
Multimedia Systems (i993) 1:68-76
M u l t i m e d i a Sys tems
�9 Springer-Verlag 1993

Specification and support of adaptable networked multimedia
Dick C.A. Bulterman*,**

The Multimedia Kernel Systems Project, CWI: Centrum voor Wiskunde en Informatica, Kmislaan 413,
NL- 1098 SJ Amsterdam, The Netherlands

Received February 6, 1993/Accepted March 1993

Abstract. Accessing multimedia information in a networked
environment introduces problems that do not exist when the
same information is accessed locally. These problems include:
(1) competing for network resources within and across appli-
cations, (2) synchronizing data arrivals from various sources
within an application, and (3) supporting multiple data repre-
sentations across heterogeneous hosts. Often, special purpose
algorithms can be defined to deal with these problems, but
these solutions are usually restricted to the context of a single
application. A more general approach is to define an adaptable
infrastructure that can be used to manage resources flexibly for
all currently active applications. This paper describes such an
approach. We begin by introducing a general framework for
partitioning control responsibilities among a number of coop-
erating system and application components. We then describe
a specification formalism that can be used to encode an ap-
plication's resource requirements, synchronization needs, and
interaction control. This specification can be used to coordi-
nate the activities of the application, the operating system(s)
and a set of adaptive information objects in matching the (pos-
sibly flexible) needs of an application to the resources available
in an environment at run time. The benefits of this approach
are that it allows adaptable application support with respect to
system resources and that it provides a natural way to support
heterogeneity in multimedia networks and multimedia data.

Key words: Networked multimedia - Resource allocation -
Adaptive data models

1 Introduction

N e t w o r k e d m u l t i m e d i a is a generic term that describes a model
of information distribution in which data sources are located
separately from data sinks. Networked multimedia offers a
number of advantages to applications: (1) the network pro-
vides a convenient means of distributing information to other
sites, (2) it provides access to compute servers where special

* e-mail address: dcab@cwi.nl
** Present address: Department of Computer Science, PO Box
1910, Brown University, Providence, R102912, USA
c-mail: dcab @cs.brown.edu

purpose processing of multimedia data can take place, and (3)
it provides access to central servers that can be used to store
the often vast amounts of data required to represent multime-
dia information fragments. At the same time, however, net-
worked multimedia presents an application with a number of
disadvantages; compared to accessing and manipulating mul-
timedia data locally: (1) the data delivery characteristics of the
network are difficult to predict and control, (2) the contention
for critical system and data resources across the network makes
balanced data access difficult to achieve, (3) and differences
among network hosts may make data objects difficult to share.

In order to make networked multimedia more useful to ap-
plication designers and users, considerable effort has been de-
voted to studying the way that data servers, operating systems,
and network infrastructures provide access to time-sensitive
data. Most of these approaches define extensions to "conven-
tional" means of accessing remote data to provide predictable
network service and performance. For example, predictabil-
ity is provided in data object servers (either file servers or
database systems) by supporting efficient object storage and
retrieval/delivery (Danthin et al. 1992) and in operating sys-
tems by supporting quality of service guarantees for delivery
of (possibly) complex data types (Anderson et al. 1992; Ferrari
1991; Govindan and Anderson 1991; Hanko et al. 1991 ; Lesley
et al. 1992; Tokuda et al. 1990). At the network level, support
for predictable multimedia is provided by, among others, ad-
mission control techniques that regulate the use of resources
and by technologies that provide deterministic network/data
access (Clark et al. !992; Hayter and McAuley 1991; Jeffay et
al. 1992; Little and Ghafoor 1991; Topolcic 1990; Verma and
Ferrari 1990). The basic premise of this work is that an ap-
plication will request a data object (or a collection of objects)
requiring a specific amount of resources during a specified
time. If these resources are available, the application can ex-
ecute; if not, the application is either delayed or it is denied
access to the resources.

An implicit assumption in current approaches is that the
application program bears a significant control burden in re-
questing and coordinating multimedia information. Consider,
for example, the application environment shown in Fig. 1. Sup-
pose that one of the requested data streams could not be made
available at the required level of service. An application may

decide to skip this data object (or the collection of objects asso-
ciated with that stream), or it may decide to substitute another
data object or object server. In effect, the application program
is engaged in a process of resource allocation. It is attempting
to match its data needs to the resources available at various
locations in the support infrastructure. Unfortunately, to allo-
cate resources efficiently - even if this means only selecting
from a set of available data streams - the application needs
to know how to best use the available infrastructure. This in-
volves issues that most applications programs are ill equipped
to resolve. (It also requires applications to be rewritten when
they are moved to new environments.) Alternatively, the op-
erating system or the data servers could handle all resource
allocation, but the (local) operating system will have only lim-
ited knowledge of the state of each of the servers and other
applications active within the networked environment, and the
data servers will be able to manage only their own streams but
not other streams in the infrastructure.

Fig. 1. Simple multimedia information client/server example. The
client is fed by three servers one of which supplies two data types.
(The structure of the client and the client's application are not shown)

This paper presents an alternative approach to support-
ing networked multimedia. Our work is aimed at studying
coordinated application and infrastructure-based support for
adaptable applications. Here, "adaptable" means that an in-
frastructure can be defined so that an application can adapt
to the resources available at the time the application is run.
The types of adaptability we consider include responding to
(possibly transient) variations in the number and composition
of network and remote resources that are available during ap-
plication execution, as well as application and server support
for heterogeneous collections of input/output devices. Our ap-
proach is based on two mechanisms. First, we define an appli-
cation specification that explicitly describes the data objects
used by an application, the manner in which the objects inter-
act, and the available ranges of alternatives that are acceptable
to the application at run time. Second, we define an interface
to the data objects that allows alternative representations to
be selected at run time by a process of application-transparent
negotiation at run time. This approach is specifically geared
to applications that have a document or presentation struc-
ture. An authoring system [such as that of Van Rossum et al.
(1993)] can be used to generate a specification that can be ac-
cessed/executed at a later time. By allowing the execution to
be adaptable, one specification can potentially allow" an ap-
plication to be available within a heterogeneous environment

69

under a range of resource availability conditions. As will be
discussed, this can help to reduce the high cost of authoring
multimedia applications and it can lead to more efficient use
of multimedia infrastructures.

In the following sections, we first describe a framework
for partitioning control responsibility within the system infras-
tructure to support adaptable applications. Next, we describe
a specification formalism that can be used by all components
of the infrastructure that support the application, We then de-
scribe adaptive information objects, which provide a front end
for a flexible object storage/synthesis interface. We close with
a discussion of the current status of prototype implementations
supporting these components and with directions for further
work.

2 A Framework for adaptable networked multimedia

In order to support adaptable networked multimedia, an un-
derlying framework is necessary that defines how information
is structured, composed, accessed, and manipulated, as welt as
how it is stored and transmitted among sources and sinks. In
this section, the Amsterdam Multimedia Framework (AMF) is
presented. To put the AMF in context, its description is pref-
aced with a discussion of the type of multimedia applications
it was intended to support and a review of the control issues
that the framework must address.

2.1 Multimedia application descriptions: the document

Our abstraction for organizing multimedia information is the
document. A document defines a collection of data objects and
a description of how these objects interact. Each object may
consist of previously stored information or information that
is generated dynamically. Such information can be of either a
single data type (such as pure audio or video) or of a composite
data type (such as video with embedded audio). An active
document is called a presentation.

Figure 2 provides an example of a document-based mul-
timedia application - in this case, a fragment of a walking
tour of Amsterdam. This fragment contains a title bar using
text data, a description of typical shopping street using video
data, several "buttons" using text data that control navigation
through the document, a CWI logo using still image data, and
two sets of captions (one in English, one in Dutch) using text
data. The document from which this example is taken also has
two sound tracks (one in Dutch, one in English) that provide
audio commentary during the tour. The data objects can be
stored on various servers located throughout the environment.
When the document is accessed, each of the individual object
streams is sent to a document player, which implements any
high-level (nonembedded) synchronization constraints among
the streams (such as matching the subtitle text with the audio
data). Each document, such as the tour of Amsterdam in our
example, is specific to a particular application; the player is
a general purpose program that must be able to play many
different documents.

70

Fig. 2. An example multimedia application. The rectangles along the
bottom represent navigation controls; the square in the picture is
a hyperbutton. The two lines of text are captions that accompany
multilingual audio

The primary advantage of using a document model is that it
provides an explicit behavioral specification. This behavioral
description can be used to fetch individual data objects by a
player, but it can also be used prior to execution to analyze
expected application resource use and feasibility for a given
environment (Buchanan and Zellweger 1992a). Assuming the
specification was defined to run in a general purpose environ-
ment (that is, it was not designed for use on one particular
platform), the specification can also be used to determine how
(and if) the synchronization needs of the application can be
supported at run time (Bulterman et al. 1991).

Creating documents using authoring systems or program-
based toolkits is typically an arduous task (Anderson and Chan
1991; Hodges et al. 1989; MacroMind 1990). One motivation
for investigating adaptable networked multimedia was to pro-
vide reduce the overall effort of producing multimedia presen-
tations by means of reusing document structures in multiple
environments once they were authored (Bulterman et al. 1991,
Hardman et al. 1993b).

2.2 Supporting adaptable documents: data representation
and document content issues

During analysis of a document, it is usually assumed that the
specification provides a precise description of the needs and
characteristics of the application. Our work investigates the
use of a specification as a guide to possible resource and data
use, depending on the resources available at execution time of
the document. While pre-execution analysis can provide a use-
ful first step in determining specification feasibility, it cannot
resolve all of the issues that may influence the run time needs
or run time behavior of an application. In defining a basis for
adaptable documents, two classes of issues can be identified
that influence document analysis and support: (1) issues as-
sociated with the physical representations of multimedia data
and (2) issues associated with the content-based interactions
of users with multimedia data.

Representation-based issues

One major difference between multimedia data and "conven-
tional" electronic data is that multimedia information can re-
quire specific service guarantees to preserve synchronization
properties of the data. These properties are the consequence of
how multimedia data is represented; they are not the meaning
of the data itself. While the representations of each data type
vary, there are several common issues that are relevant for all
time-sensitive multimedia data:
1. Intraobject synchronization: each component can have syn-

chronization constraints that are related to the type of data
being retrieved. For example, the video, audio, and caption-
text data in Fig. 2 each have their own synchronization
constraints. These constraints must be supported by the
source environment, the network infrastructure being tra-
versed, and the destination environment. These constraints
can usually be managed on an end-to-end basis (Ferrari
1990, 1991).

2. Interobject synchronization: in general documents, data
will be encoded in separate streams of objects, each of
which may be located at different hosts. While interob-
ject synchronization is often controlled in the context of
an application, the composite transfer of data may need to
be coordinated to improve system efficiency. For example,
audio data and caption text can be synchronized by the ap-
plication, but the use of markers placed in the data objects
and evaluated by the support software improves efficiency.

3. Heterogeneity: in general environments, all of the presen-
tation workstations will not be identical. Information may
need to be adapted at either the source or the sink to meet
the needs of a presentation environment, where the adap-
tation process may itself have an influence on which parts
of a document are available to a user - a process that may
also impact scheduling, resource allocation, and synchro-
nization with the network.

Bandwidth management can also be included among the
representation-related issues. In spite of the trend toward faster
networks and more highly encoded information, the transfer
capacity of the various interconnects will remain a critical
resource that must be managed, either because application de-
mands will grow or because multiple types of networks will
coexist at a site, requiring a degree of coordination and man-
agement to allocate local and global resources efficiently.

Content-based issues

The reason for isolating representation-based issues is to con-
sider ways of providing other than worst-case resource allo-
cation in an adaptable environment. In a similar manner, the
actions that occur based on the content of a document will also
affect the way that documents are fetched, composed, and de-
livered. These include:
1. User selectivity: not all of the information available in a

document may be used each time the document is accessed.
For example, although the document in Fig. 2 supports mul-
tilingual audio and/or captions, users usually do not want to

71

hear or read all of the available languages simultaneously.
(Note that the selection of desired information is made at
run-time - not author time, and that the selection may be
influenced by the facilities available on a given playback
platform.)

2. Presentation nonlinearity: the order in which objects are
accessed and presented depends on the document structure
and the result of user interaction at run time. Users may
want to jump around in a document by scrolling forward or
backward or by following hyperlinks that have been defined
statically or dynamically in the document. For example,
in Fig. 2, a small rectangle is visible over a traffic sign in
the midright portion of the street. Selecting this button will
transfer the user to a section discussing the merits of getting
around by bicycle, car, and tram in the city.

3. User flexibility: in general, documents are activated be-
cause a user wishes to obtain information. Given a choice,
it is our experience that users will tolerate a lower-quality
presentation instead of being denied access to a presen-
tation totally. Such lower quality may manifest itself as
(slight) delays in the presentation of parts of a document or
in the substitution of a lower-resolution form of informa-
tion for a higher-resolution one. (The term "resolution" is
used broadly: it could mean substituting a piece of text for
a picture or an audio fragment for a piece of video.)

Each of these factors affects the support mechanisms re-
quired to provide adaptability in a document. The notion of
user selectivity means that static analysis of a document be-
fore it is executed may not provide an insight into how a docu-
ment will actually be used. Similarly, presentation nonlinearity
could result in "jumping" to various parts of a document, each
with its own quality of service requirements. As a result, effi-
cient use of an infrastructure will require dynamic, rather than
static, assignment of resources across the network. User flex:
ibility means that some degree of run time negotiation may
need to be supported so that the information presented to the
user can be matched to the resources available at the time in-
dividual data access requests are made.

2.3 The AMF

Although many of the techniques required to support repre-
sentation-based control and, to a lesser extent, content-based
control can be taken from existing research results, it is im-
portant that these results be applied within a framework that
provides an explicit partitioning of control concerns across
components in a network infrastructure. This provides a defi-
nition of the scope of each technique and can result in better
interaction among components. The AMF provides this parti-
tioning for our work.

Figure 3 illustrates the A ME Here, many applications (AP)
communicate with adaptive information objects (AIOs) via an
infrastructure that is managed by a set of local operating sys-
tems (LOSs) and a global operating system (GOS). The LOSs
and GOS coordinate resource allocation, while the APs and
AIOs request and deliver information, respectively. Note that

Fig. 3. AMF "active" components

the AMF does not solve the multimedia data transfer problem,
it only characterizes the components in an environment and
it indicates their interactions. Individual models that imple-
ment the general functionality of the framework need to be
developed.

The general structure of the AMF is similar to client/ser-
ver models of networked computing. The difference between
the AMF and these models is that within the AMF, the control
of multimedia is a cooperative process that requires content-
based coordination among all components. For example, as-
sume that one of the APs requests two object streams, each
from separate AIOs on two separate hosts. Assume further
that one of the AIOs is able to meet the service quality re-
quest of the application directly, while the other one is not. In
this case, both could inform the application of their available
degree of service (leaving the application to select an appro-
priate recovery action) or the two AIOs could communicate
with each other to determine if there was a common level of
service that both could provide that was acceptable for that
application. This could be possible if:
1. Each of the AIOs was aware of the other's presence

2. Each AIO was aware of other's service constraints, either
directly (from copies of the application specification) or by
intervention of the GOS and/or each LOS.

3. Both AIOs were aware of the range of options acceptable
to the application and supportable by the LOS/GOS.

Standard client/server architectures do not provide a basis for
this type interaction. As we will show, the AMF was specifi-
cally designed to provide it. The underlying assumption of the
AMF is that none of the individual components in a transfer
has sufficient information to efficiently control resource allo-
cation and interobject synchronization. A pair of components,
such as an AP and a single AIO, is also insufficient, since
both end points could think that they could provide a degree
of service without realizing that the network interconnect was
overloaded or that other applications were about to request
service. Instead, by using the information in a document spec-
ification to be able to look ahead into an application's future
behavior, new techniques for resource allocation in its broad-
est form can be studied for each component. Unlike typical
client/server models, these techniques are not based on a no-
tion of lower-level protocol data independence, but rather on
distributing control so that support decisions can be made in
the light of the needs of applications throughout the network.

72

The scope of the AMF control activity is discussed in the fol-
lowing paragraphs.

The AP

The role of the AP is to supply the other components within
the AMF with a specification of the object streams used by an
application, as well as a definition of any interobject-stream
synchronization requirements and a set of options that can be
used in providing adaptable control (Sect. 3.1). The AP itself
functions like the player described in Sect. 2.1: it provides a
control interface to the user to provide high-level interaction
with the network. ("High level" means operations like start,
stop, pause, fast-forward, seek, etc.)

In terms of the issues defined in Sect. 2.2, the player pro-
vides a user interface to the execution environment, allowing
the user to select the parts of a document that need to be played,
to navigate through the document and to define the degree to
which a document can be adapted. (For example, if a user plays
a document on a disconnected portable machine, more toler-
ance for missing data objects may be specified). The player
has only a limited role in implementing any representation or
content-based control operations other than possibly support-
ing heterogeneous data; this is because the player is a general
purpose interface, while the specification provides the other
AMF components with the information necessary to adapt to
the needs of the multimedia application.

The LOS

The LOS serves as a scheduling authority that controls ac-
cess to I/O devices attached to the local workstation. The LOS
would typically allocate resources based on its architecture-
specific knowledge of the local operating environment and the
document specification provided by the application. While the
LOS is responsible for controlling the flow of information in
and out of the local environment, including presenting infor-
mation to and receiving information from the network con-
troller(s), it cannot control activity outside of its environment
because it has only a limited view of what is happening across
the network. Individual sources may need to subsample or
presynchronize streams within a document, or there may be
other active documents generating competing requests for re-
sources that are totally outside the scope of a local operating
system.

The LOS can participate in managing various data streams
for an application by implementing a negotiation process
among data providers within the network. The LOS (together
with the LOS of an information provider) can also be used to
implement the end-to-end protocols associated with intraob-
ject synchronization. Both of these types of service can be
provided directly or in conjunction with a GOS. In general,
local resource control should be as lightweight as possible;
this provides the user with a responsive environment and the
rest of the network with a nonintrusive element.

The GOS

The role of the GOS is to allocate resources on a network-wide
basis. It has a view of network activity that is more comprehen-
sive than the APs, the AIOs or the LOS, since it can coordinate
activity among independent applications that use the central
network but which originate from different workstations. The
GOS can provide support that is independent of any particular
workstation architecture, acting as moderator or mediator if
conflicts arise. (Such a role may be more appropriate in wide
area implementation than in local area networks.) Note that it
would be possible for a given implementation model to com-
bine the functions of the LOS and the GOS, although from the
point of view of the framework, it is important to recognize
that the functions served by both abstractions are different.
The primary practical motivation for keeping the LOS and
GOS separate is that workstations in a heterogeneous envi-
ronment cannot be assumed to have similar local operating
systems. (They will also most likely have local systems that
cannot be altered or adapted to provide extended multimedia
support.) The architecture of the GOS allows global concerns
to be factored out of the local environment, even to the point
that it is possible to design attached processor implementations
supporting GOS functions (Bulterman and van Liere 1991).

The AIO

The AIO provides applications with an interface to stored,
synthesized, or interactive information. In supporting access
requests, the AIO separates the notions of multimedia informa-
tion and multimedia information representation. In this way,
AIO presents an abstract interface that is used to control ac-
cess to one of several representations of a block of 'infor-
mation.' For example, it can be used to substitute an audio
description of a video if the user, the user's workstation, the
network, or the server's host cannot support video delivery.
By providing alternative representations of information, the
AIO provides quality of information support rather than qual-
ity of service support. (The latter term is more appropriate for
representation-dependent manipulations, while the former is
more appropriate for content-based selection.) Note that the
AIO does not give you something for nothing. It simply pro-
vides a general framework that needs to be filled in by data-
dependent code and, if appropriate, alternative representations.

Based on the contents of an application specification, the
AIO can enter a process of negotiation to provide an appli-
cation with an appropriate representation of information that
meets the constraints of conditions in the AR LOS and GOS.
The goal of the AMF is to allow individual implementation
models to negotiate transparently; the motivation for this is
that by the time a user goes through the operations neces-
sary to select an alternative representation interactively, the
resource constraints that prompted the original negotiation
request could have changed. We also assume that most au-
thors would prefer to select the alternative representations that
should be used, based on the author's insight into the applica-
tion domain. (Note that individual AP implementation models

may provide both types of control.) A prototype implementa-
tion of the AIO is described in Sect. 3.2.

[Earlier versions of the AMF used the "intelligent infor-
mation object" (IIO) to label the component AIO. The term
"intelligent" was misleading in that control decisions were not
based on rule-sets or other automated means.]

73

3 Examples of AMF-based specification and support
structures for adaptable multimedia

3.1 The CWI multimedia interchange format (CMIF)

CMIF (Bulterman et al. 1991; Hardman et al. 1993b; van
Rossum et al. 1993), is a document specification that was de-
veloped to provide the basis for research into LOS, GOS and
AIO support. In AMF terms, CMIF provides a description of
the AIOs that are used by a particular application and any inter-
AIO synchronization constraints. (Intra-AIO synchronization
constraints are a property of each object and are not specified
explicitly in CMIE) Embedded within a CMIF description are
the range of options that an application author will tolerate if a
specified AIO representation or an inter-AIO synchronization
relationship cannot be satisfied.

A CMIF specification consists of two descriptions of a
document: a hierarchy description and a virtual I/O channel
description (or, more simply, the channel description). (See
Fig. 4.) The hierarchy is used to define the content-based re-
lationships that exist among document AIOs. This description
capitalizes on the inherent modularity of many multimedia
applications by using a tree structure to partition the applica-
tion's data objects. Within the tree, individual objects can be
defined as occurring in parallel or sequentially. This relation-
ship defines the implicit, coarse grain synchronization within
the document. A hyperstructure is superimposed on the tree to
provide nonlinear navigation control (Hardman et al. 1993a).

Where the hierarchy defines the relationships among the
data objects, the channel description associates each data ob-
ject with a virtual I/O channel. Each channel represents a
collection of information of similar type that shares a com-
mon resource allocation policy. From the document's point
of view, the channel is managed as an atomic entity, using
channel-wide resource allocation attributes. [One of these at-
tributes can be used to turn the channel on or off; other at-
tributes are as diverse as defining font families to providing
general scheduling quality of service bounds for the channel
and AIO control options for adaptive data retrieval (Bulter-
man and Winter 1993)]. Each channel consists of a collection
of event blocks, where each such block is an instance of an
AIO. (Event blocks actually point to data descriptors that give
the general properties of AIO. This indirection allows a given
data object to be instanced multiple times in a document and
separates content-based from representation-based concerns.)
Objects placed on a channel can be either of a single medium
(such as text or audio data) or can consist of a composite of
media types. The relative placement of event blocks is a func-
tion of the coarse grained synchronization of objects defined
in the hierarchy; this placement is done automatically by the

Fig. 4. CMIF in a nutshell. A CMIF specification describes a docu-
ment as a hierarchy of components, each of which is of a specific
(possibly composite) media type. The hierarchy is traversed either
sequentially or in parallel. Note that hyperlink and other user inter-
actions such as fast forward, reverse, replay, can change the order
of tree traversal dynamically. The hierarchy in Fig. 4a is mapped to
a set of channels, which relate the logical components to (virtual)
output devices. Each logical block is placed on a channel and is asso-
ciated with an AIO. Fine grain synchronization can be specified using
synchronization arcs, shown between nodes A/C, D/G and F/G. At
runtime, channels may be active or inactive, influencing document
synchronization

Fig. 5. The synchronization arc

authoring environment (van Rossum et al. 1993). Explicit (fine
grain) synchronization among event blocks is defined by a syn-
chronization arc (or sync arc) between the events where such
synchronization is required.

Each sync arc can encode a tuple of information that is used
to schedule events in the application. The major elements of
the tuple, shown in Fig. 5, are:
1. The source and destination event blocks of the arc: explic-

itly defining these allows all of the sYnchronization arcs
to be extracted from a document for scheduling analysis
without losing context information.

2. The allowable scheduling interval of the timing arc: the re-
quested scheduling start time, enveloped in two intervals
(each of which may be zero) that indicate the flexibility
given to the scheduling services to implement the synchro-
nization request.

3. Two types of synchronization relationship: one specifying
whether the synchronization relationship is relative to the
beginning or the end of an event, and the other specify-
ing if the event is hard or soft. A hard synchronization arc
must be supported exactly within the synchronization in-

74

terval, while in a soft arc transient delays are tolerated by
the application.

Information in the synchronization arc can be used for a
variety of purposes. The hard/soft indication within the arc can
support the notion of user flexibility, discussed in Sect. 2.2. The
use of interval-based timing can allow a single document to be
supported on a heterogeneous set of platforms by providing
content-based tolerances among data items. In all cases, the
document specification only gives the desires of the document
author. Support for the document needs to be provided by other
components in the AME

CMIF was designed to support a single specification on a
wide range of systems by allowing an author to express alterna-
tives in the manner that information is fetched by the support
environment. CMIF is similar to the Harmony system (Fu-
j ikawa et al. 1991) in that both support the definition of timing
relations directly between media objects, rather than defining
them in relation to a time axis. CMIF provides a somewhat
richer set of synchronization primitives, however, allowing
the underlying support environment to adapt the data trans-
fers in an application transparently. In this respect, CMIF also
differs from systems in which specific constraints are used to
derive exact timing relationships in a specification for a partic-
ular platform (Buchanan and Zellweger 1992a,b). CMIF uses
its constraints to support adaptable timing relationships rather
than restrictive ones. In practice, both approaches are probably
useful. The more restrictive analysis can be used to determine
if a document is feasible for a particular platform or for a stable
environment, while our approach can be useful in executing
documents of a variable nature in a more general environment.

3.2 Prototype AIOs

The AIO is an active component that manages information.
As with the generic AIO in the AMF, the primary value-added
advantage of the AIO is that it provides an abstraction that
localizes the policy aspects of supporting synchronization and
heterogeneous presentation in a content-based framework. The
prototype AIO differs from that in the AMF by being based
on a client/server model instead of a complete LOS/GOS in-
frastructure.

One example of an AIO is shown in Fig. 6. Here we see
a single object containing three alternative representations of
the same abstract information. One representation may be a
video clip (with composite sound), the second may be an audio
track and several still pictures, while the third may contain a
text-based description of the information being shown, along
with two captioned diagrams. In addition to data, the AIO also
contains access control interfaces. The control operations can
be divided into three groups:
1. Resource control - this interface allows the AIO to nego-

tiate low-level control of the amount and type of data that
is used to represent the information selected. Operations
may include conventional activity, such as buffering (local
or remote), subsampling, and (de)compression, or it may
consist of operations where an alternative set of represen-

Fig. 6. The adaptive information object (AIO)

tations may be selected to reduce resource use, or where an
object can be excluded if necessary.

2. Synchronization control - this interface allows a data-
dependent synchronization action to be selected that meets
the type of constraint specified by a CMIF synchroniza-
tion request. Synchronization can be implemented by the
control interface, but it will probably be more efficient to
delegate implementation to the data support mechanism
(the database or file system) and the operating system code
once a policy has been negotiated.

3. Representation control - this interface allows the applica-
tion to negotiate the details of the required data representa-
tion. The representation can be stored or it can be generated
from a baseline representation.

While the AIO is similar to general object-based para-
digms, the focus of the interface provided by the AIO to the
network environment is unique. The AIO maintains responsi-
bility for managing a specific body of information, indepen-
dent of any particular (set of) representation(s) of that informa-
tion. There is an explicit set of interfaces that allow negotiated
access to take place across a range of control models. These
interfaces can be used during an initial access to information,
where a specific representation with particular synchroniza-
tion and resource characteristics could be selected, leaving the
actual transfer of information to protocols and processes at the
source and sink ends of a transfer. The AIO can also be used
to adaptively change the representation of information based
on changing characteristics of the network and or application
if the object supports this functionality (Bulterman and Winter
1993).

An example of the negotiation protocol between an appli-
cation and an AIO is illustrated in Fig. 7. The process starts
when the player encounters a request for an image from the
application. (This request is the result of referencing an AIO
node within the CMIF description.) The client code on the
application's hosts sends a message to the server (path a in
Fig. 7) requesting a particular object, and it sends a vector of
application-specified constraints (also encoded in the CMIF
description, either as channel attributes or as attributes to an
event block), as well as a state vector indicating resource char-
acteristics of the client's machine (including resolution, color
map depth, etc.). The server analyzes the current state of the
interconnection environment plus the load on the server, and
makes a first request to the AIO for a particular type of repre-
sentation of the object. In performing this analysis, it mimics
functions that would be performed by the LOS and/or GOS.

75

Fig. 7. The AR AIO and surrogate client and server components

If the AIO is able to respond with the requested data object,
this object is immediately returned to the application (path b
in Fig. 7). (This will be the usual case.) If, on the other hand,
this is not possible, the AIO may offer an alternative represen-
tation, based on the application's constraint vector. The alter-
native representation is also returned immediately, since the
application has already implicitly given approval for receipt.

If the AIO cannot support any of the options, it returns this
information as a status result that is passed back to the client
(path c in Fig. 7); the client can either decide how to act on the
status directly, or it can cause the application to query the user
for a selection. In all of the processing, the user is kept out of the
decision making activity unless the AIO and/or the application
specification cannot provide an appropriate response.

Note that if the A10 passes back an alternative represen-
tation of an object (for example, a text block instead of a re-
quested image), the client must inform the player that different
resources may be necessary to support the request. To imple-
ment this, the player must realize that a picture channel may
need to be replaced (temporarily) by a sound or text channel
to support the mapping.

4 Current status and summary

The AMF and the two support models described in the paper
are based on the assumption that resource control in a mul-
timedia network should be adaptable, and that the adaptive
process should be distributed over the application, the LOS,
the (distributed) GOS, and the AIOs involved in a transfer.
Each of these layers has a specific insight that is important in
controlling multimedia transfers. Although each of these in-
sights are necessary, the AMF also attempts to limit the scope
of any one layer by giving each layer a specific set of concerns
to process.

Support for the AMF, the CMIF specification and the AIO
are ongoing research activities at CWI. Of the implementation
projects, the CMIF authoring environment and its run time
player is the most advanced, while support for general AIO
manipulations is in an early stage. Work on the AIO is tied to
the development of an LOS/GOS infrastructure and the devel-
opment of semantic facilities that can be provided to support
a wide range of resource, synchronization, and representa-

tion control operations. We have performed initial presenta-
tion mapping experiments (Bulterman and Winter 1993), but
it is too early to draw any conclusions about the utility of this
approach.

All of our activity in the Multimedia Kernel Systems
Project is aimed at understanding the basic relationships that
exist in supporting multiple multimedia applications in a het-
erogeneous network environment. In the current version of our
work, this global function is replaced by a separate client and
server pair. They transparently negotiate the format of the in-
formation to be used to satisfy a particular object reference
based on the characteristics of the target system, the load on
the network, the types of alternative representations that the
client will accept, etc. This transparent interaction is important
because it offers the system an opportunity to respond quickly
to transient conditions in the environment, but it is difficult
to achieve in the light of closed operating systems and multi-
media devices. It is our long term intention to investigate the
support of distributed operating systems technology that will
allow CMIF specifications (or its successor) to be passed along
to all of the components of the AMF, each of which will pick
out the information it needs to support the synchronization and
resource requirements of the application (Bulterman 1992).

Acknowledgements. The general frameworks and various implemen-
tation projects described in this article have developed during the past
two years as part of the Multimedia Kernel Systems Project at CWI.
Chief contributors to this project have been Guido van Rossum, Lynda
Hardman, Jack Jansen, K. Sjoerd Mullender, Robert van Liere, and
Dik Winter. Funding for this work has been provided by the Dutch
Ministry of Education and Research, the Dutch Ministry of Economic
Affairs and the Euromath Foundation.

References

Anderson TE, Bershad BN, Lazowska ED Levy HM (1992) Sched-
uler activations: effective kernel support for the user-level man-
agement of parallelism. ACM Transact Comput Syst 10:53-80

Anderson DR Chan P (1991) Toolkit support for multiuser au-
dio/video applications. Proc 2nd International Workshop on Net-
work and Operating Systems Support for Digital Audio and
Video, Heidelberg, pp 230-241

Buchanan MC, Zellweger PT (1992a) Scheduling multimedia docu-
ments using temporal constraints. Proc 3rd International Work-
shop on Network and Operating Systems Support for Digital
Audio and Video, San Diego, pp 237-249

Buchanan MC, Zellweger PT (1992b) Specifying temporal behavior
in hypermedia documents. Proc ACM ECHT'92 Conference on
hypertext, Milan, pp 262-271

Bulterman DCA (1992) Synchronization of multi-sourced multime-
dia data for heterogeneous target systems. Proc 3rd International
Workshop on Network and Operating Systems Support for Dig-
ital Audio and Video, San Diego, pp 119-129

Bulterman DCA, Liere R van (1991) Multimedia synchronization and
unix, Proc 2nd International Workshop on Network and Operat-
ing Systems Support for Digital Audio and Video, Heidelberg,
pp 108-119

Bulterman DCA, Rossum G van, Liere R van (1991) A structure
for transportable, dynamic Multimedia documents. Proc Summer
1991 Usenix Conference, Nashville, pp 137-155

76

Bulterman DCA, Winter DT (1993) A distributed approach to re-
trieving JPEG pictures in portable hypermedia documents. Proc
IEEE Symposium on Multimedia Technologies and Future Ap-
plications, Southampton, England pp 93-99

Clark DD, Shenker S, Zhang L (1992) Supporting real-time applica-
tions in an integrated services packet network. Proc ACM SIG-
COMM'92, pp 200-208

Danthin A, Baguette Y, Leduc G, Leonard L (1992) The OSI 95
connection-mode transport service: the enhanced QoS. Proc 4th
TCG WG GY IFIP Conference on High Speed Networking,
pp 138-143

Ferrari D (1990) Client requirements for real-time communication
services. IEEE Commun Magazine 28:65-72. See also RFC
1193, 1990

Ferrari D (1991) Design and implementation of a delay jitter control
scheme for packet-switehing internetworks. Proc 2nd Interna-
tional Workshop on Network and Operating Systems Support for
Digital Audio and Video, Heidelberg, pp 72-83

Fujikawa K, Shimojo S, Matsuura T, Nishio S, Miyahara H (1991)
Multimedia presentation system "Harmony" with temporal and
active media. Proc USENIX Multimedia Conference, Nashville,
pp 75-93

Govindan R, Anderson DP (1991) Scheduling and IPC mechanisms
for continuous media. Proc Thirteenth ACM Symposium on Op-
erating Systems Principles, pp 68-80

Hanko JG, Kuerner EM, Northcutt JD, Wall GA (1991) Worksta-
tion support for time-critical applications. Proc 2nd International
Workshop on Network and Operating Systems Support for Dig-
ital Audio and Video, Heidelberg, pp 4-9

Hardman L, Bulterman DCA, Rossum G van (1993a) The Amster-
dam hypermedia model: extending hypertext to real multimedia.
Hypermedia Journal, 5:47-69

Hardman L, Bulterman DCA, Rossnm G van (1993b) Structured mul-
timedia authoring. Proc ACM Multimedia '93, Anaheim, Calif.,
pp 283-290

Hayter M, McAuley D (1991) The desk area network. Technical
Report No. 228, Cambridge University Computing Laboratory,
Cambridge, UK

Hodges M, Sasnett R, Ackerman M (1989) A construction set for
multimedia applications. IEEE Software 6:37-43

Jeffay K, Stone DL, Talley T, Smith FD (1992) Adaptive, best-effort
delivery of digital audio and video across packet-switched net-
works. Proc 3rd International Workshop on Network and Oper-
ating Systems Support for Digital Audio and Video, San Diego,
pp 3-14

Lesley IM, McAuley D, Mullender SJ (1993) PEGASUS-operating
systems support for distributed multimedia systems. ACM Op-
erating Syst Review 27:1, 69-78

Little TDC, Ghafoor A (1991) Scheduling of bandwidth-constrained
multimedia traffic. Proc 2nd International Workshop on Network
and Operating Systems Support for Digital Audio and Video,
Heidelberg, pp 120-131

Director version 20, MacroMind (1990) (authoring tool for the Apple
Macintosh)

Rangan PV, Vin H (1991) Designing file systems for digital video
and audio. ACM Operating Syst Review 25:81-94

Rossum G van, Jansen J, Mullender KS, Bulterman DCA (1993)
CMIFed: A presentation environment for portable hypermedia
documents. Proc ACM Multimedia '93, Anaheim, Calif., pp 183-
188

Tokuda H, Nakajima T, Rao P (1990) Real-time Mach: towards a
predictable real-time system. Proc USENIX Mach Workshop,
pp 213-220

Topolcic C (1990) Experimental internet stream protocol, Version 2
(ST-II). Internet RFC 1190

Verma D, Ferrari D (1990) A scheme for real-time channel establish-
ment in wide-area networks. IEEE JSAC 8:368-379

DICK C.A. BULTERMAN received
a B.A. degree from Hope College
in 1973, an Sc.M. degree in Com-
puter Science from Brown Univer-
sity in 1977, and a Ph.D. in Com-
puter Science from Brown University
in 1982. He was an assistant profes-
sor for engineering at Brown Univer-
sity from 1981 to 1988. Since 1988,
he has been head of the department
of Computing Systems and Telemat-
ics in Amsterdam, The Netherlands.
During this period he had also held
visiting and part-time professorships

at the University of Utrecht, the University of Amsterdam and the
Delft University of Technology. Since 1991 he has also been project
leader of CWI's Multimedia Kernel System Group. His current re-
search interests include operating systems and architecture support
for multimedia systems and multimedia document modeling and au-
thoring systems. Dr. Bulterman is a member of the ACM, the IEEE
Computer Society and Sigma Xi.

