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Summary. A general expression for the force exerted on a sphere executing longitudinal oscillations, 
with small amplitude, in an incompressible micropolar fluid is obtained. This is accomplished by 
using direct integral consequences of the full field and the constitutive equations written in cartesian 
coordinates. The results which are independent of any boundary conditions are then applied to cal- 
culate the hydrodynamic force experienced by a sphere moving with rectilinear oscillating velocity 
u(t) ~ (Uo eixt, 0, 0) in an unbounded micropolar fluid. As a special case, a general expression for the 
drag in a similar viscous flow is also derived. 

1 Introduction 

In  1966, Eringen [1] introduced the theory of micropolar fluids. These fluids are charac- 
terized by  the existence of a mierostrueture and a rotation of the mieroelements. In  addi- 
tion to the traditional Cauchy stress and body forces, these fluids can sustain couple stress 
and body couples. A complete description of their flow involves, besides the usual velocity 
variable and the viscosity coefficient, another kinematic variable to account for microro- 
ration and several other material constants. The use of micropolar fluid model has been 
suggested in the study of flow properties of polymeric fluids, fluids with certain additives, 
animal blood, etc. Because of the ever-increasing applications of this model, it has been 
used in the investigation of an enormous number of flow problems. 

One of the important  problems in fluid dynamics is to find the force exerted on a mov- 
ing object by the surrounding fluid. A common approach to handle such a problem is to 
first solve a particular system of differential equations subject to the given boundary con- 
ditions of a specific flow situation under consideration and then use this solution to com- 
pute the needed force. This is the way t~ao et al. [2] derived, inter alia, the drag formula 
for a sphere oscillating rectilinearly in an incompressible micropolar fluid. In  the present 
investigation, we develop a general expression, independent of any boundary conditions, 
to calculate the force experienced by a sphere while executing longitudinal oscillations of 
small ampli tude in a homogeneous incompressible micropolar fluid. To achieve this gene- 
rality, we avoid the common procedure of first tr imming the governing equations usually 
necessitated by a predetermined set of boundary conditions of a paticnlar flow problem and 
then seeking their explicit solution. Instead, we use some direct integral consequences of 
the full field and constitutive equations written in rectangular cartesian coordinates to 
s tudy a class of flows. Our method is an adaption of a technique developed by  Saffman [3] 
while working on the lift of a small sphere in a slow shear flow. I t  involves the repeated 
application of the following basic lemma: 
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For an arbitrary function qb, 

f r ds = g f d f Y=n dR dp,i d V  dR  --ff d S .  (1.1) 
r=<R r=R 

In  (1.1), the first step states tha t  the surface integral is simply the derivative of the volume 
integral with respect to the radius R of the bounding surface r = R, and the second step 
is a consequence of the divergence theorem and the fact tha t  the unit normal ni to the 
sphere equals x i / R  when the origin is at  the center of the sphere. 

Hills [4] used this technique to obtain an expression for the drag on a sphere immersed 
in a general slow and steady flow of a dipolar fluid. Our present work extends it to an un- 
steady flow of a micropolar fluid induced by an oscillating sphere. At the end, we discuss 
an application of our general results by calculating the force on a sphere performing recti- 
linear oscillations under given boundary conditions. We also indicate the way to specialize 
our results to a similar Newtonian flow. 

2 The mieropolar fluid model 

Eringen [i] formulated the constitutive and field equations for a homogeneous incompres- 

sible micropolar fluid. For our purposes, we make the following two assumptions about the 

nature of flow and the general form of flow variables: 

a) The amplitude of the oscillations is small so that the convective terms can be dropped 

from the equations of motion. 

b) The velocity and the mierorotation vectors and the hydrostatic pressure can be written 

in the form 

Ui(Z1, X2, X3) e~', V~(Xl, X2, X3) e iu and p(xl ,  x~, xa) e iu 

respectively. I-Iere ,~ is the frequency of oscillation. 

In  light of these assumptions, the constitutive and the field equations take the follow- 
ing form : 
constitutive equations : 

h~ ~ [--pdi~ 4- #(ul, i 4- uj,~) 4- ~(uy,i - -  e~i~vk ] e i;'t, (2.1) 

7~i i = [CCVk,kdii 4- flVi,j 4- yVi,~] e i~'t, (2.2) 

field equations : 

ui,~ = 0 ,  (2.3) 

(# ~ ~) ui.ij 4- ~e~kVk.j - -  p, i  = i2o~ ui ,  (2.4) 

(~x 4- fl) vj.ii 4- yvi.jj  4- ~eijkuk,i - -  2zvi  = i2oJvi. (2.5) 

Here t~j and m~j are the Cauehy and the couple stress tensors respectively. ~is is the Kron- 

eeker delta, s~i k the alternating tensor, ~ the density, I the mieroinertia, ~, /~, 7, #, ~ the 

material constants and comma denotes partial differentiation with respect to a space 

variable. In writing Eqs. (2.4) and (2.5) we have discarded the body force and the 

the body couple terms. 
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The thermodynamical  requirements impose the following restrictions on the material 
constants: 

2# ~ - z  > 0 ,  ~ 0  

3c~ ~- fl -[- y > 0 ,  y > ]fi]. (2.6) 

3 A general  expression for the force 

We consider longitudinal oscillations, of small amplitude, of a sphere in a micropolar 
fluid. Choose a rectangular cartesian coordinate system xl, x~, x3 with origin at the in- 
stantaneous position of the center of the sphere. Then the force exerted by the fluid on the 
sphere is given by  

r = R  r = R  

p xj dS -~ [~ ui'kxi dS + (re + dS -- ~ , dS (3.1) 
- R R 

L r = R  r = R  r=t~ 

where tk is the traction acting on the surface of a sphere with unit normal nj and R is the 
radius of any sphere surrounding and concentric with the particle at  the origin. Hereafter,  
it will be understood, unless otherwise stated, tha t  all the integrals are taken over the sur- 
face of the sphere r = R. To simplify the integrals appearing in (3.1) we need the following 
formulas from [4] : 

R f uj,kx i = O, dS 

The expression for the force then reduces to 

(3.2) 

(3.3) 

We next proceed to evaluate each of the three integrals in (3.4). First taking the divergence 
of (2.4) and thereafter employing the continuity equation (2.3), we obtain 

p,/~ = 0. (3.5) 

Then as demonstrated in [4] 

f ~ - ~  dS = Ak + B k R  3 (3.6) 

where Ak and Bk are unknown constant vectors to be determined from the boundary con- 
ditions of a particular flow situation. 

To evaluate the integral of u#, we first eliminate the variable v from the field equations 
(2.4) and (2.5). After performing the curl operation twice on (2.4) and once on (2.5) and 
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~b 2 ~- n 2 - -  

and 

taking advantage of the continuity equation (2.3), we can derive the following equation 
with the variable v absent: 

m2?b 2 
Uk,iiji - -  ( m2 _L_ ~t2) Uk,ii + m~n2uk --  P,k, (3.7) 

r 

where 

~(2s + ~) ;.~(sI + ~I + ~) 
+ i (3.8) 

~,(s + ~) ~(s + ~) 

m2n2 22~2I 22~ + i - -  (3.9) ~(~ + ~) ~(~ + ~)" 

We note that  the numbers m and n are not pure imaginary. We may assume that  their 
real parts are positive. Integrating each term in (3.7), we arrive at the following differential 

equation in { - ~  dS: 
.F 

R ~ - ~  dS -- (.~ + ~) R ~ dS + m~,~R f ~k ds 
J R  

m2n 2 d f -- i2~ dR dS .  (3.10) 

In writing down (3.10), we applied lemma (1.1) and the following lormulas from [4]: 

r dS = RdR2  ] dS ,  (3.11) 

r dS = R d R 4 J  R dS .  (3.12) 

The general solution of (3.10) is given by 

f ~k Bk dS = - -3  i2--~ R @ Cke mR + Dke -mR + Eke nR + Fke -nR (3.13) 

where Ck, Dk, Ek, and F k are unknown constant vectors. 
Finally an integration of Eq. (2.4) with the help of (1.1) and (3.11) followed by appro- 

priate substitutions for the resulting integrals produces 

+ Ek(nR --  1) e nR-  Fk(nR + 1) e - ' R ]  - -  --iZQ Ck(R) + Gk, (3.14) 
] 

where 

1 1 
Ok(R) = Ck - ~  (mR --  1) e mR - -  D k - -  (mR + 1) e -ran 

~ 2  

1 1 + Ek-~- (nR-- 1) e nR-Fk-~- (nR+ 1) e nn (3.15) 

and Gk is another eonstanb vector. 
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On substituting the values of the integrals from (3.6), (3.13) and (3.14) into the right 
side of (3.4), the expression for the force/k reduces to 

/k = [- -Ak --  BkR 3 -~- i ~ ( R )  - -  ~Gk] e TM. (3.16) 

:For a further possible reduction of this expression, we now look for some relationships 
among the various unknown constant vectors. First we form the scalar product of Eq. (3.7) 
with xk and then multiply by x v A subsequent integration using the following formulas 
from [4] : 

d 2R)f ds, (3.17) 

f xlxku~., dS ~- R 2 --  R dS,  (3.18) 
dR 

= - -  - -  R dS,  (3.19) 
dR a dR 2 

in conjunction with the expressions (3.6), (3.13) and another readily verifiable result 

f ukxkx! dS = --  Bl R3 ~- ~z(R) Hi,  (3.20) 
R i ~  

where H 1 is an arbitrary constant vector, yie]ds 

1 
Ak = -~ i2~Hk. (3.21) 

Next we show that  Gk must vanish. As a first step, we take the curl of (2.4) and substitute 
for V • V • v in (2.5) to obtain 

v i -  eit~.uk.lj j ~- [ (3.22) zm~n 2 ~ :~m 2 zn  ~ ] sil~Uk'l + ~(tt + ~) m2n 2 vl't~" 

Taking its vector product with n and then integrating we find another expression for 

f ~iikvixi dS : 
R 

d:- Ek(nR --  1) e n~ -- F~(nR -~ 1) e - '~]  - -  i2~ t~(R).  (3.23) 

In order to derive (3.23), we had to use, in addition to (3.2) and (3.3), the following formulas 
from [4] : 

. f  ( da d~ \ f" u~ 
1R x~u i '~ i idS= ~ dR 3 d - ~ i ) J - ~ d S ,  (3.24) 

We also needed 

f e~v~,,x~ dS = 0, (3.26) 
R 

which is an immediate consequence of the basic lemma (1.1). 



76 K.S. Sran 

Now comparison of (3.23) with an earlier result (3.14) leads to the desired conclusion, 
namely, 

Gk ~- 0. (3.27) 

Utilizing (3.21) and (3.27) in (3.16), our general formula for the force/~ takes the following 
final form : 

We have derived all the foregoing results without reference to any near and/or far boundary 
conditions. Their generality would thus enable the drag force to be evaluated in a variety 
of flow situations. In  the next section, we shall apply them to calculate the drag force on a 
sphere oscillating rectilinearly in an unbounded micropolar fluid. 

4 An application 

We now consider a sphere of radius a executing rectilinear oscillations of small amplitude, 
with velocity uoe i~'t along the xcaxis, in an unbounded incompressible micropolar fluid. 
We assume that  at large distances from the sphere, the fluid is at rest. Therefore, the far 
conditions are 

u = v  = 0 .  (4.1) 

I t  is seen from (3.13), (3.14) or from (3.20) that  the conditions at infinity imply that  

B = C  = E = 0 .  

With the help of 
implies 

these results, 

(4.2) 

the condition u(t) ~ (Uo ellt, 0, 0) on the surface r = a 

e -a'~ D + e -an F = (47eauo, 0, 0) (4.3) 

and 
. . . .  [4~a% ) 

1 ( a m + l )  e-~mD 1 ( a n + l )  e ~ ' ~ F + H = \  3 , 0 , 0  (4.4) 
m 2 Tb 2 

from (3.13) and (3.20) respectively. Also, the condition of zero microrotation on the surface 
when applied to (3.14) gives 

1 
[(# + ~) m z -- i2~)] (am -~ i) ~-~ e-~mD 

1 
- -  - -  e-anF = (0, O, 0). (4.5) ~- [(# + ~) n 2 i).e] (an -~ 1) n s 

Equations (4.3), (4.4) and (4.5) can be solved for D, F and H to give 

47~auo[(# -~ ~) n 2 --  i2~] (an + 1) m s 
Ol = e am, (4.6) 

(n -- m) [a(# q- ~) m2n 2 q- i2~(amn + m q- n)] 

- 4 ~ a u o [ ( ~  + ~) m s - i,~e] ( am + 1) n ~ 
ie~ = e a",  (4.7) 

(n -- m) [a(/t q- u) m2n 2 q- i2Q(amn q- m -- n)] 

4 4;rauo([~ q- z) (am ~, 1) (an + 1) (m -~ n) 
H~ = --  za3uo + 

3 a(# -~ ~) m2n s + i2~(amn -~- m + n) 
(4.8) 
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All other components of D, F and H are zero. Substituting these values of the constants 

in (3.28) the force on the sphere is given by  

[ 2 6 i )~o:~auo(#d-~) (amd-1) (an4=l ) (md-n) le i~ .  t 
/* = --  i2~a~u~ -- a(# @~ ~r m2n 2 + i/~(amn d- m + n) (4.9) 

/5 - : / ~  = O. 

The entire preceding analysis can be specialized so as to apply to a purely viscous flow. In  
this case we must  discard the microrotational aspect of flow. Consequently we work only 
with Eqs. (2.1), (2.3) and (2.4) with ~ = 0. A comparison of (2.4) with (3.7) suggests tha t  
either ]m[ or In I must  be chosen arbitrarily large. Then letting, say, In] approach infinity, 
m is determined by  

m 2 --  = 2d2i. (4.10) 
# 

In  view of these considerations, (3.14) becomes redundant and Eqs. (3.13), (3.20) and 
(3.28) undergo obvious modifications. Either applying these modified equations or letting 
n -> cc in (4.9), we obtain the well-known drag formula for a Newtonian flow, Lamb [5, 
p. 644] : 1) 
drag -- 3 :~~ + ~ dt -- 3~)'~aS -~d + ~ u~, (4.11) 

where u~ = Uoe i'~t. 

To extract  some further useful information from formula (4.9), we first recast it in the 
following equivalent form: 

/~ - -  3 z~oaa -c -~- - ~  - -  3z2oa a u 1 , (4.12) 

where 

A = 2 # § s {;op I m  [(am d- 1) (an + 1) (m § n) ( a ~  + ~ d- ~)] 
a 2 

§ a(# § ~) 1% [(am + 1) (a~ + 1) (m + ~) m ~ ] } ,  (4.13) 

# d- ~ {2 e Re [(am d- 1) (an d- 1) (m d- n) (a~fi d- m d- n)] B 2--fi-- 

- -  a(/~ d- ~) I m  [(am d- 1) (an -~ 1) (m + n) ~ e ~ ] } ,  (4.14) 

D = a2(~ + ~)2 imenu I + Xue~ ]amn -~ m 4- n I 

d- 2a(# @ z) 2 e I m  [ ( a ~  @ ~ @ ~) m2n2]. (4.15) 

We note the analogy of (4.12) with (4.11). This suggests that  like the viscous fluid, the first 
term in (4.12) gives the correction to the inertia of the sphere in the micropolar case. This 
amounts  to the fraction 

1 9 A 
y + u ~ (4.16) 

of the mass of fluid displaced, instead of 1/2 as in the case of a frietionless liquid. The 
second term in each of these formulas gives the respective frictional force varying as the 
velocity. 
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Next,  we derive from (4.9) a formula for the drag on a sphere moving rect i l inearly with 

uniform velocity in a micropolar fluid. To do this, we first rewrite (3.8) and  (3.9) as follows : 

m ~ + n  2 = i 2 o  # i + u I + y  

2~ + i2~I 
m'2n 2 ~ i2Q L 2 

~(2/~ + ~) 

where 

L 2 __ z(2# + z) 
~(# + ~) 

+ L  2, (4.17) 

(4.1s) 

(4.19) 

Using (4.18) in (4.9) and then  let t ing the period 2~/2 become infini tely long, we obta in  the 

necessary formula : 

6~au0(# + ~) (2# + ~) (aL + 1) 
/1 = (4.20) 

2 ( ~ + z )  a L + 2 u +  

I n  calculat ing the above limit,  we used the fact tha t  as 2 -~ 0, 

lira (m 2 + n 2) = L 2 and  lira (m2n 2) = O, (4.21) 

so t ha t  we may  take, say, m ~ L and  n 0. 

On set t ing ~ = 0, we recover the corresponding formula for the the Newtonian  fluid, 

Lamb  [5, p. 644]: 

drag ~ --6:~aktuo. (4.22) 
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