
Formal Aspects of Computing (1996) 8:379-407
@ 1996 BCS Formal Aspects

of Computing

Proof Systems for Message-Passing Process
Algebras
M. H e n n e s s y and H. L in

School of Cognitive and Computing Sciences, University of Sussex, Brighton, UK

Keywords: Process algebra; Message passing; Bisimulation equivalence; Proof
system; Completeness; Symbolic semantics

Abstract. We give sound and complete proof systems for a variety of bisimulation
based equivalences over a message-passing process algebra. The process algebra
is a generalisation of pure CCS where the actions consist of receiving and sending
messages or data on communication channels; the standard prefixing operator
a.p is replaced by the two operators c?x.p and c!e.p and in addition messages can
be tested by a conditional construct. The various proof systems are parameterised
on auxiliary proof systems for deciding on equalities or more general boolean
identities over the expression language for data. The completeness of these proof
systems are thus relative to the completeness of the auxiliary proof systems.

1. Introduction

In standard or pure process algebras processes are described in terms of their
ability to perform atomic unanalysed actions. For example

P ~ a.P + b.c.P

describes a process which can continually either perform the action a or the
sequence of actions b, c. By a message-passing process algebra we mean a process
algebra in which these actions are given some structure; namely the reception or
emission of data values on communication channels. Thus

Q ~ c?x. i f x > o then d!x.Q else c!(x + 1).Q

Correspondence and offprint requests to : M. Hennessy and H. Lin, School of Cognitive and Computing
Sciences, University of Sussex, Brighton BN1 9QH, UK.

380 M. Hennessy and H. Lin

describes a process which can cyclically input a value along the channel c and
either output it along the channel d unchanged or output its successor along c,
depending on whether or not the value concerned is greater than or equal to 0.

The standard approach to providing a semantic basis for these message-
passing algebras, advocated for example in [Mi189], is to translate them into an
underlying pure algebra. The central feature of this translation, mapping p to
[[p], is that the input expression c?x.p is mapped into the term

c?v.~[v/x]]l
rEVal

where Val is the domain of all data values. Thus the translation of the process Q
above is

R ~ Z c?n.d!n.R + Z c?n.c!(n + 1).R
n>0 n<O

This may be taken to be a description in a pure process algebra where we assume
that for each channel name c and for every data-value v, in this case every integer,
there are atomic actions c?v and c!v.

There are two disadvantages in this approach. The first is that descriptions
which are in some intuitive sense finite are translated into processes which are
inherently infinite, at least if the domain of possible values, Val, is infinite;
it is necessary to have in the underlying pure process algebra a summation
operator Z1 where I has the same cardinality as the value domain. Such process
algebras are difficult to use. For example the standard algorithms and verification
tools, see e.g. [CPS89], do not apply and equational reasoning is difficult since
any proof system based on this approach is of necessity infinitary. The second
disadvantage is that with such translations uniformities which exist in the object
description disappear in the translation. For example the subsequent behaviour
of Q above after the reception of an input v is described functionally by the term
2x.if x > 0 then d!x.Q else c!(x § 1).Q. This uniform treatment of inputs is not
apparent in the translation, R. Although the notion of uniformity is difficult to
define precisely, it should play a central role in proving properties of message
passing systems. The object of this paper is to develop a semantic theory of
message-passing processes which takes advantage of this uniformity. In particular
our semantic theory will apply directly to the syntax of message-passing processes
and will not be mediated by a translation into an infinitary language. As a result
the associated proof systems will be in some sense finitary.

Such theories already exist for value-passing processes. In [HeI93] a fully-
abstract denotational model is presented while in [Hen91] a sound finitary proof
system is given which is also complete for recursion free processes. However all
of this work is with respect to a particular behavioural equivalence called testing
equivalence, [Hen88]. Here we wish to consider an alternative and much finer
behavioural equivalence, bisimulation equivalence from [Mi189]. The main result
of the paper is a series of sound and complete proof systems, with respect to a
range of bisimulation based equivalences, for a recursion free message-passing
process algebra.

For most of the paper we restrict our attention to a very simple language which
consists essentially of a notation for the empty process, nil, a choice operator -I-
and action prefixing; other operators such as forms of parallel or restriction can
easily be accommodated. However, when actions take the form c?x and c!e, in
order for the language to be of interest we also need to be able to test data and

Proof Systems for Message-Passing Process Algebras 381

branch on the consequences of the test. Syntactically this could be represented by
an i f b then . . . else . . . construction, where b is a boolean expression, but instead
we use the simpler notation of guarded commands, b ~ t. Thus

c ? x . (x = O ~ d ! O . n i l + x > O ~ d ! l . n i l)

is a process which inputs a value on c and outputs 0 on d if the input is 0 and 1
if it is greater than 0 and does nothing otherwise. In order to reason about these
kinds of processes it is necessary, in general, to reason about data expressions.
So following [Hen91] we design a proof system whose judgements are guarded
equations of the form

b l > t = u

where b is a boolean expression and t, u are process terms that may contain free
data variables. Semantically this should be read as "under any evaluation of free
data variables that satisfies b, t is semantically equivalent to u". The completeness
of the proof system is thus relative to that for the data domain involved. Moreover
rather than getting embroiled in the details of an actual proof system for data
expressions we simply assume the existence of some all powerful mechanism for
answering arbitrary questions about data. On the one hand this enables us to
concentrate on the behaviour of processes and on the other it reflects what would
be a reasonable implementation strategy for a proof system based on our results;
the main proof system would be based on the proof rules whose applicability is
determined by the structure of processes and this main system would periodically
call auxiliary proof systems to establish facts about data expressions. A simple
example of a proof rule from the main system is

b l > t i = u i i = 1 , 2
b l > t l + t 2 = u l + u 2

while
b ~ e = e t, b t > t = u

b [> c !e.t = c !d.u

is a rule which depends on a call to an auxiliary proof system concerned with the
data domain; this is expressed in rather abstract terms, one of the antecedents
referring to the semantics of the expressions b, e and e'; as we shall see b ~ e = e I
is true if the intended meaning of the boolean b always implies the intended
meaning of e equals that of e'. Of course the reasoning about processes can not
be completely divorced from the reasoning about data and an example of where
they interact is the cut rule

b ~ bl V b2, bl l> t = u b2 l> t = u
b D t = u

This enables a proof to be developed by case analysis on the data.
The soundness of such a proof system depends on having a semantic equiva-

lence for processes and as we have already stated in this paper we are interested
in bisimulation-like semantics. As a starting point we use strong bisimulation,
[Mi189], but as has been pointed out in [MPW92, HeL92] there are at least two
natural generalisations of this equivalence to message-passing processes. The first,
called early strong bisimulation equivalence, is based on the ability of processes to
perform actions of the form c?v and c!v while the second is based on the slightly

382 M. Hennessy and H. Lin

more abstract actions c? and c!e. Thus the processes

c?x. even(x) ~ P + c?x. odd(x) --~ P

and

c ?x.P + c ?x.nil

are identified by the early version of the equivalence but are differentiated in the
late case because the c ? move from the first to the abstraction

2x. even(x) ~ P

can not be matched by a corresponding c? move from the second. Each of these
generalisations of strong bisimulation equivalence has a corresponding "weak"
version in which internal moves are abstracted. Thus in all we have four reasonable
semantic equivalences and for each of these we present a corresponding proof
system. In the strong cases the difference between early and late is simply the
addition of an axiom, or more correctly an axiom schema, adapted from that
used in [PaS93] for the 7z-calculus. On the other hand the weak version of both
equivalences can be obtained by adding to the corresponding proof system the
standard z-laws from [Mi189].

The judgements of the proof systems involve open process terms, i.e. terms in
which data variables need to be instantiated before any operational significance
can be associated with them, but the observational equivalences are only defined
on closed terms. Therefore in order to even express the soundness and complete-
ness of the proof systems we need to generalise these equivalences to open terms.
For each of these semantic equivalences, -~, we design a proof system with the
property that

b 1> t = u if and only if tp ~ up for every evaluation p satisfying b

As usual establishing soundness is straightforward but completeness requires
some ingenuity. Here we use the approach of [HeL92] and introduce symbolic
versions of each of the semantic equivalences which are defined directly on
open terms. These are expressed in terms of families of relations over open
terms parameterised on boolean expressions and we show that, for each semantic
equivalence _ we consider,

t ~b u if and only if tp ~-- up for every evaluation p satisfying b

Thus soundness and completeness of the proof systems can be established relative
to the symbolic semantic relations ~b. Using this approach the completeness theo-
rems in particular now become "symbolic versions" of the standard completeness
theorems of [Mi189], although the details are somewhat more complicated.

We now give a brief outline of the content of the remainder of the paper.
In the next section we define the simple language, give it a concrete operational
semantics and define (early) strong bisimulation. This is followed by a discussion
of the proof system for proving processes bisimilar. We state the soundness
theorem for the system and indicate the difficulty in proving completeness. In the
following section, Section 3, we define the symbolic semantics and the associated
symbolic bisimulation equivalence and prove that it captures precisely the concrete
bisimulation equivalence over processes. We then use this result to show the
completeness of the proof system.

In Section 4 we repeat these results for weak bisimulation equivalence where
again it is necessary to develop an appropriate definition of weak symbolic equiv-

Proof Systems for Message-Passing Process Algebras 383

alence. The following section outlines correslSonding results for a late operational
semantics and considers both the strong and weak cases. We end]by discussing
briefly how to extend these results to other language constructs. We believe that
a suitable form of Unique Fixpoint Induction can also be elaborated which will
lead to a very useful and powerful proof system for recursively defined processes.
However this we leave for future work.

1.1. Related Work

We end this section with a brief discussion of related work. As stated previously
the approach we have taken is based on that of [Hengl] where a sound and
complete proof system for testing equivalence is developed. Here we tackle various
bisimulation based equivalences and an essential ingredient of the Completeness
theorems is the notion of symbolic bisimulation equivalence. This has already been
used in [HeL92] to develop an algorithm for checking whether two message-
passing processes are equivalent and in [HeL95] for developing a proof system
to verify that such processes satisfy properties described by fornmlae from a
first-order modal logic.

The more standard approach to message-passing processes is to translate them
into "pure processes" as outlined at the beginning of this section [Mi189, HoR86].
Indeed in [Bur91] a front-end for the Concurrency Workbench is described which
translates message-passing processes from a language such as ours into "pure
processes" which can be accepted by the Concurrency Workbench and various
examples treated using this approach may be found in [Wa189]. However these
approaches require the set of values to be finite and even using the boolean value
space of two elements leads to an exponential blow-up in the size of descriptions.
We hope that with our approach at least some of this complexity can be avoided.
In [Lin93] an extension of the PAM verification system, [Lingl], based on our
results, is described. It offers much the same functionality as the the original
PAM except that message-passing process algebras can be defined and the proof
elaboration scheme is more flexible.

In [GrP90] a very general language for describing message-passing, based on
ACP, is described and in [GrP91] a proof theory is given. Although these goals
are quite similar to ours their approach is very different. A modular algebraic
specification language is used to describe data domains and the description of
processes is such that it may be viewed as consisting of another module. They
continue to view message-passing processes as universally quantified versions of
"pure processes", the quantification being over the domain of messages, but they
bring to bear the general framework of algebraic specifications in order to handle
proof theoretically this quantification. Nevertheless it would be interesting to
compare the two approaches.

Recently, proof systems for late and early strong bisimulation equivalences
over the re-calculus, [MPW92], have been given in [PaS93]. Indeed it is from
this paper we have borrowed our axiom for the early version of bisimulation
equivalence. At one level the ~-calculus may be viewed as a particular instance of
a message-passing calculus, where the data-type of messages is the very simple one
of channel names. Viewed in this manner our proof systems could be adapted for
the re-calculus and, because of the simplicity of the domain of messages, our proof
rules involving the semantic domain of messages would be very simple. But certain
uses of channels, in particular their use with the restriction operator to generate
private names, means that in fact the re-calculus is strictly more powerful than our

384 M. Hennessy and H. Lin

notion of a message-passing calculus specialised to the case where the messages
are channel names. However this extra complication is adequately provided for
in the proof systems of [PaS93]; these achieve much of their power from the
blurring of variables and constants which occurs in the re-calculus.

2. A Simple Language

The language we consider can be given by the following BNF grammar

t ::= nil [a.t [t + t I b- -* t
e ::= z I c?x I c?e

where b is a boolean expression, e data expression, c is a channel name and x a
data variable. So this syntax assumes a predefined set of channel names, Chan,
ranged over by c and a set of data variables, DVar, ranged over by x, y, More
importantly it also assumes a language for data expressions DExp, ranged over by
e, e' and a similar language BExp, ranged over by b, for boolean expressions
with the usual set of operators V, A, ~ At the very least we assume that
DExp contains the set of data variables DVar and also a set of data values Val
and for every pair of data expressions e, e' we assume that e = e' is a boolean
expression. We also assume that all free variables in boolean expressions are
data variables. Apar t from this we do not worry about the expressive power
of these languages although the results on symbolic bisimulations require that
the language for boolean expressions is very powerful; sufficiently expressive to
characterise arbitrary collections of evaluations.

An evaluation, p is a mapping from D Var to Val and we use the standard
notation p{v/x} to denote the evaluation which differs from p only in that it
maps x to v. An application of p to a data expression e, denoted p(e), always
yields a value from Val and similarly for boolean expressions; p(b) is either
true or false. Thus we assume that evaluation of data and boolean expressions
always terminate and our approach is to work modulo these evaluations. We also
assume that these evaluations satisfy standard properties; each expression e has
associated with it a set of variables fv(e) and, for example, if p and p' agree on
fv(e) then p(e) = p'(e). I f an expression e has no variables, it is closed, then p(e)
is independent of p and we use [[e]] to denote its value. Similarly with boolean
expressions. We will use the suggestive notation b ~ b' to indicate that for every
evaluation p if p(b) is true then so is p(b'). Of course we could equally well say
that b --* b' is a logical theorem but our notation emphasises the fact that we wish
to work modulo the semantics of expressions. In line with this notation we use
p ~ b 'to indicate that p(b) = true. We will also write b = b' for b ~ b' and b' ~ b.

We will also" refer to substitutions, and assume that they satisfy the expected
properties; we use e[e'/x] to denote the result of substituting e r for all occurrences
of x in e. More generally a substitution a is a mapping from data variables to
expressions and we use ea to denote the result of applying a to the expression e.

Returning to the process language above, the prefix c?x binds the occurrence
of x in the sub-term t of c?x.t and we have as usual the sets of free variables
fv(u) and bound variables by(u) of a term u; of course these depend in general
on the variables in the data and boolean expressions contained in u. This leads to
the standard definition of e-conversion, ---~, over terms and of substitution, t[e/x]
denoting the result of substituting all free occurrences of x in t by e, and this
relies on the definition of substitution in data expressions. A term is closed if it

Proof Systems for Message-Passing Process Algebras 385

1j

z.p >e P
c ! v

c !e.p ----~e P
c ? v

c?x.t ,~ t[v/xl
a !

P >eP

a

P 'e P', [[b]] = true

implies

implies

where [[e]l = v

c c Chan, v E Val
a pr

P + q >e
a !

q + P >eP
a pl

b--* p)e

Fig. 1. (Early) Operational semantics.

$1 X + nil = X
$2 X + X = X
$3 X + Y = Y + X
$4 (X + Y) §

Fig. 2. The axioms all.

contains no free variables and these we refer to as processes, ranged over by p, q
Throughout the paper open terms refer to terms that may contain free occurrences
of data variables, but no process variables. Open terms are ranged over by t, u, . . . ;
we give the following precedence to the operators (in decreasing order): ~ +.

The standard operational semantics of this language is given in Fig. 1. It

consists of a set of binary relations, a~e, between processes, where a ranges over
the set Act = { z , c ? v , c ! v l v ~ Val }. In [MPW92, HeL92] this is referred to as
the early operational semantics as when input terms such as c?x.p perform an
action the value received is immediately bound to the variable x. In Section 5 we
will see a slightly different way of organising input actions where this binding is
delayed.

A symmetric relation R between closed terms is a strong bisimulation if it
satisfies: (p,q) E R implies that for every a E Act

whenever p a> e p' then there exists q a> e q' and (pr, q,) c R

where a ranges over {z, c?v, c!v [v c Val }. We use ~'~e to denote the largest
(early) strong bisimulation. This relation generalizes naturally to open terms by
letting t "~e u if[tp ~'e up for any p. We then have

Proposition 2.1. "~e is preserved by every operator in the language. []

By transition induction it can be easily shown that e-equivalent processes have
the same transitions (up to e-equivalence):

Lemma 2.1. I f p --~ q and p a) e p~ then q a>e q, for some qr = p~. []

From this lemma it follows that e-equivalent processes are bisimilar:

Proposition 2.2. If p --~ q then p ~e q. []

We now consider a proof system for deriving statements about p ~e q- In
general we will need to consider open terms because in order to prove a statement
such as c?x.t = c?x.u it is necessary to relate the open terms t and u. Also because
we allow testing of data we will need to establish statements relative to a boolean
expression b. Thus the judgements are guarded equations of the form

386 M. Hennessy and H. Lin

EQUIV

EQN

C O N G R

true l> t = t

true I> ta = ua

b r > t = u
b I > u = t

b t > t = u , u = v
b ~ > t = v

t = u is an axiom

b I> ti = ui i = 1, 2

b Dtl--}-t2=-Ul+U2

a-CONV true 1> c?x. t = c?y . t [y /x] Y ~ f v (t)

b I > t = u
I N P U T b ~> c?x. t = c?x.u x q~ f v (b)

b ~ e = d , b ~ > t = u
O U T P U T

b 1> e!e.t = c!e' .u

b ~ > t = u
TAU

b I> z.t = z.u

b A b' ~> t = u b a r b t r> nil = u
G U A R D

b t > b ~ t = u

b ~ b l v b 2 , ba ~ > t = u b2 l > t = u
CUT

b I > t = u

ABSURD
f a l s e I> t = u

Fig. 3. The inference rules.

b t > t = u

where b, the guard, is a boolean expression. For brevity we usually write t = u
for true r> t = u.

The basis for the proof system are the standard set of equations for strong
bisimulation equivalence over C C S , [Mi189], given in Fig. 2. The rules for the
proof system are given in Fig. 3; in the rule EQN a is any mapping from
process variables to process terms. Note that reference is made to the semantics
of data expressions in the O U T P U T rule, for establishing identities of the form
c!e.t = cIe'.u, and in the CUT rule, which is used to perform proofs by case
analysis. The rule G U A R D also uses a case analysis; an identity of the form
b ~ t = u may be established by considering two cases, one when b is true and
the other when it is false. This means that the development of a proof in this
system, specifically the application of the O U T P U T and CUT rules, requires the
establishment of facts about the data domain. These are the only two rules which
rely on such facts but they can be used to derive other useful rules of a similar
nature such as

C O N S E Q U E N C E b ~ b ' , b' l > t = u
b ~ > t = u

The side condition, x ~ f v (b) , in the rule I N P U T is essential, as otherwise it
would not be sound. It could be used to prove

Proof Systems for Message-Passing Process Algebras 387

x = 1 I> c?x .c ! l .n i l = c?x.c!x .ni l

because

x = 1 l> c ! 1.nil = c Ix.nil.

With this side condition it is sound but not sufficiently powerful to derive all
true identities between early bisimilar processes. For example the two processes
discussed in the introduction

c?x. even(x) ~ P + c?x. odd(x) ~ P and nc?x .P + c?x.nil

are strong bisimulation equivalent but can not be proved equivalent using this
restricted rule.

To overcome this problem we adapt the axiom used in [PaS93] to characterise
early strong bisimulation equivalence in the n-calculus to obtain the axiom
schema:

EA c?x. t + c?x.u = c?x. t + c?x.u + c?x(b ~ t + -~b --* u).

This is an absorption law. The process term c?x. t + c?x.u can absorb the term
c?x(b --, t + ~b --* u) for any boolean expression b.

Let us write }.1 b E> t = u to mean that b I> t = u can be derived from these
equations using the rules in Fig. 3.

The soundness of }.1 is given by the following proposition:

Proposit ion 2.3. I f }.t b 1> t = u and p ~ b then tp m e up

Proof . The proof is by induction on the derivation of b }.1 t = u and a case
analysis on the last rule used. []

The converse to this is also true but the proof is far from straightforward.
The problem arises because ~e is only defined on closed terms whereas the
proof system manipulates open terms. So there is no straightforward way to
use structural induction on terms. Instead we develop a symbolic version of
bisimulation equivalence for open terms which captures the standard bisimulation
equivalence on all instantiations and then prove completeness with respect to this
symbolic version.

Symbolic bisimulations are the topic of the next section and we finish the
present section with some useful facts about the proof system, mainly concerning
the guard construct:

Proposit ion 2.4.

1. t-l b ---~ bl --* t = b A bl ---~ t

2. }.l t = t + b - - * t

3. b ~ b ~implies}-lb I > ~ = b ' ~ t
4. } - lbAb ' l > t = u i m p l i e s } - l b l > b ' ~ t = b ' ~ u

5. } - l b ~ (t + u) = b - * t + b ~ u

6. }. l b --~ u + b' ---~ u = b V b~ ---~ u

7. if f v (b) C~ by(a) = 0 then }-2 b ~ a.t = b --* a.(b ~ t)

Proof . As examples we prove two of these statements.

�9 2. Because true ~ b A - , b , by the cut rule it is sufficient to prove the two
statements

388 M. Hennessy and H. Lin

~-l b ~> t = t + b ---, t and]--1 ~b l> t = t + b --* t

The first is derived by an application of the equation $2 and ~-1 b I> t = b ~ t.
This in turn is established by the G U A R D rule applied to

~ - l b A b l > t = t and b a r b l > t = n i l

which are simple consequences of EQUIV and A B S U R D respectively.
The second statement above is derived by an application of S1 and

~-I --,b 1> b ~ t = nil

This in turn is an easy consequence of the G U A R D rule.

�9 7. Two applications of G U A R D and two of A B S U R D reduce this to

~-1 b I> a.t = a.(b ~ t)

The proof now depends on the nature of a. For example if it is c?x we know
that x ~_ f v (b) and therefore by I N P U T it can be reduced to ~-1 b I> t = b ~ t
which in turn follows from 3.
I f a is z or c!e the derivation is even more straighforward. []

As an illustration of the usefulness of this proposition we use it to drive a
generalisation of the axiom EA:

Lemma 2.2. I f bl V b2 : b and bl A b2 = f a l s e then

~-1 b ~> c?x.t + c?x.u = c?x.t + c?x.u + c?x(b ---> t + ~b --> u)

P r o o f By a-conversion we may assume x f~ fv(b) . Since bl A (b2 V ~b) = false
and bl V (b2 V -~b) = true, applying EA we have

~-1 c?x.t + c?x.u = c?x.t § c?x.u + c?x.(bl --~ t + b2 V ~b ~ u)

Hence, using Proposition 2.4,

F-1 b I> c?x.t + c?x.u
= c?x.t + c?x.u + c?x.b ~ (bl --* t + b2 V --b ~ u)
= c?x.t + c?x.u + c?x.(b A bl ~ t + b A (b2 V -,b) ~ u)
= c?x.t + c?x.u + c?x.(bl --~ t + b2 ~ u) []

3. Symbolic Bisimulations

The reader is refered to [HeL92] for motivation and discussion on symbolic
bisimulations. Here we adapt the definitions, which were originally given for
symbolic graphs, to our language.

The abstract or symbolic transition relations are defined to be the least set of
b,~

relations which satisfy the rules in Fig. 4. They take the form of relations
between open terms, where b is a boolean expression and a is a prefix, i.e. it has
one of the forms ~, e?x or c !e. Intuitively b acts like a guard: it enables the move
when it is true. The bound variable used in the symbolic input transitions is not
significant as the following lemma emphasises:

Lemma 3.1.

1. I f t b,~ y then f v (b) ~_ fv (t) , by(a) N f v (t) = 0 and f v (t ') ~_ f v (t) U by(a).

Proof Systems for Message--Passing Process Algebras 389

true~
e.t ---+ t ~ E { z ,c!e l c ~ Chan, e c Exp }
c g.x.t true,c?y , t[y/x] y q~ fv(c?x . t)

b',c~) tl bAb',>~ tl t implies b --+ t
b,c~ tt b,c~) t* t ~ implies t -I- u

u + t b,~ t~

Fig. 4. Symbolic operational semantics.

b,c ?x tt b,c ?y
2. I f t , then t , t ' [y/x] for any y ~ fv(t) .

Proo f By transit ion induction. []

The symbolic actions can be related to the concrete actions in the following
manner :

Lemma 3.2.

r b,z) tl" 1. I f tp 'e P then there exist b, t' s.t. p ~ b, p - ~ t'p and t
b,z) z

2. I f t t ~, p ~ b then tp)e P for some p - t'p.

Lemma 3.3.

1. I f tp c!v b,c!e tr")e P then there exist b, e, t r s.t. p ~ b, p(e) = v, p =~ t'p and t
b,c !e

2. I f t ~t r, p ~ b t h e n t p c!v ~e P for some p ~ tr p where v = p(e).

Lemma 3.4.
c?v

1. I f tp ~e P, x ~ fv (t) then there exist b, t r s.t. p ~ b, p =~ t 'p{v /x} and
b,e?x tr"

t
b,c ?x

2. I f t , t', p ~ b then for any v c Val tp c?V,e P for some p - ~ t 'p{v /x} .

Proo f These lemmas can be proved by induction on the derivation o f transitions.
As an example we prove L e m m a 3.4.

c ?v
1. Apply induct ion on why tp)e P.

�9 (c?y.u)p e?~ ~ e up{v /y} , x ~ f v(c ?y.u). Then c ?y.u tr,e,cTx " ~ u[x/y] and up{v /y} - ~
u [x / y]p{v / x } .

c?v c?v
�9 (b "--+ u)p "--'+e P is because p ~ b and up ~e P. By induction there exist b', t'

b',c?x t," bAb',c?x tl
s.t. p ~ b', p - ~ t ' p{v /x} and u , Hence b -+ u ~ and p ~ b A b'.

c ?v c ?v
�9 up + q - - - % p is because up)e P. Similar.

b,c?x tt"
2. Apply induct ion on why t

true,c ?x c ?v
�9 c?y.u , u[x/y] , x ~ fv(c?y.u). We have (c?y.u)p 'e u[v/x]p =-~

u [x / y l p { v / x } .

�9 b --+ u is because u ~ Since p ~ b A b', p ~ b". By induct ion
c?v c?v

u p > e P =~ t' p. Hence (b -+ u)p ' e P.

390 M. Hennessy and H. Lin

�9 t + u b,c?~ tl is because t b,c?~ ft. Similar. []

Based on these symbolic actions we can define gS~N, (early symbolic bisim-
utations), which, for reasons explained in [HeL92], must be parameterised on
boolean expressions. A finite set of boolean expressions B is called a b-partition
i f V B = b . Let S = {S b I b E BExp} be a family of relations over terms, in-
dexed by boolean expressions. Then gYN(S) is the family of symmetric relations
defined by:

bl,~ tl (t, U) 6 gSPN(S) b if whenever t with by(a) n fv(b, t, u) = 0, there is a

b A bl-partition B with the property that for each b' e B there exists a u b2,r u'
such that b' ~ b2 and

1. if e = c !e then c~' = c !e', b' ~ e = e / and (t', u') E S b'
2. otherwise e = c~ ~ and (t ~, u/) 6 S b'

Definition 3.1. (Symbolic Bisimulations) S is an (early) strong symbolic bisimula-
tion if S _ gS~ where _c is point-wise inclusion.

Let "~E = { ~ } be the largest (early) strong symbolic bisimulation.

The interest in symbolic bisimulations lies in the fact they are defined with
respect to the abstract operational semantics, which for finite terms can be
represented as a finite transition graph; in contrast the standard "concrete"
bisimulations are defined over infinite transitions graphs, at least if the set of
values is infinite. In [HeL92] we give an algorithm for checking for this symbolic
equivalence. Here we use it to show completeness of the proof systems. First we
relate symbolic and concrete bisimulation equivalence.

Theorem 3.1. (Soundness and completeness of ~E)
t ..~b u iff tp ".~ up for every evaluation p such that p ~ b.

Proof (Outline) The proof follows the corresponding result in [HeL92], Theorem
6.5; it consists in establishing a relationship between symbolic bisimulations and
concrete ones. If S = {S b} is a strong symbolic bisimulation let

R S = { (t p , u p) r3b, p ~ b a n d (t , u) c S b}.

Soundness follows immediately if we can prove that R S is a bisimulation. Con-
versely if R is a strong bisimulation let

S b = {(t,u) ip ~ b implies (tp, up) E R}

for any boolean expression b. Completeness follows, as in [HeL92], if we can
show that S = {S b} is a symbolic bisimulation.

The proof of these two subsidiary results depends on the relationship between
the abstract actions to the concrete actions given in Lemmas 3.2, 3.3 and 3.4. The
details are similar to Theorem 4.2. []

With this theorem we can now return to the proof system and show its
completeness by proving

t ~b u implies F-1 b I> t = u (*)

This provides the converse to Proposition 2.3. The proof of (*) follows the
standard proof of the corresponding "concrete" result, as given in [Mi189], except
that now we work at the symbolic level. It is by induction on the size of terms
which is defined as follows:

Proof Systems for Message-Passing Process Algebras 391

1. I nil L = 0

2. I t + ~ l = max{Itl, I ~1}
3. [b - * t l = l t l
4.] c ~ . t [= l +] t l

We also need the notion of normal form:

Definition 3.2. t is a normal form, or in normal form, if it has the form Eibi ~ o:i.ti
and each ti is in normal form.

Lemma 3.5. For every term t there exists a normal form t' such that fv (t) =
f v (t ') , l t [= I t ' [and 1.1 t = t'.

Proof. By structural induction on terms using the elementary facts about the
proof system given in Proposition 2.4. []

The following generalisation of the axiom EA will be useful in the exposition
of the completeness proof.

Proposition 3.1. For any finite non-empty collection of booleans { bi I 1 < i N n },
such that ViEI bi = b and bi A bj = fa l se for i @ j,

1.1 b t> E c?x.ti = E c?x.ti + c?x. E bi ~ ti
l <_i<_n l <_i<_n l <_i<_n

Proof. By induction on n. The base case is trivial. Now assume the result for
n - 1 with n > 1 and let b' i = bi for 1 _< i < n - 1 and b'n_ 1 = b n - l V b n .
Then Vl_<i<,-1 b'i = b, b' i A b) = false for i # j, and (Vl_<i_<~-I bi) A b' i = bi for
1 _< i _ n - 1. We have

1-1 b ~> E c?x.ti
l <i<n

= E Cg'X'ti d- Cg.X.tn
l<_i<_n-1

= E C?X'ti "~ C?X.(E bri -* ti) + c?x.tn
l <_i<_n--1 l <_i<_n--1

Lemma 2.2
= E c?x . t i+c?x . (E b ' i ~ t i) + c ? x ' t n +

l <i<n-1 l <i<n--1

C?X.((Vl_<i_<n_ 1 bi ~ ~ b'~ ~ ti) + bn ~ tn)
l<_i<_n--1

Prop 2.4
-- E Cg'X'ti-Jr C?X.(E b'i --* ti) + c?x.tn +

l <_i<_n-1 l <_i<_n-1

c ?x.(} 2 bi ~ ti + bn ~ tn)
l<_i<_n--1

= } 2 c?x.t, + c?x.(} 2 bl t,) + c?x.t +
l<_i<n--1 l<_i<_n--1

C?X.(E bi --~ ti)
l <_i<_n

:
l <<_i<<_n l <~i<n

[]

392 M. Hennessy and H. Lin

Theorem 3.2. (Completeness of 1-1) t "~b E U implies 1-1 b I> t = u

P r o o f By induction on the joint size of t and u. We may assume that both
are normal forms, t = Ei~lCi -* ai.ti and u =- Zj~adj ~ flj .uj. Call a prefix of
type 7 6 { z , c ! , c ? [c ~ C h a n } if it has the form ~ ,c !e , c?x , respectively. Let
I~ = { i ~ I [a z h a s t y p e ~ } , J 7 = { j c J l f i j h a s t y p e y } and alsotT,u~ denote
Eici, ci ~ cq.t~, Zj~j, dj -~ f l j .uj respectively. We show 1-1 b t> t 7 = u~ for each

type 7. Clearly t7 ,,~b euT. Because of a-conversion we may assume that each input
prefix in t~? and u~? uses the same variable x ~ f v (t , u, b). We examine the cases
7 = z and 7 = c? here and leave the case ~ = c! to the reader.

�9 (Case ~ = z).
By symmetry we need only to show

1-1 b I> u~ + ci ~ "c.ti = Ur.

for each i E I~. Note that 1-1 b A ~ci t> ci ---, z.ti -= nil so by CUT it is sufficient
to show

1-1 b A ci t> uz + ci --+ "c.ti = Uz.

Since 1-1 b A ci > ci --+ z.ti = ti this may be further simplified to

1-1 b A ci I> u~ + z.ti = uz.

Ci~T
Now t~ -----+ ti. So there exists a b A ci-partition B such that for each b' c B

there is u, ~ uj such that ~ dj and ti uj. By induction I-1 b' I> ti = uj.
By TAU 1-1 b' ~> "c.ti = "c.uj. Since b' ~ dj we have 1-1 b' I> ti = dj --+ "c.uj
and by $2 1-1 b' I> u~z.ti - - uz. This is true for each b' in B and therefore an
application of CUT gives the required

1-1 b A ci t> uz + z.ti = u~

,, (Case 7 = c?).
As in the previous case it is sufficient to prove that

1-1 b A ci > Uc? + c?x.t i = Uc? (1)

for an arbitrary i ~ Ic~.
For each L _ Jc?, let d L = (A j e L dj) A (Aj '~Jc , -L ~dj ,) . Then VL_~a? d L = true

and dL A dL, = f a l s e for L @ L'. Using Proposition 2.4 we can derive

1-1 Uc? = ~LcJc~(dL --+]~jELCq.X.Uj) (2)

By CUT, (1) can be reduced to showing that, for each L,

1-i b A ci A dL t> uc? = Ue? + C?X.ti

which, by (2), can be further reduced to

1-1 b A c, A dL t> Y.jcL C q.X.Uj -= ~.j~L C g.X.Uj q- C ?X.ti. (3)

We show how to derive this for an arbitrary L. Note that by a-conversion we
can assume that x does not occur free in b A c, A dL.

Ci,C?X
Since Uc? ~/~c,/Xd~ tc? and tc? > t~, there exists a b A c~ A dL-partition B such

dJb , ,c ?x b'
that for each b' E B, uc? , ujb, for some jb' with b' ~ djb, and ti "~E Ujb'"

Proof Systems for Message Passing Process Algebras 393

Without loss of generality we may assume the booleans in B are mutual
disjoint, i.e. b 'A b" = f a l s e for any b', b" ~ B.

By induction, F1 b' t> ti = ujb, or, equivalently, Ft b' ~ ti = b' ~ u]~,. So

[-1 Y'b'cB b~ --~ Ujb, = ~b'cB bl "-* ti
= b A ei A dL --~ ti

Hence Ft b A ci A dL I> Zb, esb' -* ujb, = ti. Now, because x ~ f v (b A ci A dL),
we can apply INPUT to obtain

F1 b A ei A dL D Cg.X.'Zb,cBb I ~ Ujb, = C9..x.ti (4)

This identity can in fact be strengthened to

F1 b A ci A dL r> C ?X.Zb'cB'b' ~ Ujb, = C ?X.ti (5)

where B' = { b E B] b --/= fa l se }. The advantage of using B' in place of B is
that b' c B' implies that jb' ~ L: we know b' ~ dLAdjb, and so dLAd]~, :p fa l se
which because of the construction of dL immediately implies jb' E L.

Therefore

F1
S2

Prop. 3.1

(5) =

$2

b A q A dL D ~jcLCg.X.Uj

~ jc L C g.X.Uj -it- ~b, cB, C ?X.Ujb ,

~jcLC?X.Hj -~- ~b,cB, C?X.Hjy -~- Xb,~B,C?x.b I --~ bijb ,

X jcL C g.X.Uj -IV Xb, ca,C g.X.Ujb, ~- C ?x.ti

E j c L e ? x . u j + e g..x.ti

This is the required (3) above.

[]

Our proposed axiom schema EA is very general since it allows us to introduce
an arbitrary boolean expression b into a proof. In previous versions of this work,
[?], we had a different approach; instead of the axiom schema EA we used the
following rule schema:

b I> EiEI z.ti = ~-~,j~J z.Uj
E-INPUT b [:> ~-~icl C?X'ti = E j E J C?X.Hj X ~ fv(b).

This also is quite general but at least its application only depends on the structure
of the terms in the proof being elaborated and is at least somewhat schematic.

Note that the use of z in this rule is essential. For example the rule

b r> Eicl ti = ~ . j~ j Uj
b I> ~ i c I c?x.ti = ~ j ~ j c?x.uj x ~ fv (b)

is unsound. For example since (p + q) + r ~'~e P "-~ (q -I- / ') for all processes p, q, r we
could use this rule to derive

e?x.(p + q) + c?x.r "~e c?x.p + c?x.(q + r)

for which there are obvious counterexamples.
With the help of GUARD and CUT, EA can be easily derived from E-

INPUT. Hence the proof system obtained by replacing the axiom schema EA
with E-INPUT is also complete. A direct completeness proof is also possible:
The only change is to the last case examined in the proof of Theorem 3.2, when
7 is c?. The details can be found in the proof of Theorem 4.3.

394 M. Hennessy and H. Lin

T1 c~. z .X = a.X
T2 X + z .X = z .X
T3 ~ . (X + r . Y) + a . Y = a . (X + z . Y)

Fig. 5. The axioms d2.

4. Weak Bisimulation Equivalence

In this section we outline how to extend the results of the previous two sections
to so-called weak bisimulations.

a

The concrete double arrows ==~e, where a 6 {5, z, c?v, c!v}, are defined as the
least relations between closed terms generated by the following rules

�9 P==~eP.
a a

�9 P >e q implies P ==~e q.
"~ /2 a

�9 p >e==~e q implies p ==~ q.
a ~ a

�9 P ==~e >e q implies P =:=:>e q.

The weak version of Lemma 2.1 holds:

a qt for some ql ft. [] Lemma 4.1. If p _--~ q and p ~ e pt then q ===~e ~-~ct

Let ~ to be e when a = z, and a otherwise. The early weak bisimulation is
then defined as usual (for closed terms):

Definition 4.1. R is an early weak bisimulation if (p, q) E R implies

a a qt ql �9 i f p >e P' then q ~ e for some such that (p~,q') E R.

a a p' for some p' such that (p', q') c R. �9 if q >e q' then p ~ e

Let ~e be the largest early weak bisimulation.

The aim of this section is to extend the proof system of Section 2 to weak
bisimulation equivalence. However it is well-known that ~'e is not preserved by
§ and so we have to work with the modified relation:

Definition 4.2. Two closed terms p, q are early observation congruent, written
P --e q, if for all a E {z,c?v,c!v}

a a
�9 Whenever p)e P' then q ~ e q' for some q~ such that pl ~ e qt.

a q, a ~ ff ff qq �9 Whenever q >e then p ==:>e P for some such that ~e

As usual m~. e is the largest congruence relation contained in ~e. This relation can
be generalized to open terms by letting t ---e u iff tp ~e ufi for any p. We then
have the standard result

Proposition 4.1. ~'~e is preserved by all the operators in the language. []

To give a sound and complete proof system for this relation, it is sufficient to
add to the proof system the equations d 2 given in Fig. 5. Let us use ~-2 b I> t = u
to denote that b 1> t = u can be derived from the proof system using the axioms
sr and of course al l . For the sake of variety in this section we work with the
version of the proof system which uses the proof rule E - INPUT rahter than the

Proof Systems for Message-Passing Process Algebras 395

axiom schema EA; This will provide an opportunity of outlining a proof of a
completeness theorem involving E-INPUT, in contrast to the completeness proof
of the previous section which uses EA.

The main result of this section is

Theorem 4.1. (Soundness and completeness of }-2)

t-2 b t> t = u if and only if tp ~e up for every p such that p M b.

The soundness is straightforward, by induction on the length of the derivation
of b I> t = u. The strategy for proving completeness is the same as in the strong
case. We first develop a symbolic version of weak bisimulation and relate it to
the concrete version. We then prove completeness with respect to this symbolic
version of bisimulation congruence.

First we define the symbolic double arrows as the least relations between open
terms which satisfy:

rrue,g
�9 t ~ E t .

b,a b,~
�9 t >u implies t ~ E u .

b,z b',a bAb~,a
�9 t > ~ E u implies t ~ E u .

b,~ b',z bAb',~
�9 t ~ e >u implies t ~ e u .

It will be necessary to use a slight variation on these in the late case and therefore
we use the index E to indicate that these are early weak symbolic moves.

Concerning bound variables we now have

b,c?x tt
Lemma 4.2. I f t - - ~ e then fv(b) ~_ fv(t) U {x} and x ~ fv(t). []

That is, in a double input transition the input variable can appear in the guard.
The two versions of double arrows can also be related as in the case of single

a r r o w s .

Lemma 4.3.

z :=~b,~ E tr" 1. I f tp =::>e P then there exist b, t' s.t. p ~ b, p =-~ t'p and t
b,~

2. I f t --->e t', p ~ b then tp ~ e P for some p =-~ t'p.

Lemma 4.4.

==~b,~ E t 1. 1. I f tp =:::~e P then there exist b, t' s.t. p ~ b, p =-~ t'p and t
b,~

2. I f t - - - ~ t', p ~ b then tp ~ e P for some p ~ t'p.

Lemma 4.5.

c!v b,c!e tt"
1. I f tp ~ e P then there exist b, e, t' s.t. p ~ b, p(e) = v, p ~ t' p and t ~ e

b,c!e c!v
2. I f t ----->e t~, P ~ b then tp ==~e P for some p =-~ t'p where v = p(e).

Lemma 4.6.
c.gv

1. I f tp :'e P, x ~ fv(t) then there exist b, t' s.t. fv(b) G fv (t) L2 {x}, p{v /x}
b,c?x tt"

b, p =~ t 'p{v /x} and t ~ e

396 M. Hennessy and H. Lin

b,c ?x c ?v
2. I f t ==~E t', p{v /x} ~ b then tp ==~e p for some p =-~ t 'p{v/x}.

Proo f The proofs of these four l emmas are quite similar and as an example we
prove L e m m a 4.6.

1. We will prove a slightly s tronger s ta tement:
c ?v

I f tp ~ e P, x r fv (t) then there exist b, b', t' s.t. fv (b) ~_ fv(t) , p ~ b,
bAb',c ?x t

fv(b ') ~_ fv (t) U {x}, p{v /x} ~ b, p - ~ t' p{v /x} and t ==~E t .
c?v

The p roo f is by induct ion on why tp ==~e P.

c?v
�9 tp ~e P. Immedia t e f rom L e m m a 3.4 and the definition of ---~E.

c?v
�9 tp ~e q =:=~e P. By L e m m a 3.4 there exist b", t" s.t. p ~ b", q =~

btr,z t t / t"p and t ; By L e m m a 3.1 fv (b") ~_ fv(t) , f v (t t') c fv(t) . Apply
c ?v

L e m m a 4.1 we get t"p pt ==~e - ~ p. So by induction 3b "t, b t, t t s.t.

x ~ fv(b"t), p ~ b t't, p{v /x} ~ b', p' =-~ t 'p{v/x} and t" b"Ab',~Tx~E t t. Let
bAb~'c?x t t.

b = b 't A b t't then x r fv(b), p ~ b and t ----~. ~
c?v z

�9 tp ~ e q ~e P. Similar to the previous case.

b,c?x it . 2. By induct ion on why t ~

b,c?x ft. �9 t ~ Stra ightforward f rom L e m m a 3.4 and the definition of ==~.

b',v b",c?x tt b ~ A b'. �9 t ~ u "-~ w i t h b - = T h e n x q ~ f v (b ') , s o p ~ b t . By L e m m a 3.2,

c?~ p, t tp{v/x}. By L e m m a 4.1 tp ~ q ~ up. By induction up ~ e =~
c?v c?v

q = : ~ p -=~ p'. By the definition of ~ e , tp ~ e P =--~ t tp{v/x}.

b',c?x b",z tt b t b". c?v �9 t ~ E u ~ with b ~ A By induction tp ~ e q =~ up{v/x} . By

~ ft. L e m m a 3.2 up{v/x} ,~ p' =---~ t tp{v/x}. By L e m m a 2.1 q 'e P - ~
c.9v

Therefore tp ==% p -=~ tt p{v/x} .

[]

Now let S = { S b I b 6 Exp } be a family of relations over terms indexed by
boolean expressions. Then F ~ (S) is the family o f symmetr ic relations defined
by:

(t, u) E g] ~ / ' ~ (S) b if whenever t b~,~ t' with bv(~) V3 fv(b, t, u) = 0, then there is

b2,~: Ut a b A bl -par t i t ion B such that for each b' c B there exists a u =:=~E such that
b t ~ b2 and

1. i f a -= c!e then ~' --= c!e', b t ~ e = e' and (t ' ,u t) E S b'

2. otherwise ~ -= ~' and (t', u') c S b'

Definition 4.3. (Weak Symbol ic Bisimulations) S is a weak symbolic bis imulat ion
if S _~ ~ (S)

Let ~ E = {~b} be the largest (early) weak symbolic bisimulation.
Again we have to modi fy ~ so that it is preserved by + :

Proof Systems for Message-Pass ing Process Algebras 397

Definition 4.4. Two terms t, u are symbolic observation congruent with respect to
bl,c~ t' b, written t ~b u, if whenever t , with by(cO A fv(b, t, u) = 0, then there is

a b A bl-partition B with the following property: for each b' E B there exists a
b2,r u' b' u ---*'E such that ~ b2 and

1. i f e =- c!e then ~' =- c!e', b' ~ e = e' and t' ~b' u' ~ E
b' U t 2. otherwise e -- ~' and t' ~E

and symmetrically for u.

Note that in this definition it is still essential to use partitions when matching
moves. For example

z.p ,~ue b ~ z.p + -~b ----* z.z.p

true,z
but the symbolic move z.p ~ p can not be matched properly by a single symbolic
move from the right hand side.

The two versions of weak bisimulation equivalence/congruence can be related
as in the case of strong bisimulation.

Theorem 4.2. (Soundness and completeness of ~e and ~--E)

1. t ~b u, where fv(b) ~_ fv(t,u), if and only if tp ~e up for every p such that
p ~ b .

2. t ~b u, where fv(b) c_ fv(t,u), if and only if tp me up for every p such that
p ~ b .

Proof. We only prove 1. The proof of 2 is similar.
(~) Let

R = {(tp, up)] 3b, fv(b) ~ fv(t,u), p ~ b and t ~b u}

We show R is a weak early bisimulation.
Suppose (tp, up) E R, i.e. 3b, fv(b) c_G_ fv(t,u), p ~ b and t ~b u. Let

o
tp ~e P. we must find a matching transition from up. There are three cases to
consider.

z bl,z) tt" �9 tp ~ep. B y L e m m a 3 . 2 (1) , 3 b l and t s . t . p ~ b l , p=-~t 'p and t
So 3b A bl-partition B with the properties guaranteed by Definition 4.3. Since

b2,e U! p ~ b A b t and V B = b A b l , ~b' c B s.t. p ~ b'. Let u - - -~e be the
b' symbolic transition associated with this b'. Then p ~ b2 and t' ~e u'. By

Lemma 4.4(2) up =:~e q =-~ u' p. Moreover (t' p, u' p) E R by the definition of
R. Hence (p, q) c R.

cTv
�9 tp ~e P. By Lemma 3.4(1), 3bl, x, and t' s.t. x r fv(t), p ~ bt, p =-~

b~,c?~ tt" t 'p{v/x} and t We may assume x ~ fv(u). So 3b A bl-partition B
with the properties guaranteed by Definition 4.3. Since p ~ b A bt and x

b2,c?x Ut fv(b A bl), p{v/x} ~ b A bl. So 3b' ~ B, p{v/x} ~ b'. Let u ~ E be the
b' U I. symbolic transition associate with this b', then b' ~ b2 and t' ~a Since

c?v
p{v/x} ~ b2, by Lemma 4.6(2), up ~ e q -~ u'p{v/x}. Since p{v/x} ~ b' and

b' t' ~E u', (t'p, u'p) E R. Hence (p, q) E R.

398 M. Hennessy and H. Lin

c ! v
�9 tp ~e P. Similar.

(~) We show the boolean-indexed family of relations S = { S b I b E B E x p }
defined by

S b = { (t, u)] fv (b) ~_ fv(t , u), p ~ b implies tp ~e up }

is a weak early symbolic bisimulation.
bt,~ tt" Suppose (t, u) E S b and let t consider three cases:

bl,~ tt" �9 t We need to construct a b/k bl-partition B with the required properties.
To this end we number all e-transitions from u thus

b~,e .
U ==*'E U 1, O < i < k

For each i, let br[be a boolean with the following properties:

fv(b'i') c_ fv(t , u)
p ~ b;' iff t'p ~e u'p

Let b' i = b/~ bl /~ b~/~ bli I and B = { bli [0 < i < k }. We first show that B is
a b/~ bl-partition, i.e. V B = b/k bl. By construction V B ~ b/k bl. Now we
show b A bl ~ V B.
Let p ~ b/~bl . Then tp ~ up. By Lemma 3.2(2), tp ~ p =-~ tip. So

there exists up = ~ e q ~e P. By Lemma 4.4(1), 3b~, u i s.t. p ~ b~, q =~
�9 bi2~r" " II I t

u'p and u ==~E u i. Then t'p ~e u'p. By the definition of bi, p ~ b i . Therefore
p ~ b I. Hence p ~ V B.

bi2'e ui
It is easy to see that B has the required property: for any b' i c B, u ~ E
with b I ~ bl I. Moreover (t', u i) E Sb'~ by the definition of bli ' and S.

bbc?x tt" �9 t ~ We may assume x q~ fv(u) . Similar to the previous case we number
all weak c?x-transitions from u thus

b~ ,c ?x .
u ~ E u ~, O < i < _ k

For each i, let b ' /be a boolean with the following properties:

f . (~ . , = v u i) _ f v (t , u) U { x }
For any v, p{v /x} ~ bli ' i f f t 'p{v/x} ~e uip{v/x}

Letb ' i = b / ~ b l A b ~ A b ~ ' a n d B = {b I I 0 < i < k } . First we check that B is
a b/~ ba-partition. Again V B ~ b/k bl by construction. To see b/x bl ~ B,

c ?v
let p ~ bAbl . Then tp ~e up. By Lemma 3.4(1), for a n y v 6 Val, tp ~e

c ? v
p --~ t lp{v/x}. So there exists up ==*'e q "~e P. By Lemma 4.6(1), 3bi2, u i

b~,c?x U i. Hence s.t. fv(b~) E fv(u) u {x}, p{v /x} ~ bi2, q ==-~ uip{v/x} and u ~ E
tI,o{v/x} ~ e UiP{ t) /X} �9 From the definition of b'/, p{v /x} ~ b'/. Furthermore,
since p ~ b A bl and x ~ f v (b A b~), p{v/x} ~ b A bl. Thereofre p{v /x} ~ b' i.
Hence p{v /x} ~ V B. Since v is arbitrary, p ~ B.
By the construction of B it is easy to see that B has the required porperty:

Proof Systems for Message-Passing Process Algebras 399

b~,c ?x
F o r any b' i E B, u ==>e u ~ and b' i ~ b~. I f p ~ b' i then p ~ b'/. r a k e v = p(x),
then p{v /x} = p, so t' p ~'~e u i P �9 Hence (t', u i) E S b', by the defini t ion o f B.

bt,cIe tt"
�9 t ~ Similar.

[]

We now turn our a t t en t ion to the completeness o f the p r o o f system. Firs t we
need the fol lowing genera l i sa t ion o f the ax iom T3:

L e m m a 4 . 7 . I f f v (b) Nbv(cO = 0 then [-2 e . (X + b --+ z.Y) = c c (X + b -+
v.Y) + b --+ e.Y

Proof Since X = X + b --+ X we need only to show

[-2 b --+ c~.(X + b -+ r .Y) = b --+ c~.(X + b --+ v.Y) + b --+ e.Y

which can be der ived as follows (using Propos i t ion 2.4):

[-2 b ---* e . (X + b ---* r .Y)

= b ~ ~.(b --* (X + b ~ r .Y)) (2.4.7)

= b - , a.(b -* (X + z.Y)) (2.4.5)

= b --, :r + z.Y) (2.4.7)

= b ---* (:~.(X + z .Y) + a .Y) (T3)

= b ~ a.(X + z . Y) + b ~ a.Y (2.4.5)

= b ~ a .(X + b ~ z.Y) + b -+ a.Y (previous steps reversed)

[]

Comple teness o f the p r o o f system will follow if we can prove t ~ b u implies
[-2 b > t = u. The fol lowing two results are essential to this p roof ; they are symbol ic
versions o f two results which also p lay an essential role in the comple teness p r o o f
for "pure" CCS, [Mi189].

b,a tt ~__ L e m m a 4.8. (Absorp t ion) I f t ==~e with fv (b) A by(e) = 0, then [-2 t t + b
~X.t t.

b,a tt " Proof By induc t ion on why t ----~e

1. t b#> tr"

true,a tt
�9 ~'.tl > with ~'.tl -=~ ~.(. Use $3.

b' Ab"~ tl b",~
�9 b' --+ tl because tl > t'. By induc t ion [-2 tl = tl -{- b" -+ ~.t'. So

[-2 b' ~ tl : b' ~ (b" ~ a.t ')
= b' ~ tt + b' A b" ~ a.t ' by Propos i t ion 2.4.

�9 The o ther cases are similar.
b',a b",z

2. t ~ tl ~ E t' with b = b' A b". By induc t ion [-2 tl = tl q- b" -* z.t' and
[-2 t = t + b' + ~.t l . So, since bv(~) A fv(b) = O,

[-2 t : t + b' --* ~.(tt + b" --* v.t')
= t + b' + (~.(tl + b" --* -c.t') + b" --, ~.t') by L e m m a 4.7
= t + b I --* b" --* a.t '
: t+b--+o~.t '

400 M. Hennessy and H. Lin

b',~: b",~ t' b ~ b' . 3. t ~ e tl with b -= A Similar to the previous case. []

Proposition 4.2. t ~ u if and only if there is a b-parti t ion B such that for all
~ b t

b' E B, t ---~ u or t --E "c.u or z.t --~ u

P r o o f The "if" part is trivial because o f Theorem 4.2. For the "only if" part,
by a construct ion similar to that used in Proposit ion 4.3, we can assume t -=
~i~lCi --'+ 32kcKiO~ik.tik, U ~-~ Y ~ j c j d j ~ ~ . lELj f l j l .Uj l , where ci A ci, = f a l s e for i ~ i',
dj A d j, = f a l s e for j :/= f , Vie1 ci = true, and V j E j dj = true.

Set B' = {b A ci A dj I i E I, j E J} . Then V B ' = b. Consider an arbitrary
b t ci,z,

b t =-- b A ci A dj E B'. Since b' ~ b, t '~g u. So for every t tik, there exists a

dj ,~ U ! b'-parti t ion Bik with the property that for each bl E Bik there is a u = = ~ s.t.
dj,r

tk ~bl u', and for every u ~ ujl there exists a b '-part i t ion Bjl with the proper ty

Ci,Z t! t ! ~b2 that for each b2 E Bjl there is a t ~ e s.t. u)t.
Let B 1 = {AkEK~bk] bk E Bik }, B 2 = { &ELjbt I bl E By1}, and Bb, =

{ bl A b2 P bl E B 1, b2 E B 2 }. Then V Bb, = b'. Fur thermore Bb, has the proper ty
b" ci,z> djr U t b" that for each b" EBb,, t ~E U, and whenever t t', there is a u ~ e ~ e (;

dj,z U! ci,~ tt b" d . t' c,,~ t, ~ , then whenever u there is a t ~ e ~ e I f for some t u
b" dj,'c, U t b" "

t "~E r.u; I f for some u' u ~ e t then r.t " ~ u. Otherwise we can show

,,~b" ci'c~, f t . ~ b " " b" ft. t - - e u as follows. Let t , then since t ~ e u we have u dj,~ u t ~'e By

dj,~ U ! ~ b " t t assumption u' can not be u itself when a - z, so u ~ e as required. By

symmetry, t - e u.
Now the required B is Ub'cB'Bb,. []

Finally, since we are considering E - I N P U T rather than EA we need the
following generalisation:

Proposition 4.3. Suppose x ~ fv (b , ci, dj), i c I , j E J. Then f rom

['-1 b ~, ~.iElCi --+ "c.t i = ~ j c j d j "-* "c.uj

infer

~-1 b ~> ~.i~lCi ---+ Cg.X.ti -~ ~ j c j d j ~ c ? x . u j

P r o o f For each K _~ I let c/~ be the boolean expression/~ke/~ Ck A Ak'~I-K ~Ck'.
Then V cK = true, cK A cK, = f a l s e whenever K ~ K ' . Using parts 3,6 and 5 o f
Proposit ion 2.4 we can show that

[-1 ~iCICi ~ z . t i -= t r

where t ~ denotes EKcK ~ t~ and t~; denotes ZkEKCk ~ r.tk. Let u ~ = YLdL ~ U~L
be defined in a similar manner.

We know }--1 b [> t ~ = U r and therefore for each K, L, b-1 b A cK A dL > t ~ = uL
Again using parts 3 and 5 o f Proposit ion 2.4 we can prove

[-1 b A cK A dL D ff = ZkegZ.tk

and

~-1 b A cK A dL I> u ~ = Zt~LZ.Ul

Proof Systems for Message-Passing Process Algebras 401

Therefore

[.1 b A cK A dLl:> ZkeK 'C . t k = ZIELZ.Ul

N o w we can apply E - I N P U T to obtain

[.1 b A CK A dL D ~ k c K C ? X . t k = ~IELC?X.Ul

By reversing the above argument we have

[.1 b A ci(A dLl:> t x = u x

where t x and u x denote ZKCK ~ ZkeKC?X.tk and ZLdL ~ 21~LC?X.Ul, respectively.
Since VK,L CK A d L = true, we can apply C U T to obtain [.1 b ~> t x = u x. Finally
parts 3,6 and 5 o f Proposi t ion 2.4 can be used as above to t ransform t ~ and u ~
into the required form. []

We now have the main technical ingredients necessary for the completeness
proof. As usual this requires some not ion o f normal form, which we call ful l normal
forms. For convenience we consider these before embarking on the completeness
p roof proper.

Definition 4.5. A normal form t = Y, ibi ~ O~i.t i is a ful l normal form if

b,~ b,~ tl ' 1. t ~ t', where by(cO N fv(b) = 0, implies t ,

2. Each ti is in full normal form.

L e m m a 4.9. For any normal form t there is a full normal form t' such that
f v (t) = f v (() , [t [=] t'] and [--2 t = t'.

Proo f By structural induct ion on t. For then non-trivial case when t g~ nil, by
induct ion we ma y assume each summand of t is already in full normal form. Let

bk,~k bk,~k
t' = t + Z k { b k --*ek.tk] t ~ E tk, bv(ak) A f V (b k) = O , but not t , tk}

Then, modulo c~-equivalence, t' is in full normal form with size equal to t, and by
the absorpt ion lemma [.2 t -= t'. []

By this lemma and L e m m a 3.5, every term can be t ransformed into a full normal
form of equal size.

Theorem 4.3. (Completeness o f [.2) t _~b u implies [.2 b t> t = u.

Proof We may assume t, u are in full normal form and apply induct ion on
the joint weak size of t and u. The case that the size is 0 is trivial. So let
t ~ ~r~iEIC i ----> O~i.ti, U ~ ~ j c j d j "-> ~j .Uj . W e u s e the notat ions I~, Jr, ty,u~ as defined
in the p roof of Theorem 3.2.

Consider the case ~ ~ c?. Let

tZc? ~-- ~,iElcTCi -'+ z . t i U~c? ~ E j c j c ? d j ---r "c.uj

Since t _ b u, we have t~? ~b U~? and therefore t~? ~ b U~?.
To prove [.2 b t> t~? = Uc~ it is sufficient to establish

[-2 b A ci 1> Uc? + ci ~ c?x.ti = Uc?

for each i c I~.
C i,c ~X

N o w tc? ~ t~, so there is a b A ci-partition B with the proper ty that for each

402 M. Hennessy and H. Lin

d;,c?~ d,~ u, b' b' u'. b I E B there is Uc? uj ~ E s.t. ~ d j A d t and ti ~ E By Proposition 4.2
,.~b" Ut ~ b " ,.~b" Ur. there exists a b'-partition B ~, for each b" c B ' ti --E or ti - -E f2.U' or "c.ti --E

By induction, together with TAU and T1, in each case we can derive

]-2 b" I> r.u' = "c.ti

Applying CUT on B' we get]-2 b ' [> ~;.u t ~- "C.t i.
I f Hj ~ ~l', then]-2 b' I> v.uj = T.ti and hence]-2 b' t> 72.blj -m- "r2.Uj -~- "C.t i.

Otherwise, by absorption]-2 uj = uj + d' ~ "c.u'. Therefore

]-2 b' 1> v.uj = r . (uj + d' --+ r.u')

4.7 "C.(Uj + d I ~ r.u') + d' ~ v.u'

= r .uj + d ' ~ ~.u'
= r .uj + d' --+ r.ti

Since b' ~ d', by Proposition 2.4.3 it follows that

I- 2 b' ~> r .uj = r .uj + "c.ti

Similarly, because b' ~ ci A d j, we have

]-2 b r I> dj --+ r .uj = dj --+ r , u j -t- Ci --+ "C.ti

SO

]-2 b ' z I> Uc? -= Uc? -]- Ci --+ ~.ti

This is true for each b' in the b A ci-partition B. So applying CUT we obtain
-c

]-2 b A c i D blzc? = Re? -{- C i --+ g.ti . By Proposition 4.3, the generalised E - I N P U T
Rule, applicable because we can assume x ~ f v (b A ci), we get the required
]-2 b A ci ~ Uc? + ci --+ o~i.ti = Uc?. []

5. The Late Case

In this section we briefly outline how the theory developed in the previous sections
can be carried over to the late case with some systematic modifications. It turns
out that only those parts concerning input actions need changing and for brevity
we only treat weak equivalence.

The late operational semantics of this language is given in Fig. 6. Note that

both ~1 and c~t are relations over closed terms but c?x ~l is a relation between
c?x

dosed terms and functions from values to closed terms. Intuitively p ~t 2x .u
means that the process can accept inputs on channel c and when it does so its
future behaviour, which is parameterised on the value received, is characterised
by the function 2x.u.

The concrete late double arrow relations are also defined in the same way as

in the early case in Section 4, with ~ l in place of a>e, except that the last
clause is only given for non-input actions; so input actions do not absorb r moves
after them:

�9 P==~IP.
�9 P a~lq implies P ~ l q .

a a
�9 p ~ l ~ t q implies P ~ l q .

Proof Systems for Message-Passing Process Algebras 403

"C

z.p ~1 P
c!v

c!e.p ~l P where v = [[e]

c?x.t c?x�91 2x.t
O~ C~

P ~t r implies P + q ----'1 r
Ct

P ~I r, lib] = true implies b --* p ~l r

Fig. 6. Late concrete operational semantics.

"C "C "g

�9 P - - ~ l ~lq implies p ~ l q .
c!v z c!v

�9 P---->-I ~tq implies P ~ l q .

These revised arrows can now be used to define another version of weak bisimu-
lat ion equivalence.

Definition 5.1. A symmetr ic relation R between closed terms is a late weak
bis imulat ion if it satisfies: (p, q) E R implies

c?x c?y
�9 I f p ~l 2x.t then there exists q ==*'l 2y.u and for all v c Val 3q' s.t.

u[v/y] ~ l q' and (t[v/x],q') E R.

�9 For any other act ion a not o f the fo rm c?x, p a~l p' then there exists

q ==*l q' and (p', q') E R.

Let ~l be the largest late weak bisimulation.

The corresponding late observat ion congruence is then defined in terms of late
weak bis imulat ion:

Definition 5.2. Two closed terms is p, q are late observat ion congruent , writ ten
P -~t q, if

c?x c?y
�9 Whenever p ~l 2x.t then there exists q =:~t 2y.u and for all v E Val 3q' s.t.

u[v/y] =:=>1 q' and t[v/x] ~I q'.

�9 For any other act ion a, whenever p a ~l P' then there exists q ==~l q' and p' ~l
ql.

�9 similarly for q.

This relat ion is generalised to open terms by letting t --~l u iff tp ~--1 up for any p.

It can be shown tha t --1 is preserved by all opera tors in our language. In general
it is finer that --~e ; a typical example of a distinction made by "~-1 but not by ~'~e
is discussed in the Int roduct ion.

To develop results for --1 similar to those in the previous section we need
a symbolic version of late weak equivalence. This, called late weak symbolic
equivalence, is defined using a cor responding not ion of late weak symbolic action:

�9 t = = : ~ L t .

b,c~ b,~
�9 t -~ u implies t----->L u.

b,z b',~ bAb',c~
�9 t ~==~L U implies t ==>L U.

404 M. Hennessy and H. Lin

b,or b;,z bAb',~
�9 if e is not o f the form c?x then t ==>L , u implies t ~ L U .

The difference between the last clause and the corresponding one in the
definition o f early symbolic double arrows in Section 4 is important . Now we do
not have L e m m a 4.2. Instead the following holds

b,c?x tl
Lemma 5.1. I f t ~ E then fv (b) ~ fv (t) and x ~ fv(t) .

Definition 5.3. A family o f symmetric relations S = { S b J b c BExp } is a late
weak symbolic bisimulation if:

b~,~ t; (t, u) C S b implies whenever t with by(a) n fv (b , t, u) = 0, then there is a
b A bl-part i t ion B such that f v (B) ~ fv(b, t, u) and for each b' c B there exists a

b2,~' Ut b, u ==*L such that ~ b2 and

1. if c~ -= c !e then ~' - c !e', b' ~ e = d and (t I, u') c S b'.

2. if ~ -= r then er =_ "c and ((, u') c S b'.
3. if a - c?x then e' - c?x and there is a b '-part i t ion B' s.t for each b" c B '

b~,~ U" b" there is u' =:=~L s.t ~ b z and (t', u") c S b'.

Let ~ L = {~b} be the largest late weak symbolic bisimulation.

It is impor tant to note that we now require f v (B) ~_ fv (b , t ,u) ; hence when
=- c?x it is guaranteed that x ~ fv (B) . So we can not part i t ion over the value

space for an input variable. This makes all the differences between early and late
bisimulations !

Late weak symbolic observation congruence is defined in terms o f weak
symbolic bisimulation:

Definition 5.4. Two terms t, u are late weak symbolic observation congruent over
bl,~ t; b, written t --~b L u, if whenever t with bv(c~) Ylfv(b, t, u) = 0, then there is a

b A bl-part i t ion B such that f v (B) ~_ fv(b, t, u) and for each b' E B there exists a

b2,~' U! b' u ~ L such that ~ b2 and

1. if :~ = c !e then c(-= c !e', b' ~ e = e' and t' ~ u'.
b' U t. 2. i f ~ r t h e n ~ ' - = r a n d t ' ~ L

3. if ~ -= c?x then ~' -= c?x and there is a b '-part i t ion B' s.t for each b" E B'

there is u' b~ u" b" t' ~b" u". ~ L s.t ~ b~ and ~L

and symmetrically for u.

We have the late counterpar t o f Theorem 4.2"

Theorem 5.1. (Soundness and completeness o f ~L and --~L)

1. t ~ u if and only if tp ~; up for every p ~ b.

2. t _~b L u if and only if tp ~-; up for every p ~ b.

Proof Similar to that o f Theorems 4.2. The only essential difference is in the
b,c~ c~

relationship between the abstract moves, ~ and the concrete moves, ~;. This
is the same as for the early moves, given in L e m m a 3.2 - 3.4 and 4.3 - 4.6, except
for input actions now we have:

Proof Systems for Message-Passing Process Algebras 405

c?x b,c?z tt
tp ~l 2x.u if and only if there exists some b, t' such that p ~ b and t

for some z where u =- t' Ix~z].
The strong version of the theorem is now essentially the same as Theorem 4.5 of
[HeL92] and the weak version is a very straightforward extension. []

The inference system for late symbolic observation congruence can be obtained
by deleting E A / E - I N P U T from that for early congruence. We write I-2L b I> t = u
to denote b t> t = u can be derived from the new inference system. We have the
soundness theorem:

Theorem 5.2. (Soundness of]-2L) ~-2L b t> t = u implies tp ~-t up for every p such
that p ~ b. []

For the completeness theorem, we use essentially the same form of full normal
form as in the early case (keep in mind that now double input arrows only absorb
those ~ moves before it):

Definition 5.5. A normal form t =- Yibi ~ ~i.ti is a late full normal form if

~ L tt b,a> tt" 1. t implies t

2. Each ti is in late full normal form.

The Absorption Lemma, Lemma 4.8, still holds (but note that now ~ can not
be an input action in the second case in the proof of the lemma) and therefore
every term can be transformed to late normal form. Also the appropriate version
of Proposition 4.2 holds.

Theorem 5.3. (Completeness of]-2L) t ~__b U implies ~-2L b ~> t = u.

P r o o f We assume t, u are in late full normal form and the proof proceeds by
induction on the joint weak size of t and u. For the non-trivial case when the size
is not 0 let t = ZielCi --4 cq.ti, u =- Y~j6jdj ~ flj .blj . We need to show

~-2L b A ci I> u + ci --* cti.ti -= U

for each i E I . We only consider the case when ai - c?x here (the other two cases
are the same as in the early case). By ~-CONV we may assume x ~ f v (b , t, u) and
every input prefix in u uses x as input variable.

Ci~C?X !
NOW t > t i. So there exists a b A ci-partition B with f v (B) ~_ f v (b A ci) s.t for

dj,c ?x
all b ~ E B, b: ~ ci and there is u ~ uj s.t. b' ~ dj and there exists a b'-partition

d','2 UI b" d t d. B' s.t for all b" E B' there is uj ~ L s.t. ~ and ti "~L
By Proposition 4.2 and induction, together with TAU and T1, we can derive,

for each b" c B,

[-2L b" I> z.u t = "c.ti

By an argument similar to that used in Theorem 4.3, using CUT on B', we obtain

[-2L b' ~> "C,Uj = Z.Uj -at- z.ti

Now, since x ~ fv (b ') , we can apply I N P U T to get

['-2L b t t> Cg.X.TJ.Uj ~ Cg.X.(75.LIj -]- "C.ti)

T3 C?X.(Z.Uj + z.ti) + Cg.X.ti

-= C g.X.Z.uj + C g..x.ti

406 M. Hennessy and H. Lin

t b,e> t' implies

b,c?x tr
t �9 ~ implies

t b:c?~ t', u b',c!~ u' implies

t b,e> t~ implies

t [b/ b,~) tl U

E {T, cIe c E Chan, e E Exp}
t I u b,c?~ t' u

x f~ fv(u)
bAb',f

t l u t '[e/x]fu'

t\c b,~ t'\c
if chart(e) r c

Fig. 7. Symbolic operational semantics - continued.

nil\c = nil
(x + Y) \c = X \ c + Y \ c
(e.X)\c = { e.(X\c) if chan(c 0 r c

nil if chan(e) = c

Let X, Y denote s s with f v (X) C~ by(Y) = f v (Y) c3 by(X) = 0
where f v (X) and by(X) are free data variables and bound data variables in the

term X, respectively. Then

X I Y = sync_move(X, Y) + async~nove(X, Y)

where

sync~nove(X,Y)= Z}~.(X,{e/x} J Yj) l e , - c ? x , f l j - c ! e } +
v.(X~ I Yj{e/x})l ~ c!e, Bj - c?x}

async_move(X, Y) = ~"i~ I Y) +] F . j f i j . (X I Yj)

Fig. 8. New equations and expansion law.

By T1, ~-2c b' l> c?x.uj = c?x.uj + c?x&. Since b' ~ c~ A dj, we can derive
~-2L b' Ddj --~ cg.x.uj = dj ~ C?X.Uj-JvCi ----4 Cg.X.ti . Hence ~-2L b' ~>u = u+ci ~ c?x.ti.
Finally, an application of CUT on B gives the required t-2c b A ci 1> u = u + cg
c ?x&. []

6. Extensions

So far we have concentrated on the core language of Section 2. As mentioned
in the Introduction all our rsults can be easily extended to the language obtained
by adding the] (parallel) and \ (restriction) operators. The concrete operational
semantics for these operators are standard and we only give their symbolic
operational semantics, in Fig. 7, where symmetric rules have been omitted. The
equations characterizing the restriction operator and the expansion law for the
parallel operator are shown in Fig. 8. These laws are fairly standard and are only
included here just for the sake of completeness.

It is routine to check that all ~e, me, ~l and El are preserved by the new
operators, and that the new equations are sound for these congruence relations.
Moreover these new equations are sufficient to reduce every term in the extended
language to one in the core language.

Proof Systems for Message-Passing Process Algebras 407

Now if we add these new equations to all, then the three normal form
lemmas 3.5, 4.9 and 5.5 carry over to the extended language. From these follow
the completeness results (Theorem 3.2, 4.3 and 5.3) for the extended language.

A c k n o w l e d g e m e n t s

The authors would like to thank Luca Aceto for carefully reading a draft of this
paper and suggesting many improvements, and also two anonymous referees for
their the valuable comments. This work has been supported by the SERC grant
GR/H16537 and the ESPRIT BRA project CONCUR II.

References

[Bur91]

[CPS891

[GrP90]

[Gre91]

[Hen88]
[Hen91]

[HeI93]

[HeL92]

[HeL95]

[HoR86]

[Lin91]

[Lin93]

[Mi189]
[MPW92]

[PaS93]

[Wa189]

Burns, G. A language for value-passing ccs. Technical Report ECS-LFCS-91-175,
University of Edinburgh, August 1991.
Cleaveland, R., Parrow, J., Steffen, B. The concurrency workbench: A semantics based
verification tool for finite state systems. ACM Transactions on Programming Systems,
15:36-72, 1989.
Groote, J.F., Ponse, A. The syntax and semantics of/~CRL. Technical Report CS-R9076,
CWI, Amsterdam, 1990.
Groote, J.F., Ponse, A. Proof theory for #CRL. Technical Report CS-R9138, CWI,
Amsterdam, 1991.
Hennessy, M. An Algebraic Theory of Processes. MIT Press, 1988.
Hennessy, M. A proof system for communicating processes with value-passing. Formal
Aspects of Computer Science, 3:346-366, 1991.
Hennessy, M., Ingolfsdottir, A. A theory of communicating processes with value-passing.
Information and Computation, 107(2):202-236, 1993.
Hennessy, M. Lin, H. Symbolic bisimulations. Theoretical Computer Science, 138:353-
389,1995.
Hennessy, M. Liu, X. A modal logic for message passing processes. Acta Informatica,
32:375-393, 1995.
Hoare, C.A.R., Roscoe, A.W. The laws of occam. Technical Report PRG Monograph
53, Oxford University Computing Laboratory, 1986.
Lin, H. PAM: A process algebra manipulator. In K. Larsen and A. Skou, editors,
Computer Aided Verification, volume 575 of Lecture Notes in Computer Science, pages
136-146. Springer Verlag, 1991. Also available as Sussex Computer Science Technical
Report 9/91.
Lin, H. A verification tool for value-passing processes. In Proceedings of 13 th Inter-
national Symposium on Protocol Specification, Testing Verification, IFIP Transactions.
North-Holland, 1993.
Milner, R. Communication and Concurrency. Prentice-Hall, 1989.
Milner, R., Parrow, J., Walker, D. A calculus of mobile proceses, part i. Information and
Computation, 100(1):140, 1992.
Parrow, J., Sangiorgi, D. Algebraic theories for value-passing calculi. Technical report,
University of Edinburgh, 1993. Also Technical Report from SICS, Sweden. To appear
in Information and Computation.
Walker, D. Automated analysis of mutual exclusion algorithms using CCS. Formal
Aspects of Computing, 1:273-292, 1989.

Received June 1994
Accepted in revised form August 1995 by J. Parrow

