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Abstract. Accessing multimedia information in a networked 
environment introduces problems that do not exist when the 
same information is accessed locally. These problems include: 
(1) competing for network resources within and across appli- 
cations, (2) synchronizing data arrivals from various sources 
within an application, and (3) supporting multiple data repre- 
sentations across heterogeneous hosts. Often, special purpose 
algorithms can be defined to deal with these problems, but 
these solutions are usually restricted to the context of a single 
application. A more general approach is to define an adaptable 
infrastructure that can be used to manage resources flexibly for 
all currently active applications. This paper describes such an 
approach. We begin by introducing a general framework for 
partitioning control responsibilities among a number of coop- 
erating system and application components. We then describe 
a specification formalism that can be used to encode an ap- 
plication's resource requirements, synchronization needs, and 
interaction control. This specification can be used to coordi- 
nate the activities of the application, the operating system(s) 
and a set of adaptive information objects in matching the (pos- 
sibly flexible) needs of an application to the resources available 
in an environment at run time. The benefits of this approach 
are that it allows adaptable application support with respect to 
system resources and that it provides a natural way to support 
heterogeneity in multimedia networks and multimedia data. 
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1 Introduction 

N e t w o r k e d  m u l t i m e d i a  is a generic term that describes a model 
of information distribution in which data sources are located 
separately from data sinks. Networked multimedia offers a 
number of advantages to applications: (1) the network pro- 
vides a convenient means of distributing information to other 
sites, (2) it provides access to compute servers where special 

* e-mail address: dcab@cwi.nl 
** Present address: Department of Computer Science, PO Box 
1910, Brown University, Providence, R102912, USA 
c-mail: dcab @cs.brown.edu 

purpose processing of multimedia data can take place, and (3) 
it provides access to central servers that can be used to store 
the often vast amounts of data required to represent multime- 
dia information fragments. At the same time, however, net- 
worked multimedia presents an application with a number of 
disadvantages; compared to accessing and manipulating mul- 
timedia data locally: (1) the data delivery characteristics of the 
network are difficult to predict and control, (2) the contention 
for critical system and data resources across the network makes 
balanced data access difficult to achieve, (3) and differences 
among network hosts may make data objects difficult to share. 

In order to make networked multimedia more useful to ap- 
plication designers and users, considerable effort has been de- 
voted to studying the way that data servers, operating systems, 
and network infrastructures provide access to time-sensitive 
data. Most of these approaches define extensions to "conven- 
tional" means of accessing remote data to provide predictable 
network service and performance. For example, predictabil- 
ity is provided in data object servers (either file servers or 
database systems) by supporting efficient object storage and 
retrieval/delivery (Danthin et al. 1992) and in operating sys- 
tems by supporting quality of service guarantees for delivery 
of (possibly) complex data types (Anderson et al. 1992; Ferrari 
1991; Govindan and Anderson 1991; Hanko et al. 1991 ; Lesley 
et al. 1992; Tokuda et al. 1990). At the network level, support 
for predictable multimedia is provided by, among others, ad- 
mission control techniques that regulate the use of resources 
and by technologies that provide deterministic network/data 
access (Clark et al. !992; Hayter and McAuley 1991; Jeffay et 
al. 1992; Little and Ghafoor 1991; Topolcic 1990; Verma and 
Ferrari 1990). The basic premise of this work is that an ap- 
plication will request a data object (or a collection of objects) 
requiring a specific amount of resources during a specified 
time. If these resources are available, the application can ex- 
ecute; if not, the application is either delayed or it is denied 
access to the resources. 

An implicit assumption in current approaches is that the 
application program bears a significant control burden in re- 
questing and coordinating multimedia information. Consider, 
for example, the application environment shown in Fig. 1. Sup- 
pose that one of the requested data streams could not be made 
available at the required level of service. An application may 



decide to skip this data object (or the collection of  objects asso- 
ciated with that stream), or it may decide to substitute another 
data object or object server. In effect, the application program 
is engaged in a process of  resource allocation. It is attempting 
to match its data needs to the resources available at various 
locations in the support infrastructure. Unfortunately, to allo- 
cate resources efficiently - even if this means only selecting 
from a set of  available data streams - the application needs 
to know how to best use the available infrastructure. This in- 
volves issues that most applications programs are ill equipped 
to resolve. (It also requires applications to be rewritten when 
they are moved to new environments.) Alternatively, the op- 
erating system or the data servers could handle all resource 
allocation, but the (local) operating system will have only lim- 
ited knowledge of  the state of  each of  the servers and other 
applications active within the networked environment, and the 
data servers will be able to manage only their own streams but 
not other streams in the infrastructure. 

Fig. 1. Simple multimedia information client/server example. The 
client is fed by three servers one of which supplies two data types. 
(The structure of the client and the client's application are not shown) 

This paper presents an alternative approach to support- 
ing networked multimedia. Our work is aimed at studying 
coordinated application and infrastructure-based support for 
adaptable applications. Here, "adaptable" means that an in- 
frastructure can be defined so that an application can adapt 
to the resources available at the time the application is run. 
The types of  adaptability we consider include responding to 
(possibly transient) variations in the number and composition 
of  network and remote resources that are available during ap- 
plication execution, as well as application and server support 
for heterogeneous collections of  input/output devices. Our ap- 
proach is based on two mechanisms. First, we define an appli- 
cation specification that explicitly describes the data objects 
used by an application, the manner in which the objects inter- 
act, and the available ranges of  alternatives that are acceptable 
to the application at run time. Second, we define an interface 
to the data objects that allows alternative representations to 
be selected at run time by a process of  application-transparent 
negotiation at run time. This approach is specifically geared 
to applications that have a document or presentation struc- 
ture. An authoring system [such as that of Van Rossum et al. 
(1993)] can be used to generate a specification that can be ac- 
cessed/executed at a later time. By allowing the execution to 
be adaptable, one specification can potentially allow" an ap- 
plication to be available within a heterogeneous environment 
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under a range of  resource availability conditions. As will be 
discussed, this can help to reduce the high cost of authoring 
multimedia applications and it can lead to more efficient use 
of  multimedia infrastructures. 

In the following sections, we first describe a framework 
for partitioning control responsibility within the system infras- 
tructure to support adaptable applications. Next, we describe 
a specification formalism that can be used by all components 
of  the infrastructure that support the application, We then de- 
scribe adaptive information objects, which provide a front end 
for a flexible object storage/synthesis interface. We close with 
a discussion of  the current status of  prototype implementations 
supporting these components and with directions for further 
work. 

2 A Framework for adaptable networked multimedia 

In order to support adaptable networked multimedia, an un- 
derlying framework is necessary that defines how information 
is structured, composed, accessed, and manipulated, as welt as 
how it is stored and transmitted among sources and sinks. In 
this section, the Amsterdam Multimedia Framework (AMF) is 
presented. To put the AMF in context, its description is pref- 
aced with a discussion of  the type of  multimedia applications 
it was intended to support and a review of the control issues 
that the framework must address. 

2.1 Multimedia application descriptions: the document 

Our abstraction for organizing multimedia information is the 
document. A document defines a collection of  data objects and 
a description of  how these objects interact. Each object may 
consist of  previously stored information or information that 
is generated dynamically. Such information can be of either a 
single data type (such as pure audio or video) or of  a composite 
data type (such as video with embedded audio). An active 
document is called a presentation. 

Figure 2 provides an example of  a document-based mul- 
timedia application - in this case, a fragment of  a walking 
tour of Amsterdam. This fragment contains a title bar using 
text data, a description of typical shopping street using video 
data, several "buttons" using text data that control navigation 
through the document, a CWI logo using still image data, and 
two sets of  captions (one in English, one in Dutch) using text 
data. The document from which this example is taken also has 
two sound tracks (one in Dutch, one in English) that provide 
audio commentary during the tour. The data objects can be 
stored on various servers located throughout the environment. 
When the document is accessed, each of  the individual object 
streams is sent to a document player, which implements any 
high-level (nonembedded) synchronization constraints among 
the streams (such as matching the subtitle text with the audio 
data). Each document, such as the tour of  Amsterdam in our 
example, is specific to a particular application; the player is 
a general purpose program that must be able to play many 
different documents. 
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Fig. 2. An example multimedia application. The rectangles along the 
bottom represent navigation controls; the square in the picture is 
a hyperbutton. The two lines of text are captions that accompany 
multilingual audio 

The primary advantage of using a document model is that it 
provides an explicit behavioral specification. This behavioral 
description can be used to fetch individual data objects by a 
player, but it can also be used prior to execution to analyze 
expected application resource use and feasibility for a given 
environment (Buchanan and Zellweger 1992a). Assuming the 
specification was defined to run in a general purpose environ- 
ment (that is, it was not designed for use on one particular 
platform), the specification can also be used to determine how 
(and if) the synchronization needs of the application can be 
supported at run time (Bulterman et al. 1991). 

Creating documents using authoring systems or program- 
based toolkits is typically an arduous task (Anderson and Chan 
1991; Hodges et al. 1989; MacroMind 1990). One motivation 
for investigating adaptable networked multimedia was to pro- 
vide reduce the overall effort of producing multimedia presen- 
tations by means of  reusing document structures in multiple 
environments once they were authored (Bulterman et al. 1991, 
Hardman et al. 1993b). 

2.2 Supporting adaptable documents: data representation 
and document content issues 

During analysis of a document, it is usually assumed that the 
specification provides a precise description of the needs and 
characteristics of the application. Our work investigates the 
use of a specification as a guide to possible resource and data 
use, depending on the resources available at execution time of 
the document. While pre-execution analysis can provide a use- 
ful first step in determining specification feasibility, it cannot 
resolve all of the issues that may influence the run time needs 
or run time behavior of  an application. In defining a basis for 
adaptable documents, two classes of issues can be identified 
that influence document analysis and support: (1) issues as- 
sociated with the physical representations of multimedia data 
and (2) issues associated with the content-based interactions 
of users with multimedia data. 

Representation-based issues 

One major difference between multimedia data and "conven- 
tional" electronic data is that multimedia information can re- 
quire specific service guarantees to preserve synchronization 
properties of the data. These properties are the consequence of 
how multimedia data is represented; they are not the meaning 
of the data itself. While the representations of  each data type 
vary, there are several common issues that are relevant for all 
time-sensitive multimedia data: 
1. Intraobject synchronization: each component can have syn- 

chronization constraints that are related to the type of data 
being retrieved. For example, the video, audio, and caption- 
text data in Fig. 2 each have their own synchronization 
constraints. These constraints must be supported by the 
source environment, the network infrastructure being tra- 
versed, and the destination environment. These constraints 
can usually be managed on an end-to-end basis (Ferrari 
1990, 1991). 

2. Interobject synchronization: in general documents, data 
will be encoded in separate streams of objects, each of 
which may be located at different hosts. While interob- 
ject synchronization is often controlled in the context of 
an application, the composite transfer of  data may need to 
be coordinated to improve system efficiency. For example, 
audio data and caption text can be synchronized by the ap- 
plication, but the use of markers placed in the data objects 
and evaluated by the support software improves efficiency. 

3. Heterogeneity: in general environments, all of the presen- 
tation workstations will not be identical. Information may 
need to be adapted at either the source or the sink to meet 
the needs of  a presentation environment, where the adap- 
tation process may itself have an influence on which parts 
of  a document are available to a user - a process that may 
also impact scheduling, resource allocation, and synchro- 
nization with the network. 

Bandwidth management can also be included among the 
representation-related issues. In spite of the trend toward faster 
networks and more highly encoded information, the transfer 
capacity of  the various interconnects will remain a critical 
resource that must be managed, either because application de- 
mands will grow or because multiple types of networks will 
coexist at a site, requiring a degree of coordination and man- 
agement to allocate local and global resources efficiently. 

Content-based issues 

The reason for isolating representation-based issues is to con- 
sider ways of providing other than worst-case resource allo- 
cation in an adaptable environment. In a similar manner, the 
actions that occur based on the content of a document will also 
affect the way that documents are fetched, composed, and de- 
livered. These include: 
1. User selectivity: not all of the information available in a 

document may be used each time the document is accessed. 
For example, although the document in Fig. 2 supports mul- 
tilingual audio and/or captions, users usually do not want to 
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hear or read all of the available languages simultaneously. 
(Note that the selection of  desired information is made at 
run-time - not author time, and that the selection may be 
influenced by the facilities available on a given playback 
platform.) 

2. Presentation nonlinearity: the order in which objects are 
accessed and presented depends on the document structure 
and the result of  user interaction at run time. Users may 
want to jump around in a document by scrolling forward or 
backward or by following hyperlinks that have been defined 
statically or dynamically in the document. For example, 
in Fig. 2, a small rectangle is visible over a traffic sign in 
the midright portion of  the street. Selecting this button will 
transfer the user to a section discussing the merits of  getting 
around by bicycle, car, and tram in the city. 

3. User flexibility: in general, documents are activated be- 
cause a user wishes to obtain information. Given a choice, 
it is our experience that users will tolerate a lower-quality 
presentation instead of  being denied access to a presen- 
tation totally. Such lower quality may manifest itself as 
(slight) delays in the presentation of  parts of a document or 
in the substitution of a lower-resolution form of informa- 
tion for a higher-resolution one. (The term "resolution" is 
used broadly: it could mean substituting a piece of  text for 
a picture or an audio fragment for a piece of video.) 

Each of  these factors affects the support mechanisms re- 
quired to provide adaptability in a document. The notion of  
user selectivity means that static analysis of  a document be- 
fore it is executed may not provide an insight into how a docu- 
ment will actually be used. Similarly, presentation nonlinearity 
could result in "jumping" to various parts of  a document, each 
with its own quality of service requirements. As a result, effi- 
cient use of an infrastructure will require dynamic, rather than 
static, assignment of  resources across the network. User flex: 
ibility means that some degree of  run time negotiation may 
need to be supported so that the information presented to the 
user can be matched to the resources available at the time in- 
dividual data access requests are made. 

2.3 The AMF 

Although many of  the techniques required to support repre- 
sentation-based control and, to a lesser extent, content-based 
control can be taken from existing research results, it is im- 
portant that these results be applied within a framework that 
provides an explicit partitioning of  control concerns across 
components in a network infrastructure. This provides a defi- 
nition of  the scope of  each technique and can result in better 
interaction among components. The AMF provides this parti- 
tioning for our work. 

Figure 3 illustrates the A ME  Here, many applications (AP) 
communicate with adaptive information objects (AIOs) via an 
infrastructure that is managed by a set of  local operating sys- 
tems (LOSs) and a global operating system (GOS). The LOSs 
and GOS coordinate resource allocation, while the APs and 
AIOs request and deliver information, respectively. Note that 

Fig. 3. AMF "active" components 

the AMF does not solve the multimedia data transfer problem, 
it only characterizes the components in an environment and 
it indicates their interactions. Individual models that imple- 
ment the general functionality of the framework need to be 
developed. 

The general structure of  the AMF is similar to client/ser- 
ver models of  networked computing. The difference between 
the AMF and these models is that within the AMF, the control 
of multimedia is a cooperative process that requires content- 
based coordination among all components. For example, as- 
sume that one of the APs requests two object streams, each 
from separate AIOs on two separate hosts. Assume further 
that one of the AIOs is able to meet the service quality re- 
quest of  the application directly, while the other one is not. In 
this case, both could inform the application of  their available 
degree of service (leaving the application to select an appro- 
priate recovery action) or the two AIOs could communicate 
with each other to determine if there was a common level of 
service that both could provide that was acceptable for that 
application. This could be possible if: 
1. Each of the AIOs was aware of the other's presence 

2. Each AIO was aware of other's service constraints, either 
directly (from copies of the application specification) or by 
intervention of  the GOS and/or  each LOS. 

3. Both AIOs were aware of  the range of options acceptable 
to the application and supportable by the LOS/GOS. 

Standard client/server architectures do not provide a basis for 
this type interaction. As we will show, the AMF was specifi- 
cally designed to provide it. The underlying assumption of the 
AMF is that none of  the individual components in a transfer 
has sufficient information to efficiently control resource allo- 
cation and interobject synchronization. A pair of  components, 
such as an AP and a single AIO, is also insufficient, since 
both end points could think that they could provide a degree 
of service without realizing that the network interconnect was 
overloaded or that other applications were about to request 
service. Instead, by using the information in a document spec- 
ification to be able to look ahead into an application's future 
behavior, new techniques for resource allocation in its broad- 
est form can be studied for each component. Unlike typical 
client/server models, these techniques are not based on a no- 
tion of lower-level protocol data independence, but rather on 
distributing control so that support decisions can be made in 
the light of the needs of  applications throughout the network. 
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The scope of the AMF control activity is discussed in the fol- 
lowing paragraphs. 

The AP 

The role of the AP is to supply the other components within 
the AMF with a specification of the object streams used by an 
application, as well as a definition of any interobject-stream 
synchronization requirements and a set of options that can be 
used in providing adaptable control (Sect. 3.1). The AP itself 
functions like the player described in Sect. 2.1: it provides a 
control interface to the user to provide high-level interaction 
with the network. ("High level" means operations like start, 
stop, pause, fast-forward, seek, etc.) 

In terms of the issues defined in Sect. 2.2, the player pro- 
vides a user interface to the execution environment, allowing 
the user to select the parts of a document that need to be played, 
to navigate through the document and to define the degree to 
which a document can be adapted. (For example, if a user plays 
a document on a disconnected portable machine, more toler- 
ance for missing data objects may be specified). The player 
has only a limited role in implementing any representation or 
content-based control operations other than possibly support- 
ing heterogeneous data; this is because the player is a general 
purpose interface, while the specification provides the other 
AMF components with the information necessary to adapt to 
the needs of the multimedia application. 

The LOS 

The LOS serves as a scheduling authority that controls ac- 
cess to I/O devices attached to the local workstation. The LOS 
would typically allocate resources based on its architecture- 
specific knowledge of the local operating environment and the 
document specification provided by the application. While the 
LOS is responsible for controlling the flow of information in 
and out of the local environment, including presenting infor- 
mation to and receiving information from the network con- 
troller(s), it cannot control activity outside of its environment 
because it has only a limited view of what is happening across 
the network. Individual sources may need to subsample or 
presynchronize streams within a document, or there may be 
other active documents generating competing requests for re- 
sources that are totally outside the scope of a local operating 
system. 

The LOS can participate in managing various data streams 
for an application by implementing a negotiation process 
among data providers within the network. The LOS (together 
with the LOS of an information provider) can also be used to 
implement the end-to-end protocols associated with intraob- 
ject synchronization. Both of these types of service can be 
provided directly or in conjunction with a GOS. In general, 
local resource control should be as lightweight as possible; 
this provides the user with a responsive environment and the 
rest of the network with a nonintrusive element. 

The GOS 

The role of the GOS is to allocate resources on a network-wide 
basis. It has a view of network activity that is more comprehen- 
sive than the APs, the AIOs or the LOS, since it can coordinate 
activity among independent applications that use the central 
network but which originate from different workstations. The 
GOS can provide support that is independent of any particular 
workstation architecture, acting as moderator or mediator if 
conflicts arise. (Such a role may be more appropriate in wide 
area implementation than in local area networks.) Note that it 
would be possible for a given implementation model to com- 
bine the functions of the LOS and the GOS, although from the 
point of view of the framework, it is important to recognize 
that the functions served by both abstractions are different. 
The primary practical motivation for keeping the LOS and 
GOS separate is that workstations in a heterogeneous envi- 
ronment cannot be assumed to have similar local operating 
systems. (They will also most likely have local systems that 
cannot be altered or adapted to provide extended multimedia 
support.) The architecture of the GOS allows global concerns 
to be factored out of the local environment, even to the point 
that it is possible to design attached processor implementations 
supporting GOS functions (Bulterman and van Liere 1991). 

The AIO 

The AIO provides applications with an interface to stored, 
synthesized, or interactive information. In supporting access 
requests, the AIO separates the notions of multimedia informa- 
tion and multimedia information representation. In this way, 
AIO presents an abstract interface that is used to control ac- 
cess to one of several representations of a block of 'infor- 
mation.' For example, it can be used to substitute an audio 
description of a video if the user, the user's workstation, the 
network, or the server's host cannot support video delivery. 
By providing alternative representations of information, the 
AIO provides quality of information support rather than qual- 
ity of service support. (The latter term is more appropriate for 
representation-dependent manipulations, while the former is 
more appropriate for content-based selection.) Note that the 
AIO does not give you something for nothing. It simply pro- 
vides a general framework that needs to be filled in by data- 
dependent code and, if appropriate, alternative representations. 

Based on the contents of an application specification, the 
AIO can enter a process of negotiation to provide an appli- 
cation with an appropriate representation of information that 
meets the constraints of conditions in the AR LOS and GOS. 
The goal of the AMF is to allow individual implementation 
models to negotiate transparently; the motivation for this is 
that by the time a user goes through the operations neces- 
sary to select an alternative representation interactively, the 
resource constraints that prompted the original negotiation 
request could have changed. We also assume that most au- 
thors would prefer to select the alternative representations that 
should be used, based on the author's insight into the applica- 
tion domain. (Note that individual AP implementation models 



may provide both types of  control.) A prototype implementa- 
tion of the AIO is described in Sect. 3.2. 

[Earlier versions of the AMF used the "intelligent infor- 
mation object" (IIO) to label the component AIO. The term 
"intelligent" was misleading in that control decisions were not 
based on rule-sets or other automated means.] 
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3 Examples of AMF-based specification and support 
structures for adaptable multimedia 

3.1 The CWI multimedia interchange format (CMIF) 

CMIF (Bulterman et al. 1991; Hardman et al. 1993b; van 
Rossum et al. 1993), is a document specification that was de- 
veloped to provide the basis for research into LOS, GOS and 
AIO support. In AMF terms, CMIF provides a description of  
the AIOs that are used by a particular application and any inter- 
AIO synchronization constraints. (Intra-AIO synchronization 
constraints are a property of  each object and are not specified 
explicitly in CMIE)  Embedded within a CMIF description are 
the range of options that an application author will tolerate if a 
specified AIO representation or an inter-AIO synchronization 
relationship cannot be satisfied. 

A CMIF specification consists of  two descriptions of a 
document: a hierarchy description and a virtual I/O channel 
description (or, more simply, the channel description). (See 
Fig. 4.) The hierarchy is used to define the content-based re- 
lationships that exist among document AIOs. This description 
capitalizes on the inherent modularity of  many multimedia 
applications by using a tree structure to partition the applica- 
tion's data objects. Within the tree, individual objects can be 
defined as occurring in parallel or sequentially. This relation- 
ship defines the implicit, coarse grain synchronization within 
the document. A hyperstructure is superimposed on the tree to 
provide nonlinear navigation control (Hardman et al. 1993a). 

Where the hierarchy defines the relationships among the 
data objects, the channel description associates each data ob- 
ject with a virtual I/O channel. Each channel represents a 
collection of  information of similar type that shares a com- 
mon resource allocation policy. From the document's point 
of view, the channel is managed as an atomic entity, using 
channel-wide resource allocation attributes. [One of these at- 
tributes can be used to turn the channel on or off; other at- 
tributes are as diverse as defining font families to providing 
general scheduling quality of  service bounds for the channel 
and AIO control options for adaptive data retrieval (Bulter- 
man and Winter 1993)]. Each channel consists of  a collection 
of event blocks, where each such block is an instance of  an 
AIO. (Event blocks actually point to data descriptors that give 
the general properties of AIO. This indirection allows a given 
data object to be instanced multiple times in a document and 
separates content-based from representation-based concerns.) 
Objects placed on a channel can be either of a single medium 
(such as text or audio data) or can consist of  a composite of  
media types. The relative placement of  event blocks is a func- 
tion of  the coarse grained synchronization of objects defined 
in the hierarchy; this placement is done automatically by the 

Fig. 4. CMIF in a nutshell. A CMIF specification describes a docu- 
ment as a hierarchy of components, each of which is of a specific 
(possibly composite) media type. The hierarchy is traversed either 
sequentially or in parallel. Note that hyperlink and other user inter- 
actions such as fast forward, reverse, replay, can change the order 
of tree traversal dynamically. The hierarchy in Fig. 4a is mapped to 
a set of channels, which relate the logical components to (virtual) 
output devices. Each logical block is placed on a channel and is asso- 
ciated with an AIO. Fine grain synchronization can be specified using 
synchronization arcs, shown between nodes A/C, D/G and F/G. At 
runtime, channels may be active or inactive, influencing document 
synchronization 

Fig. 5. The synchronization arc 

authoring environment (van Rossum et al. 1993). Explicit (fine 
grain) synchronization among event blocks is defined by a syn- 
chronization arc (or sync arc) between the events where such 
synchronization is required. 

Each sync arc can encode a tuple of  information that is used 
to schedule events in the application. The major elements of 
the tuple, shown in Fig. 5, are: 
1. The source and destination event blocks of  the arc: explic- 

itly defining these allows all of  the sYnchronization arcs 
to be extracted from a document for scheduling analysis 
without losing context information. 

2. The allowable scheduling interval of the timing arc: the re- 
quested scheduling start time, enveloped in two intervals 
(each of  which may be zero) that indicate the flexibility 
given to the scheduling services to implement the synchro- 
nization request. 

3. Two types of synchronization relationship: one specifying 
whether the synchronization relationship is relative to the 
beginning or the end of  an event, and the other specify- 
ing if the event is hard or soft. A hard synchronization arc 
must be supported exactly within the synchronization in- 
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terval, while in a soft arc transient delays are tolerated by 
the application. 

Information in the synchronization arc can be used for a 
variety of  purposes. The hard/soft indication within the arc can 
support the notion of  user flexibility, discussed in Sect. 2.2. The 
use of interval-based timing can allow a single document to be 
supported on a heterogeneous set of platforms by providing 
content-based tolerances among data items. In all cases, the 
document specification only gives the desires of the document 
author. Support for the document needs to be provided by other 
components in the AME 

CMIF was designed to support a single specification on a 
wide range of systems by allowing an author to express alterna- 
tives in the manner that information is fetched by the support 
environment. CMIF is similar to the Harmony system (Fu- 
j ikawa et al. 1991) in that both support the definition of timing 
relations directly between media objects, rather than defining 
them in relation to a time axis. CMIF provides a somewhat 
richer set of synchronization primitives, however, allowing 
the underlying support environment to adapt the data trans- 
fers in an application transparently. In this respect, CMIF also 
differs from systems in which specific constraints are used to 
derive exact timing relationships in a specification for a partic- 
ular platform (Buchanan and Zellweger 1992a,b). CMIF uses 
its constraints to support adaptable timing relationships rather 
than restrictive ones. In practice, both approaches are probably 
useful. The more restrictive analysis can be used to determine 
if a document is feasible for a particular platform or for a stable 
environment, while our approach can be useful in executing 
documents of a variable nature in a more general environment. 

3.2 Prototype AIOs 

The AIO is an active component that manages information. 
As with the generic AIO in the AMF, the primary value-added 
advantage of the AIO is that it provides an abstraction that 
localizes the policy aspects of supporting synchronization and 
heterogeneous presentation in a content-based framework. The 
prototype AIO differs from that in the AMF by being based 
on a client/server model instead of a complete LOS/GOS in- 
frastructure. 

One example of an AIO is shown in Fig. 6. Here we see 
a single object containing three alternative representations of 
the same abstract information. One representation may be a 
video clip (with composite sound), the second may be an audio 
track and several still pictures, while the third may contain a 
text-based description of  the information being shown, along 
with two captioned diagrams. In addition to data, the AIO also 
contains access control interfaces. The control operations can 
be divided into three groups: 
1. Resource control - this interface allows the AIO to nego- 

tiate low-level control of the amount and type of data that 
is used to represent the information selected. Operations 
may include conventional activity, such as buffering (local 
or remote), subsampling, and (de)compression, or it may 
consist of operations where an alternative set of represen- 

Fig. 6. The adaptive information object (AIO) 

tations may be selected to reduce resource use, or where an 
object can be excluded if necessary. 

2. Synchronization control - this interface allows a data- 
dependent synchronization action to be selected that meets 
the type of constraint specified by a CMIF synchroniza- 
tion request. Synchronization can be implemented by the 
control interface, but it will probably be more efficient to 
delegate implementation to the data support mechanism 
(the database or file system) and the operating system code 
once a policy has been negotiated. 

3. Representation control - this interface allows the applica- 
tion to negotiate the details of the required data representa- 
tion. The representation can be stored or it can be generated 
from a baseline representation. 

While the AIO is similar to general object-based para- 
digms, the focus of the interface provided by the AIO to the 
network environment is unique. The AIO maintains responsi- 
bility for managing a specific body of  information, indepen- 
dent of any particular (set of) representation(s) of that informa- 
tion. There is an explicit set of  interfaces that allow negotiated 
access to take place across a range of control models. These 
interfaces can be used during an initial access to information, 
where a specific representation with particular synchroniza- 
tion and resource characteristics could be selected, leaving the 
actual transfer of  information to protocols and processes at the 
source and sink ends of a transfer. The AIO can also be used 
to adaptively change the representation of information based 
on changing characteristics of the network and or application 
if the object supports this functionality (Bulterman and Winter 
1993). 

An example of the negotiation protocol between an appli- 
cation and an AIO is illustrated in Fig. 7. The process starts 
when the player encounters a request for an image from the 
application. (This request is the result of referencing an AIO 
node within the CMIF description.) The client code on the 
application's hosts sends a message to the server (path a in 
Fig. 7) requesting a particular object, and it sends a vector of 
application-specified constraints (also encoded in the CMIF 
description, either as channel attributes or as attributes to an 
event block), as well as a state vector indicating resource char- 
acteristics of the client's machine (including resolution, color 
map depth, etc.). The server analyzes the current state of the 
interconnection environment plus the load on the server, and 
makes a first request to the AIO for a particular type of repre- 
sentation of  the object. In performing this analysis, it mimics 
functions that would be performed by the LOS and/or GOS. 
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Fig. 7. The AR AIO and surrogate client and server components 

If  the AIO is able to respond with the requested data object, 
this object is immediately returned to the application (path b 
in Fig. 7). (This will be the usual case.) If, on the other hand, 
this is not possible, the AIO may offer an alternative represen- 
tation, based on the application's constraint vector. The alter- 
native representation is also returned immediately, since the 
application has already implicitly given approval for receipt. 

If  the AIO cannot support any of the options, it returns this 
information as a status result that is passed back to the client 
(path c in Fig. 7); the client can either decide how to act on the 
status directly, or it can cause the application to query the user 
for a selection. In all of the processing, the user is kept out of the 
decision making activity unless the AIO and/or the application 
specification cannot provide an appropriate response. 

Note that if the A10 passes back an alternative represen- 
tation of  an object (for example, a text block instead of  a re- 
quested image), the client must inform the player that different 
resources may be necessary to support the request. To imple- 
ment this, the player must realize that a picture channel may 
need to be replaced (temporarily) by a sound or text channel 
to support the mapping. 

4 Current status and summary 

The AMF and the two support models described in the paper 
are based on the assumption that resource control in a mul- 
timedia network should be adaptable, and that the adaptive 
process should be distributed over the application, the LOS, 
the (distributed) GOS, and the AIOs involved in a transfer. 
Each of  these layers has a specific insight that is important in 
controlling multimedia transfers. Although each of these in- 
sights are necessary, the AMF also attempts to limit the scope 
of any one layer by giving each layer a specific set of concerns 
to process. 

Support for the AMF, the CMIF specification and the AIO 
are ongoing research activities at CWI. Of the implementation 
projects, the CMIF authoring environment and its run time 
player is the most advanced, while support for general AIO 
manipulations is in an early stage. Work on the AIO is tied to 
the development of  an LOS/GOS infrastructure and the devel- 
opment of semantic facilities that can be provided to support 
a wide range of  resource, synchronization, and representa- 

tion control operations. We have performed initial presenta- 
tion mapping experiments (Bulterman and Winter 1993), but 
it is too early to draw any conclusions about the utility of this 
approach. 

All of  our activity in the Multimedia Kernel Systems 
Project is aimed at understanding the basic relationships that 
exist in supporting multiple multimedia applications in a het- 
erogeneous network environment. In the current version of our 
work, this global function is replaced by a separate client and 
server pair. They transparently negotiate the format of the in- 
formation to be used to satisfy a particular object reference 
based on the characteristics of  the target system, the load on 
the network, the types of  alternative representations that the 
client will accept, etc. This transparent interaction is important 
because it offers the system an opportunity to respond quickly 
to transient conditions in the environment, but it is difficult 
to achieve in the light of closed operating systems and multi- 
media devices. It is our long term intention to investigate the 
support of distributed operating systems technology that will 
allow CMIF specifications (or its successor) to be passed along 
to all of  the components of the AMF, each of  which will pick 
out the information it needs to support the synchronization and 
resource requirements of the application (Bulterman 1992). 
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