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Abstract. We give sound and complete proof systems for a variety of bisimulation 
based equivalences over a message-passing process algebra. The process algebra 
is a generalisation of pure CCS where the actions consist of receiving and sending 
messages or data on communication channels; the standard prefixing operator 
a.p is replaced by the two operators c?x.p and c!e.p and in addition messages can 
be tested by a conditional construct. The various proof systems are parameterised 
on auxiliary proof systems for deciding on equalities or more general boolean 
identities over the expression language for data. The completeness of these proof 
systems are thus relative to the completeness of the auxiliary proof systems. 

1. Introduction 

In standard or pure process algebras processes are described in terms of their 
ability to perform atomic unanalysed actions. For example 

P ~ a.P + b.c.P 

describes a process which can continually either perform the action a or the 
sequence of actions b, c. By a message-passing process algebra we mean a process 
algebra in which these actions are given some structure; namely the reception or 
emission of data values on communication channels. Thus 

Q ~ c?x. i f  x > o then d!x.Q else c!(x + 1).Q 
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describes a process which can cyclically input a value along the channel c and 
either output it along the channel d unchanged or output its successor along c, 
depending on whether or not the value concerned is greater than or equal to 0. 

The standard approach to providing a semantic basis for these message- 
passing algebras, advocated for example in [Mi189], is to translate them into an 
underlying pure algebra. The central feature of this translation, mapping p to 
[[p], is that the input expression c?x.p is mapped into the term 

c?v.~[v/x]]l 
rEVal 

where Val is the domain of all data values. Thus the translation of the process Q 
above is 

R ~ Z c?n.d!n.R + Z c?n.c!(n + 1).R 
n>0 n<O 

This may be taken to be a description in a pure process algebra where we assume 
that for each channel name c and for every data-value v, in this case every integer, 
there are atomic actions c?v and c!v. 

There are two disadvantages in this approach. The first is that descriptions 
which are in some intuitive sense finite are translated into processes which are 
inherently infinite, at least if the domain of possible values, Val, is infinite; 
it is necessary to have in the underlying pure process algebra a summation 
operator Z1 where I has the same cardinality as the value domain. Such process 
algebras are difficult to use. For example the standard algorithms and verification 
tools, see e.g. [CPS89], do not apply and equational reasoning is difficult since 
any proof system based on this approach is of necessity infinitary. The second 
disadvantage is that with such translations uniformities which exist in the object 
description disappear in the translation. For example the subsequent behaviour 
of Q above after the reception of an input v is described functionally by the term 
2x.if x > 0 then d!x.Q else c!(x § 1).Q. This uniform treatment of inputs is not 
apparent in the translation, R. Although the notion of uniformity is difficult to 
define precisely, it should play a central role in proving properties of message 
passing systems. The object of this paper is to develop a semantic theory of 
message-passing processes which takes advantage of this uniformity. In particular 
our semantic theory will apply directly to the syntax of message-passing processes 
and will not be mediated by a translation into an infinitary language. As a result 
the associated proof systems will be in some sense finitary. 

Such theories already exist for value-passing processes. In [HeI93] a fully- 
abstract denotational model is presented while in [Hen91] a sound finitary proof 
system is given which is also complete for recursion free processes. However all 
of  this work is with respect to a particular behavioural equivalence called testing 
equivalence, [Hen88]. Here we wish to consider an alternative and much finer 
behavioural equivalence, bisimulation equivalence from [Mi189]. The main result 
of the paper is a series of sound and complete proof systems, with respect to a 
range of bisimulation based equivalences, for a recursion free message-passing 
process algebra. 

For most of the paper we restrict our attention to a very simple language which 
consists essentially of a notation for the empty process, nil, a choice operator -I- 
and action prefixing; other operators such as forms of parallel or restriction can 
easily be accommodated. However, when actions take the form c?x and c!e, in 
order for the language to be of interest we also need to be able to test data and 
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branch on the consequences of the test. Syntactically this could be represented by 
an i f  b then . . .  else . . .  construction, where b is a boolean expression, but instead 
we use the simpler notation of guarded commands, b ~ t. Thus 

c ? x . ( x = O ~ d ! O . n i l  + x > O ~ d ! l . n i l )  

is a process which inputs a value on c and outputs 0 on d if the input is 0 and 1 
if it is greater than 0 and does nothing otherwise. In order to reason about these 
kinds of processes it is necessary, in general, to reason about data expressions. 
So following [Hen91] we design a proof system whose judgements are guarded 
equations of the form 

b l > t = u  

where b is a boolean expression and t, u are process terms that may contain free 
data variables. Semantically this should be read as "under any evaluation of free 
data variables that satisfies b, t is semantically equivalent to u". The completeness 
of the proof  system is thus relative to that for the data domain involved. Moreover 
rather than getting embroiled in the details of an actual proof system for data 
expressions we simply assume the existence of some all powerful mechanism for 
answering arbitrary questions about data. On the one hand this enables us to 
concentrate on the behaviour of processes and on the other it reflects what would 
be a reasonable implementation strategy for a proof system based on our results; 
the main proof  system would be based on the proof  rules whose applicability is 
determined by the structure of processes and this main system would periodically 
call auxiliary proof  systems to establish facts about data expressions. A simple 
example of  a proof  rule from the main system is 

b l > t i = u  i i = 1 , 2  
b l > t l + t 2 = u l + u 2  

while 
b ~ e = e  t, b t > t = u  

b [> c !e.t = c !d.u 

is a rule which depends on a call to an auxiliary proof system concerned with the 
data domain; this is expressed in rather abstract terms, one of the antecedents 
referring to the semantics of the expressions b, e and e'; as we shall see b ~ e = e I 
is true if the intended meaning of the boolean b always implies the intended 
meaning of e equals that of e'. Of course the reasoning about processes can not 
be completely divorced from the reasoning about data and an example of where 
they interact is the cut rule 

b ~ bl V b2, bl l> t = u b2 l> t = u 
b D t = u  

This enables a proof to be developed by case analysis on the data. 
The soundness of  such a proof system depends on having a semantic equiva- 

lence for processes and as we have already stated in this paper we are interested 
in bisimulation-like semantics. As a starting point we use strong bisimulation, 
[Mi189], but as has been pointed out in [MPW92, HeL92] there are at least two 
natural generalisations of this equivalence to message-passing processes. The first, 
called early strong bisimulation equivalence, is based on the ability of processes to 
perform actions of  the form c?v and c!v while the second is based on the slightly 
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more abstract actions c? and c!e. Thus the processes 

c?x. even(x) ~ P + c?x. odd(x) --~ P 

and 

c ?x.P + c ?x.nil 

are identified by the early version of the equivalence but are differentiated in the 
late case because the c ? move from the first to the abstraction 

2x. even(x) ~ P 

can not be matched by a corresponding c? move from the second. Each of these 
generalisations of strong bisimulation equivalence has a corresponding "weak" 
version in which internal moves are abstracted. Thus in all we have four reasonable 
semantic equivalences and for each of these we present a corresponding proof 
system. In the strong cases the difference between early and late is simply the 
addition of an axiom, or more correctly an axiom schema, adapted from that 
used in [PaS93] for the 7z-calculus. On the other hand the weak version of both 
equivalences can be obtained by adding to the corresponding proof  system the 
standard z-laws from [Mi189]. 

The judgements of the proof systems involve open process terms, i.e. terms in 
which data variables need to be instantiated before any operational significance 
can be associated with them, but the observational equivalences are only defined 
on closed terms. Therefore in order to even express the soundness and complete- 
ness of the proof  systems we need to generalise these equivalences to open terms. 
For each of  these semantic equivalences, -~, we design a proof system with the 
property that 

b 1> t = u if and only if tp ~ up for every evaluation p satisfying b 

As usual establishing soundness is straightforward but completeness requires 
some ingenuity. Here we use the approach of [HeL92] and introduce symbolic 
versions of each of the semantic equivalences which are defined directly on 
open terms. These are expressed in terms of families of relations over open 
terms parameterised on boolean expressions and we show that, for each semantic 
equivalence _ we consider, 

t ~b u if and only if tp ~-- up for every evaluation p satisfying b 

Thus soundness and completeness of the proof systems can be established relative 
to the symbolic semantic relations ~b. Using this approach the completeness theo- 
rems in particular now become "symbolic versions" of the standard completeness 
theorems of [Mi189], although the details are somewhat more complicated. 

We now give a brief outline of the content of the remainder of the paper. 
In the next section we define the simple language, give it a concrete operational 
semantics and define (early) strong bisimulation. This is followed by a discussion 
of the proof  system for proving processes bisimilar. We state the soundness 
theorem for the system and indicate the difficulty in proving completeness. In the 
following section, Section 3, we define the symbolic semantics and the associated 
symbolic bisimulation equivalence and prove that it captures precisely the concrete 
bisimulation equivalence over processes. We then use this result to show the 
completeness of the proof  system. 

In Section 4 we repeat these results for weak bisimulation equivalence where 
again it is necessary to develop an appropriate definition of weak symbolic equiv- 
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alence. The following section outlines correslSonding results for a late operational 
semantics and considers both the strong and weak cases. We end ]by discussing 
briefly how to extend these results to other language constructs. We believe that 
a suitable form of Unique Fixpoint Induction can also be elaborated which will 
lead to a very useful and powerful proof system for recursively defined processes. 
However this we leave for future work. 

1.1. Related Work 

We end this section with a brief discussion of related work. As stated previously 
the approach we have taken is based on that of [Hengl] where a sound and 
complete proof system for testing equivalence is developed. Here we tackle various 
bisimulation based equivalences and an essential ingredient of the Completeness 
theorems is the notion of symbolic bisimulation equivalence. This has already been 
used in [HeL92] to develop an algorithm for checking whether two message- 
passing processes are equivalent and in [HeL95] for developing a proof system 
to verify that such processes satisfy properties described by fornmlae from a 
first-order modal logic. 

The more standard approach to message-passing processes is to translate them 
into "pure processes" as outlined at the beginning of this section [Mi189, HoR86]. 
Indeed in [Bur91] a front-end for the Concurrency Workbench is described which 
translates message-passing processes from a language such as ours into "pure 
processes" which can be accepted by the Concurrency Workbench and various 
examples treated using this approach may be found in [Wa189]. However these 
approaches require the set of values to be finite and even using the boolean value 
space of two elements leads to an exponential blow-up in the size of descriptions. 
We hope that with our approach at least some of this complexity can be avoided. 
In [Lin93] an extension of the PAM verification system, [Lingl], based on our 
results, is described. It offers much the same functionality as the the original 
PAM except that message-passing process algebras can be defined and the proof 
elaboration scheme is more flexible. 

In [GrP90] a very general language for describing message-passing, based on 
ACP, is described and in [GrP91] a proof theory is given. Although these goals 
are quite similar to ours their approach is very different. A modular algebraic 
specification language is used to describe data domains and the description of 
processes is such that it may be viewed as consisting of another module. They 
continue to view message-passing processes as universally quantified versions of 
"pure processes", the quantification being over the domain of messages, but they 
bring to bear the general framework of algebraic specifications in order to handle 
proof theoretically this quantification. Nevertheless it would be interesting to 
compare the two approaches. 

Recently, proof systems for late and early strong bisimulation equivalences 
over the re-calculus, [MPW92], have been given in [PaS93]. Indeed it is from 
this paper we have borrowed our axiom for the early version of bisimulation 
equivalence. At one level the ~-calculus may be viewed as a particular instance of 
a message-passing calculus, where the data-type of messages is the very simple one 
of channel names. Viewed in this manner our proof systems could be adapted for 
the re-calculus and, because of the simplicity of the domain of messages, our proof 
rules involving the semantic domain of messages would be very simple. But certain 
uses of channels, in particular their use with the restriction operator to generate 
private names, means that in fact the re-calculus is strictly more powerful than our 
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notion of a message-passing calculus specialised to the case where the messages 
are channel names. However this extra complication is adequately provided for 
in the proof  systems of [PaS93]; these achieve much of their power from the 
blurring of variables and constants which occurs in the re-calculus. 

2. A Simple Language 

The language we consider can be given by the following BNF grammar  

t ::= nil [ a.t [ t + t  I b- -* t  
e ::= z I c?x I c?e 

where b is a boolean expression, e data expression, c is a channel name and x a 
data variable. So this syntax assumes a predefined set of  channel names, Chan, 
ranged over by c and a set of  data variables, DVar, ranged over by x, y, . . . .  More 
importantly it also assumes a language for data expressions DExp, ranged over by 
e, e' . . . .  and a similar language BExp, ranged over by b, for boolean expressions 
with the usual set of  operators V, A, ~ ..... At the very least we assume that 
DExp contains the set of  data variables DVar and also a set of  data values Val 
and for every pair of  data expressions e, e' we assume that e = e' is a boolean 
expression. We also assume that all free variables in boolean expressions are 
data variables. Apar t  from this we do not worry about  the expressive power 
of  these languages although the results on symbolic bisimulations require that 
the language for boolean expressions is very powerful; sufficiently expressive to 
characterise arbitrary collections of  evaluations. 

An evaluation, p is a mapping from D Var to Val and we use the standard 
notation p{v/x} to denote the evaluation which differs from p only in that it 
maps x to v. An application of p to a data expression e, denoted p(e), always 
yields a value from Val and similarly for boolean expressions; p(b) is either 
true or false. Thus we assume that evaluation of  data and boolean expressions 
always terminate and our approach is to work modulo these evaluations. We also 
assume that these evaluations satisfy standard properties; each expression e has 
associated with it a set of  variables fv(e) and, for example, if p and p'  agree on 
fv(e) then p(e) = p'(e). I f  an expression e has no variables, it is closed, then p(e) 
is independent of  p and we use [[e]] to denote its value. Similarly with boolean 
expressions. We will use the suggestive notation b ~ b' to indicate that for every 
evaluation p if p(b) is true then so is p(b'). Of course we could equally well say 
that b --* b' is a logical theorem but our notation emphasises the fact that we wish 
to  work modulo the semantics of  expressions. In line with this notation we use 
p ~ b 'to indicate that p(b) = true. We will also write b = b' for b ~ b' and b' ~ b. 

We will also" refer to substitutions, and assume that they satisfy the expected 
properties; we use e[e'/x] to denote the result of  substituting e r for all occurrences 
of x in e. More generally a substitution a is a mapping from data variables to 
expressions and we use ea to denote the result of  applying a to the expression e. 

Returning to the process language above, the prefix c?x binds the occurrence 
of x in the sub-term t of  c?x.t and we have as usual the sets of  free variables 
fv(u) and bound variables by(u) of a term u; of  course these depend in general 
on the variables in the data and boolean expressions contained in u. This leads to 
the standard definition of e-conversion, ---~, over terms and of substitution, t[e/x] 
denoting the result of  substituting all free occurrences of  x in t by e, and this 
relies on the definition of substitution in data expressions. A term is closed if it 
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1j 

z.p >e P 
c ! v  

c !e.p ----~e P 
c ? v  

c?x.t ,~ t[v/xl  
a ! 

P >eP 

a 

P 'e P', [[b]] = true 

implies 

implies 

where [[e]l = v 

c c Chan, v E Val 
a pr 

P + q  >e 
a ! 

q + P  >eP 
a pl 

b--* p )e 

Fig. 1. (Early) Operational semantics. 

$1 X + nil = X 
$2 X + X  = X  
$3 X + Y = Y + X  
$4 ( X + Y ) §  

Fig. 2. The axioms all.  

contains no free variables and these we refer to as processes, ranged over by p, q ..... 
Throughout  the paper  open terms refer to terms that may contain free occurrences 
of  data variables, but no process variables. Open terms are ranged over by t, u, . . . ;  
we give the following precedence to the operators (in decreasing order): ~ +. 

The standard operational semantics of  this language is given in Fig. 1. It 

consists of  a set of  binary relations, a~e, between processes, where a ranges over 
the set Act  = { z , c ? v , c ! v l v  ~ Val }. In [MPW92, HeL92] this is referred to as 
the early operational semantics as when input terms such as c?x.p perform an 
action the value received is immediately bound to the variable x. In Section 5 we 
will see a slightly different way of organising input actions where this binding is 
delayed. 

A symmetric relation R between closed terms is a strong bisimulation if it 
satisfies: (p,q) E R implies that for every a E Act  

whenever p a> e p' then there exists q a> e q' and (pr, q,) c R 

where a ranges over {z, c?v, c!v [v  c Val }. We use ~'~e to denote the largest 
(early) strong bisimulation. This relation generalizes naturally to open terms by 
letting t "~e u if[ tp ~'e up for any p. We then have 

Proposition 2.1. "~e is preserved by every operator in the language. [] 

By transition induction it can be easily shown that e-equivalent processes have 
the same transitions (up to e-equivalence): 

Lemma 2.1. I f p  --~ q and p a) e p~ then q a>e q, for some qr = p~. [] 

From this lemma it follows that e-equivalent processes are bisimilar: 

Proposition 2.2. If p --~ q then p ~e  q. [] 

We now consider a proof  system for deriving statements about  p ~e q- In 
general we will need to consider open terms because in order to prove a statement 
such as c?x.t = c?x.u it is necessary to relate the open terms t and u. Also because 
we allow testing of data we will need to establish statements relative to a boolean 
expression b. Thus the judgements are guarded equations of the form 
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EQUIV 

EQN 

C O N G R  

true l> t = t 

true I> ta = ua 

b r > t = u  
b I > u = t  

b t > t = u , u = v  
b ~ > t = v  

t = u is an axiom 

b I> ti = ui i = 1, 2 

b Dtl--}-t2=-Ul+U2 

a-CONV true 1> c?x. t  = c?y . t [y /x]  Y ~ f v ( t )  

b I > t = u  
I N P U T  b ~> c?x. t  = c?x.u x q~ f v ( b )  

b ~ e = d ,  b ~ > t = u  
O U T P U T  

b 1> e!e.t  = c!e' .u 

b ~ > t = u  
TAU 

b I> z.t = z.u 

b A b' ~> t = u b a r b  t r> nil = u 
G U A R D  

b t > b ~ t = u  

b ~ b l  v b 2 ,  ba ~ > t = u  b2 l > t = u  
CUT 

b I > t = u  

ABSURD  
f a l s e  I> t = u 

Fig. 3. The inference rules. 

b t > t = u  

where b, the guard, is a boolean expression. For brevity we usually write t = u 
for true r> t = u. 

The basis for the proof  system are the standard set of  equations for strong 
bisimulation equivalence over C C S ,  [Mi189], given in Fig. 2. The rules for the 
proof  system are given in Fig. 3; in the rule EQN a is any mapping from 
process variables to process terms. Note that reference is made to the semantics 
of  data expressions in the O U T P U T  rule, for establishing identities of  the form 
c!e.t  = cIe'.u, and in the CUT rule, which is used to perform proofs by case 
analysis. The rule G U A R D  also uses a case analysis; an identity of  the form 
b ~ t = u may be established by considering two cases, one when b is true and 
the other when it is false. This means that the development of  a proof  in this 
system, specifically the application of the O U T P U T  and CUT rules, requires the 
establishment of  facts about the data domain. These are the only two rules which 
rely on such facts but they can be used to derive other useful rules of  a similar 
nature such as 

C O N S E Q U E N C E  b ~ b ' ,  b' l > t = u  
b ~ > t = u  

The side condition, x ~ f v (b ) ,  in the rule I N P U T  is essential, as otherwise it 
would not be sound. It  could be used to prove 
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x = 1 I> c?x .c ! l .n i l  = c?x.c!x .ni l  

because 

x = 1 l> c ! 1.nil = c Ix.nil. 

With this side condition it is sound but not sufficiently powerful to derive all 
true identities between early bisimilar processes. For example the two processes 
discussed in the introduction 

c?x.  even(x)  ~ P + c?x.  odd(x) ~ P and nc?x .P  + c?x.nil  

are strong bisimulation equivalent but can not be proved equivalent using this 
restricted rule. 

To overcome this problem we adapt the axiom used in [PaS93] to characterise 
early strong bisimulation equivalence in the n-calculus to obtain the axiom 
schema: 

EA c?x. t  + c?x.u = c?x. t  + c?x.u + c?x(b  ~ t + -~b --* u). 

This is an absorption law. The process term c?x. t  + c?x.u can absorb the term 
c?x(b  --, t + ~b  --* u) for any boolean expression b. 

Let us write }.1 b E> t = u to mean that b I> t = u can be derived from these 
equations using the rules in Fig. 3. 

The soundness of }.1 is given by the following proposition: 

Proposit ion 2.3. I f  }.t b 1> t = u and p ~ b then tp m e up 

Proof .  The proof  is by induction on the derivation of  b }.1 t = u and a case 
analysis on the last rule used. [] 

The converse to this is also true but the proof  is far from straightforward. 
The problem arises because ~e is only defined on closed terms whereas the 
proof system manipulates open terms. So there is no straightforward way to 
use structural induction on terms. Instead we develop a symbolic  version of 
bisimulation equivalence for open terms which captures the standard bisimulation 
equivalence on all instantiations and then prove completeness with respect to this 
symbolic version. 

Symbolic bisimulations are the topic of the next section and we finish the 
present section with some useful facts about the proof  system, mainly concerning 
the guard construct: 

Proposit ion 2.4. 

1. t-l b ---~ bl --* t = b A bl ---~ t 

2. }.l t = t + b - - * t  

3. b ~ b  ~implies}-lb I > ~ = b ' ~ t  
4. } - lbAb '  l > t = u i m p l i e s } - l b  l > b ' ~ t = b ' ~ u  

5. } - l b ~ ( t + u ) = b - * t  + b ~ u  

6. }. l b --~ u + b' ---~ u = b V b~ ---~ u 

7. if f v ( b )  C~ by(a) = 0 then }-2 b ~ a.t = b --* a.(b ~ t) 

Proof .  As examples we prove two of these statements. 

�9 2. Because true ~ b A - , b ,  by the cut rule it is sufficient to prove the two 
statements 
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~-l b ~> t = t + b ---, t and ]--1 ~b l> t = t + b --* t 

The first is derived by an application of the equation $2 and ~-1 b I> t = b ~ t. 
This in turn is established by the G U A R D  rule applied to 

~ - l b A b  l > t = t  and b a r b  l > t = n i l  

which are simple consequences of  EQUIV and A B S U R D  respectively. 
The second statement above is derived by an application of S1 and 

~-I --,b 1> b ~ t = nil 

This in turn is an easy consequence of the G U A R D  rule. 

�9 7. Two applications of  G U A R D  and two of A B S U R D  reduce this to 

~-1 b I> a.t = a.(b ~ t) 

The proof  now depends on the nature of  a. For example if it is c?x we know 
that x ~_ f v (b )  and therefore by I N P U T  it can be reduced to ~-1 b I> t = b ~ t 
which in turn follows from 3. 
I f  a is z or c!e the derivation is even more straighforward. [] 

As an illustration of  the usefulness of  this proposition we use it to drive a 
generalisation of the axiom EA: 

Lemma 2.2. I f  bl V b2 : b and bl A b2 = f a l s e  then 

~-1 b ~> c?x.t  + c?x.u = c?x.t  + c?x.u + c?x(b ---> t + ~b --> u) 

P r o o f  By a-conversion we may assume x f~ fv(b) .  Since bl A (b2 V ~b) = false  
and bl V (b2 V -~b) = true, applying EA we have 

~-1 c?x.t  + c?x.u = c?x.t  § c?x.u + c?x.(bl --~ t + b2 V ~b ~ u) 

Hence, using Proposition 2.4, 

F-1 b I> c?x.t  + c?x.u 
= c?x.t  + c?x.u + c?x.b ~ (bl --* t + b2 V --b ~ u) 
= c?x.t  + c?x.u + c?x.(b A bl ~ t + b A (b2 V -,b) ~ u) 
= c?x.t  + c?x.u + c?x.(bl --~ t + b2 ~ u) [] 

3. Symbolic  Bisimulations 

The reader is refered to [HeL92] for motivation and discussion on symbolic 
bisimulations. Here we adapt  the definitions, which were originally given for 
symbolic graphs, to our language. 

The abstract or symbolic transition relations are defined to be the least set of  
b,~ 

relations which satisfy the rules in Fig. 4. They take the form of relations 
between open terms, where b is a boolean expression and a is a prefix, i.e. it has 
one of  the forms ~, e?x or c !e. Intuitively b acts like a guard: it enables the move 
when it is true. The bound variable used in the symbolic input transitions is not 
significant as the following lemma emphasises: 

Lemma 3.1. 

1. I f  t b,~ y then f v (b )  ~_ fv ( t ) ,  by(a) N f v ( t )  = 0 and f v ( t ' )  ~_ f v ( t )  U by(a). 
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true~ 
e.t ---+ t ~ E { z ,c!e  l c ~ Chan, e c Exp  } 
c g.x.t  true,c?y , t[y/x] y q~ fv(c?x . t )  

b',c~) tl bAb',>~ tl t implies b --+ t 
b,c~ tt b,c~) t* t ~ implies t -I- u 

u + t  b,~ t~ 

Fig. 4. Symbolic operational semantics. 

b,c ?x tt b,c ?y 
2. I f  t , then t , t ' [y/x]  for any y ~ fv( t) .  

Proo f  By transit ion induction. [ ]  

The symbolic actions can be related to the concrete actions in the following 
manner :  

Lemma 3.2. 

r b,z) tl" 1. I f  tp 'e P then there exist b, t' s.t. p ~ b, p - ~  t'p and t 
b,z ) z 

2. I f  t t ~, p ~ b then tp )e P for some p - t'p. 

Lemma 3.3. 

1. I f  tp c!v b,c!e tr" )e P then there exist b, e, t r s.t. p ~ b, p(e) = v, p =~ t'p and t 
b,c !e 

2. I f t  ~t r, p ~ b t h e n t p  c!v ~e P for some p ~ tr p where v = p(e). 

Lemma 3.4. 
c?v 

1. I f  tp ~e P, x ~ fv ( t )  then there exist b, t r s.t. p ~ b, p =~ t 'p{v /x}  and 
b,e?x tr" 

t 
b,c ?x 

2. I f  t , t', p ~ b then for any v c Val tp c?V,e P for some p - ~  t 'p{v /x} .  

Proo f  These lemmas can be proved by induction on the derivation o f  transitions. 
As an example we prove L e m m a  3.4. 

c ?v 
1. Apply  induct ion on why tp )e P. 

�9 (c?y.u)p e?~ ~ e up{v /y} ,  x ~ f v(c ?y.u). Then c ?y.u tr,e,cTx " ~ u[x/y]  and up{v /y}  - ~  
u [x / y ]p{v / x } .  

c?v c?v 
�9 (b "--+ u )p  "--'+e P is because p ~ b and up ~e P. By induction there exist b', t' 

b',c?x t," bAb',c?x tl 
s.t. p ~ b', p - ~  t ' p{v /x}  and u , Hence b -+ u ~ and p ~ b A b'. 

c ?v c ?v 
�9 up + q - - - %  p is because up )e P. Similar. 

b,c?x tt" 
2. Apply  induct ion on why t 

true,c ?x c ?v 
�9 c?y.u , u[x/y] ,  x ~ fv(c?y.u).  We have (c?y.u)p 'e u[v/x]p =-~ 

u [ x / y l p { v / x } .  

�9 b --+ u is because u ~ Since p ~ b A b', p ~ b". By induct ion 
c?v c?v 

u p  > e P =~ t' p. Hence (b -+ u)p ' e P. 
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�9 t + u b,c?~ tl is because t b,c?~ ft. Similar. [] 

Based on these symbolic actions we can define gS~N, (early symbolic bisim- 
utations), which, for reasons explained in [HeL92], must be parameterised on 
boolean expressions. A finite set of  boolean expressions B is called a b-partition 
i f V B  = b .  Let S = {S b I b E BExp}  be a family of relations over terms, in- 
dexed by boolean expressions. Then gYN(S)  is the family of symmetric relations 
defined by: 

bl,~ tl (t, U) 6 gSPN(S) b if whenever t with by(a) n fv(b, t, u) = 0, there is a 

b A bl-partition B with the property that for each b' e B there exists a u b2,r u' 
such that b' ~ b2 and 

1. if e = c !e then c~' = c !e', b' ~ e = e / and (t', u') E S b' 
2. otherwise e = c~ ~ and (t ~, u/) 6 S b' 

Definition 3.1. (Symbolic Bisimulations) S is an (early) strong symbolic bisimula- 
tion if S _ gS~ where _c is point-wise inclusion. 

Let "~E = { ~  } be the largest (early) strong symbolic bisimulation. 

The interest in symbolic bisimulations lies in the fact they are defined with 
respect to the abstract operational semantics, which for finite terms can be 
represented as a finite transition graph; in contrast the standard "concrete" 
bisimulations are defined over infinite transitions graphs, at least if the set of 
values is infinite. In [HeL92] we give an algorithm for checking for this symbolic 
equivalence. Here we use it to show completeness of  the proof  systems. First we 
relate symbolic and concrete bisimulation equivalence. 

Theorem 3.1. (Soundness and completeness of ~E) 
t ..~b u iff tp ".~ up for every evaluation p such that p ~ b. 

Proof (Outline) The proof  follows the corresponding result in [HeL92], Theorem 
6.5; it consists in establishing a relationship between symbolic bisimulations and 
concrete ones. If  S = {S b} is a strong symbolic bisimulation let 

R S = { ( t p , u p )  r3b, p ~ b a n d ( t , u )  c S  b}. 

Soundness follows immediately if we can prove that R S is a bisimulation. Con- 
versely if R is a strong bisimulation let 

S b = {(t,u) ip ~ b implies (tp, up) E R} 

for any boolean expression b. Completeness follows, as in [HeL92], if we can 
show that S = {S b} is a symbolic bisimulation. 

The proof of these two subsidiary results depends on the relationship between 
the abstract actions to the concrete actions given in Lemmas 3.2, 3.3 and 3.4. The 
details are similar to Theorem 4.2. [] 

With this theorem we can now return to the proof  system and show its 
completeness by proving 

t ~b u implies F-1 b I> t = u (*) 

This provides the converse to Proposition 2.3. The proof  of (*) follows the 
standard proof  of the corresponding "concrete" result, as given in [Mi189], except 
that now we work at the symbolic level. It is by induction on the size of terms 
which is defined as follows: 
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1. I nil  L = 0 

2. I t + ~ l =  max{Itl,  I ~1} 
3. [ b - * t l = l t l  
4. ] c ~ . t [ = l + ] t l  

We also need the notion of normal form: 

Definition 3.2. t is a normal form, or in normal form, if it has the form Eibi ~ o:i.ti 
and each ti is in normal form. 

Lemma 3.5. For every term t there exists a normal form t' such that fv ( t )  = 
f v ( t ' ) , l t [ =  I t ' [  and 1.1 t = t'. 

Proof. By structural induction on terms using the elementary facts about the 
proof system given in Proposition 2.4. [] 

The following generalisation of the axiom EA will be useful in the exposition 
of the completeness proof. 

Proposition 3.1. For any finite non-empty collection of booleans { bi I 1 < i N n }, 
such that ViEI bi = b and bi A bj = fa l se  for i @ j, 

1.1 b t> E c?x.ti = E c?x.ti + c?x. E bi ~ ti 
l <_i<_n l <_i<_n l <_i<_n 

Proof. By induction on n. The base case is trivial. Now assume the result for 
n - 1  with n > 1 and let b' i = bi for 1 _< i < n - 1  and b'n_ 1 = b n - l V b n .  
Then Vl_<i<,-1 b'i = b, b' i A b) = false for i # j, and (Vl_<i_<~-I bi) A b' i = bi for 
1 _< i _  n -  1. We have 

1-1 b ~> E c?x.ti 
l <i<n 

= E Cg'X'ti d- Cg.X.tn 
l<_i<_n-1 

= E C?X'ti "~ C?X.( E bri -* ti) + c?x.tn 
l <_i<_n--1 l <_i<_n--1 

Lemma 2.2 
= E c?x . t i+c?x . (  E b ' i ~ t i ) + c ? x ' t n  + 

l <i<n-1 l <i<n--1 

C?X.((Vl_<i_<n_ 1 bi ~ ~ b'~ ~ ti) + bn ~ tn) 
l<_i<_n--1 

Prop 2.4 
--  E Cg'X'ti-Jr C?X.( E b'i --* ti) + c?x.tn + 

l <_i<_n-1 l <_i<_n-1 

c ?x.( } 2  bi ~ ti + bn ~ tn) 
l<_i<_n--1 

= } 2  c?x.t, + c?x.( } 2  bl t,) + c?x.t  + 
l<_i<n--1 l<_i<_n--1 

C?X.( E bi --~ ti) 
l <_i<_n 

: 
l <<_i<<_n l <~i<n 

[] 
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Theorem 3.2. (Completeness of  1-1) t "~b E U implies 1-1 b I> t = u 

P r o o f  By induction on the joint size of  t and u. We may assume that both 
are normal forms, t = Ei~lCi -*  ai.ti and u =- Zj~adj  ~ flj .uj.  Call a prefix of  
type 7 6 { z , c ! , c ? [  c ~ C h a n }  if it has the form ~ ,c !e , c?x ,  respectively. Let 
I~ = { i ~ I  [ a z h a s t y p e ~ } , J 7  = { j c J l f i j h a s t y p e y }  and alsotT,u~ denote 
Eici, ci ~ cq.t~, Zj~j,  dj -~  f l j .uj  respectively. We show 1-1 b t> t 7 = u~ for each 

type 7. Clearly t7 ,,~b euT. Because of a-conversion we may assume that each input 
prefix in t~? and u~? uses the same variable x ~ f v ( t ,  u, b). We examine the cases 
7 = z and 7 = c? here and leave the case ~ = c! to the reader. 

�9 (Case ~ = z). 
By symmetry we need only to show 

1-1 b I> u~ + ci ~ "c.ti = Ur. 

for each i E I~. Note that 1-1 b A ~ci  t> ci ---, z.ti -= nil so by CUT it is sufficient 
to show 

1-1 b A ci t> uz + ci --+ "c.ti = Uz. 

Since 1-1 b A ci > ci --+ z.ti = ti this may be further simplified to 

1-1 b A ci I> u~ + z.ti = uz. 

Ci~T 
Now t~ -----+ ti. So there exists a b A ci-partition B such that for each b' c B 

there is u, ~ uj such that ~ dj and ti uj. By induction I-1 b' I> ti = uj. 
By TAU 1-1 b' ~> "c.ti = "c.uj. Since b' ~ dj we have 1-1 b' I> ti = dj --+ "c.uj 
and by $2 1-1 b' I> u~z.ti - -  uz. This is true for each b' in B and therefore an 
application of CUT gives the required 

1-1 b A ci t> uz + z.ti = u~ 

,, (Case 7 = c?). 
As in the previous case it is sufficient to prove that 

1-1 b A ci > Uc? + c?x.t i  = Uc? (1) 

for an arbitrary i ~ Ic~. 
For each L _ Jc?, let d L =  ( A j e L  dj )  A (Aj '~Jc , -L  ~dj , ) .  Then VL_~a? d L =  true 

and dL A dL, = f a l s e  for L @ L'. Using Proposition 2.4 we can derive 

1-1 Uc? = ~LcJc~(dL --+ ]~jELCq.X.Uj) (2) 

By CUT, (1) can be reduced to showing that, for each L, 

1-i b A ci A dL t> uc? = Ue? + C?X.ti 

which, by (2), can be further reduced to 

1-1 b A c, A dL t> Y.jcL C q.X.Uj -= ~.j~L C g.X.Uj q- C ?X.ti. (3) 

We show how to derive this for an arbitrary L. Note that by a-conversion we 
can assume that x does not occur free in b A c, A dL. 

Ci,C?X 
Since Uc? ~/~c,/Xd~ tc? and tc? > t~, there exists a b A c~ A dL-partition B such 

dJb , ,c ?x b' 
that for each b' E B,  uc? , ujb, for some jb' with b' ~ djb, and ti "~E Ujb'" 
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Without loss of generality we may assume the booleans in B are mutual 
disjoint, i.e. b 'A b" = f a l s e  for any b', b" ~ B. 

By induction, F1 b' t> ti = ujb, or, equivalently, Ft b' ~ ti = b' ~ u]~,. So 

[-1 Y'b'cB b~ --~ Ujb, = ~b'cB bl "-* ti 
= b A ei A dL --~ ti 

Hence Ft b A ci A dL I> Zb, esb'  -* ujb, = ti. Now, because x ~ f v (b  A ci A dL), 
we can apply INPUT to obtain 

F1 b A ei A dL D Cg.X.'Zb,cBb I ~ Ujb, = C9..x.ti (4) 

This identity can in fact be strengthened to 

F1 b A ci A dL r> C ?X.Zb'cB'b' ~ Ujb, = C ?X.ti (5) 

where B' = { b E B ] b --/= fa l se  }. The advantage of using B' in place of B is 
that b' c B' implies that jb' ~ L: we know b' ~ dLAdjb, and so dLAd]~, :p fa l se  
which because of the construction of dL immediately implies jb' E L. 

Therefore 

F1 
S2 

Prop. 3.1 

(5) = 

$2 

b A q A dL D ~jcLCg.X.Uj 

~ jc L  C g.X.Uj -it- ~b, cB, C ?X.Ujb , 

~jcLC?X.Hj -~- ~b,cB, C?X.Hjy -~- Xb,~B,C?x.b I --~ bijb , 

X jcL  C g.X.Uj -IV Xb, ca,C g.X.Ujb, ~- C ?x.ti 

E j c L e ? x . u j  + e g..x.ti 

This is the required (3) above. 

[] 

Our proposed axiom schema EA is very general since it allows us to introduce 
an arbitrary boolean expression b into a proof. In previous versions of this work, 
[?], we had a different approach; instead of the axiom schema EA we used the 
following rule schema: 

b I> EiEI z.ti = ~-~,j~J z.Uj 
E-INPUT b [:> ~-~icl C?X'ti = E j E J  C?X.Hj X ~ fv(b). 

This also is quite general but at least its application only depends on the structure 
of the terms in the proof being elaborated and is at least somewhat schematic. 

Note that the use of z in this rule is essential. For example the rule 

b r> Eicl ti = ~ . j~ j  Uj 
b I> ~ i c I  c?x.ti = ~ j ~ j  c?x.uj x ~ fv (b)  

is unsound. For example since (p + q) + r ~'~e P "-~ (q  -I- / ' )  for all processes p, q, r we 
could use this rule to derive 

e?x.(p + q) + c?x.r "~e c?x.p + c?x.(q + r) 

for which there are obvious counterexamples. 
With the help of GUARD and CUT, EA can be easily derived from E- 

INPUT. Hence the proof system obtained by replacing the axiom schema EA 
with E-INPUT is also complete. A direct completeness proof is also possible: 
The only change is to the last case examined in the proof of Theorem 3.2, when 
7 is c?. The details can be found in the proof of Theorem 4.3. 
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T1 c~. z .X = a.X 
T2 X + z .X  = z .X  
T3 ~ . ( X + r . Y ) + a . Y = a . ( X + z . Y )  

Fig. 5. The axioms d2.  

4. Weak Bisimulation Equivalence 

In this section we outline how to extend the results of  the previous two sections 
to so-called weak bisimulations. 

a 

The concrete double arrows ==~e, where a 6 {5, z, c?v, c!v}, are defined as the 
least relations between closed terms generated by the following rules 

�9 P==~eP. 
a a 

�9 P >e q implies P ==~e q. 
"~ /2 a 

�9 p >e==~e q implies p ==~ q. 
a ~ a 

�9 P ==~e >e q implies P =:=:>e q. 

The weak version of Lemma 2.1 holds: 

a qt for some ql ft. [] Lemma 4.1. If p _--~ q and p ~ e  pt then q ===~e ~-~ct 

Let ~ to be e when a = z, and a otherwise. The early weak bisimulation is 
then defined as usual (for closed terms): 

Definition 4.1. R is an early weak bisimulation if (p, q) E R implies 

a a qt ql �9 i f p  >e P' then q ~ e  for some such that (p~,q') E R. 

a a p' for some p' such that (p', q') c R. �9 if q >e q' then p ~ e  

Let ~e be the largest early weak bisimulation. 

The aim of this section is to extend the proof  system of Section 2 to weak 
bisimulation equivalence. However it is well-known that ~'e is not preserved by 
§ and so we have to work with the modified relation: 

Definition 4.2. Two closed terms p, q are early observation congruent, written 
P --e q, if for all a E {z,c?v,c!v} 

a a 
�9 Whenever p )e P' then q ~ e  q' for some q~ such that pl ~ e  qt. 

a q, a ~ ff ff qq �9 Whenever q >e then p ==:>e P for some such that ~e 

As usual m~. e is the largest congruence relation contained in ~e. This relation can 
be generalized to open terms by letting t ---e u iff tp ~e ufi for any p. We then 
have the standard result 

Proposition 4.1. ~'~e is preserved by all the operators in the language. [] 

To give a sound and complete proof  system for this relation, it is sufficient to 
add to the proof  system the equations d 2  given in Fig. 5. Let us use ~-2 b I> t = u 
to denote that b 1> t = u can be derived from the proof  system using the axioms 
sr and of course al l .  For the sake of variety in this section we work with the 
version of the proof  system which uses the proof  rule E - INPUT rahter than the 
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axiom schema EA; This will provide an opportunity of  outlining a proof  of  a 
completeness theorem involving E-INPUT, in contrast to the completeness proof  
of  the previous section which uses EA. 

The main result of  this section is 

Theorem 4.1. (Soundness and completeness of  }-2) 

t-2 b t> t = u if and only if tp ~e up for every p such that p M b. 

The soundness is straightforward, by induction on the length of the derivation 
of b I> t = u. The strategy for proving completeness is the same as in the strong 
case. We first develop a symbolic version of weak bisimulation and relate it to 
the concrete version. We then prove completeness with respect to this symbolic 
version of bisimulation congruence. 

First we define the symbolic double arrows as the least relations between open 
terms which satisfy: 

rrue,g 
�9 t ~ E t .  

b,a b,~ 
�9 t >u implies t ~ E u .  

b,z b',a bAb~,a 
�9 t > ~ E u  implies t ~ E u .  

b,~ b',z bAb',~ 
�9 t ~ e  >u implies t ~ e u .  

It  will be necessary to use a slight variation on these in the late case and therefore 
we use the index E to indicate that these are early weak symbolic moves. 

Concerning bound variables we now have 

b,c?x tt 
Lemma 4.2. I f  t - - ~ e  then fv(b)  ~_ fv( t )  U {x} and x ~ fv(t).  [] 

That  is, in a double input transition the input variable can appear  in the guard. 
The two versions of  double arrows can also be related as in the case of  single 

a r r o w s .  

Lemma 4.3. 

z :=~b,~ E tr" 1. I f  tp =::>e P then there exist b, t' s.t. p ~ b, p =-~ t'p and t 
b,~ 

2. I f  t --->e t', p ~ b then tp ~ e  P for some p =-~ t'p. 

Lemma 4.4. 

==~b,~ E t 1. 1. I f  tp =:::~e P then there exist b, t' s.t. p ~ b, p =-~ t'p and t 
b,~ 

2. I f  t - - - ~  t', p ~ b then tp ~ e  P for some p ~ t'p. 

Lemma 4.5. 

c!v b,c!e tt" 
1. I f  tp ~ e  P then there exist b, e, t' s.t. p ~ b, p(e) = v, p ~ t' p and t ~ e  

b,c!e c!v 
2. I f  t ----->e t~, P ~ b then tp ==~e P for some p =-~ t'p where v = p(e). 

Lemma 4.6. 
c.gv 

1. I f  tp :'e P, x ~ fv( t )  then there exist b, t' s.t. fv(b)  G fv ( t )  L2 {x}, p{v /x}  
b,c?x tt" 

b, p =~ t 'p{v /x}  and t ~ e  
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b,c ?x c ?v 
2. I f  t ==~E t', p{v /x}  ~ b then tp ==~e p for some p =-~ t 'p{v/x}.  

Proo f  The proofs  of  these four  l emmas  are quite similar and as an example  we 
prove L e m m a  4.6. 

1. We will prove a slightly s tronger  s ta tement:  
c ?v 

I f  tp ~ e  P, x r fv ( t )  then there exist b, b', t' s.t. fv (b)  ~_ fv(t) ,  p ~ b, 
bAb',c ?x t 

fv(b ' )  ~_ fv ( t )  U {x}, p{v /x}  ~ b, p - ~  t' p{v /x}  and t ==~E t .  
c?v 

The p roo f  is by induct ion on why tp ==~e P. 

c?v 
�9 tp ~e P. Immedia t e  f rom L e m m a  3.4 and the definition of  ---~E. 

c?v 
�9 tp  ~e q =:=~e P. By L e m m a  3.4 there exist b", t" s.t. p ~ b", q =~ 

btr,z t t /  t"p and t ; By L e m m a  3.1 fv (b")  ~_ fv(t) ,  f v ( t  t') c fv(t) .  Apply  
c ?v 

L e m m a  4.1 we get t"p pt ==~e - ~  p. So by induction 3b "t, b t, t t s.t. 

x ~ fv(b"t), p ~ b t't, p{v /x}  ~ b', p' =-~ t 'p{v/x}  and t" b"Ab',~Tx~E t t. Let 
bAb~'c?x t t. 

b = b 't A b t't then x r fv(b),  p ~ b and t ----~. ~ 
c?v z 

�9 tp ~ e  q ~e P. Similar to the previous case. 

b,c?x it . 2. By induct ion on why t ~ 

b,c?x ft. �9 t ~ Stra ightforward f rom L e m m a  3.4 and the definition of  ==~.  

b',v b",c?x tt b ~ A b'. �9 t ~ u  "-~ w i t h b - =  T h e n x q ~ f v ( b ' ) , s o p ~ b t .  By L e m m a  3.2, 

c?~ p, t tp{v/x}.  By L e m m a  4.1 tp ~ q ~ up. By induction up ~ e  =~ 
c?v c?v 

q = : ~  p -=~ p'. By the definition of  ~ e ,  tp ~ e  P =--~ t tp{v/x}.  

b',c?x b",z tt b t b". c?v �9 t ~ E  u ~ with b ~ A By induction tp ~ e  q =~ up{v/x} .  By 

~ ft. L e m m a  3.2 up{v/x}  ,~ p' =---~ t tp{v/x}.  By L e m m a  2.1 q 'e P - ~  
c.9v 

Therefore  tp ==% p -=~ tt p{v/x} .  

[] 

Now let S = { S b I b 6 Exp  } be a family of  relations over terms indexed by 
boolean  expressions. Then F ~ ( S )  is the family o f  symmetr ic  relations defined 
by: 

(t, u) E g ] ~ / ' ~ ( S )  b if whenever  t b~,~ t' with bv(~) V3 fv(b,  t, u) = 0, then there is 

b2,~: Ut a b A bl -par t i t ion  B such that  for each b' c B there exists a u =:=~E such that  
b t ~ b2 and 

1. i f a  -= c!e then ~' --= c!e', b t ~ e = e' and (t ' ,u t) E S b' 

2. otherwise ~ -= ~' and (t', u') c S b' 

Definition 4.3. (Weak Symbol ic  Bisimulations) S is a weak symbolic  bis imulat ion 
if S _~ ~ ( S )  

Let  ~ E  = {~b} be the largest (early) weak symbolic  bisimulation. 
Again  we have to modi fy  ~ so that  it is preserved by + :  
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Definition 4.4. Two terms t, u are symbolic observation congruent with respect to 
bl,c~ t' b, written t ~b u, if whenever t , with by(cO A fv(b, t, u) = 0, then there is 

a b A bl-partition B with the following property: for each b' E B there exists a 
b2,r u' b' u ---*'E such that ~ b2 and 

1. i f e  =- c!e then ~' =- c!e', b' ~ e = e' and t' ~b' u' ~ E  
b' U t 2. otherwise e -- ~' and t' ~E 

and symmetrically for u. 

Note that in this definition it is still essential to use partitions when matching 
moves. For example 

z.p ,~ue b ~ z.p + -~b ----* z.z.p 

true,z 
but the symbolic move z.p ~ p can not be matched properly by a single symbolic 
move from the right hand side. 

The two versions of weak bisimulation equivalence/congruence can be related 
as in the case of  strong bisimulation. 

Theorem 4.2. (Soundness and completeness of ~e  and ~--E) 

1. t ~b u, where fv(b) ~_ fv(t,u), if and only if tp ~e up for every p such that 
p ~ b .  

2. t ~b  u, where fv(b) c_ fv(t,u), if and only if tp me up for every p such that 
p ~ b .  

Proof. We only prove 1. The proof  of 2 is similar. 
( ~ )  Let 

R = {(tp, up) ] 3b, fv(b) ~ fv(t,u), p ~ b and t ~b u} 

We show R is a weak early bisimulation. 
Suppose (tp, up) E R, i.e. 3b, fv(b) c_G_ fv(t,u), p ~ b and t ~b  u. Let 

o 
tp ~e P. we must find a matching transition from up. There are three cases to 
consider. 

z bl,z) tt" �9 tp ~ep. B y L e m m a 3 . 2 ( 1 ) , 3 b l  and t s . t . p ~ b l ,  p=-~t 'p  and t 
So 3b A bl-partition B with the properties guaranteed by Definition 4.3. Since 

b2,e U! p ~ b A b t  and V B  = b A b l ,  ~b' c B s.t. p ~ b'. Let u - - -~e  be the 
b' symbolic transition associated with this b'. Then p ~ b2 and t' ~e  u'. By 

Lemma 4.4(2) up =:~e q =-~ u' p. Moreover (t' p, u' p) E R by the definition of 
R. Hence (p, q) c R. 

cTv 
�9 tp ~e P. By Lemma 3.4(1), 3bl, x, and t' s.t. x r fv(t), p ~ bt, p =-~ 

b~,c?~ tt" t 'p{v/x} and t We may assume x ~ fv(u). So 3b A bl-partition B 
with the properties guaranteed by Definition 4.3. Since p ~ b A bt and x 

b2,c?x Ut fv(b A bl), p{v/x} ~ b A bl. So 3b' ~ B, p{v/x} ~ b'. Let u ~ E  be the 
b' U I. symbolic transition associate with this b', then b' ~ b2 and t' ~a  Since 

c?v 
p{v/x} ~ b2, by Lemma 4.6(2), up ~ e  q -~  u'p{v/x}. Since p{v/x} ~ b' and 

b' t' ~E u', (t'p, u'p) E R. Hence (p, q) E R. 
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c ! v  
�9 tp ~e P. Similar. 

( ~ )  We show the boolean-indexed family of relations S = { S b I b E B E x p  } 
defined by 

S b = { (t, u) ] fv (b)  ~_ fv( t ,  u), p ~ b implies tp ~e up } 

is a weak early symbolic bisimulation. 
bt,~ tt" Suppose (t, u) E S b and let t consider three cases: 

bl,~ tt" �9 t We need to construct a b/k bl-partition B with the required properties. 
To this end we number all e-transitions from u thus 

b~,e . 
U ==*'E U 1, O < i < k 

For each i, let br[ be a boolean with the following properties: 

fv(b'i' ) c_ fv( t ,  u) 
p ~ b;' iff t'p ~e u'p 

Let b' i = b/~ bl /~ b~/~ bli I and B = { bli [ 0 < i < k }. We first show that B is 
a b/~ bl-partition, i.e. V B = b/k bl. By construction V B ~ b/k bl. Now we 
show b A bl ~ V B. 
Let p ~ b/~bl .  Then tp ~ up. By Lemma 3.2(2), tp ~ p =-~ tip. So 

there exists up = ~ e  q ~e P. By Lemma 4.4(1), 3b~, u i s.t. p ~ b~, q =~ 
�9 bi2~r" " II I t  

u'p and u ==~E u i. Then t'p ~e u'p. By the definition of bi, p ~ b i . Therefore 
p ~ b I. Hence p ~ V B. 

bi2'e ui 
It is easy to see that B has the required property: for any b' i c B, u ~ E  
with b I ~ bl I. Moreover (t', u i) E Sb'~ by the definition of bli ' and S. 

bbc?x tt" �9 t ~ We may assume x q~ fv(u) .  Similar to the previous case we number 
all weak c?x-transitions from u thus 

b~ ,c ?x . 
u ~ E u  ~, O < i < _ k  

For each i, let b ' /be  a boolean with the following properties: 

f . (~ . ,  = v u i ) _ f v ( t , u ) U { x }  
For any v, p{v /x}  ~ bli ' i f f  t 'p{v/x}  ~e uip{v/x} 

Letb '  i = b / ~ b l A b ~ A b ~ '  a n d B =  {b I I 0 < i < k } .  First we check that B is 
a b/~ ba-partition. Again V B ~ b/k bl by construction. To see b/x bl ~ B, 

c ?v 
let p ~ bAbl .  Then tp ~e up. By Lemma 3.4(1), for a n y v  6 Val, tp ~e 

c ? v  
p --~ t lp{v/x}.  So there exists up ==*'e q "~e P. By Lemma 4.6(1), 3bi2, u i 

b~,c?x U i. Hence s.t. fv(b~) E fv(u)  u {x}, p{v /x}  ~ bi2, q ==-~ uip{v/x} and u ~ E  
tI,o{v/x} ~ e  UiP{ t ) /X}  �9 From the definition of b'/, p{v /x}  ~ b'/. Furthermore, 
since p ~ b A bl and x ~ f v (b  A b~), p{v/x} ~ b A bl. Thereofre p{v /x}  ~ b' i. 
Hence p{v /x}  ~ V B. Since v is arbitrary, p ~ B. 
By the construction of B it is easy to see that B has the required porperty: 
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b~,c ?x 
F o r  any b' i E B, u ==>e u ~ and  b' i ~ b~. I f  p ~ b' i then p ~ b'/. r a k e  v = p(x), 
then p{v /x}  = p, so t' p ~'~e u i P  �9 Hence  (t', u i) E S b', by the defini t ion o f  B. 

bt,cIe tt" 
�9 t ~ Similar.  

[ ]  

We now turn  our  a t t en t ion  to the completeness  o f  the p r o o f  system. Firs t  we 
need the fol lowing genera l i sa t ion  o f  the ax iom T3: 

L e m m a 4 . 7 .  I f  f v (b)  Nbv(cO = 0 then [-2 e . ( X + b  --+ z.Y) = c c ( X + b  -+ 
v.Y) + b --+ e.Y 

Proof  Since X = X + b --+ X we need only to show 

[-2 b --+ c~.(X + b -+ r .Y)  = b --+ c~.(X + b --+ v.Y) + b --+ e.Y 

which can  be der ived  as follows (using Propos i t ion  2.4): 

[-2 b ---* e . (X  + b ---* r .Y )  

= b ~ ~.(b --* (X + b ~ r .Y))  (2.4.7) 

= b - ,  a.(b -*  (X + z.Y)) (2.4.5) 

= b --, :r + z.Y) (2.4.7) 

= b ---* (:~.(X + z .Y )  + a .Y)  (T3) 

= b ~ a.(X + z . Y )  + b ~ a.Y (2.4.5) 

= b ~ a .(X + b ~ z.Y) + b -+ a.Y (previous steps reversed) 

[]  

Comple teness  o f  the p r o o f  system will follow if  we can prove t ~ b  u implies  
[-2 b > t  = u. The  fol lowing two results are essential  to this p roof ;  they are  symbol ic  
versions o f  two results which also p lay  an essential  role in the comple teness  p r o o f  
for "pure"  CCS, [Mi189]. 

b,a tt ~__ L e m m a  4.8. (Absorp t ion)  I f  t ==~e with fv (b)  A by(e) = 0, then [-2 t t + b 
~X.t t. 

b,a tt " Proof  By induc t ion  on why t ----~e 

1. t b#> tr" 

true,a tt 
�9 ~'.tl > with ~'.tl -=~ ~.(. Use $3. 

b' Ab"~ tl b",~ 
�9 b' --+ tl because  tl > t'. By induc t ion  [-2 tl = tl -{- b" -+ ~.t'. So 

[-2 b' ~ tl : b' ~ (b" ~ a.t ')  
= b' ~ tt + b' A b" ~ a.t '  by Propos i t ion  2.4. 

�9 The  o ther  cases are similar.  
b',a b",z 

2. t ~ tl ~ E  t' with b = b' A b". By induc t ion  [-2 tl = tl q- b" -*  z.t' and  
[-2 t = t + b' + ~.t l .  So, since bv(~) A fv(b)  = O, 

[-2 t : t + b' --* ~.(tt + b" --* v.t') 
= t + b' + (~.(tl + b" --* -c.t') + b" --, ~.t') by  L e m m a  4.7 
= t + b I --* b" --* a.t '  
: t+b--+o~.t '  
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b',~: b",~ t' b ~ b' .  3. t ~ e  tl with b -= A Similar to the previous case. [] 

Proposition 4.2. t ~ u if and only if there is a b-parti t ion B such that  for all 
~ b  t 

b' E B, t ---~ u or t --E "c.u or z.t --~ u 

P r o o f  The "if"  part  is trivial because o f  Theorem 4.2. For  the "only if" part, 
by a construct ion similar to that used in Proposit ion 4.3, we can assume t -= 
~i~lCi --'+ 32kcKiO~ik.tik, U ~-~ Y ~ j c j d j  ~ ~ . lELj f l j l .Uj l ,  where ci A ci, = f a l s e  for i ~ i', 
dj A d j, = f a l s e  for j :/= f ,  Vie1 ci = true, and V j E j  dj = true. 

Set B'  = {b A ci A dj I i E I,  j E J} .  Then V B '  = b. Consider an arbitrary 
b t ci,z, 

b t =-- b A ci A dj E B'. Since b' ~ b, t '~g u. So for every t tik, there exists a 

dj ,~ U ! b'-parti t ion Bik with the property that  for each bl E Bik there is a u = = ~  s.t. 
dj,r 

tk ~bl u', and for every u ~ ujl there exists a b '-part i t ion Bjl with the proper ty  

Ci,Z t! t ! ~b2  that  for each b2 E Bjl there is a t ~ e  s.t. u)t. 
Let B 1 = {AkEK~bk ] bk E Bik }, B 2 = { &ELjbt I bl E By1}, and Bb, = 

{ bl A b2 P bl E B 1, b2 E B 2 }. Then V Bb, = b'. Fur thermore  Bb, has the proper ty  
b" ci,z> djr U t b" that  for each b" EBb,, t ~E  U, and whenever t t', there is a u ~ e  ~ e  ( ;  

dj,z U! ci,~ tt b" d .  t' c,,~ t, ~ ,  then whenever u there is a t ~ e  ~ e  I f  for some t u 
b" dj,'c, U t b" " 

t "~E r.u; I f  for some u' u ~ e  t then r.t " ~  u. Otherwise we can show 

,,~b" ci'c~, f t .  ~ b "  " b" ft. t - - e  u as follows. Let t , then since t ~ e  u we have u dj,~ u t ~'e By 

dj,~ U ! ~ b "  t t assumption u' can not  be u itself when a - z, so u ~ e  as required. By 

symmetry,  t - e  u. 
Now the required B is Ub'cB'Bb,. [] 

Finally, since we are considering E - I N P U T  rather than EA we need the 
following generalisation: 

Proposition 4.3. Suppose x ~ fv (b ,  ci, dj), i c I , j  E J. Then f rom 

['-1 b ~, ~.iElCi --+ "c.t i = ~ j c j d j  "-* "c.uj 

infer 

~-1 b ~> ~.i~lCi ---+ Cg.X.ti -~ ~ j c j d j  ~ c ? x . u j  

P r o o f  For each K _~ I let c/~ be the boolean expression/~ke/~ Ck A Ak'~I-K ~Ck'. 
Then V cK = true, cK A cK, = f a l s e  whenever K ~ K ' .  Using parts 3,6 and 5 o f  
Proposit ion 2.4 we can show that  

[-1 ~iCICi  ~ z . t i  -= t r 

where t ~ denotes EKcK ~ t~ and t~; denotes ZkEKCk ~ r.tk. Let u ~ = YLdL ~ U~L 
be defined in a similar manner.  

We know }--1 b [> t ~ = U r and therefore for each K, L, b-1 b A cK A dL > t ~ = uL 
Again  using parts 3 and 5 o f  Proposit ion 2.4 we can prove 

[-1 b A cK A dL D ff = ZkegZ.tk 

and 

~-1 b A cK A dL I> u ~ = Zt~LZ.Ul 
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Therefore 

[.1 b A cK A dLl:> ZkeK 'C . t  k = ZIELZ.Ul 

N o w  we can apply E - I N P U T  to obtain 

[.1 b A CK A dL D ~ k c K C ? X . t k  = ~IELC?X.Ul  

By reversing the above argument  we have 

[.1 b A ci( A dLl:> t x = u x 

where t x and u x denote ZKCK ~ ZkeKC?X.tk and ZLdL ~ 21~LC?X.Ul, respectively. 
Since VK,L CK A d L =  true, we can apply C U T  to obtain [.1 b ~> t x = u x. Finally 
parts 3,6 and 5 o f  Proposi t ion 2.4 can be used as above to t ransform t ~ and u ~ 
into the required form. []  

We now have the main  technical ingredients necessary for the completeness 
proof. As usual this requires some not ion o f  normal  form, which we call ful l  normal 
forms. For convenience we consider these before embarking on the completeness 
p roof  proper. 

Definition 4.5. A normal  form t = Y, ibi  ~ O~i.t i is a ful l  normal form if 

b,~ b,~ tl ' 1. t ~ t', where by(cO N fv(b)  = 0, implies t , 

2. Each ti is in full normal  form. 

L e m m a  4.9. For  any normal  form t there is a full normal  form t' such that  
f v ( t )  = f v ( ( ) ,  [ t [ = ] t' ] and [--2 t = t'. 

Proo f  By structural induct ion on t. For  then non-trivial case when t g~ nil, by 
induct ion we ma y  assume each summand  of  t is already in full normal  form. Let 

bk,~k bk,~k 
t' = t + Z k { b k  --*ek.tk ] t ~ E  tk, bv(ak) A f V ( b k ) = O ,  but  not  t , tk} 

Then, modulo  c~-equivalence, t' is in full normal  form with size equal to t, and by 
the absorpt ion lemma [.2 t -= t'. [ ]  

By this lemma and L e m m a  3.5, every term can be t ransformed into a full normal  
form of  equal size. 

Theorem 4.3. (Completeness o f  [.2) t _~b u implies [.2 b t> t = u. 

Proof  We may  assume t, u are in full normal  form and apply induct ion on 
the joint  weak size of  t and u. The case that  the size is 0 is trivial. So let 
t ~ ~r~iEIC i ----> O~i.ti, U ~ ~ j c j d j  "-> ~j .Uj .  W e  u s e  the notat ions I~, Jr, ty,u~ as defined 
in the p roof  of  Theorem 3.2. 

Consider the case ~ ~ c?. Let 

tZc? ~-- ~,iElcTCi -'+ z . t i  U~c? ~ E j c j c ? d  j ---r "c.uj 

Since t _ b  u, we have t~? ~b  U~? and therefore t~? ~ b  U~?. 
To prove [.2 b t> t~? = Uc~ it is sufficient to establish 

[-2 b A ci 1> Uc? + ci ~ c?x.ti = Uc? 

for each i c I~.  
C i,c ~X 

N o w  tc? ~ t~, so there is a b A ci-partition B with the proper ty  that  for each 
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d;,c?~ d,~ u, b' b' u'. b I E B there is Uc? uj  ~ E  s.t. ~ d j A d  t and ti ~ E  By Proposition 4.2 
,.~b" Ut ~ b "  ,.~b" Ur. there exists a b'-partition B ~, for each b" c B '  ti --E or ti - -E  f2.U' or "c.ti --E 

By induction, together with TAU and T1, in each case we can derive 

]-2 b" I> r.u' = "c.ti 

Applying CUT on B' we get ]-2 b '  [> ~;.u t ~- "C.t i. 
I f  Hj ~ ~l', then ]-2 b' I> v.uj  = T.ti and hence ]-2 b' t> 72.blj -m- "r2.Uj -~- "C.t i. 

Otherwise, by absorption ]-2 uj  = uj  + d' ~ "c.u'. Therefore 

]-2 b' 1> v.uj  = r . (uj  + d' --+ r.u')  

4.7 "C.(Uj + d I ~ r.u') + d' ~ v.u' 

= r .uj  + d '  ~ ~.u' 
= r .uj  + d' --+ r.ti 

Since b' ~ d', by Proposition 2.4.3 it follows that 

I- 2 b' ~> r .uj  = r .uj  + "c.ti 

Similarly, because b' ~ ci A d j,  we have 

]-2 b r I> dj --+ r .uj  = dj  --+ r , u j  -t- Ci --+ "C.ti 

SO 

]-2 b '  z I> Uc? -= Uc? -]- Ci --+ ~.ti  

This is true for each b' in the b A ci-partition B. So applying CUT we obtain 
-c 

]-2 b A c i D blzc? = Re? -{- C i --+ g.ti .  By Proposition 4.3, the generalised E - I N P U T  
Rule, applicable because we can assume x ~ f v ( b  A ci), we get the required 
]-2 b A ci ~ Uc? + ci --+ o~i.ti = Uc?. [ ]  

5. The Late Case 

In this section we briefly outline how the theory developed in the previous sections 
can be carried over to the late case with some systematic modifications. It turns 
out that only those parts concerning input actions need changing and for brevity 
we only treat weak equivalence. 

The late operational semantics of this language is given in Fig. 6. Note that 

both ~1 and c~t are relations over closed terms but c?x ~l is a relation between 
c?x 

dosed terms and functions from values to closed terms. Intuitively p ~t 2x .u  
means that the process can accept inputs on channel c and when it does so its 
future behaviour, which is parameterised on the value received, is characterised 
by the function 2x.u.  

The concrete late double arrow relations are also defined in the same way as 

in the early case in Section 4, with ~ l  in place of a>e, except that the last 
clause is only given for non-input actions; so input actions do not  absorb r moves 
after them: 

�9 P==~IP. 
�9 P a~lq implies P ~ l q .  

a a 
�9 p ~ l ~ t q  implies P ~ l q .  
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"C 

z.p ~1 P 
c!v 

c!e.p ~l P where v = [[e] 

c?x.t c?x�91 2x.t 
O~ C~ 

P ~t r implies P + q ----'1 r 
Ct 

P ~I r, lib] = true implies b --* p ~l r 

Fig. 6. Late concrete operational semantics. 

"C "C "g 

�9 P - - ~ l  ~lq implies p ~ l q .  
c!v z c!v 

�9 P---->-I ~tq implies P ~ l q .  

These revised arrows can now be used to define another  version of  weak bisimu- 
lat ion equivalence. 

Definition 5.1. A symmetr ic  relation R between closed terms is a late weak 
bis imulat ion if it satisfies: (p, q) E R implies 

c?x c?y 
�9 I f  p ~l 2x.t then there exists q ==*'l 2y.u and for all v c Val 3q' s.t. 

u[v/y] ~ l  q' and (t[v/x],q') E R. 

�9 For  any other  act ion a not  o f  the fo rm c?x, p a~l p' then there exists 

q ==*l q' and (p', q') E R. 

Let ~l  be the largest  late weak bisimulation.  

The  corresponding late observat ion congruence is then defined in terms of  late 
weak bis imulat ion:  

Definition 5.2. Two closed terms is p, q are late observat ion congruent ,  writ ten 
P -~t q, if 

c?x c?y 
�9 Whenever  p ~l 2x.t then there exists q =:~t 2y.u and for all v E Val 3q' s.t. 

u[v/y] =:=>1 q' and t[v/x] ~I q'. 

�9 For  any  other  act ion a, whenever  p a ~l P' then there exists q ==~l q' and p' ~l 
ql. 

�9 similarly for q. 

This relat ion is generalised to open terms by letting t --~l u iff tp ~--1 up for any p. 

It  can be shown tha t  --1 is preserved by all opera tors  in our  language. In general  
it is finer that  --~e ; a typical example  of  a distinction made  by "~-1 but  not  by ~'~e 
is discussed in the Int roduct ion.  

To develop results for --1 similar to those in the previous section we need 
a symbolic  version of  late weak equivalence. This, called late weak symbolic 
equivalence, is defined using a cor responding  not ion of  late weak symbolic  action: 

�9 t = = : ~ L t .  

b,c~ b,~ 
�9 t -~ u implies t----->L u. 

b,z b',~ bAb',c~ 
�9 t ~==~L U implies t ==>L U. 
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b,or b;,z bAb',~ 
�9 if e is not  o f  the form c?x then t ==>L , u  implies t ~ L U .  

The difference between the last clause and the corresponding one in the 
definition o f  early symbolic double arrows in Section 4 is important .  Now we do 
not  have L e m m a  4.2. Instead the following holds 

b,c?x tl 
Lemma 5.1. I f  t ~ E  then fv (b)  ~ fv ( t )  and x ~ fv(t) .  

Definition 5.3. A family o f  symmetric relations S = { S b J b c BExp } is a late 
weak symbolic bisimulation if: 

b~,~ t; (t, u) C S b implies whenever t with by(a) n fv (b ,  t, u) = 0, then there is a 
b A bl-part i t ion B such that  f v ( B )  ~ fv(b,  t, u) and for each b' c B there exists a 

b2,~' Ut b, u ==*L such that  ~ b2 and 

1. if c~ -= c !e then ~' - c !e', b' ~ e = d and (t I, u') c S b'. 

2. if ~ -= r then er =_ "c and ((,  u') c S b'. 
3. if a - c?x then e' - c?x and there is a b '-part i t ion B'  s.t for each b" c B '  

b~,~ U" b" there is u' =:=~L s.t  ~ b z and (t', u") c S b'. 

Let ~ L  = {~b} be the largest late weak symbolic bisimulation. 

It  is impor tant  to note that we now require f v (B )  ~_ fv (b , t ,u ) ;  hence when 
=- c?x it is guaranteed that  x ~ fv (B) .  So we can not  part i t ion over the value 

space for an input variable. This makes all the differences between early and late 
bisimulations ! 

Late weak symbolic observation congruence is defined in terms o f  weak 
symbolic bisimulation: 

Definition 5.4. Two terms t, u are late weak symbolic observation congruent over 
bl,~ t; b, written t --~b L u, if whenever t with bv(c~) Ylfv(b, t, u) = 0, then there is a 

b A bl-part i t ion B such that  f v (B )  ~_ fv(b,  t, u) and for each b' E B there exists a 

b2,~' U! b' u ~ L  such that  ~ b2 and 

1. if :~ = c !e then c( -= c !e', b' ~ e = e' and t' ~ u'. 
b' U t. 2. i f ~ r t h e n ~ ' - = r a n d t ' ~ L  

3. if ~ -= c?x then ~' -= c?x and there is a b '-part i t ion B'  s.t for each b" E B'  

there is u' b~ u" b" t' ~b" u". ~ L  s.t ~ b~ and ~L 

and symmetrically for u. 

We have the late counterpar t  o f  Theorem 4.2" 

Theorem 5.1. (Soundness and completeness o f  ~L and --~L) 

1. t ~ u if and only if tp ~; up for every p ~ b. 

2. t _~b L u if and only if tp ~-; up for every p ~ b. 

Proof  Similar to that o f  Theorems 4.2. The only essential difference is in the 
b,c~ c~ 

relationship between the abstract  moves, ~ and the concrete moves, ~;. This 
is the same as for the early moves, given in L e m m a  3.2 - 3.4 and 4.3 - 4.6, except 
for input  actions now we have: 
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c?x b,c?z tt 
tp ~l 2x.u if and only if there exists some b, t' such that p ~ b and t 

for some z where u =- t' Ix~z]. 
The strong version of the theorem is now essentially the same as Theorem 4.5 of  
[HeL92] and the weak version is a very straightforward extension. [] 

The inference system for late symbolic observation congruence can be obtained 
by deleting E A / E - I N P U T  from that for early congruence. We write I-2L b I> t = u 
to denote b t> t = u can be derived from the new inference system. We have the 
soundness theorem: 

Theorem 5.2. (Soundness of  ]-2L) ~-2L b t> t = u implies tp ~-t up for every p such 
that p ~ b. [] 

For the completeness theorem, we use essentially the same form of full normal 
form as in the early case (keep in mind that now double input arrows only absorb 
those ~ moves before it): 

Definition 5.5. A normal form t =- Yibi  ~ ~i.ti is a late full normal form if 

~ L  tt b,a> tt" 1. t implies t 

2. Each ti is in late full normal form. 

The Absorption Lemma, Lemma 4.8, still holds (but note that now ~ can not 
be an input action in the second case in the proof  of  the lemma) and therefore 
every term can be transformed to late normal form. Also the appropriate version 
of Proposition 4.2 holds. 

Theorem 5.3. (Completeness of  ]-2L) t ~__b U implies ~-2L b ~> t = u. 

P r o o f  We assume t, u are in late full normal form and the proof  proceeds by 
induction on the joint weak size of  t and u. For the non-trivial case when the size 
is not 0 let t = ZielCi --4 cq.ti, u =- Y~j6jdj ~ flj .blj .  We need to show 

~-2L b A ci I> u + ci --* cti.ti -= U 

for each i E I .  We only consider the case when ai - c?x here (the other two cases 
are the same as in the early case). By ~-CONV we may assume x ~ f v (b ,  t, u) and 
every input prefix in u uses x as input variable. 

Ci~C?X ! 
NOW t > t i. So there exists a b A ci-partition B with f v ( B )  ~_ f v ( b  A ci) s.t for 

dj,c ?x 
all b ~ E B, b: ~ ci and there is u ~ uj s.t. b' ~ dj and there exists a b'-partition 

d','2 UI b" d t d.  B' s.t for all b" E B'  there is uj ~ L  s.t. ~ and ti "~L 
By Proposition 4.2 and induction, together with TAU and T1, we can derive, 

for each b" c B, 

[-2L b" I> z.u t = "c.ti 

By an argument similar to that used in Theorem 4.3, using CUT on B', we obtain 

[-2L b' ~> "C,Uj = Z.Uj -at- z.ti 

Now, since x ~ fv (b ' ) ,  we can apply I N P U T  to get 

['-2L b t t> Cg.X.TJ.Uj ~ Cg.X.(75.LIj -]- "C.ti) 

T3 C?X.(Z.Uj + z.ti) + Cg.X.ti 

-= C g.X.Z.uj + C g..x.ti 
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t b,e> t' implies 

b,c?x tr 
t �9 ~ implies 

t b:c?~ t', u b',c!~ u' implies 

t b,e> t~ implies 

t [ b/ b,~) tl U 

E {T, cIe c E Chan, e E Exp} 
t I u b,c?~ t' u 

x f~ fv(u) 
bAb',f 

t l u t '[e/x]fu'  

t\c b,~ t'\c 
if chart(e) r c 

Fig. 7. Symbolic operational semantics - continued. 

nil\c = nil 
( x  + Y) \c  = X \ c  + Y \ c  
(e.X)\c = { e.(X\c) if chan(c 0 r c 

nil if chan(e) = c 

Let X, Y denote s s with f v (X)  C~ by(Y) = f v (Y )  c3 by(X) = 0 
where f v (X)  and by(X) are free data variables and bound data variables in the 

term X, respectively. Then 

X I Y = sync_move(X, Y) + async~nove(X, Y) 

where 

sync~nove(X,Y)= Z}~.(X,{e/x} J Yj) l e , - c ? x ,  f l j - c ! e }  + 
v.(X~ I Yj{e/x})l  ~ c!e, Bj - c?x} 

async_move(X, Y) = ~"i~ I Y) + ] F . j f i j . ( X  I Yj) 

Fig. 8. New equations and expansion law. 

By T1, ~-2c b' l> c?x.uj = c?x.uj + c?x&. Since b' ~ c~ A dj, we can derive 
~-2L b' Ddj --~ cg.x.uj = dj ~ C?X.Uj-JvCi ----4 Cg.X.ti  . Hence ~-2L b' ~>u = u+ci ~ c?x.ti. 
Finally, an application of CUT on B gives the required t-2c b A ci 1> u = u + cg 
c ?x&. [] 

6. Extensions 

So far we have concentrated on the core language of Section 2. As mentioned 
in the Introduction all our rsults can be easily extended to the language obtained 
by adding the ] (parallel) and \ (restriction) operators. The concrete operational 
semantics for these operators are standard and we only give their symbolic 
operational semantics, in Fig. 7, where symmetric rules have been omitted. The 
equations characterizing the restriction operator and the expansion law for the 
parallel operator are shown in Fig. 8. These laws are fairly standard and are only 
included here just for the sake of  completeness. 

It is routine to check that all ~e, me, ~l and El are preserved by the new 
operators, and that the new equations are sound for these congruence relations. 
Moreover these new equations are sufficient to reduce every term in the extended 
language to one in the core language. 
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Now if we add these new equations to all,  then the three normal form 
lemmas 3.5, 4.9 and 5.5 carry over to the extended language. From these follow 
the completeness results (Theorem 3.2, 4.3 and 5.3) for the extended language. 
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