
Formal Aspects of Computing (1994) 6A: 743-764
Q 1994 BCS Formal Aspects

of Computing

Reasoning About Prolog Programs:
From Modes Through Types to Assertions
K r z y s z t o f R. A p t 1 a n d Elena M a r c h i o r i 2

1Centrum voor Wiskunde and Computer Science (CWI) and Faculty of Mathematics and
Computer Science, University of Amsterdam, The Netherlands
ZCentrum voor Wiskunde and Computer Science (CWI), Amsterdam, The Netherlands

Keywords: Prolog programs; Program verification

Abstract. We provide here a systematic comparative study of the relative strength
and expressive power of a number of methods for program analysis of Prolog.
Among others we show that these methods can be arranged in the following
hierarchy: mode analysis ~ type analysis =~ monotonic properties ~ non-
monotonic run-time properties. We also discuss a method allowing us to prove
global run-time properties.

1. Introduction

1.1. Motivation

Over the past 9 years a number of proposals were made in the literature for the
analysis and verification of Prolog programs, based on the concepts of modes,
types and assertions, both monotonic ones and non-monotononic ones, like
var(x). The aim of this paper is to show that these methods can be arranged in
a hierarchy in which increasingly stronger program properties can be established
and in which each method is a generalization of the preceding ones.

More specifically, we deal here with the following notions: well-moded pro-
grams, essentially due to Dembinski and Matuszynski [DeM85], well-typed pro-
grams, due to Bronsard, Lakshman and Reddy [BLR92], the assertional method
of Bossi and Cocco [BOC89], the assertional method of Drabent and MaIuszyfiski
[DrM88]. Moreover we discuss the assertional method of Colussi and Marchiori

Correspondence and offprint requests to : Elena Marchiori, CWI, P.O. Box 94079, 1090 GB Amsterdam,
The Netherlands. Email: elena@cwi.nl.

744 K.R. Apt and E. Marchiori

[COM91], which allows to prove global run-time properties. To render the expo-
sition uniform, the formalisms and the terminology used will sometimes slightly
differ from those of the original works.

We believe that the systematic presentation of these methods of program
analysis is useful for a number of reasons. First it clarifies the relationship
between them. Next, it allows us to justify them by means of simpler correctness
proofs than the original ones. Further, it suggests in a natural way some new
results about these methods. Finally, it allows us to better understand which
program properties can be established by means of which method.

1.2. Preliminaries

We consider logic programs executed by means of the LD-resolution, which
consists of the SLD-resolution combined with the leftmost selection rule. An
SLD-derivation in which the leftmost selection rule is used is called an LD-
derivation, or simply a derivation.

We work here with queries, that is sequences of atoms, instead of goals, that
is constructs of the form ~ Q, where Q is a query. Apart from this we use
the standard notation of Lloyd [Llo87] and Apt [Apt90]. In particular, given
a syntactic construct E (so for example, a term, an atom or a set of equa-
tions) we denote by vars(E) the set of the variables appearing in E. Variables
are denoted with x, y, z, possibly subscripted, while terms are denoted by r, s, t,
possibly subscripted. Moreover, we adopt the Prolog convention to denote vari-
ables appearing in a Prolog program by means of strings starting with a capital
letter.

Given a substitution 0 = {Xl/tl,...,x,/t,}, the set {Xl,.. . ,x,} of variables
is denoted by dom(O) and range(O) denotes the set of variables occurring in
{tl , . . . , t ,}. Moreover, vars(O) = dora(O)tO range(O). Finally, a substitution p is
called renaming if it is a 1-1 and onto mapping from its domain to itself. For two
atoms or terms el, e2, we denote by mgu(ebe2) a fixed most general unifier (in
short mgu) of el, e2. Recall that mgu's are equivalent up to renaming, i.e., if 0
a n d / / a r e two mgu's of el, e2 then 0 =/~p, for some renaming p.

2. Well-Moded Programs

We start by introducing modes. They were first considered in Mellish [Mel81],
and more extensively studied in Reddy [Red84], [Red86] and Dembinski and
Matuszynski [DeM85].

Definition 2.1. (Mode) Consider an n-ary relation symbol p. By a mode for p we
mean a function mp from {1 ,n} to the set {+, -} . If mp(i) = '+', we c a l l / a n
input position of p and if mp(i) = ' - ' , we call i an output position of p (both w.r.t.
rap).

We write mp in a more suggestive form p(mp(1),...,mp(n)). By a moding we
mean a collection of modes, each for a different relation symbol. []

Modes indicate how the arguments of a relation should be used. The definition
of moding assumes one mode per relation in a program. Multiple modes may be
obtained by simply renaming the relations. In the remainder of this section we
adopt the following.

Reasoning About Prolog Programs 745

Assumption 2.2. Every relation has a fixed mode associated with it.

This will allow us to talk about input positions and output positions of an atom.
We now introduce the notion of a well-moded program. The concept is due to

Dembinski and Ma/uszynski [DeM85]; we use here an elegant formulation due
to Rosenblueth [Ros91] (which is equivalent to that of Drabent [Dra87] where
well-moded programs are called simple). The definition of a well-moded program
constrains the "flow of data" through the clauses of the programs. To simplify
the notation, when writing an atom as p(u, v), we now assume that u is a sequence
of terms filling in the input positions of p and that v is a sequence of terms filling
in the output positions of p.

D e f i n i t i o n 2 . 3 . (W e l l - M o d e d)

- A query pl(s 1, t l) , pn(Sn, tn) is called well-moded if for i E [1, n]

i--I

vars(si) ~- U vars(q).
j=l

- A clause p0(t0,Sn+l) +- -p l (s l , t l) ,pn(sn, tn) is called well-moded if for i c
[1, n + 1]

i--I

vars(si) ~- U vars(tj).
j=O

- A program is called well-moded if every clause of it is. []

Thus, a query is weU-moded if
- every variable occurring in an input position of an atom (i ~ [1,n]) occurs in
an output position of an earlier (j 6 [1, i - 1]) atom.
And a clause is weU-moded if
- (i E [1, n]) every variable occurring in an input position of a body atom occurs
either in an input position of the head (j -- 0), or in an output position of an
earlier (j c [1, i - 1]) body atom,
- (i = n + 1) every variable occurring in an output position of the head occurs in
an input position of the head (j = 0), or in an output position of a body atom
(j c [1,n]).

Note that a query with only one atom is well-moded iff this atom is ground in
its input positions. The following notion is due to Dembinski and Maluszynski
[DeM85].

D e f i n i t i o n 2.4. We call an LD-derivation data driven if all atoms selected in it are
ground in their input positions. []

The following lemma shows the "persistence" of the notion of well-modedness.

Lemma 2.5. An LD-resolvent of a well-moded query and a well-moded clause
that is variable disjoint with it, is well-moded.

Proof An LD-resolvent of a query and a clause is obtained by means of the
following three operations:

- instantiation of a query,
- instantiation of a clause,

746 K.R. Apt and E. Marchiori

- replacement of the first atom, say H, of a query by the body of a clause whose
head is H.

So we only need to prove the following two claims.

Claim 1. An instance of a well-moded query (resp. clause) is well-moded.

Proof. It suffices to note that for any sequences of terms s,t 1 tn and a
substitution or, vars(s) ~_ ~J~ vars(tj) implies vars(sa) c_ [_J~=l vars(tja). []

Claim 2. Suppose H, A is a well-moded query and H ~ B is a well-moded clause.
Then B, A is a well-moded query.

Proof. Let H = p(s, t) and B = pl(s 1, t l) , . . . ,pn(sn, tn). We have vats(s) = 0 since
H is the first atom of a well-moded query. Thus B is well-moded. Moreover,
vats(t) ~ [.J~=l vars(tj), since H ~ B is a well-moded clause and vars(s) = O.
These two observations imply the claim. []

The definition of a well-moded program is designed in such a way that the
following theorem, also due to Dembinski and Matuszynski [DeM85], holds.

Theorem 2.6. Let P and Q be well-moded. Then all LD-derivations of Q in P
are data driven.

Proof. Note that the first atom of a well-moded query is ground in its input
positions and a variant of a well-moded clause is well-moded. The conclusion
now follows by Lemma 2.5. []

The following is a well-known conclusion of this theorem.

Corollary 2.7. Let P and Q be well-mode& Then for every computed answer
substitution o, Qo is ground.

Proof. Let x stand for the sequence of all variables that appear in Q. Let p be
a new relation of arity equal to the length of x and with all positions moded as
input. Then Q, p(x) is a well-moded query.

Now, a is a computed answer substitution for Q in P iff p(x)tr is a selected
atom in an LD-derivation of Q, p(x) in P. The conclusion now follows by Theorem
2.6. []

Let us see now how these results can be applied to specific programs.

Example 2.8. Consider the program q u i c k s o r t :

qs([X I Xs], Ys) ~--
part(X, Xs, Littles, Bigs), qs(Littles, Ls),
qs(Bigs, Bs), app(Ls, [X I Bs], Ys).

q s ([] , []) ~-- .

pa r t (X , [Y I Xs], [Y I Ls] , Bs) *--
X > Y, pa r t (X , Xs, Ls, gs) .

pa r t (X , [Y [Xs], Ls, [Y I Bs]) *--
X _< Y, part(X, Xs, Ls, Bs).

part(X, [], [], [])*- .

app([XlXs], Ys, [XlZs]) *-app(Xs, Ys, Zs).
app([], Ys, Ys)~- .

Reasoning About Prolog Programs 747

We mode it as follows: q s (+ , -) , p a r t (+ , + , - , -) , a p p (+ , + , -) , > (+ , +) ,
_< (+, +). It is easy to check that q u • is then well-moded. Assume now that
s is a ground term. By Theorem 2.6 all LD-derivations of qs (s , t) in q u i c k s o r t
are data driven and by Corollary 2.7 we conclude that all the computed answer
substitutions a are such that to- is ground. []

In conclusion, mode analysis is sufficient to derive information on groundness
of a tom arguments, before or after their selection. Also, as shown in Apt and
Pellegrini [ApP94] (and on which this section is based), the modes can be used
to provide sufficient syntactic conditions that allow the occur-check to be safely
omitted from the unification algorithm in Prolog implementations.

3. Well-Typed Programs

3.1. Types and Type Judgements

To deal with run-time errors we introduce the notion of a type. We adopt the
following general definition.

Definition 3.1. (Type) A type is a decidable set of terms closed under substitution.
[]

Certain types will be of special interest:

Lis t - - the set of lists,
Gae - - the set of ground arithmetic expressions (gae's in short),
Lis tGae - - the set of lists of gae's.
Ground - - the set of ground terms.

Of course, the use of the type Lis t assumes the existence of the empty list [] and
the list constructor [. I.] in the language, the use of the type Gae assumes the
existence of the numeral 0 and the successor function s (.) and the use of the
type Lis tGae assumes the existence of what the use of the types Lis t and Gae
implies.

Throughout the paper we fix a specific set of types, denoted by Types, which
includes the above ones. We call a construct of the form s : S, where s is a
term and S is a type, a typed term. Given a sequence s : S -- st : $1 sn : Sn
of typed terms, we write s 6 S if for i E [1,n] we have si 6 Si, and define
vars(s : S) = vats(s). Further, we abbreviate the sequence stO snO to sO. We say
that s : S is realizable if s t /E S for some I/.

Definition 3.2.
- By a type judgement we mean a statement of the form

s : S ~ t : T . (1)

- We say that a type judgement (1) is true, and write

~ s : S =~ t :T,

if for all substitutions 0, sO ~ S implies tO ~ T. []

For example, the type judgement s(s(x)) : Gae, l : L i s tGae => [xl l] : Lis tGae
is true. How to prove that a type judgement is true is an interesting problem but
irrelevant for our considerations. In all considered cases it will be clear how to
show that a type judgement is true.

748 K.R. Apt and E. Marchiori

The following simple properties of type judgements hold.

Lemma 3.3. (Type Judgement) Let q~, ~ba, q~2, q~, 4~3 and ~p be sequences of typed
terms.

(i) Suppose that s E S and ~ s : S, ~b =~ ~p. Then

(ii) Suppose that ~ ~b 2 =~ q~i and ~ q~l, q~, q~3 =~ ~P. Then

~bl, 42,~b3 ~ lp.

(iii) Suppose that ~ s : S , t : T
vars(s, u) = 0. Then

=~ u : U , t : T is realizable, and vars(t)N

~ s : S =~ u:U.

Proof

(i) By the assumption that all types are closed under substitution.

(ii) Immediate.

(iii) Take 0 such that sO ~ S and let t /be such that tq E T. Define 0' = 01vars(S,U)
and t/' = tllvars(t). Then a = 0' U 7' is well-defined, sa E S and ta 6 T. So ua E U,
i.e. u 0 c U . []

3.2. Well-Typed Queries and Programs

The next step is to define types for relations.

Definition 3.4. (Type) Consider an n-ary relation symbol p. By a type for p we
mean a function tp from [1, n] to the set Types. If tp(i) = S, we call S the type
associated with the position i o f p. []

In the remainder of this section we consider a combination of modes and
types and adopt the following.

Assumption 3.5. Every relation has a fixed mode and a fixed type associated with
it.

This assumption will allow us to talk about types of input positions and of
output positions of an atom. An n-arT relation p with a mode mp and type tp will
be denoted by p(mp(1) : tp(1),...,mp(n) : tp(n)). For example, app(+ : List, + :
List, - : List) denotes a ternary relation app with the first two positions moded
as input and typed as List, and the third position moded as output and typed as
List.

To simplify the notation, when writing an atom as p(u : S, v : T) we now
assume that u : S is a sequence of typed terms filling in the input positions of p
and v : T is a sequence of typed terms filling in the output positions of p. We call
a construct of the form p(u : S, v : T) a typed atom. We say that a typed atom
p(sl : $1 sn : Sn) is correctly typed in position i if si E Si.

Reasoning About Prolog Programs 749

The following notion is due to Bronsard, Lakshman and Reddy [BLR92].

D e f i n i t i o n 3 .6 . (W e l l - T y p e d)

- A query pl(i 1 : I i , o 1 : O1),.. . ,pn(in : In, on : On) is called well-typed if for
j 6 [1, n]

~ o 1 : O 1 ,oj_ 1 :Oj_ 1 =~ i j ' I j .

- A clause
p0(o 0 : O0,in+ 1 :In+ l) ~ pl(i 1 " I i , o 1 " O 1) ,pn(in "In, on " On) is called
well-typed if for j E [1, n + 1]

o0 : O 0 ,oj_ 1 "Oj_ 1 =~ ij "Ij.

- A program is called well-typed if every clause of it is. []

Thus, a query is well-typed if

- the types of the terms filling in the input positions of an atom can be deduced
from the types of the terms filling in the output positions of the previous
atoms.

And a clause is well-typed if

- (j E [1, n]) the types of the terms filling the input positions of a body atom can
be deduced from the types of the terms filling in the input positions of the
head and the output positions of the previous body atoms,

- (j = n + 1) the types of the terms filling in the output positions of the head
can be deduced from the types of the terms filling in the input positions of
the head and the types of the terms filling in the output positions of the body
atoms.

Note that a query with only one atom is well-typed iff this atom is correctly
typed in its input positions. The following observation clarifies the relation
between well-moded and well-typed programs and queries.

T h e o r e m 3.7 . The notion of a well-moded program (resp. query) is a special case
of the notion of a well-typed program (resp. query).

Proof Take Ground as the only type. Then the notions of a well-moded program
(resp. query) and a well-typed program (resp. query) coincide. []

The following lemma stated in Bronsard, Lakshman and Reddy [BLR92]
shows persistence of the notion of being well-typed.

Lemma 3.8. An LD-resolvent of a well-typed query and a well-typed clause that
is variable disjoint with it, is well-typed.

Proof We reason as in the proof of Lemma 2.5. So it suffices to prove the
following two claims.

Claim 1. An instance of a well-typed query (resp. clause) is well-typed.

Proof Immediate by definition. []

Claim 2. Suppose H, A is a well-typed query and H *-- B is a well-typed clause.
Then B, A is a well-typed query.

750 K.R. Apt and E. Marchiori

Proof. Let
H = p(s : S,t : T) and B = pl(i 1 : I i , o 1 : O1) pm(im : Ira, ore : Om). H is the
first atom of a well-typed query, so it is correctly typed in its input positions, i.e.

s ~ S. (2)

H *-- B is well-typed, so ~ s : S, o 1 : O 1 ,Om : O m =~ t : T, and for j e [1, m]
s �9 S, o 1 " O 1 , oj_ 1 : Oj_ 1 =*- ij : I i. By the Type Judgement Lemma 3.30)

we get by virtue of (2)

o 1 : O 1 , . . . , o m : O m =z, t : T , (3)

and for j e [1, m]

~ o 1 "O 1 ,oj_ 1 "Oj_ 1 => ij "Ij. (4)

Now, let A = pm+l(im+ 1 "I m 1, ,pn(in In, on �9 ~_ ore+ 1 "Om+ 1) �9 " On). H , A is
well-typed, so for j c [m + 1, n]

~ t : T , om+ l ' O m + l , . . . , o j _ l ' O j _ 1 =*- i j : I j ,

and thus by (3) and the Type Judgement Lemma 3.3(ii) for j e [m + 1, n]

o I : O 1 oj_ l ' O j _ 1 ~ i j : I j .

This and (4) imply the claim. []

This brings us to the following desired conclusions.

Theorem 3.9. Let P and Q be well-typed and let ~ be an LD-derivation of Q in
P. All atoms selected in ~ are correctly typed in their input positions.

Proof. Note that the first atom of a well-typed query is correctly typed in its input
positions and that a variant of a well-typed clause is well-typed. The conclusion
now follows by Lemma 3.8. []

Corollary 3.10. Let P and Q be well-typed. Then for every computed answer
substitution a, Qa is well-typed in its output positions�9

Proof Let o :O stand for the sequence of typed terms filling in the output
positions of the atoms of Q. Let p be a new relation of arity equal to the length of
o : O and with all the positions moded as input and typed as O. Then Q, p(o : O)
is a well-typed query. Now, a is a computed answer substitution for Q in P iff
p(o)cr is a selected atom in an LD-derivation of Q, p(o) in P. The conclusion now
follows by Theorem 3.9. []

Let us see now how these results can be applied to specific programs.

Example 3.11. Reconsider the program qu• We type it as follows:

qs (+ : ListGae, - : ListGae),

part (+ : Gae, + : ListGae, - : ListGae, - : ListGae),

app (+ : ListGae, + : ListGae, - : ListGae),

>(+:Gae, +:Gae),___(+:Gae, +:Gae).

Conforming to Prolog behaviour, we assume that the evaluation of the tests
u > v and u _< v ends in an error if u or v are not gae's. It is easy to check that

Reasoning About Prolog Programs 751

quicksort is then well-typed. Assume now that s is a list of gae's. By Theorem
3.9 we conclude that all atoms selected in the LD-derivations of q s (s , t) in
q u i c k s o r t are correctly typed in their input positions. In particular, when these
atoms are of the form u > v or u < v, both u and v are gae's. Thus the LD-
derivations of q s (s , t) do not end in an error. Moreover, by Corollary 3.10 we
conclude that all computed answer substitutions o- are such that to- is a list of
gae's. []

Thus, type analysis is sufficient to derive information about the types of atom
arguments, before or after their selection. This is sufficient to prove absence of
run-time errors in presence of relations involving arithmetic. Also, as shown in
Apt and Etalle [APE93] (and on which this section is based), the types can
be used to provide sufficient, decidable conditions under which in all program
executions unification is equivalent to iterated matching.

4. Well-m-Asserted Programs

In order to prove more complex program properties, one can consider monotonic
assertions formed in (an extension of) a first-order language. An assertion q~ is
monotonic if, for every substitution a

~ ~ ~o-. (5)

An assertional method to prove run-time properties of a program expressed by
means of monotonic assertions was given in Bossi and Cocco [BOC89], where the
notion of a well-asserted program is introduced, here called a well-monotonically-
asserted program, well-m-asserted program for short. A pair (preP, postP) of as-
sertions (called pre- and post-condition), called specification, is associated with
every relation p occurring in the program under consideration: prep describes
properties of the arguments of p before its call, while postP describes properties
of the arguments of p after its call. To denote arguments of a relation, the asser-
tion language for a program P contains some special variables, namely, for every
relation p defined in P, the variables x~ x~ are considered, where n is the arity
of p. These variables represent the arguments of the relation p, and are called
a-variables. The set of a-variables occurring in a syntactic construct E is denoted
by a-vars(E).

Definition 4.1. (Specification) A specification for an n-ary relation p is a pair
(preP, post p) of monotonic assertions, s.t. a-vars(preP, postP) ~_ {xPl ,xP~}. []

An asserted program d P is obtained by assigning a specification to every
relation of P. Sometimes we shall still write P instead of a lP . In the remainder
of this section we adopt the following.

Assumption 4.2. Every relation has a fixed specification associated with it.

Definition 4.3. Let A = p(tl, . . . , tn) and c~ = {x~/ti [i E [1,n]}. Define pre(A) de-e=f

prePe and post(A)dGfpostPo~.

- We say that A satisfies its precondition if ~ pre(A).
- We say that A satisfies its postcondition if ~ post(A).

We use post(A1 Ak) as a shorthand for post(A1)A ... A post(Ak), where we
assume that for k = 0 post(AD A . . . A post(Ak) is equal to true.

752 K.R. Apt and E. Marchiori

D e f i n i t i o n 4 .4 . (W e l l - m - A s s e r t e d)

- A query px(s 1), . . . , pn(sn) is called well-m-asserted if for j a [1, n]

post(pl(s 1) Pj-1 (sj_ 1)) => pre(pj(sj)).

- A clause p(s) *-- pl(Sl),.. . ,pn(sn) is called well-asserted if for j E [1, n + 1]

pre(p(s)) A post(pl (s 1), . . . , P j-1 (Sj_l)) ~ pre(pj(sj)),
def

where pr e(pn+ l (Sn+ l))= post(p(s)).
- An asserted program d P is called well-m-asserted if all its clauses are. []

The following observation clarifies the relation between well-m-asserted and
well-typed programs and queries.

T h e o r e m 4.5. The notion of a well-typed program (query) is a special case of the
notion of a well-m-asserted program (query).

Proof It suffices to view a typed atom p(x : S, y : T) as a specification for the
relation p(x, y) consisting of pre p = x c S and post p = y E T. Then a program P
is well-typed iff the corresponding asserted program is well-m-asserted. []

The following lemma shows persistence of the notion of being well-m-asserted.

Lemma 4.6. An LD-resolvent of a well-m-asserted query and a well-m-asserted
clause that is variable disjoint with it, is well-m-asserted.

Proof We reason as in the proof of Lemma 2.5. It suffices to prove the following
two claims.

Claim 1. An instance of a well-m-asserted query (resp. clause) is well-m-asserted.

Proof Immediate by the assumption that the assertions are monotonic. []

Claim 2. Suppose H, A is a well-m-asserted query and H +-- B is a well-m-asserted
clause. Then B, A is a well-m-asserted query.

Proof Let H = p(s) and B = pl(Sl),...,pm(Sm). H is the first atom of a well-m-
asserted query, so it satisfies its precondition, i.e.

pre(p(s)). (6)

Then from the fact that H ~- B is well-m-asserted and (6) it follows that

post(pl(s 1) , pm(Sm)) ~ post(p(s)), (7)

and for j E [1, m]

post(p1 (s 1),. .., P j-1 (sj_ 1)) =~ pre(p(sj)). (8)

Now, let A = pm+l(Sm+l),...,pn(sn). Then by H, A well-m-asserted and by (7) we
have, for j c [m + 1, n] :

post(pl(Sl) pj_l(Sj_l)) =~ pre(p(sj)). (9)

Then by (8) and (9) we obtain that B, A is well-m-asserted. []

This yields the following conclusions.

Reasoning About Prolog Programs 753

Theorem 4.7. Let P and Q be well-m-asserted and let ~ be an LD-derivation of
Q in P. All atoms selected in ~ satisfy their preconditions.

Proof Note that the first atom of a well-m-asserted query satisfies its precondition
and that a variant of a well-m-asserted clause is well-m-asserted. The conclusion
now follows by Lemma 4.6. []

Corollary 4.8. Let P and Q be well-m-asserted. Then for every computed answer
substitution a, ~ post(Q)a.

Proof Let Q = pl(Sl) ,pk(Sk). Let p be a new relation of arity equal to the
sum of the arities of pl , pk, say n, and with prep and pOStp both equal to
postp, cq A . . . A postpkC~k, where each ai renames the pi-variables to a new set of
p-variables. Then Q,p(s 1 ,Sk) is a well-m-asserted query. Now, a is a com-
puted answer substitution for Q in P iff p(s 1 Sk)a is a selected atom in an
LD-derivafion of Q,P(Sl, . . . ,Sk) in P. The conclusion now follows by Theorem
4.7. []

Again, let us show how these results can be applied to specific programs.

Example 4.9. Reconsider the program qu• We associate with its relations
the following specifications:

pre qs = ListGae(xqS) ; post qs = perm(xqt:, x~), sorted(xqS) ;
preapp = ListGae(x~ pp, x2PP); post app = cone(x1 pp, x~ pp, x~PP)'~ "
prepart = ListGae(x~rt), Gae(xPlart); postpart = ~part ;
pre > = Gae(x~,x~); post > = x > > x~;
pre <- Gae(x~,x~); post <- = @ < x~;

where perm(x, y) states that x, y are lists and y is a permutation of x, sorted(x)
states that x is a sorted list of gae's, cone(x, y, z) states that x, y, z are lists and z
is a concatenation of x and y, and

cpart = ListGae(xPart, xP4 art) A (el(x part) = el(xP3 art) U el(xP4art)) A
part~ Vx(x ~ el(xP3 art) ::> x < xPlart)A Vx(x e el(xP4 art) ::> x > x 1),

where for a list x, el(x) denotes the set of its elements. It is easy to check
that qu• is then welt-m-asserted. Assume now that s is a list of gae's.
By Theorem 4.7 we conclude that the LD-derivations of q s (s , t) do not end
in an error. Moreover, by Corollary 4.8 we conclude that all computed answer
substitutions a are such that ta is a sorted permutation of s. []

Thus, static analysis based on monotonic assertions is sufficient to prove
monotonic run-time properties and partial correctness of programs. Also, as
shown in Bossi, Cocco and Fabris [BCF91], monotonic assertions can be used in
a method for proving program termination.

5. Well-dot-Asserted Programs

Certain properties are not expressible by means of monotonic assertions: for
instance, some structural properties of a term t, like t being a variable, or t
not being a ground term, or t sharing some variable with another term. The
use of such run-time properties is relevant for e.g. program optimization; to

754 K.R. Apt and E. Marchiori

determine for which class of queries the program terminates; or to describe the
behaviour of a program containing some built-in predicates. In order to deal with
these run-time properties, one can consider an assertion language containing also
non-monotonic assertions.

In this section, an assertional method for proving run-time properties which
employs non-monotonic assertions is described. This method was introduced in
Drabent and Maluszyfiski [DrM88]. The approach is analogous to that presented
in the previous section, with the exception that here, due to the presence of non-
monotonic assertions, the assertion language for a program P contains for every
relation p occurring in P, the variables ~ called input variables, and p~, called
output variables, for i E [1, n], where n is the arity of p. We call these variables
a-variables: input variables represent the arguments of p at the moment of its
call, while output variables represent the arguments of p after its call. The set
of a-variables appearing in a syntactic construct E is denoted by a-vars(E). The
assertion language also contains variables representing terms (meta variables),
and terms of the object language.

Definition 5.1. (Specification) A specification for an n-ary relation p is a pair
(prep, postp) of assertions, s.t. a-vars(prep) c_ {~176 and a-vars(postp)

[]

An asserted program d P is obtained by assigning a specification to every relation
defined in P. Sometimes we shall still write P instead of a lP . In the remainder
of this section we adopt the following.

Assumption 5.2. Every relation has a fixed specification associated with it.

Before we define semantics of pre- and postconditions, we introduce the
following notation.
For an atom A = p(q, . . . , tn) let pre(A) denote the pair (prep, e), where e =
{'pi/ti I i E [1, n]}, and let post(A, Aa) denote the pair (postp, fl), where fl =
{~ ,~ p~/(qa) ,p~/(tna)}. We say that pre(A) is true, and write

pre(A), if prep is true in any interpretation where the value of ~ is ~ for
i E [1, n]. Analogously we say that post(A, Aa) is true, and write ~ post(A, Aa),
if pOStp is true in any interpretation where the values of ~ and p~ are ~
and p~fl, respectively, for i E [1,n]. We will often write (A,a) instead of
(A, Acr).

Definition 5.3.

- We say that A satisfies its precondition if ~ pre(A).
- We say that (A, a) satisfies its postcondition if ~ post(A, a). []

The notation post((Ab ~1) ,(Ak, ~k)) is used as a shorthand for post(Ab a l) A
... A post(Ak, ak), where we assume that for k = 0 post(Ab al) A . . . A post(Ak, ak)
is equal to true.

The following notion is central in the definition of a well-dot-asserted program.

Definition 5.4. (Valuation Sequence) We say that a sequence p0,..., pn of substi-
tutions is a valuation sequence for a clause P(S0) ~-- pl(sl), . . . ,pn(sn) and an atom
p(t) if the following conditions are satisfied:

1. vars(t) N vars(so,.. . ,Sn) = 0;

2. Po -- mgu(p(t),P(SO));

Reasoning About Prolog Programs 755

3. there exist oh,. . . , ~, s.t. for all i c [1, n] :

Pi = P i - l t T i ,

dom(ai) ~ vars(siPi_l),

range(el) ~ vars((so,...,sn)Pi_l) - vars(siPi-1). []

The above definition describes a derivation for the atomic query p(t), when
the clause P(S0) ~ pa(sl) ,pn(sn) is chosen as first input clause. Notice that
condition 1 expresses the requirement that the input clause and the query are
standardized apart, while intuitively condition 3 defines ai to be an abstraction
of a computed answer substitution for Pi l(S' lPi 1) As in [DrM88], we denote
a query Q by the clause goal +-- Q, where goal is a new relataon symbol, which is
assumed to have both precondition and postcondition equal to true.

Definition 5.5. (Well-dot-Asserted)

- A clause c : P(S0) *-- pl(sl) , . . . ,pn(sn) is called well-dot-asserted if, for every
atom p(t) that satisfies its precondition and for every valuation sequence
P0,. . . , P. for e and p(t), for j E [1, n + 1]

post((pl(slPo), o-1) (pj-I(Sj_lpj-2), 0"j-I)) ~ pre(pj(sjpj-a)),

def
where pre(pn+l(Sn+lPn))=post(p(t), p,).

- An asserted program d P is called well-dot-asserted if all its clauses are. []

Now we show that the notion of a well-m-asserted program is a special case of
the notion of a well-dot-asserted program. To this end, we introduce a preliminary
notion and a lemma.

Definition 5.6. (Simplified Form) A specification (prep, pOStp) is in simplified form
if vars(postp)A {'Pl , . . . ,~ = 0, where n is the arity of p. An asserted program
is in simplified form if all its specifications are. []

In other words, a specification is in simplified form if its postcondition does
not contain input variables. So for an atom A = p(tl tn), we have that (A, a)
satisfies its postcondition if ~ (postp, fl), with fl = { p~/(ti6) I i ~ [1,n]}. Then we
use the simpler notation ~ post(An).

The following expected property of monotonic assertions will be used.

Lemma 5.7. The truth of a monotonic assertion is invariant under renaming, i.e.
if a is a renaming then ~ q~ ~ q~a.

Assume now that specifications are monotonic and in simplified form. Con-
sider the map u which transforms a specification (prep, pOStp) into the specification
(preP, postP) obtained replacing ~ and p~ with x/v, for i ~ [1, n]. Notice that u
is a bijection from specifications (prep, postp) in simplified form with monotonic
assertions to specifications (preP,postP) used to define well-m-asserted programs.

Theorem 5.8. The notion of a well-m-asserted program is a special case of the
notion of a well-dot-asserted program.

Proof Let d P be an asserted program in simplified form and with monotonic
assertions. Let ~ ' P be the asserted program obtained by replacing every specifica-
tion (prep, postp) of d P with u(prep, postp). We show that d P is well-dot-asserted
iff d ' P is well-m-asserted. Let c : P(S0) ~ p l (s l) , . . . ,p , (sn) be a clause of P.

756 K.R. Apt and E. Marchiori

Suppose that d P is well-dot-asserted. We prove that c is well-m-asserted.
Fix an arbitrary i 6 [1, n + 1]. Let c~ be s.t.

(pre(p(so)) A post(pl (sl), . . . , pi_l(Si_l)))a. (10)

We show that pre(pi(si))cc is true. Let Aa---efp(s0a).
Consider the sequence Po,.. . , Pn, where P0 = O~lvars(So) and Pi = Cq~ars(Si), for

i 6 [1,n]. By Lemma 5.7 we can assume vars(soa) 0 vars(so,. . . ,Sn) = 0 without
loss of generality. It is easy to check that Po Pn is a valuation sequence for A
and c. Moreover, by (10) A satisfies its precondition. Since d P is well-dot-asserted
and in simplified form, then by (10) we have that pre(pi(si))c~ is true.

Conversely, suppose that d ' P is well-m-asserted.
We prove that c is well-dot-asserted. Let p(t) be s.t.

pr e(p(t)), (11)

and let p0,. . . , p, be a valuation sequence for p(t) and c. Then

Po = mgu(p(t), P(S0)). (12)

Fix an arbitrary j in [1, n + 1]. Let e be s.t.

post(pl (sl Pl) pj_l(Sj_l Pj_l))Cc (13)

We show that ~ pre(pj(sjpj_a))e.
By the definition of valuation sequence, we have P j - 1 = Pk f f k+l . . . O ' j - 1 , for

k ~ [0 , j - 1]. Then by (11), (12) and by (5) (i.e., by the definition of monotonic
assertion) we have ~ pre(p(so)pj_l)a, hence by (13)

(pre(p(so)pj_l) A post(px(slpj_l), . . . ,Pj_x(sj_lpj_l)))o:.
Then the result follows from the fact that d ' P is well-m-asserted. []

The following lemma shows persistence of the notion of being well-dot-as-
serted.

Lemma 5.9. An LD-resolvent of a well-dot-asserted query and a well-dot-asserted
clause that is variable disjoint with it, is well-dot-asserted.

Proof Let c : p(s) ~ pl(Sl),...,p,n(Sm) be a well-dot-asserted clause and let
Q = p(t),pm+a(Sm+ 1) ,pn(sn) be a well-dot-asserted query s.t. Q is variable
disjoint with c. Let 0 = mgu(p(t),p(s)). Let R = (p~(sl),...,pn(sn))O be the
resolvent of Q and c. Consider a valuation sequence p0,. . . , P, for R. Notice that
P0 is equal to the identity substitution e. Fix a j E [1, n]. Let e be s.t.

post((pl (sl)O po, crl) (p j(sj)O p j- l , a j))cc (14)

We show that ~ pre(pj+l(Sj+l)Opj)e. We distinguish the following two cases.

- j < m - 1. By Q well-dot-asserted we have that ~ pre(p(t)). Then the sequence
zl = P01,... ,P~ of substitutions is a valuation sequence for p(t) and c, where
p~ = Opk, for k c [0, m]. Then the result follows from c well-dot-asserted.
Moreover, from zl valuation sequence for p(t) and c it follows that

post((pl(sl)Opo, 05) (pm(sm)Opm-1, am)) =* post(p(t), Opm). (15)

- m < j _< n. The sequence "C 2 = p 2 , p2 of substitutions is a valuation sequence
for Q, where p2 = e and p2 = Opk+m-1 for k E [1, n]. Then

Reasoning About Prolog Programs 757

post(t, Opm) A post((Pm+l (Sm+ l)Opm, ffm) (pj($j)Opj-1, O-j))
pre(pj+l(Sj+ 1)0pj).

So the result follows from (15), and from (14). []

Theorem 5.10. Let P and Q be well-dot-asserted and let ~ be an LD-derivation
of Q in P. Then all atoms selected in ~ satisfy their preconditions.

Proof Note that the first atom of a well-dot-asserted query satisfies its precondition
and that a variant of a well-dot-asserted clause is correct. The conclusion now
follows by Lemma 5.9. []

Corollary 5.11. Let P be a well-dot-asserted program in simplified form. If p(s)
satisfies its precondition then ~ post(p(s), a), for every computed answer substi-
tution a.

Proof Consider the query Q = p(s), p'(s), where p' is a new relation of arity equal
to the arity, say n, of p, and with prep, equal to pOStpe, where e renames the output
variables of p to a new set of input variables, and with postr/ equal to true. It
is easy to check that Q is a well-dot-asserted query. The result now follows from
Theorem 5.10. []

Notice that in Corollary 5.11 the specifications are assumed to be in simplified
form: this hypothesis allows us to give a simple proof of that result, as a
corollary of Theorem 5.10. The proof of Corollary 5.11 in the general case (where
specifications are not supposed to be in simplified form) is more technical and
can be found in [DrM88]. These results extend to programs containing some
built-in relations. For instance the built-in relation var can be characterized by
the specification prevar = true and postvar = (var(var ~ A ~ = var~ where
the assertion var(t) is true iff t is an object variable. We conclude this section
illustrating how these results can be applied to our running example qu icksor t .

Example 5.12. Consider the following specifications which are in simplified form:

preqs = ListGae(~176 pOStqs = perm(qs'l,qs~),sorted(qs~);
~ ~ �9 .

preapp = ListGae(" appl," app2) ; pOStapp = conc(appp app2, app3) ,
prepart = ListGae(~ 2), Gae(~ part l) ; pOStpart = 4)part;
pre> = Gae(~ ~ >2); post> = >~>>~;
pre<_ = Gae(~ ~ post<_ = <--7 <- <~;

where

(apart = ListGae(part;, partl) A (el(part~) = el(part;) U el(part~)) A
Vx(x ~ el(part~) =~ x < part~)A u ~ el(part'4) => x > part~),

where perm(x, y), sorted(x) and cone(x, y, z), and el(x) are defined as in Example
4.9. It is not difficult to check that q u i c k s o r t is well-dot-asserted. Assume now
that s is a list of gae's and that x is a variable. By Theorem 4.7 we conclude that
in all LD-derivations of q s (s , x) whenever qs is called, its second argument is
a variable. Moreover, by Corollary 5.11 we conclude that all computed answer
substitutions a are such that xa is a sorted permutation of s. []

Thus, static analysis based on non-monotonic assertions associated with relations
is sufficient to derive information about the form of individual atom arguments
(like being a variable), before or after their execution. This type of run-time
properties can be used for program optimization.

758 K.R. Apt and E. Marchiori

6. Proving Global Properties of Prolog Programs

In the methods presented in the two previous sections, specifications are associated
with the relations occurring in the program. As a consequence one cannot express
global run-time properties, describing relationships among the atoms of a query
during its execution. For instance, consider the query Q = p(x), p(y), and assume
that during the execution of Q, x and y are always bound to terms which do not
have variables in common. This property cannot be expressed in the previous
approaches, because it is a property of the query, and not of the individual atoms
of the query. To allow global analysis of programs, one can associate assertions
with program points. An assertion describes then the values of the variables of
the program when the computation reaches the relative program point. This can
be done by annotating the clauses with assertions, as in H ~- {I0}B1 {I1}... Bn{1,}.
This method has been proposed by Colussi and Marchiori in [COM91]. Since a
special substitution p is used in the verification condition of this method, we call
here p-welt-asserted programs those asserted programs which safist)" the method.
We show by means of an example that the notion of p-well-asserted program
allows also to prove some non-monotonic local properties which one cannot prove
by means of the notion of well-dot-asserted program. Moreover, we introduce a
simple method to prove global run-time properties of programs, based on the
notion of well-asserted program, and prove results analogous to those given in the
previous sections. We show that the notion of well-asserted program is simpler, yet
less expressive, than the notion of p-well-asserted program. However, the question
if the notion of well-dot.asserted program is a special case of a p-well-asserted
program remains to be investigated.

The assertion language for a program P contains the variables of the program
and all their renamings. It is assumed that assertions are semantically invariant
w.r.t, renaming, i.e. ~ ~b r q~o-, for every assertion ~b and renaming a. As in the
previous section, we denote a query Q by the clause goal ~ Q, where goal is a
new relation symbol.

Definition 6.1. (Asserted Program)

- An asserted clause d c is defined as H ~- {Io}B1{I1}.,. Bn{In}, where c = H *-
Bt ,B~, and Io, . . . , I , are assertions. A formula {I~_I}B~{I~} is called a
specification.

- An asserted program sOP is a set of asserted clauses, one for each clause of
P. []

Sometimes we shall still write P instead of a lP . In the remaining of this section
we adopt the follo~Sng.

Assumption 6.2. Every program is annotated by means of a fixed set of assertions.

Informally, an asserted program is correctly asserted if for every clause c, the
assertions Io, I t , . . . , In associated with c are proven to be global invariants. In
order to prove global invariance, unification is described by means of a predicate
relation as follows.

Definition 6.3. (The Relation {q~} q/{~}) Let q /be a a set of pairs of terms or of
pairs of atoms and let q~ and ~p be assertions. Then {~b} q/{~p} holds iff for all
substitutions ~ such that ~b~ is true, whenever there exists It = mgu(qloO then ~pc~#
is true. []

Reasoning About Prolog Programs 759

A unifier for q/ is a substitution which unifies every pair of q/, while fl is an mgu
of 0//if it is a unifier and for every other unifier c~ of og, we have that e = fiT, for
some substitution 7.

In [COM91], a sound proof-system for deriving {~b} q/{~p} is given. In [COM93],
a specific assertion language is considered and a sound and complete calculus is
introduced, which computes a strongest (w.r.t. implication) assertion lp such that
{q~} r holds, i.e., a strongest postcondition of ~ w.r.t, the precondition 4~.

The following definition of matches is central in the concept of p-well-asserted
program. First some useful notions are introduced. Let ~ be a substitution. Then:

- free(X; Y)~ iff Vx E X, Vy c Y(var(xcO A (x ~ y => x~ ~ vars(yc~))).

So, free(X; Y)c~ is true when Xe is a set of distinct variables, which do not occur
in the terms of (Y \ X)c~.

Xl~...,Xn For an assertion ~b let q~s,,,..,s, denote the assertion obtained from ~b by
simultaneously replacing every occurrence of the xi's with the s{s.

With a substitution 0 = {Xl/tl, . . . , x , / t , } , we associate the set of pairs of
terms r = {(xbq) (xn, tn)}. For a specification spec = {pre}A{post}, those
variables which occur free in spec but do not occur in A are called auxiliary
variables, denoted aux(spec). More generally we write auxv(E) to denote the set
of variables that occur free in V but do not occur in E.

Definition 6.4. (Matches) Let spec = {pre}A{post} be a specification and let
d e = H +-- {I0}B1 {Ia}...B,{I,} an asserted clause. We say that spec matches
d e if there exist: a variant d c r of d e , two disjoint sets of variables X, Y, and a
substitution p such that

1. X ~ vars(spec),
2. Y ~_ vars(sCe'),

3. dora(p) ~_ auxy(c') and

4. range(p) ~_ auxx(A)

and such that

{pre A f ree(Y ;X U Y)} ~//{I~} D O W N

{I' n A f r e e (X ; X U Y)} 0//{post} UP

where ~//= {(A, H')} u 8p. []

We say that a specification spec matches the asserted program d P if spec
matches every asserted clause of a lP .

Definition 6.5. (p-well-asserted program) Let ~r be an asserted program. We
say that d P is p-well-asserted if every its specification matches a lP . []

In [CoM91] the soundness of this method with respect to LD-resolution is
proven. More in particular, the authors show that if a program is p-well-asserted,
then the assertions which decorate the program are global invariants when LD-
resolution is considered as computational mechanism.

The following simple example shows that the above notion allows also to
prove local non-monotonic properties which cannot be proven using the notion
of well-dot-asserted program.

760 K.R. Apt and E. Marchiori

Example 6.6. Consider the following asserted program a l P :

goa l ~ {share(X,Y)} p(X,Y) {share(X,Y)}.
t i c : p(V,W) +-- {~ground(V)} q(V) {share(V,W)}.

q(Z) ~ {share(Z, Wc)}.

Then it is easy to verify that ~ ' P is p-well-asserted, where the substitution
p = { W c / W } can be used when proving that {-~ground(V)}q(V){share(V, W)}
matches a l p .

Now, a local property of P which is implied by the p-well-assertedness of d P
can be expressed by means of the following specifications for p and q :

prep = share('pl," P2), pOStp =- share(p'l,p~),
preq = -,ground(" q), pOStq = ~ground(q').

One can prove that P with the above specifications is not well-dot-asserted. In
fact, consider the sequence:

po = { V / f (W 1 , W2), W / f (W 1 , W3)},
Pl = P061,

w h e r e o 1 = {W1/a} and a is a constant. Then Po, Pl is a valuation sequence for
c and p(f(W1, W2) , f (W1, W3)). Moreover:

- pre(p(f(W1, W2) , f (W1, W3))) is true;
- pre(q(V)po) is true;
- post(q(V)po, al) is true but post(p(f(W1, W2) , f (W1, W3)),pl) is false. []

We introduce now a simpler method to prove global run-time properties,
based on the notion of well-asserted program. The definition of a well-asserted
program uses the following concept of agreement. First some useful assertions are
introduced. Let ~ be a substitution. Then

- share(r, s)~ iff vars(r~) A vars(so 0 ~= O;

- (instA(r,s))~ iff rc~ = sail, for some fl s.t. dom(fl) c_ vars(A~).

Definition 6.7. (Agreement) Let spec = {pre)A{post} be a specification and let
d c be an asserted clause. We say that spec agrees with d c if there exists a variant
d c t = H ~-- {I0}B 1 {I1}...Bn{In} of t i c , which is variable disjoint with spec, s.t.
the following conditions are satisfied:

{pre A free(Y ;X U Y)} (A, H) {I0}, CALL

(I, A A = H A 3xt(instA,(X,X r) A preX,) =*. post, EXIT

where Y ----- vars(dc'), X = vars(spec),
x = X \ {x ~ X I pre =:, ~share(y, x), for all y occurring in A),
x ~ is a variant of x consisting of fresh variables, and A t denotes AX,.

We say that a specification spec agrees with an asserted program d P if spec
agrees with every asserted clause of a lP . []

- CALL says that if the precondition pre of A is satisfied when A calls t ic ' then
I0 is satisfied;
- EXIT says that if I , is satisfied when the execution of t ic ' reaches its exit, then
post is satisfied. However, since the variables of spec do not occur in r i d , the

Reasoning About Prolog Programs 761

equation A = H is used to recover information on the variables of A. Moreover,
the precondition pre is used to recover information on variables of spec which
are not in A: due to the non-monotonicity of the assertions, information given
by pre about the variables in x (i.e., the variables of A and those variables which
can share with some variable of A) is not anymore valid. Therefore, x is replaced
by x', and instA,(x, x') is used to specify their relationship.

Definition 6.8. (Well-Asserted) We say that d P is well-asserted if every specifi-
cation of it agrees with a lP . []

As already mentioned at the beginning of this section, the notion of well-asserted
program is simpler, though less expressive, than the notion of p-well-asserted
program. In fact, it is easy to check that there is no assertion I s.t.

goa l +- {share(X,Y)} p(X,g) {share(X, Y)}.
p(V,W) +-- {~ground(V)} q(V) {share(V,W)}.
q(Z) +-- {I}.

is well-asserted.

Notice that, while in the definition of well-assertedness of the two previous
methods the clauses of the program are examined independently, here all the
clauses of the program are examined. In order to show the persistence of the
notion of being well-asserted, due to the global character of the method, we
need to reason in the context of a specific well-asserted program. Therefore we
introduce the notion of asserted compound query. We give first some preliminary
terminology. For a variant d c = H +-- {I0}Al{I1} ..-Am{Ira} of an asserted clause
we call a suffix of d c any asserted query d Q = {Ii-1}Ai{Ii}...Am{Im}, with
i ~ [1, m + 1], and we refer to d e as the asserted clause of dQ. Moreover, we
denote {Ii-1} by pre(dQ) and {Ira} by post(dQ). Notice that pre(dQ) = post(dQ)
if d Q = {I,,}.

Definition 6.9. (Asserted Compound Query) An asserted compound query (for
alP) is a pair d S = (e, F) consisting of a substitution ~ and a sequence

1 F = ((d Q 1 , B1, ~al) (dQn-1, B,-a, ~n-1), (dQ,, goal, true)),

s.t. n > 1, and for i ~ [1, n - 1], {c~i}BidQi+l is a suffix of (a variant of)
an asserted clause of a lP , and d Q , is a suffix of the asserted goal-clause of
d P . []

The intuition behind the above definition is illustrated by an example after
Definition 6.11. We now introduce the notion of an asserted resolvent and
derivation.

Definition 6.10. (Asserted Resolvent) Let d S = (~, F) be an asserted compound
query, with F = (71 Yn), n _> 1, where 7i = (dQi, Bi, ~bi), for i E [1,n]. Let
d c = H *-- {I0}A1 ... Am{Ira} be a variant of an asserted clause.
- I f ~a'Q1 = {pre}A{post}Am+l{Im+l }.. . An{In} then

(~0, (<{I0}A1... Am{I,,}, A, pre), ({post}Am+a ... An{In}, B1, q~l), Y2 7n))

is called an asserted resolvent of d S and aye, with 0 = mgu(H,A~);

- If dQ1 is an assertion and n > 1 then (~,(72,...,7n)) is called an asserted
resolvent of d S . []

762 K .R . Apt and E. Marchiori

From now on we denote by goal ~ d Q the asserted goal-clause of a lP .

Definition 6.11. (Asserted Derivation) An asserted LD-derivation d ~ of goal
d Q w.r.t. ~ is a maximal sequence dRo, dRx of asserted compound queries,
s.t. d R o = (ct, ((dQ, goal, true))), dRi+l is an asserted resolvent of dRi , for i > 0,
and all the variants of asserted clauses used are standardized apart, i.e., they are
variable disjoint between each other and with d Q , as well as with vars(~). []

We give now a simple example of asserted derivation. Let

~r = goal +-- {I0} p(X) {In} q(X) {I2}.
dc1= p(f(Y)) +- {I01} r(Y) {I~}.
�9 N'C2 = r (a) ~-- {12}.
~r = qCZ) *-- {I~}.

The following is an asserted derivation for sCg w.r.t, c~ = {x/f(a)}.
sCRo = (~, (({Iolp(x){lllq(x){I; }, goal, true>)),
~r = (fib (({Io}r(y){I1 }, p(x), {I0}}, ({I1}q(x){I2}, goal, true))),
-~r = (f i b (<{I02}, r(y), {I~}), <{I~}, p(x), {Io}), <{II}q(x){I2}, goal, true>)),
~ ' R 3 = (i l l , (<{ / I} , p(x), {I0}) , <{I1}q(x){I2}, goal, true>)),
~r = (fib (({It}q(x){I2}, goal, true>)).
dR5 = (f12, (({1~}, q(x), {I1}), ({I2}, goal, true>)),
sCR6 = (fin, (({I2}, goal, true>)),

where fll = {x/ f (a) ,y /a} and f12 = {x/ f (a) ,y /a ,z / f (a)} . The following notion
of well-asserted compound query clarifies the role of the Bi's together with their
preconditions ~bi's: they are used in an asserted compound query for relating the
post(s~Qi)'s with the pre(~CQi+l)'S.

Definition 6.12. Let ~r be as in Definition 6.9.

- We say that d S is well-asserted if:

1. each specification occurring in F agrees with a l P ;
2. for i ~ [1 , n - 1],

x i (post(dQi) A Bi = Hi A 3x~(instB;(x i, x~) A qSix;)) ~ pre(~CQi+l),
1

where Hi is the head of the asserted clause of dQi, x i = vars(Oi) \ {x [
49i =*" -,share(x, y) for all y occurring in Bi}, x r. is a variant o f x i consisting 1

x i
of fresh variables, and B; denotes Bix:.

1

- We say that d S satisfies its precondition if

, . , x i
(pre(dQa) A (AiE[1,~-I] (Bi = Hi A 3Xi(mStB~(Xi, Xi) A ~bix:)))~

1

_ -- def
is true, with Hi, x i and x ~. defined as above, and where/\i~[1,o]q)i=true. []

1

From now on we assume that d P is a well-asserted program. The following
result is a counterpart of Lemmata 4.6 and 5.9.

Lemma 6.13. Let d ~ be an asserted LD-derivation of goal +-- s~CQ w.r.t.e. Let
d R be an asserted compound query of d e . Suppose that d R is well-asserted

Reasoning About Prolog Programs 763

and that ~r satisfies its precondition. Let d R ' be the asserted resolvent of d R
in d e . Then d R ' is well-asserted and it satisfies its precondition.

Proof By the definition of a well-asserted compound query and the fact that
a variant of a well-asserted program is well-asserted, it follows that d R ' is
well-asserted.

Now, let d R = (e, ('~1, . . ' , ~k)), k > 1, where 7i = (dQi, Bi, (ai), for i 6 [1, k],
and let d R ' --- (fl, F'). We distinguish the two cases of Definition 6.10.

- ~ Q 1 = {pre}A{post}Am+l{Im+a}...An{In}. Then for some asserted input clause
d c = H ~ {I0}A1 ...A,n{Im}, fl and F' are defined as specified by the first
case of Definition 6.10. Since d R satisfies its precondition, then pre7 is true.
Moreover, by definition of asserted derivation it follows that free(Y ;Xe U Y) is
true, with Y = vars(dc) and X = vars({pre}A{post}). Then by CALL we have
that Io~0 is true. Moreover, HeO = HO, HO = A~O, and preXx, eO preX, e. Then
3x'(instA,(x,x') A preX,)eO is true by choosing x' equal to xct. Moreover, for i e
[1, k - 1], from H~e = Bie it follows that HieO = Bio:O and from the standardization

x i x i
apart it follows that ~bix; ~0 = ~bix; ~. Let ~b = (A = H A 3x'(instA, (x, x')/x preX,)).

1 1
Then

x i
(I0 A ~b A (Ai~[1,k-1] (Bi = Hi A 3x~(instA, (X i, X~) A ~bix,.)))~0

1
is true, hence d R ' satisfies its precondition.

- dQ1 is an assertion. Then fl = ~ and F' = (72,..., 7k) and the conclusion follows
by the hypothesis that ~r is well-asserted and it satisfies its precondition. []

This yields the following conclusions.

Theorem 6.14. Let d Q = {I0}A1 ...An{In}. Let ~ be s.t. I0e is true. Let d ~ be
an asserted derivation of goal ~ ~r w.r.t. ~. Then all the asserted compound
queries of d ~ satisfy their preconditions.

Proof Note that (e, ((~r goal, true))) is well-asserted and satisfies its precondi-
tion and that a variant of a well-asserted program is well-asserted. The conclusion
now follows by Lemma 6.13. []

Corollary 6.15. Let ~r = {I0}A1 ...An(In} and let ~ be s.t. I0~ is true. Then for
every computed answer substitution o- of Qe in P we have that Inea' is true,
where a' = (trP)ldom(a), for some renaming p.

Proof Let p be a new relation symbol and consider the program ~r obtained
replacing goal ~ ~r with goal +- ~r where ~r = {I0}A1...An{In}p{true}.
Let ~r = (ct,((~CQ',goal, true))). Then ~r is well-asserted and ~r is well-
asserted and it satisfies its precondition. Now, if a is a computed answer of
Qe in P then there exists an asserted derivation ~r162 of goal *- dQ ' w.r.t.

such that (ct01... Ok,(({In}p{true},goal, true))) is an asserted resolvent of ~r
where (01... 0k)lva~(Q~) = a', with a' = (trP)ldom(~r), for some renaming p. Then by
Theorem 6.14 we have that I,~01... Ok is true. So the conclusion follows because
InO~01. . . Ok = InO~t7 t. []

We conclude this last section by illustrating how these results can be applied
to our running example q u i c k s o r t .

Example 6.16. Reconsider the program q u i c k s o r t augmented with the goal-

764 K.R. Apt and E. Marchiori

clause goal ,-- qs(X,Y), asserted as follows.

goal ~ {ListGae(X),free(Y)} qs(X,V) {ListGae(X,g)}.
qs([XlXs] ,Ys) ~--

{1 t A free(Ys, Littles, Bigs, Ls, Bs)} par t (X, Xs ~ L i t t l e s , Bigs)
!!! AListGae(Littles, Bigs) A free(Ys, Ls, Bs)} q s (L i t t l e s , L s)

A ListGae(Littles, Bigs, Ls) A free(Ys, Bs)} qs (Bigs,Bs)
A ListGae(Litttes, Bigs, Ls, Bs) A free(Ys)} app (Ls, IX t Bs] , Ys)

{I t A ListGae(Litttes, Bits, Ls, Ys, Bs)}.
qs ([] , []) ~ {n'ue}.
part(X, [YlXs], [YILs] ,Bs) ~-

I Gae(X, Y) A ListGae(Xs) A free(Ls, Bs)} X > Y
Gae(X, Y) A ListGae(Xs) A free(Ls, Bs)} par t (X, X~,Ls ,Bs)

{Gae(X, Y) A ListGae(Xs, Ls, Bs)}.
par t (X, [YlXs] ,Ls, [YIBs]) ~--

{Gae(X, Y) A ListGae(Xs) A free(Ls, Bs)} X <_ Y
{ Gae(X, Y) A ListGae(Xs) A free(Ls, Bs)} par t (X, Xs, L s, Bs)
{Gae(X, Y) A ListGae(Xs, Ls, Bs)},

part(X, [] , [] , []) *- {Gae(X)}.

app([XlXs] ,gs , [XlZs])
{I s / \ free(Zs)} app(Xs,Ys,Zs)
{I s A ListGae(Zs)}.

app([] ,Ys,Ys) *-- {ListGae(Ys)}.

where 11 = Gae(X) A ListGae(Xs) and 16 = Gae(X) A ListGae(Xs, Ys).
Here ListGae(x~ x~) is an abbreviation for ListGae(xO A ... A ListGae(xO
and free(x1 x~) is an abbreviation free(xl;X) A .~. A free(x~;X), where
X = {xl, . . . ,x,}. It is not difficult to check that qu icksor t is welt-asserted.
Then by Theorem 6.14 we have that qs (L i t t l e s , L s) and qs (Bigs,Bs) do not
share variables during the execution of goal. Hence they can be executed in
parallel, []

Thus, global analysis based on non-monotonic assertions is sufficient to prove
global run-time properties of programs. This could be used, for example, for
identifying which parts of a program can be executed in parallel. Also, as shown
in Colussi and Marchiori [CoM91], this method can be extended to prove to-
tal correctness, ie., partial correctness and termination, of Prolog programs in
presence of various built-in's.

Acknowledgements We thank Annalisa Bossi, Nicoletta Cocco, Livio Cotussi,
W~odek Drabent, Jan Rutten and Frank Teusink for useful discussions. This
research was partly supported by the ESPRIT BRA 6810 (Compulog 2),

References

[APE93] Apt, K. R. and Etalle, S.: On the unification free Prolog programs, tn A. Borzyszkowski
and S. Sokolowski, editors, Proceedings of the Conference on Mathematical Foundations
of Computer Science (MFCS 93), Lecture Notes in Computer Science, pp. b.49, Berlin,
1993. Springer-Verlag.

Reasoning About Prolog Programs 765

[ApP94]

[Apt90]

[BOC89]

[BCF91]

[BLR92]

[COM91]

[COM93]

[DeM85]

[DrM88]

[Dra87]

[Llo87]

[Me181]

[Red84]

[Red86]

[Ros91]

Apt, K. R. and Pellegrini, A.: On the occur-check free Prolog programs. ACM Toplas,
1994. In press.
Apt, K. R.: Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pp. 493-574. Elsevier, 1990. Vol. B.
Bossi, A. and Cocco, N.: Verifying correctness of logic programs. In Proceedings of
Tapsoft '89, pp. 96--110, 1989.
Bossi, A., Cocco, N. and Fabris, M.: Proving termination of logic programs by exploiting
term properties. In Proceedings of Tapsoft '9i, pp. 153-180, 1991.
Bronsard, E, Lakshman, T. K. and Reddy, U. S.: A framework of directionality
for proving termination of logic programs. In K.R. Apt, editor, Proc. of the Joint
International Conference and Symposium on Logic Programming, pp. 321-335. MIT Press,
1992.
Colussi, L. and Marchiori, E.: Proving correctness of logic programs using axiomatic
semantics. In Proceedings of the Eight International Conference on Logic Programming,
pp. 629-644. The MIT Press, 1991.
Colussi, L. and Marchiori, E.: Unification as predicate transformer. Submitted, 1993.
Preliminary version in Proceedings JICSLP" 92, pp. 67-85.
Dembinski, P. and Maluszynski, J.: AND-parallelism with intelligent backtracking
for annotated logic programs. In Proceedings of the International Symposium on Logic
Programming, pp. 29-38, Boston, 1985.
Drabent, W. and Maluszynski, J.: Inductive assertion method for logic programs.
Theoretical Computer Science, 59(1):133-155, 1988.
Drabent, W.: Do logic programs resemble programs in conventional languages? In
Proc. of the Joint International Symposium on Logic Programming, pp. 389-396. IEEE
Computer Society, 1987.
Lloyd, J. W.: Foundations of Logic Programming. Springer-Verlag, Berlin, second edition,
1987.
Mellish, C. S.: The automatic generation of mode declarations for prolog programs.
Technical report, Department of Artificial Intelligence, Univ. of Edinburgh, 1981. DAI
Research Paper 163.
Reddy, U. S.: Transformation of logic programs into functional programs. In In-
ternational Symposium on Logic Programming, pp. 187-198. IEEE Computer Society,
1984.
Reddy, U. S.: On the relationship between logic and functional languages. In D. DeGroot
and G. Lindstrom, editors, Functional and Logic Programming, pp. 3-36. Prentice-Hall,
1986.
Rosenblueth, D. A.: Using program transformation to obtain methods for eliminating
backtracking in fixed-mode logic programs. Technical Report 7, Universidad Nacional
Autonoma de Mexico, Instituto de Investigaciones en Matematicas Aplicadas y en
Sistemas, 1991.

Received July 1993
Accepted in revised form September 1994

