..... snO to sO. We say 
that s : S is realizable if s t /E S for some I/. 

Definition 3.2. 
- By a type judgement  we mean a statement of  the form 

s : S  ~ t : T .  (1) 

- We say that a type judgement (1) is true, and write 

~ s : S  =~ t :T,  

if for all substitutions 0, sO ~ S implies tO ~ T. [] 

For example, the type judgement s(s(x)) : Gae, l : L i s tGae  => [xl l] : Lis tGae  
is true. How to prove that a type judgement is true is an interesting problem but 
irrelevant for our considerations. In all considered cases it will be clear how to 
show that a type judgement is true. 
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The following simple properties of type judgements hold. 

Lemma 3.3. (Type Judgement) Let q~, ~ba, q~2, q~, 4~3 and ~p be sequences of typed 
terms. 

(i) Suppose that s E S and ~ s : S, ~b =~ ~p. Then 

(ii) Suppose that ~ ~b 2 =~ q~i and ~ q~l, q~, q~3 =~ ~P. Then 

~bl, 42,~b3 ~ lp. 

(iii) Suppose that ~ s : S , t : T  
vars(s, u) = 0. Then 

=~ u : U ,  t : T  is realizable, and vars( t )N 

~ s : S  =~ u:U.  

Proof 

(i) By the assumption that all types are closed under substitution. 

(ii) Immediate. 

(iii) Take 0 such that sO ~ S and let t /be  such that tq E T. Define 0' = 01vars(S,U ) 
and t/' = tllvars(t ). Then a = 0' U 7' is well-defined, sa E S and ta 6 T. So ua E U, 
i.e. u 0 c U .  [] 

3.2. Well-Typed Queries and Programs 

The next step is to define types for relations. 

Definition 3.4. (Type) Consider an n-ary relation symbol p. By a type for p we 
mean a function tp from [1, n] to the set Types. If  tp(i) = S, we call S the type 
associated with the position i o f  p. [] 

In the remainder of this section we consider a combination of modes and 
types and adopt the following. 

Assumption 3.5. Every relation has a fixed mode and a fixed type associated with 
it. 

This assumption will allow us to talk about types of input positions and of 
output positions of  an atom. An n-arT relation p with a mode mp and type tp will 
be denoted by p(mp(1) : tp(1),...,mp(n) : tp(n)). For example, app(+ : List, + : 
List, - : List) denotes a ternary relation app with the first two positions moded 
as input and typed as List, and the third position moded as output and typed as 
List. 

To simplify the notation, when writing an atom as p(u : S, v : T) we now 
assume that u : S is a sequence of typed terms filling in the input positions of p 
and v : T is a sequence of typed terms filling in the output positions of p. We call 
a construct of  the form p(u : S, v : T) a typed atom. We say that a typed atom 
p(sl : $1 . . . . .  sn : Sn) is correctly typed in position i if si E Si. 
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The following notion is due to Bronsard, Lakshman and Reddy [BLR92]. 

D e f i n i t i o n  3 .6 .  ( W e l l - T y p e d )  

- A query pl(i 1 : I i , o  1 : O1),.. . ,pn(in : In,  on  : On) is called well-typed if for 
j 6 [1, n] 

~ o  1 : O  1 . . . .  ,oj_ 1 :Oj_ 1 =~ i j ' I j .  

- A clause 
p0(o 0 : O0,in+ 1 :In+ l)  ~ pl(i 1 " I i , o  1 " O 1) . . . .  ,pn(in "In, on " On) is called 
well-typed if for j E [1, n + 1] 

o0 :  O 0 . . . .  ,oj_ 1 "Oj_ 1 =~ ij "Ij. 

- A program is called well-typed if every clause of it is. [] 

Thus, a query is well-typed if 

- the types of the terms filling in the input positions of an atom can be deduced 
from the types of the terms filling in the output positions of the previous 
atoms. 

And a clause is well-typed if 

- (j E [1, n]) the types of the terms filling the input positions of a body atom can 
be deduced from the types of the terms filling in the input positions of the 
head and the output positions of the previous body atoms, 

- (j = n + 1) the types of the terms filling in the output positions of the head 
can be deduced from the types of the terms filling in the input positions of 
the head and the types of the terms filling in the output positions of the body 
atoms. 

Note that a query with only one atom is well-typed iff this atom is correctly 
typed in its input positions. The following observation clarifies the relation 
between well-moded and well-typed programs and queries. 

T h e o r e m  3.7 .  The notion of a well-moded program (resp. query) is a special case 
of the notion of a well-typed program (resp. query). 

Proof Take Ground as the only type. Then the notions of a well-moded program 
(resp. query) and a well-typed program (resp. query) coincide. [] 

The following lemma stated in Bronsard, Lakshman and Reddy [BLR92] 
shows persistence of the notion of being well-typed. 

Lemma 3.8. An LD-resolvent of a well-typed query and a well-typed clause that 
is variable disjoint with it, is well-typed. 

Proof We reason as in the proof of Lemma 2.5. So it suffices to prove the 
following two claims. 

Claim 1. An instance of a well-typed query (resp. clause) is well-typed. 

Proof Immediate by definition. [] 

Claim 2. Suppose H, A is a well-typed query and H *-- B is a well-typed clause. 
Then B, A is a well-typed query. 
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Proof. Let 
H = p(s : S,t : T) and B = pl(i 1 : I i , o  1 : O1) . . . . .  pm(im : Ira, ore : Om). H is the 
first atom of a well-typed query, so it is correctly typed in its input positions, i.e. 

s ~ S. (2) 

H *-- B is well-typed, so ~ s : S, o 1 : O 1 . . . .  ,Om : O m  =~ t : T, and for j e [1, m] 
s �9 S, o 1 " O 1 . . . .  , oj_ 1 : Oj_ 1 =*- ij : I i. By the Type Judgement Lemma 3.30) 

we get by virtue of (2) 

o 1 : O 1 , . . . , o m : O m  =z, t : T ,  (3) 

and for j e [1, m] 

~ o  1 "O 1 . . . .  ,oj_ 1 "Oj_ 1 => ij "Ij. (4) 

Now,  let A = pm+l(im+ 1 "I m 1, ,pn(in In, on �9 ~_ ore+ 1 "Om+ 1) . . . .  �9 " On). H , A  is 
well-typed, so for j c [m + 1, n] 

~ t : T ,  om+ l ' O m + l , . . . , o j _  l ' O j _  1 =*- i j : I j ,  

and thus by (3) and the Type Judgement Lemma 3.3(ii) for j e [ m  + 1, n] 

o I : O  1 . . . . .  oj_ l ' O j _  1 ~ i j : I j .  

This and (4) imply the claim. [] 

This brings us to the following desired conclusions. 

Theorem 3.9. Let P and Q be well-typed and let ~ be an LD-derivation of Q in 
P. All atoms selected in ~ are correctly typed in their input positions. 

Proof. Note that the first atom of a well-typed query is correctly typed in its input 
positions and that a variant of a well-typed clause is well-typed. The conclusion 
now follows by Lemma 3.8. [] 

Corollary 3.10. Let P and Q be well-typed. Then for every computed answer 
substitution a, Qa is well-typed in its output positions�9 

Proof Let o :O  stand for the sequence of typed terms filling in the output 
positions of the atoms of Q. Let p be a new relation of arity equal to the length of 
o : O and with all the positions moded as input and typed as O. Then Q, p(o : O) 
is a well-typed query. Now, a is a computed answer substitution for Q in P iff 
p(o)cr is a selected atom in an LD-derivation of Q, p(o) in P. The conclusion now 
follows by Theorem 3.9. [] 

Let us see now how these results can be applied to specific programs. 

Example 3.11. Reconsider the program qu• We type it as follows: 

qs (+ : ListGae, - : ListGae), 

part (+ : Gae, + : ListGae, - : ListGae, - : ListGae), 

app (+ : ListGae, + : ListGae, - : ListGae), 

>(+:Gae, +:Gae),___(+:Gae, +:Gae). 

Conforming to Prolog behaviour, we assume that the evaluation of the tests 
u > v and u _< v ends in an error if u or v are not gae's. It is easy to check that 
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quicksort is then well-typed. Assume now that s is a list of gae's. By Theorem 
3.9 we conclude that all atoms selected in the LD-derivations of  q s ( s , t )  in 
q u i c k s o r t  are correctly typed in their input positions. In particular, when these 
atoms are of  the form u > v or u < v, both u and v are gae's. Thus the LD- 
derivations of q s ( s , t )  do not end in an error. Moreover, by Corollary 3.10 we 
conclude that all computed answer substitutions o- are such that to- is a list of 
gae's. [] 

Thus, type analysis is sufficient to derive information about the types of atom 
arguments, before or after their selection. This is sufficient to prove absence of  
run-time errors in presence of relations involving arithmetic. Also, as shown in 
Apt and Etalle [APE93] (and on which this section is based), the types can 
be used to provide sufficient, decidable conditions under which in all program 
executions unification is equivalent to iterated matching. 

4. Well-m-Asserted Programs 

In order to prove more complex program properties, one can consider monotonic 
assertions formed in (an extension of) a first-order language. An assertion q~ is 
monotonic if, for every substitution a 

~ ~ ~o-. (5) 

An assertional method to prove run-time properties of  a program expressed by 
means of  monotonic assertions was given in Bossi and Cocco [BOC89], where the 
notion of  a well-asserted program is introduced, here called a well-monotonically- 
asserted program, well-m-asserted program for short. A pair (preP, postP) of  as- 
sertions (called pre- and post-condition), called specification, is associated with 
every relation p occurring in the program under consideration: prep describes 
properties of the arguments of p before its call, while postP describes properties 
of the arguments of  p after its call. To denote arguments of  a relation, the asser- 
tion language for a program P contains some special variables, namely, for every 
relation p defined in P, the variables x~ . . . . .  x~ are considered, where n is the arity 
of  p. These variables represent the arguments of the relation p, and are called 
a-variables. The set of  a-variables occurring in a syntactic construct E is denoted 
by a-vars(E). 

Definition 4.1. (Specification) A specification for an n-ary relation p is a pair 
(preP, post p) of  monotonic assertions, s.t. a-vars(preP, postP) ~_ {xPl .. . .  ,xP~}. [] 

An asserted program d P  is obtained by assigning a specification to every 
relation of  P. Sometimes we shall still write P instead of  a lP .  In the remainder 
of  this section we adopt the following. 

Assumption 4.2. Every relation has a fixed specification associated with it. 

Definition 4.3. Let A = p(tl, . . . , tn) and c~ = {x~/ti [ i E [1,n]}. Define pre(A) de-e=f 

prePe and post(A)dGfpostPo~. 

- We say that A satisfies its precondition if ~ pre(A). 
- We say that A satisfies its postcondition if ~ post(A). 

We use post(A1 . . . . .  Ak) as a shorthand for post(A1)A ... A post(Ak), where we 
assume that for k = 0 post(AD A . . .  A post(Ak) is equal to true. 
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D e f i n i t i o n  4 .4 .  ( W e l l - m - A s s e r t e d )  

- A query px(s 1), . . . ,  pn(sn) is called well-m-asserted if for j a [1, n] 

post(pl(s 1) . . . . .  Pj-1 (sj_ 1)) => pre(pj(sj)). 

- A clause p(s) *-- pl(Sl),.. .  ,pn(sn) is called well-asserted if for j E [1, n + 1] 

pre(p(s)) A post(pl (s 1), . . . ,  P j-1 (Sj_l)) ~ pre(pj(sj)), 
def 

where pr e(pn+ l ( Sn+ l ) )= post(p( s ) ). 
- An asserted program d P  is called well-m-asserted if all its clauses are. [] 

The following observation clarifies the relation between well-m-asserted and 
well-typed programs and queries. 

T h e o r e m  4.5. The notion of a well-typed program (query) is a special case of the 
notion of a well-m-asserted program (query). 

Proof It suffices to view a typed atom p(x : S, y : T) as a specification for the 
relation p(x, y) consisting of pre p = x c S and post p = y E T. Then a program P 
is well-typed iff the corresponding asserted program is well-m-asserted. [] 

The following lemma shows persistence of the notion of being well-m-asserted. 

Lemma 4.6. An LD-resolvent of a well-m-asserted query and a well-m-asserted 
clause that is variable disjoint with it, is well-m-asserted. 

Proof We reason as in the proof of Lemma 2.5. It suffices to prove the following 
two claims. 

Claim 1. An instance of a well-m-asserted query (resp. clause) is well-m-asserted. 

Proof Immediate by the assumption that the assertions are monotonic. [] 

Claim 2. Suppose H, A is a well-m-asserted query and H +-- B is a well-m-asserted 
clause. Then B, A is a well-m-asserted query. 

Proof Let H = p(s) and B = pl(Sl),...,pm(Sm). H is the first atom of a well-m- 
asserted query, so it satisfies its precondition, i.e. 

pre(p(s)). (6) 

Then from the fact that H ~- B is well-m-asserted and (6) it follows that 

post(pl(s 1 ) . . . .  , pm(Sm)) ~ post(p(s)), (7) 

and for j E [1, m] 

post(p1 (s 1),. .., P j-1 (sj_ 1)) =~ pre(p(sj)). (8) 

Now, let A = pm+l(Sm+l),...,pn(sn). Then by H, A well-m-asserted and by (7) we 
have, for j c [m + 1, n] : 

post(pl(Sl) . . . . .  pj_l(Sj_l) ) =~ pre(p(sj)). (9) 

Then by (8) and (9) we obtain that B, A is well-m-asserted. [] 

This yields the following conclusions. 
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Theorem 4.7. Let P and Q be well-m-asserted and let ~ be an LD-derivation of  
Q in P. All atoms selected in ~ satisfy their preconditions. 

Proof  Note that the first atom of  a well-m-asserted query satisfies its precondition 
and that a variant of  a well-m-asserted clause is well-m-asserted. The conclusion 
now follows by Lemma 4.6. [] 

Corollary 4.8. Let P and Q be well-m-asserted. Then for every computed answer 
substitution a, ~ post(Q)a. 

Proof  Let Q = pl(Sl) . . . .  ,pk(Sk). Let p be a new relation of  arity equal to the 
sum of  the arities of  pl . . . .  , pk, say n, and with prep and pOStp both equal to 
postp, cq A . . .  A postpkC~k, where each ai renames the pi-variables to a new set of  
p-variables. Then Q,p(s 1 . . . .  ,Sk) is a well-m-asserted query. Now, a is a com- 
puted answer substitution for Q in P iff p(s 1 . . . . .  Sk)a is a selected atom in an 
LD-derivafion of  Q,P(Sl, . . . ,Sk) in P.  The conclusion now follows by Theorem 
4.7. [] 

Again, let us show how these results can be applied to specific programs. 

Example 4.9. Reconsider the program qu•  We associate with its relations 
the following specifications: 

pre qs = ListGae(xqS) ; post qs = perm(xqt:, x~),  sorted(xqS) ; 
preapp = ListGae(x~ pp, x2PP); post app = cone(x1 pp, x~ pp, x~PP)'~ " 
prepart = ListGae(x~rt), Gae(xPlart); postpart = ~part ; 
pre > = Gae(x~,x~);  post > = x > > x~;  
pre <- Gae(x~,x~);  post <- = @ < x~;  

where perm(x, y) states that x, y are lists and y is a permutation of  x, sorted(x) 
states that x is a sorted list of  gae's, cone(x, y, z) states that x, y, z are lists and z 
is a concatenation of x and y, and 

cpart = ListGae(xPart, xP4 art) A (el(x part) = el(xP3 art) U el(xP4art)) A 
part~ Vx(x ~ el(xP3 art) ::> x < xPlart)A Vx(x e el(xP4 art) ::> x > x 1 ), 

where for a list x, el(x) denotes the set of  its elements. It is easy to check 
that qu•  is then welt-m-asserted. Assume now that s is a list of  gae's. 
By Theorem 4.7 we conclude that the LD-derivations of  q s ( s , t )  do not end 
in an error. Moreover, by Corollary 4.8 we conclude that all computed answer 
substitutions a are such that ta is a sorted permutation of  s. [] 

Thus, static analysis based on monotonic assertions is sufficient to prove 
monotonic run-time properties and partial correctness of programs. Also, as 
shown in Bossi, Cocco and Fabris [BCF91], monotonic assertions can be used in 
a method for proving program termination. 

5. Well-dot-Asserted Programs 

Certain properties are not expressible by means of  monotonic assertions: for 
instance, some structural properties of  a term t, like t being a variable, or t 
not being a ground term, or t sharing some variable with another term. The 
use of  such run-time properties is relevant for e.g. program optimization; to 
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determine for which class of queries the program terminates; or to describe the 
behaviour of a program containing some built-in predicates. In order to deal with 
these run-time properties, one can consider an assertion language containing also 
non-monotonic assertions. 

In this section, an assertional method for proving run-time properties which 
employs non-monotonic assertions is described. This method was introduced in 
Drabent and Maluszyfiski [DrM88]. The approach is analogous to that presented 
in the previous section, with the exception that here, due to the presence of non- 
monotonic assertions, the assertion language for a program P contains for every 
relation p occurring in P, the variables ~ called input variables, and p~, called 
output variables, for i E [1, n], where n is the arity of p. We call these variables 
a-variables: input variables represent the arguments of p at the moment of its 
call, while output variables represent the arguments of p after its call. The set 
of a-variables appearing in a syntactic construct E is denoted by a-vars(E). The 
assertion language also contains variables representing terms (meta variables), 
and terms of the object language. 

Definition 5.1. (Specification) A specification for an n-ary relation p is a pair 
(prep, postp) of assertions, s.t. a-vars(prep) c_ {~176 and a-vars(postp) 

[] 

An asserted program d P  is obtained by assigning a specification to every relation 
defined in P. Sometimes we shall still write P instead of a lP .  In the remainder 
of this section we adopt the following. 

Assumption 5.2. Every relation has a fixed specification associated with it. 

Before we define semantics of pre- and postconditions, we introduce the 
following notation. 
For an atom A = p(q, . . . , tn)  let pre(A) denote the pair (prep, e), where e = 
{'pi/ti I i E [1, n]}, and let post(A, Aa) denote the pair (postp, fl), where fl = 
{~ . . . .  ,~ p~/(qa) . . . .  ,p~/(tna)}. We say that pre(A) is true, and write 

pre(A), if prep is true in any interpretation where the value of ~ is ~ for 
i E [1, n]. Analogously we say that post(A, Aa) is true, and write ~ post(A, Aa), 
if pOStp is true in any interpretation where the values of ~ and p~ are ~ 
and p~fl, respectively, for i E [1,n]. We will often write (A,a) instead of 
(A, Acr). 

Definition 5.3. 

- We say that A satisfies its precondition if ~ pre(A). 
- We say that (A, a) satisfies its postcondition if ~ post(A, a). [] 

The notation post((Ab ~1) . . . .  ,(Ak, ~k)) is used as a shorthand for post(Ab a l ) A  
... A post(Ak, ak), where we assume that for k = 0 post(Ab al) A . . .  A post(Ak, ak) 
is equal to true. 

The following notion is central in the definition of a well-dot-asserted program. 

Definition 5.4. (Valuation Sequence) We say that a sequence p0,..., pn of substi- 
tutions is a valuation sequence for a clause P(S0) ~-- pl(sl), . . . ,pn(sn) and an atom 
p(t) if the following conditions are satisfied: 

1. vars(t) N vars(so,.. . ,Sn) = 0; 

2. Po -- mgu(p(t),P(SO)); 
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3. there exist oh,. . . ,  ~, s.t. for all i c [1, n] : 

Pi = P i - l t T i ,  

dom(ai) ~ vars(siPi_l), 

range(el) ~ vars((so,...,sn)Pi_l) - vars(siPi-1). [] 

The above definition describes a derivation for the atomic query p(t), when 
the clause P(S0) ~ pa(sl) . . . .  ,pn(sn) is chosen as first input clause. Notice that 
condition 1 expresses the requirement that the input clause and the query are 
standardized apart, while intuitively condition 3 defines ai to be an abstraction 
of a computed answer substitution for Pi l(S' lPi 1) As in [DrM88], we denote 
a query Q by the clause goal +-- Q, where goal is a new relataon symbol, which is 
assumed to have both precondition and postcondition equal to true. 

Definition 5.5. (Well-dot-Asserted) 

- A clause c : P(S0) *-- pl(sl) , . . . ,pn(sn ) is called well-dot-asserted if, for every 
atom p(t) that satisfies its precondition and for every valuation sequence 
P0,. . . ,  P. for e and p(t), for j E [1, n + 1] 

post((pl(slPo), o-1) . . . . .  (pj-I(Sj_lpj-2), 0"j-I)) ~ pre(pj(sjpj-a)), 

def 
where pre(pn+l(Sn+lPn))=post(p(t), p,). 

- An asserted program d P  is called well-dot-asserted if all its clauses are. [] 

Now we show that the notion of a well-m-asserted program is a special case of  
the notion of a well-dot-asserted program. To this end, we introduce a preliminary 
notion and a lemma. 

Definition 5.6. (Simplified Form) A specification (prep, pOStp) is in simplified form 
if vars(postp)A {'Pl , . . . ,~ = 0, where n is the arity of p. An asserted program 
is in simplified form if all its specifications are. [] 

In other words, a specification is in simplified form if its postcondition does 
not contain input variables. So for an atom A = p(tl . . . . .  tn), we have that (A, a) 
satisfies its postcondition if ~ (postp, fl), with fl = { p~/(ti6) I i ~ [1,n]}. Then we 
use the simpler notation ~ post(An). 

The following expected property of monotonic assertions will be used. 

Lemma 5.7. The truth of  a monotonic assertion is invariant under renaming, i.e. 
if a is a renaming then ~ q~ ~ q~a. 

Assume now that specifications are monotonic and in simplified form. Con- 
sider the map u which transforms a specification (prep, pOStp) into the specification 
(preP, postP) obtained replacing ~ and p~ with x/v, for i ~ [1, n]. Notice that u 
is a bijection from specifications (prep, postp) in simplified form with monotonic 
assertions to specifications (preP,postP) used to define well-m-asserted programs. 

Theorem 5.8. The notion of  a well-m-asserted program is a special case of  the 
notion of  a well-dot-asserted program. 

Proof Let d P  be an asserted program in simplified form and with monotonic 
assertions. Let ~ ' P  be the asserted program obtained by replacing every specifica- 
tion (prep, postp) of d P  with u(prep, postp). We show that d P  is well-dot-asserted 
iff d ' P  is well-m-asserted. Let c : P(S0) ~ p l (s l ) , . . . ,p , (sn)  be a clause of P. 
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Suppose that d P  is well-dot-asserted. We prove that c is well-m-asserted. 
Fix an arbitrary i 6 [1, n + 1]. Let c~ be s.t. 

(pre(p(so) ) A post(pl (sl ), . . . , pi_l(Si_l)))a. (10) 

We show that pre(pi(si))cc is true. Let Aa---efp(s0a). 
Consider the sequence Po,.. . ,  Pn, where P0 = O~lvars(So) and Pi = Cq~ars(Si), for 

i 6 [1,n]. By Lemma 5.7 we can assume vars(soa ) 0 vars(so,. . . ,Sn ) = 0 without 
loss of generality. It is easy to check that Po . . . . .  Pn is a valuation sequence for A 
and c. Moreover, by (10) A satisfies its precondition. Since d P  is well-dot-asserted 
and in simplified form, then by (10) we have that pre(pi(si))c~ is true. 

Conversely, suppose that d ' P  is well-m-asserted. 
We prove that c is well-dot-asserted. Let p(t) be s.t. 

pr e(p( t ) ), (11) 

and let p0,. . . ,  p, be a valuation sequence for p(t) and c. Then 

Po = mgu(p(t), P(S0) ). (12) 

Fix an arbitrary j in [1, n + 1]. Let e be s.t. 

post(pl (sl Pl ) . . . . .  pj_l(Sj_l Pj_l) )Cc (13) 

We show that ~ pre(pj(sjpj_a))e. 
By the definition of valuation sequence, we have P j - 1  = Pk f f k+l  . . .  O ' j - 1 ,  for 

k ~ [ 0 , j -  1]. Then by (11), (12) and by (5) (i.e., by the definition of monotonic 
assertion) we have ~ pre(p(so)pj_l)a, hence by (13) 

(pre(p(so)pj_l) A post(px(slpj_l), . . .  ,Pj_x(sj_lpj_l)))o:. 
Then the result follows from the fact that d ' P  is well-m-asserted. [] 

The following lemma shows persistence of the notion of being well-dot-as- 
serted. 

Lemma 5.9. An LD-resolvent of a well-dot-asserted query and a well-dot-asserted 
clause that is variable disjoint with it, is well-dot-asserted. 

Proof Let c : p(s) ~ pl(Sl),...,p,n(Sm ) be a well-dot-asserted clause and let 
Q = p(t),pm+a(Sm+ 1) . . . .  ,pn(sn) be a well-dot-asserted query s.t. Q is variable 
disjoint with c. Let 0 = mgu(p(t),p(s)). Let R = (p~(sl),...,pn(sn))O be the 
resolvent of Q and c. Consider a valuation sequence p0,. . . ,  P, for R. Notice that 
P0 is equal to the identity substitution e. Fix a j E [1, n]. Let e be s.t. 

post( (pl (sl )O po, crl) . . . . .  (p j(sj)O p j- l ,  a j ) )cc (14) 

We show that ~ pre(pj+l(Sj+l)Opj)e. We distinguish the following two cases. 

- j < m - 1. By Q well-dot-asserted we have that ~ pre(p(t)). Then the sequence 
zl = P01,... ,P~ of  substitutions is a valuation sequence for p(t) and c, where 
p~ = Opk, for k c [0, m]. Then the result follows from c well-dot-asserted. 
Moreover, from zl valuation sequence for p(t) and c it follows that 

post((pl(sl )Opo, 05) . . . . .  (pm(sm)Opm-1, am)) =* post(p(t), Opm). (15) 

- m < j _< n. The sequence "C 2 = p 2 . . . .  , p2 of substitutions is a valuation sequence 
for Q, where p2 = e and p2 = Opk+m-1 for k E [1, n]. Then 
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post(t, Opm ) A post((Pm+l (Sm+ l )Opm, ffm) . . . . .  (pj($j)Opj-1, O-j)) 
pre(pj+l(Sj+ 1)0pj). 

So the result follows from (15), and from (14). [] 

Theorem 5.10. Let P and Q be well-dot-asserted and let ~ be an LD-derivation 
of Q in P. Then all atoms selected in ~ satisfy their preconditions. 

Proof  Note that the first atom of a well-dot-asserted query satisfies its precondition 
and that a variant of a well-dot-asserted clause is correct. The conclusion now 
follows by Lemma 5.9. [] 

Corollary 5.11. Let P be a well-dot-asserted program in simplified form. If  p(s) 
satisfies its precondition then ~ post(p(s), a), for every computed answer substi- 
tution a. 

Proof  Consider the query Q = p(s), p'(s), where p' is a new relation of arity equal 
to the arity, say n, of p, and with prep, equal to pOStpe, where e renames the output 
variables of p to a new set of input variables, and with postr/ equal to true. It 
is easy to check that Q is a well-dot-asserted query. The result now follows from 
Theorem 5.10. [] 

Notice that in Corollary 5.11 the specifications are assumed to be in simplified 
form: this hypothesis allows us to give a simple proof of that result, as a 
corollary of Theorem 5.10. The proof of Corollary 5.11 in the general case (where 
specifications are not supposed to be in simplified form) is more technical and 
can be found in [DrM88]. These results extend to programs containing some 
built-in relations. For instance the built-in relation var can be characterized by 
the specification prevar = true and postvar = (var(var ~ A ~ = var~ where 
the assertion var(t) is true iff t is an object variable. We conclude this section 
illustrating how these results can be applied to our running example qu icksor t .  

Example 5.12. Consider the following specifications which are in simplified form: 

preqs = ListGae(~176 pOStqs = perm(qs'l,qs~),sorted(qs~); 
~ ~ �9 . 

preapp = ListGae(" appl," app2) ; pOStapp = conc( appp app2, app3) , 
prepart = ListGae(~ 2), Gae(~ part l ) ; pOStpart = 4)part; 
pre> = Gae(~ ~ >2); post> = >~>>~; 
pre<_ = Gae(~ ~ post<_ = <--7 <- <~; 

where 

(apart = ListGae(part;, partl) A (el(part~) = el(part;) U el(part~)) A 
Vx(x ~ el(part~) =~ x < part~)A u  ~ el(part'4) => x > part~), 

where perm(x, y), sorted(x) and cone(x, y, z), and el(x) are defined as in Example 
4.9. It is not difficult to check that q u i c k s o r t  is well-dot-asserted. Assume now 
that s is a list of gae's and that x is a variable. By Theorem 4.7 we conclude that 
in all LD-derivations of q s ( s , x )  whenever qs is called, its second argument is 
a variable. Moreover, by Corollary 5.11 we conclude that all computed answer 
substitutions a are such that xa is a sorted permutation of s. [] 

Thus, static analysis based on non-monotonic assertions associated with relations 
is sufficient to derive information about the form of individual atom arguments 
(like being a variable), before or after their execution. This type of run-time 
properties can be used for program optimization. 
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6. Proving Global Properties of Prolog Programs 

In the methods presented in the two previous sections, specifications are associated 
with the relations occurring in the program. As a consequence one cannot express 
global run-time properties, describing relationships among the atoms of a query 
during its execution. For instance, consider the query Q = p(x), p(y), and assume 
that during the execution of Q, x and y are always bound to terms which do not 
have variables in common. This property cannot be expressed in the previous 
approaches, because it is a property of  the query, and not of  the individual atoms 
of  the query. To allow global analysis of  programs, one can associate assertions 
with program points. An assertion describes then the values of the variables of 
the program when the computation reaches the relative program point. This can 
be done by annotating the clauses with assertions, as in H ~- {I0}B1 {I1}... Bn{1,}. 
This method has been proposed by Colussi and Marchiori in [COM91]. Since a 
special substitution p is used in the verification condition of this method, we call 
here p-welt-asserted programs those asserted programs which safist)" the method. 
We show by means of an example that the notion of p-well-asserted program 
allows also to prove some non-monotonic local properties which one cannot prove 
by means of the notion of well-dot-asserted program. Moreover, we introduce a 
simple method to prove global run-time properties of  programs, based on the 
notion of  well-asserted program, and prove results analogous to those given in the 
previous sections. We show that the notion of well-asserted program is simpler, yet 
less expressive, than the notion of p-well-asserted program. However, the question 
if the notion of well-dot.asserted program is a special case of a p-well-asserted 
program remains to be investigated. 

The assertion language for a program P contains the variables of the program 
and all their renamings. It is assumed that assertions are semantically invariant 
w.r.t, renaming, i.e. ~ ~b r q~o-, for every assertion ~b and renaming a. As in the 
previous section, we denote a query Q by the clause goal ~ Q, where goal is a 
new relation symbol. 

Definition 6.1. (Asserted Program) 

- An asserted clause d c  is defined as H ~- {Io}B1{I1}.,. Bn{In}, where c = H *- 
Bt . . . .  ,B~, and Io, . . . ,  I ,  are assertions. A formula {I~_I}B~{I~} is called a 
specification. 

- An asserted program sOP is a set of asserted clauses, one for each clause of 
P. [] 

Sometimes we shall still write P instead of a lP .  In the remaining of  this section 
we adopt the follo~Sng. 

Assumption 6.2. Every program is annotated by means of a fixed set of assertions. 

Informally, an asserted program is correctly asserted if for every clause c, the 
assertions Io, I t ,  . . . ,  In associated with c are proven to be global invariants. In 
order to prove global invariance, unification is described by means of  a predicate 
relation as follows. 

Definition 6.3. (The Relation {q~} q/{~}) Let q /be  a a set of  pairs of  terms or of  
pairs of atoms and let q~ and ~p be assertions. Then {~b} q/{~p} holds iff for all 
substitutions ~ such that ~b~ is true, whenever there exists It = mgu(qloO then ~pc~# 
is true. [] 
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A unifier for q/ is  a substitution which unifies every pair of q/, while fl is an mgu 
of 0//if it is a unifier and for every other unifier c~ of og, we have that e = fiT, for 
some substitution 7. 

In [COM91], a sound proof-system for deriving {~b} q/{~p} is given. In [COM93], 
a specific assertion language is considered and a sound and complete calculus is 
introduced, which computes a strongest (w.r.t. implication) assertion lp such that 
{q~} r holds, i.e., a strongest postcondition of ~ w.r.t, the precondition 4~. 

The following definition of matches is central in the concept of p-well-asserted 
program. First some useful notions are introduced. Let ~ be a substitution. Then: 

- free(X; Y)~ iff Vx E X, Vy c Y(var(xcO A (x ~ y => x~ ~ vars(yc~))). 

So, free(X; Y)c~ is true when Xe is a set of distinct variables, which do not occur 
in the terms of (Y \ X)c~. 

Xl~...,Xn For an assertion ~b let q~s,,,..,s, denote the assertion obtained from ~b by 
simultaneously replacing every occurrence of the xi's with the s{s. 

With a substitution 0 = {Xl/tl, . . . , x , / t , } ,  we associate the set of pairs of 
terms r = {(xbq) . . . . .  (xn, tn)}. For a specification spec = {pre}A{post}, those 
variables which occur free in spec but do not occur in A are called auxiliary 
variables, denoted aux(spec). More generally we write auxv(E) to denote the set 
of variables that occur free in V but do not occur in E. 

Definition 6.4. (Matches) Let spec = {pre}A{post} be a specification and let 
d e  = H +-- {I0}B1 {Ia}...B,{I,} an asserted clause. We say that spec matches 
d e  if there exist: a variant d c  r of d e ,  two disjoint sets of variables X, Y, and a 
substitution p such that 

1. X ~ vars(spec), 
2. Y ~_ vars(sCe'), 

3.  dora(p) ~_ auxy(c') and 

4. range(p) ~_ auxx(A) 

and such that 

{pre A f ree(Y ;X  U Y)} ~//{I~} D O W N  

{I' n A f r e e ( X ; X  U Y)} 0//{post} UP 

where ~//= {(A, H')} u 8p. [] 

We say that a specification spec matches the asserted program d P  if spec 
matches every asserted clause of a lP .  

Definition 6.5. (p-well-asserted program) Let ~r be an asserted program. We 
say that d P  is p-well-asserted if every its specification matches a lP .  [] 

In [CoM91] the soundness of this method with respect to LD-resolution is 
proven. More in particular, the authors show that if a program is p-well-asserted, 
then the assertions which decorate the program are global invariants when LD- 
resolution is considered as computational mechanism. 

The following simple example shows that the above notion allows also to 
prove local non-monotonic properties which cannot be proven using the notion 
of well-dot-asserted program. 



760 K.R. Apt and E. Marchiori 

Example 6.6. Consider the following asserted program a l P :  

goa l  ~ {share(X,Y)} p(X,Y) {share(X,Y)}.  
t i c :  p(V,W) +-- {~ground(V)} q(V) {share(V,W)}. 

q(Z) ~ {share(Z, Wc)}. 

Then it is easy to verify that ~ ' P  is p-well-asserted, where the substitution 
p = { W c / W }  can be used when proving that {-~ground(V)}q(V){share(V, W)} 
matches a l p .  

Now, a local property of P which is implied by the p-well-assertedness of d P  
can be expressed by means of the following specifications for p and q : 

prep = share('pl," P2), pOStp =- share(p'l,p~), 
preq = -,ground(" q), pOStq = ~ground(q'). 

One can prove that P with the above specifications is not well-dot-asserted. In 
fact, consider the sequence: 

po = { V / f ( W 1 ,  W2), W / f ( W 1 ,  W3)}, 
Pl = P061, 

w h e r e  o 1 = {W1/a} and a is a constant. Then Po, Pl is a valuation sequence for 
c and p(f(W1,  W2) , f (W1,  W3)). Moreover: 

- pre(p(f(W1, W2) , f (W1,  W3))) is true; 
- pre(q(V)po) is true; 
- post(q(V)po, al) is true but post(p(f(W1, W2) , f (W1,  W3)),pl) is false. [] 

We introduce now a simpler method to prove global run-time properties, 
based on the notion of well-asserted program. The definition of a well-asserted 
program uses the following concept of agreement. First some useful assertions are 
introduced. Let ~ be a substitution. Then 

- share(r, s)~ iff vars(r~) A vars(so 0 ~= O; 

- (instA(r,s))~ iff rc~ = sail, for some fl s.t. dom(fl) c_ vars(A~). 

Definition 6.7. (Agreement) Let spec = {pre)A{post} be a specification and let 
d c  be an asserted clause. We say that spec agrees with d c  if there exists a variant 
d c t  = H ~-- {I0}B 1 {I1}...Bn{In} of t i c ,  which is variable disjoint with spec, s.t. 
the following conditions are satisfied: 

{pre A free(Y ;X U Y)} (A, H) {I0}, CALL 

(I, A A = H A 3xt(instA,(X,X r) A preX,) =*. post, EXIT 

where Y ----- vars(dc'),  X = vars(spec), 
x = X \ {x ~ X I pre =:, ~share(y, x), for all y occurring in A), 
x ~ is a variant of x consisting of fresh variables, and A t denotes AX,. 

We say that a specification spec agrees with an asserted program d P  if spec 
agrees with every asserted clause of a lP .  [] 

- CALL says that if the precondition pre of A is satisfied when A calls t ic '  then 
I0 is satisfied; 
- EXIT says that if I ,  is satisfied when the execution of t ic '  reaches its exit, then 
post is satisfied. However, since the variables of spec do not occur in r i d ,  the 
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equation A = H is used to recover information on the variables of A. Moreover, 
the precondition pre is used to recover information on variables of spec which 
are not in A: due to the non-monotonicity of  the assertions, information given 
by pre about the variables in x (i.e., the variables of  A and those variables which 
can share with some variable of A) is not anymore valid. Therefore, x is replaced 
by x', and instA,(x, x') is used to specify their relationship. 

Definition 6.8. (Well-Asserted) We say that d P  is well-asserted if every specifi- 
cation of it agrees with a lP .  [] 

As already mentioned at the beginning of  this section, the notion of  well-asserted 
program is simpler, though less expressive, than the notion of  p-well-asserted 
program. In fact, it is easy to check that there is no assertion I s.t. 

goa l  +- {share(X,Y)} p(X,g)  {share(X, Y)}. 
p(V,W) +-- {~ground(V)} q(V) {share(V,W)}. 
q(Z) +-- {I}. 

is well-asserted. 

Notice that, while in the definition of  well-assertedness of  the two previous 
methods the clauses of the program are examined independently, here all the 
clauses of  the program are examined. In order to show the persistence of  the 
notion of being well-asserted, due to the global character of the method, we 
need to reason in the context of a specific well-asserted program. Therefore we 
introduce the notion of  asserted compound query. We give first some preliminary 
terminology. For a variant d c  = H +-- {I0}Al{I1} ..-Am{Ira} of  an asserted clause 
we call a suffix of d c  any asserted query d Q  = {Ii-1}Ai{Ii}...Am{Im}, with 
i ~ [1, m + 1], and we refer to d e  as the asserted clause of dQ.  Moreover, we 
denote {Ii-1} by pre(dQ) and {Ira} by post(dQ). Notice that pre(dQ) = post(dQ) 
if d Q  = {I,,}. 

Definition 6.9. (Asserted Compound Query) An asserted compound query (for 
alP) is a pair d S  = (e, F) consisting of a substitution ~ and a sequence 

1 F = ( ( d Q 1 ,  B1, ~al) ..... (dQn-1, B,-a, ~n-1), (dQ,,  goal, true)), 

s.t. n > 1, and for i ~ [1, n -  1], {c~i}BidQi+l is a suffix of (a variant of) 
an asserted clause of  a lP ,  and d Q ,  is a suffix of the asserted goal-clause of  
d P .  [] 

The intuition behind the above definition is illustrated by an example after 
Definition 6.11. We now introduce the notion of  an asserted resolvent and 
derivation. 

Definition 6.10. (Asserted Resolvent) Let d S  = (~, F) be an asserted compound 
query, with F = (71 . . . . .  Yn), n _> 1, where 7i = (dQi, Bi, ~bi), for i E [1,n]. Let 
d c  = H *-- {I0}A1 ... Am{Ira} be a variant of  an asserted clause. 
- I f  ~a'Q1 = {pre}A{post}Am+l{Im+l }.. .  An{In} then 

(~0, (<{I0}A1... Am{I,,}, A, pre), ({post}Am+a ... An{In}, B1, q~l), Y2 . . . . .  7n)) 

is called an asserted resolvent of d S  and aye, with 0 = mgu(H,A~); 

- If  dQ1  is an assertion and n > 1 then (~,(72,...,7n)) is called an asserted 
resolvent of d S .  [] 
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From now on we denote by goal ~ d Q  the asserted goal-clause of a lP .  

Definition 6.11. (Asserted Derivation) An asserted LD-derivation d ~  of  goal 
d Q  w.r.t. ~ is a maximal sequence dRo,  dRx  . . . .  of asserted compound queries, 
s.t. d R o  = (ct, ( (dQ,  goal, true))), dRi+l is an asserted resolvent of dRi ,  for i > 0, 
and all the variants of asserted clauses used are standardized apart, i.e., they are 
variable disjoint between each other and with d Q ,  as well as with vars(~). [] 

We give now a simple example of asserted derivation. Let 

~r = goal  +-- {I0} p(X) {In} q(X) {I2}. 
dc1= p(f(Y)) +- {I01} r(Y) {I~}. 
�9 N'C2 = r ( a )  ~-- {12}. 
~r = qCZ) *-- {I~}. 

The following is an asserted derivation for sCg w.r.t, c~ = {x/f(a)}. 
sCRo = (~, (({Iolp(x){lllq(x){I; }, goal, true>)), 
~r = (fib (({Io}r(y){I1 }, p(x), {I0}}, ({I1}q(x){I2}, goal, true))), 
-~r = ( f i b  (<{I02}, r(y), {I~}), <{I~}, p(x), {Io}), <{II}q(x){I2}, goal, true>)), 
~ ' R 3  = ( i l l ,  (<{ / I} ,  p(x), {I0}) ,  <{I1}q(x){I2}, goal, true>)), 
~r = (fib ( ({It}q(x){I2}, goal, true>)). 
dR5  = (f12, (({1~}, q(x), {I1}), ({I2}, goal, true>)), 
sCR6 = (fin, (({I2}, goal, true>)), 

where fll = {x/ f (a) ,y /a}  and f12 = {x/ f (a) ,y /a ,z / f (a)} .  The following notion 
of well-asserted compound query clarifies the role of the Bi's together with their 
preconditions ~bi's: they are used in an asserted compound query for relating the 
post(s~Qi)'s with the pre(~CQi+l)'S. 

Definition 6.12. Let ~r be as in Definition 6.9. 

- We say that d S  is well-asserted if: 

1. each specification occurring in F agrees with a l P ;  
2. for i ~ [ 1 , n -  1], 

x i (post(dQi) A Bi = Hi A 3x~(instB;(x i, x~) A qSix;)) ~ pre(~CQi+l), 
1 

where Hi is the head of the asserted clause of dQi,  x i = vars(Oi) \ {x [ 
49i =*" -,share(x, y) for all y occurring in Bi}, x r. is a variant o f x  i consisting 1 

x i 
of fresh variables, and B; denotes Bix:. 

1 

- We say that d S  satisfies its precondition if 

, .  , x i 
(pre(dQa) A (AiE[1,~-I] (Bi = Hi A 3Xi(mStB~(Xi, Xi) A ~bix:)))~ 

1 

_ -- def 
is true, with Hi, x i and x ~. defined as above, and where/\i~[1,o]q)i=true. [] 

1 

From now on we assume that d P  is a well-asserted program. The following 
result is a counterpart of Lemmata 4.6 and 5.9. 

Lemma 6.13. Let d ~  be an asserted LD-derivation of goal +-- s~CQ w.r.t.e. Let 
d R  be an asserted compound query of d e .  Suppose that d R  is well-asserted 
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and that ~r satisfies its precondition. Let d R '  be the asserted resolvent of d R  
in d e .  Then d R '  is well-asserted and it satisfies its precondition. 

Proof By the definition of a well-asserted compound query and the fact that 
a variant of  a well-asserted program is well-asserted, it follows that d R '  is 
well-asserted. 

Now, let d R  = (e, ( '~1, . . ' ,  ~k)), k > 1, where 7i = (dQi, Bi, (ai), for i 6 [1, k], 
and let d R '  --- (fl, F'). We distinguish the two cases of Definition 6.10. 

- ~ Q 1  = {pre}A{post}Am+l{Im+a}...An{In}. Then for some asserted input clause 
d c  = H ~ {I0}A1 ...A,n{Im}, fl and F' are defined as specified by the first 
case of Definition 6.10. Since d R  satisfies its precondition, then pre7 is true. 
Moreover, by definition of  asserted derivation it follows that free(Y ;Xe U Y) is 
true, with Y = vars(dc) and X = vars({pre}A{post}). Then by CALL we have 
that Io~0 is true. Moreover, HeO = HO, HO = A~O, and preXx, eO preX, e. Then 
3x'(instA,(x,x') A preX,)eO is true by choosing x' equal to xct. Moreover, for i e 
[1, k -  1], from H~e = Bie it follows that HieO = Bio:O and from the standardization 

x i x i 
apart it follows that ~bix; ~0 = ~bix; ~. Let ~b = (A = H A 3x'(instA, (x, x')/x preX,)). 

1 1 
Then 

x i 
(I0 A ~b A (Ai~[1,k-1] (Bi = Hi A 3x~(instA, (X i, X~) A ~bix,. )))~0 

1 
is true, hence d R '  satisfies its precondition. 

- dQ1  is an assertion. Then fl = ~ and F' = (72,..., 7k) and the conclusion follows 
by the hypothesis that ~r is well-asserted and it satisfies its precondition. [] 

This yields the following conclusions. 

Theorem 6.14. Let d Q  = {I0}A1 ...An{In}. Let ~ be s.t. I0e is true. Let d ~  be 
an asserted derivation of  goal ~ ~r w.r.t. ~. Then all the asserted compound 
queries of  d ~  satisfy their preconditions. 

Proof Note that (e, ((~r goal, true))) is well-asserted and satisfies its precondi- 
tion and that a variant of  a well-asserted program is well-asserted. The conclusion 
now follows by Lemma 6.13. [] 

Corollary 6.15. Let ~r = {I0}A1 ...An(In} and let ~ be s.t. I0~ is true. Then for 
every computed answer substitution o- of  Qe in P we have that Inea' is true, 
where a'  = (trP)ldom(a), for some renaming p. 

Proof Let p be a new relation symbol and consider the program ~r obtained 
replacing goal ~ ~r with goal +- ~r where ~r = {I0}A1...An{In}p{true}. 
Let ~r = (ct,((~CQ',goal, true))). Then ~r is well-asserted and ~r is well- 
asserted and it satisfies its precondition. Now, if a is a computed answer of  
Qe in P then there exists an asserted derivation ~r162 of  goal *- dQ '  w.r.t. 

such that (ct01... Ok,(({In}p{true},goal, true))) is an asserted resolvent of  ~r 
where (01... 0k)lva~(Q~) = a', with a'  = (trP)ldom(~r), for some renaming p. Then by 
Theorem 6.14 we have that I,~01... Ok is true. So the conclusion follows because 
InO~01. . . Ok = InO~t7 t. [ ]  

We conclude this last section by illustrating how these results can be applied 
to our running example q u i c k s o r t .  

Example 6.16. Reconsider the program q u i c k s o r t  augmented with the goal- 
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clause goal ,-- qs(X,Y), asserted as follows. 

goal  ~ {ListGae(X),free(Y)} qs(X,V) {ListGae(X,g)}. 
qs([XlXs] ,Ys) ~-- 

{1 t A free(Ys, Littles, Bigs, Ls, Bs)} par t  (X, Xs ~ L i t t  l e s ,  Bigs) 
!!! AListGae(Littles, Bigs) A free(Ys, Ls, Bs)} q s ( L i t t l e s , L s )  

A ListGae(Littles, Bigs, Ls) A free(Ys, Bs)} qs (Bigs,Bs) 
A ListGae(Litttes, Bigs, Ls, Bs) A free(Ys)} app (Ls, IX t Bs] ,  Ys) 

{I t A ListGae(Litttes, Bits, Ls, Ys, Bs)}. 
qs  ( [ ] ,  []) ~ {n'ue}. 
part(X,  [YlXs], [YILs] ,Bs) ~- 

I Gae(X, Y) A ListGae(Xs) A free(Ls, Bs)} X > Y 
Gae(X, Y) A ListGae(Xs) A free(Ls, Bs)} par t  (X, X~,Ls ,Bs) 

{Gae(X, Y) A ListGae(Xs, Ls, Bs)}. 
par t (X,  [YlXs] ,Ls, [YIBs]) ~-- 

{Gae(X, Y)  A ListGae(Xs) A free(Ls, Bs)} X <_ Y 
{ Gae(X, Y ) A ListGae(Xs) A free(Ls, Bs)} par t  (X, Xs, L s,  Bs) 
{Gae(X, Y) A ListGae(Xs, Ls, Bs)}, 

part(X,  [ ] ,  [ ] ,  []) *- {Gae(X)}. 

app([XlXs] ,gs ,  [XlZs]) 
{I s / \  free(Zs)} app(Xs,Ys,Zs) 
{I s A ListGae(Zs)}. 

app([]  ,Ys,Ys) *-- {ListGae(Ys)}. 

where 11 = Gae(X) A ListGae(Xs) and 16 = Gae(X) A ListGae(Xs, Ys). 
Here ListGae(x~ . . . . .  x~) is an abbreviation for ListGae(xO A ... A ListGae(xO 
and free(x1 . . . . .  x~) is an abbreviation free(xl;X) A .~. A free(x~;X), where 
X = {xl, . . . ,x,}.  It is not difficult to check that qu icksor t  is welt-asserted. 
Then by Theorem 6.14 we have that qs ( L i t t l e s , L s )  and qs (Bigs,Bs) do not 
share variables during the execution of goal. Hence they can be executed in 
parallel, [] 

Thus, global analysis based on non-monotonic assertions is sufficient to prove 
global run-time properties of programs. This could be used, for example, for 
identifying which parts of a program can be executed in parallel. Also, as shown 
in Colussi and Marchiori [CoM91], this method can be extended to prove to- 
tal correctness, ie., partial correctness and termination, of Prolog programs in 
presence of various built-in's. 
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