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Summary. A system of N particles in R a with mean field interaction and 
diffusion is considered. Assuming adiabatic elimination of the momenta the 
positions satisfy a stochastic ordinary differential equation driven by Brownian 
sheets (microscopic equation), where all coefficients depend on the position 
of the particles and on the empirical mass distribution process. This empiri- 
cal mass distribution process satisfies a quasilinear stochastic partial differential 
equation (SPDE). This SPDE (mezoscopic equation) is solved for general mea- 
sure valued initial conditions by "extending" the empirical mass distribution 
process from point measure valued initial conditions with total mass conser- 
vation. Starting with measures with densities in L2(R a, dr), where dr is the 
Lebesgue measure, the solution will have densities in Lz(R d, dr) and strong 
uniqueness (in the It6 sense) is obtained. Finally, it is indicated how to ob- 
tain (macroscopic) partial differential equations as limits of the so constructed 
SPDE's. 
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1 Introduction 

In this section we give the basic definitions of the microscopic model of N 
interacting particles (1.1), driven by noise which is white in time and corre- 
lated in space ( SODE(1.12 ) ). Moreover we derive from the microscopic model 
the mezoscopic one as the empirical process, (1.2), which by It6's formula 
(Lemma 1.3) satisfies the quasilinear SPDE (1.25). 

Let N point particles be distributed over R a, where d is arbitrary and fixed. 
The position of the ith particle at time t will be denoted by ri(t), which is 
by assumption in R a for all i. We will assume that by some kind of adiabatic 
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elimination we can neglect the momenta  (cf. e.g. [17]). Thus we consider the 
position of  the N-particle system at time t as a point in R dN, i.e., 

(rl(t) . . . . .  rY(t))  E R dN , (1.1) 

and a description of  its time evolution will be a microscopic model for the 
particle distribution. Typically one derives from mechanical principles ordinary 
differential equations (ODE' s )  or stochastic ordinary differential equations 
(SODE's )  for (1.1) (cf. e.g. [19, 12,22, 17] etc.). We wiI1 call such equa- 
tions (describing the position of  each particle, usually in dependence on the 
position of  the other particles) microscopic equations. Now let the mass of  
the ith particle be ai. Then the empirical mass distribution at time t of  the 
N-particle system is given by 

N 
5~)v (t)  := ~ ai6r,(t~, (1.2) 

i=1 

where ~ is the point measure, concentrated in r E R a. In other words, 5~N (t) 
is a measure process and for A C R d, XAr(t,A) = ~N_lail{r~(r describes 
the mass in A at t irrespective of  which particular i)articles are in A at t, 
i.e., ~YN(t) reduces information given by ( 1 1 )  to the relevant one as far as the 
mass distribution is concerned. On the other hand, i f  we agree to call a mass 
distribution macroscopic if  the particle structure cannot be seen and stochastic 
fluctuations are absent then we may call a description of  the time evolution of  
(1.2) a mezoscopic model, in particular, if stochastic fluctuations are present 
in (1. t ) ,  which we will always assume. Our goal is to derive a stochastic 
partial differential equation (SPDE) for (1.2), which will be called a mezo- 
scopic equation. Under physically and mathematically reasonable assumption 
on (1.1) this SPDE will be extendible fi'om sums of  weighted point measures to 
measures having densities with respect to the Lebesque measure dr on R a. Then 
as a certain parameter, the correlation length of  the fluctuation forces in (1.1), 
tends to 0 the solution of  the SPDE will tend to the solution of  an (integro-) 
partial differential equation (PDE), which we will call a macroscopic equation 
for the mass distribution. 

Our approach is motivated by the author's derivation of  a stochastic Navie r -  
Stokes equation for the vorticity of  a two-dimensional fluid [16]. The corre- 
sponding mezoscopic description XN (t) in that case is a suln of  point measures 
multiplied by intensities ai E R,  i.e., by point measures in the position of  point 
vortices with positive and negative intensities. To include this case as well 
as other possible signed measure valued cases (cf. [10]) we will allow the ai 
in (1.2) to be positive and negative and just call them positive and negative 
"masses". So let a + > 0 be the total "positive" mass of  (1.2), a -  > 0 be the 
total negative mass and a :=  a + + a - .  These quantities will be fixed throughout 
the paper. Set 

M := {#: # is a finite signed Borel measure on R a, # + ( R  a) = a +} , 

where #+ and # -  is the Jordan decomposition of  # and for any Borel set 
A C R a and nonnegative numbers b +, b - # •  (A) = b • if  and only if  #+ (A) = 
b + and # - ( A )  = b - .  First we define a metric on R d by 
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p(r ,q)  := ( & -  QIA1), (1.3) 

where r, q E R a, Ir - q[ is the Euclidean distance on R a, s some positive con- 
stant and "A" denotes "minimum". If  #,/7 E M we will call positive Borel 
measures Q+ on R 2a joint representations of (#+,/7+), resp ( # - , / i - )  if Q+ 
(A x R a) = #+(A)a + and Q:L(Ra x B) =/7+(B)a • for arbitrary Borel sets 
A, B C R a. The set of all joint representations of (#+, fi+), resp. (#- ,  17-) will 
be denoted by C(# +,/7+), resp. C(#- ,  fi-).  For #,/7 E M and m = 1, 2 set 

~(#,/7)  := inf f f Q + ( d r ,  dq)om(r, q) 
Q+ ~c(~ +,5 + ) 

+ inf ffQ- (dr, dq)o m (r, q)] 
Q- eC(F,~-) 

1/m 

, ( 1 . 4 )  

where the integration is taken over R d x R a. (We will not indicate the inte- 
gration domain when integrating over Ra.) By the boundedness of 0 and the 
Cauchy-Schwarz inequality 

1 2 ~1(#,/7), (1.5) 2 t = >(#,/7) > ~20,/7) > 
= a + V a -  

where "V" denotes the maximum of two numbers. 
After normalizing the measures by #• #~:/a + (setting p - / a - =  0 if 

a -  = 0) the Kantorovich-Rubinstein theorem implies 72 (#, fi) = 0 if and only 
if # 4 =  fi+ and # -  = / 7 -  [8, Chap. 11]. The triangle inequality for ~2(#, fi) 
follows as for the Wasserstein metric (which is 7l(#+/a +, fi+/a +) for #+/a + 
and fi+/a+). Hence Y2 is a metric on M, and M endowed with Y2 will be 
denoted by (M, 72). By (1.5), the Prohorov and the Kantorovich-Rubinstein 
theorems (M, ~2) is complete (cf. [8, 11.5.5 and 11.8.2]). Moreover, as in the 
Wasserstein case (cf. [7, Appendix, Lemma 4]) we obtain that the set of lin- 
ear combinations of signed point measures from M is dense in (M, ~2). For 
f E C (R a, R) the space of real valued continuous functions on R a, we set 

I f ( r )  - f (q) l  ) 
Illflll~ := sup ~ - ( Z ~  ' 

r, qERd,r@q 

(1.5) and the Kantorovich-Rubinstein theorem imply 

1 sup ] < # - f i ,  f >2 I . (1.6) 
~ ( # '  fi) > 2(a + V a - )  ]llfi{im__<l 

Next we introduce the stochastic set-up. (f2, ~ ,  4 ,  P) is a stochastic basis 
with right continuous filtration. All our stochastic processes are assumed to live 
on O and to be o~-adapted (including all initial conditions in stochastic ordi- 
nary differential equations (SODE's) and stochastic partial differential equations 
(SPDE's). Moreover, the processes are assumed to be dP | dt-measurable, 
where dt is the Lebesgue measure on [0, ec). Let wr t) be i.i.d, real val- 
ued Brownian sheets on R a • R+, ~ = 1 . . . .  ,d  (cf. [26, 14]) with mean zero 
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and variance t[A[, where A is a Borel set in R a with finite Lebesgue measure 
[A[. Adaptedness for w~(r, t) means that fA wt(dp, t) is adapted for any Borel 

set A C R d with [A[ < oc. Set w(p, t) := (wl(p,  t) . . . . .  wa(p, t)) T, where Y 
denotes the transpose. 

For m E N let C~ (R d, R)  be the space of  m times continuously differen- 

tiable bounded real valued functions on R d, where all derivatives up to order m 
are bounded, C~' (R a, R)  is the subspace of  C~ n (R e, R)  whose elements vanish 

at infinity. If f E C~ (R  a, R)  we set 

I[Iflltm := max sup Ia~e t e d f ( r ) l ,  
tl+"'+td=l/I rER d ..... 

[~l_-<m 

where 
VI Jj+. .+td 
ll,.../d f ( r )  = (Ore 1 )11 ...(Ortq yd f ( r )  , 

and r 4 is the ~ith coordinate of  r. If we take only one partial derivative, say 
with respect to rf, we will just write 0t. 
For p > 1 let Lp(R d, dr) be the space of  Borel measurable real valued func- 

tions on R d such that f [f[P(r)dr < ec. We set 

(Ho, ( . ,  ")o) := (L2(R d, dr), ( . ,  " )o) ,  

where ( - , - )0  is the standard L2-scalar product on H0, and [. [o will denote its 
associated norm. We will describe the interaction of  a specific particle with 
the other particles and with the surrounding random medium through smooth 
kernels. The contribution of  the interaction of  this particle with n particles to its 
motion will be weighted by positive numbers pn > 0, qn > 0, n E N U {0}, 
such that 

Ca := ~ p ~ n a " ( 1  + ~ + a!_ �9 l{a->0}) % 0(3, 
n=l 

a := q ,~(n+. l ) (a '+a"- l+l ) ( l+~@+aA=' l {a ->O}  < o ~ ,  (1.7)  

where l{a >0} = 1 if a -  > 0 and ( 1 / a )  l{a >0} := 0 if a = 0. If f C L1 

(R e, dr) and # C M, we set 

f *  p*~(r) := { 

f f ( r  - p)#*n(dp) 
:=  f . . . f f (r  - (p l  + . . .  + P n ) ) # ( d p l ) . . , # ( d p n )  if  n > 1, 
f ( r ) ,  if  n = 0. 

The particle-particle interaction is governed by a sequence of  kernels Kn = 
(Kln,...,Kdn): R d --~ R d such that 

(i) K ~ n E C ~ ( R  d , R )  NL~(R d , d r )  f o r n E N U { 0 } ,  ( = 1  . . . . .  d ,  

(ii) sup max {[I]K~,[l[~+[J[Ke,[J[L+f[K~,[(r)dr}=zcg < eo .  (1.8) 
n@NLJ{0} f= 1,...,d 
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Similarly, the particle-medium-particle interaction is governed by a sequence 
of kernels F, = (Fk:n): R a ~ ~a• the d x d-matrices over R, such that for 
some rh > d/2 + 1 
(i) Fk~ ,=Ft~EC~(Rd ,  R)NHo f o r n E N U { 0 } ,  k , f = l  . . . .  , d ,  

(ii) sup max,{l l l~. l l l  2 + Illrk .lll o + Ilrk .ll } = :  < o o ,  (1.9) 
n c N U { 0 }  d=  1,...,d 

where for suitable f :  R a ~ R 

I llflll2,o :-- sup f I f (r  - p )  - f ( q  - p)I2 dp 
r,q p2 (r, q) ' 

d d 

lif{{ 2 : = [ [ f [ [ g + ~  [la~flt 2 +  ~ {{Ok~f2 [[o2 . 
~=1 k ,d=l  

Example 1.1 Let r > 0 and 

I 

1 Ir 2ql F ~ ( r - q ) : =  { ~ e x p (  )}2 . 

Further, let p(r, q) := (([r - ql/V/-ff~)/X 1). (1.9) can be easily verified for 

Fkfn := /~cSk~ (1.10) 

for a l lnwhere  3 k l = l ,  i f k = d ,  and = 0 ,  i fk4:d .  
Let us now introduce the following abbreviations: 

oo 

F(# ,  r) := ~ p , K , * # * ' ( r ) ,  
n=0 

o<3 

J ( # ,  r) := ~ q , F , * # * ' ( r ) ,  
n=0 

(1.11) 

where # c M. In what follows N is fixed, a i E R, i = 1 . . . . .  N, ~ai>=oai = 
a+, - ~ a i < 0  ai = a-.  We will assume that the positions of our N-particle 
system satisfy the following SODE: 

d / ( t )  = F(fN(t ) ,  ri(t))dt + f J(~YN(t), ri(t) -- p)w(dp, dt) 

N 
i ri(O)=ro, i =  l , . . . ,N,  f N ( t ) =  ~ai3ri(O. (1.12) 

i=1 

Remark 1.2 (i) Let {qSn},cN be a complete orthonormal system (CONS) in H0 
and define an Jgdzd-valued function Cn whose entries on the main diagonal 
are all q$~ and whose other entries are all 0. Then for any adapted processes 
#(t)  and r(t) with values in M and R d, respectively, 

f J (# ( t ) ,  r(t) - p)w(dp, dt) = ~ f J (# ( t ) ,  r(t) - p)O,(p)dpdf i ' ( t ) ,  
n = l  

(1.13)  
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where fl" (t) are Rd-valued i.i.d, standard Wiener processes. The right hand 
side of (1.13) defines the increment d M ( # ( t ) ,  r(t), t) of an Rd-valued square 
integrable continuous martingale. For the verification of this statement it is 
enough to show that the quadratic variation of the right hand side of (1.13) is 
finite. Let [M] denote the quadratic variation of R-, R d- or H0-valued square 
integrable martingales M. It will be clear from the context which state space 
is underlying in the definition of [ ]. The mutual quadratic variation of the 
one-dimensional components of d M ( # ( t ) ,  r( t) ,  t) are (formally) given by 

d[M~ (#(t), r(t), t), Me (#(t), r(t), t)] 
d 

= ~ ~ f f k j ( # ( t ) ,  r ( t )  - p ) ~ , ( p ) d p f j ~ j ( # ( t ) ,  r ( t )  - p ) ( b , ( p ) d p d t  
n = l  j = l  

d 

= ~ f j k j ( # ( t ) ,  r(t)  - p )A~ j (# ( t ) ,  r(t)  - p l d p d t  
j = l  

d 
= ~ ~ qmq~fFkjm * #*m(t) (r( t )  - p)Ftj~ * # * ~ ( t ) ( r ( t ) -  p ) d p d t .  

j = l  m, r~ 

(1.14t 

Hence, by (1.7) and (1.9) 

2~2  [Mk (#( t ) ,  r( t) ,  t), Mk(f l ( t ) ,  r( t) ,  t)] < dcrcat . (1.15) 

This shows that (1.14) is rigorous and altogether it follows that we may view 
(1.12) as an (It6) SODE driven by infinitely many i.i.d. Wiener processes. 

(ii) In view of the aforementioned adiabatic elimination we see that the 
right hand side of (1.12) is the sum of the slowly varying (F) and rapidly 
varying ( f  J ( . , . -  p ) w ( d p ,  .)) components of the forces acting on the ith 
particle. The dependence of J on ~N (t) (the "mean field") reflects the fact 
that the action of the medium on the ith particle itself depends on the position 
of the other particles. [] 

We now check that (1.8) and (1.9) imply suitable Lipschitz conditions on the 
coefficients in (1.11). Suppose #,fi C M and r, F E R d. We easily verify 

]F(#, r) - F(#,  Y)t =< CKcap(r, Y) .  (1.16) 

Next let f be a Borel measurable real valued function on R d with [[[f]}lL < 
c < ~ . T h e n f o r a n y n E N  

] f . . . f f (r - ( ~1 + " "  + {,))(#(d{1).. .  #(d{,) - fi(d{l ) . . . fi(d{n))] 

<= can-lnV/272(#, fi) . (1.17) 

Indeed, set 

Pn-1 (#, fi)(d~2 . . . . .  d~ )  := ~ # (d~2)... # (d~i)fi(d~i+l)... fi(d~,), 
i=1 

(*) 
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where by definition the product measure on the right hand side of (*) equals 
fi(d~2).., fi(d~,) for i = 1 and #(d~2)... #(d~n) for i = n. Then we easily see 
that the left hand side of (1.17) equals 

If . . .  f f ( r  - (~1 + . . .  + ~n))(#(d~l) - -  ]~(d~l ))Pn-1 (#, fi)(d~2,..., d~n) 

<= a" - ln  sup [ f f ( r  - ~ + ~)(#(d~) - fi(d~))[ 

1 < an-In sup ~ ~ ] f f f ( r -  ~ + ~) 
+,- 

- f ( r  - q + { ) Q •  (d~, dq)[ (1.18) 

with arbitrary Q+ E C ( # •  +) and ~ +  b • := b + + b - .  Since p ( r , q )  = 

p ( r  - q,O), and Q• arbitrary in (1.18) we obtain from (1.18) and the Cauchy- 
Schwarz inequality (1.17). (1.17) in addition to (1.3),(1.7) (implying 
independence of n), (1.8), and (1.11) implies for any F 

IF(#, F) - F(f i ,  F)] < CKCaV/2d~2(#, f i ) .  (1.19) 

(1.19) in addition to (1.16) implies 

IF(#, r)  - F( f i ,  t~)l < CKCa{p(r, ~) + x/2d72(#, fi)}. (1.20) 

Similarly we obtain first 

[ f ( J ( f i ,  r - p )  - J ( f i ,  ~ - p ) ) w ( @ ,  dt)] 

5 G G qmammqn~ aml~ (Fkjm(r - p + ~) 
k, j=I  m, th 

1/2 
- Fkjm (F -- p + ~))2 dp)  

, ~ ~ \ 1/2 

__ d2 ~2 c 2 2, r < a rP t , ~ ) d t .  (1.21) 

Then, as in the derivation of (1.18) 

I f ( J ( # ,  r - p )  - J ( f i ,  r - p ) ) w ( d p ,  dr)] 
d 

< ~ a ~ qmam-lmq,~a~-lrhsup 
j , k = l  m, rh ~,( 

{ ~ ~ f f f (rksm(r - p -  r + ~) - Ckj~(r -- p - -  ~ + ~) )2  
-}-,- 

• Q•  (d~, dr/) } 

1/2 

. /  

{+~ ~ f f f ( v ~ j ~ , ( r -  p - + - Vkj,~(r- p -  ~ + ~) ~))~ 
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1/2 

x dp Q• (d~, dt l) dt 

- - 2 - 2  2 2 
_ f f p  (~, (1.22) < a c~c r ~ q)Qi(d{ ,dt l )dt  

+ , -  

with arbitrary Q• E C(/~ • fi:~). Since Q i  are arbitrary we obtain from (1.21) 
and (1.22) 

[ f ( j ( # ,  r - p )  - J ( f i ,  ~ - p ) ) w ( d p ,  dt)] <= 2d2~2~c2 {p2(r,  ?) + ay~(~, ,7)} dr.  

(1.23) 

Next we will derive the (mezoscopic) SPDE for the mass distribution 5YN(t) 
associated with (1.12), assuming that (1.12) is solvable. 
L e t # E M a n d r E R  a. Set 

d 
Dk~(l~, r) := ~[Mk(#, r, t), Mt (/~, r, t)] (1.24) 

(cf. (1.14)). By assumptions (1.7) and (1.9) Dkt (/~):= D~t(/~," ) E C~ (R a, R) 
and oCk~(#):= Jk~ (#, ") E C2(Ra, R) N H0. Similarly F ( # ) : =  F(/z, .) E 
C~(Ra, R)ALI(Rd ,  R) (cf. (1.11)). Let V be the gradient on R a and �9 de- 
note the scalar product on R d. Consider the following quasilinear SPDE on 
M 

d~  =: �89 2 0~(Dk~(~)~) - V. (~r f (~) )  dt  
k,~=l 

- v . ( ~ f j ( o : , .  - p ) ~ ( d p ,  d r ) ) ,  0.25) 

2~ :L (R d, t) as. f - -  (Ra, 0) E M (conservation of mass). (1.26) 

f j ( ~ r , . _  p)w(dp, dt) is treated as a density with respect to f ,  i.e. 
X f r  - p)w(dp, dt) is the Rd-valued (signed) measure f r  
p)w(dp, dt)~'(d �9 ). Similarly for Dk~(X)f  and ~F(X) .  A weak solution of 
(1.25) is by definition a continuous M-valued adapted process ~( t )  which 
satisfies 

/ / d ( f ,  q~) =: �89 ~ ( f ,  Dk~(f)a2~@ + ( f , F ( f ) . V @  dt 
k,t~=l 

4- ( f ,  f ~C(~f, . - p)w(dp, d O . V  @ , (1.27) 

where ~p E C3(R d, R)and (-, .) is the duality between measures and ele- 
ments from Cb(R d, R,), which is an extension of (., ")0. The restriction to 
C3(R, 2, R) is motivated by the fact that for those q~ IllOt~plllL and ill~2~q~lllL < 
cxD for k, d = 1 . . . . .  d and, therefore, the right hand side of (1.27) is defined for 
f ~ (M, 72)- The fact that q~ vanishes at infinity allows to come from (1.27) to 
(1.25) through integration by parts, where in (1.25) the derivatives have to be 
interpreted in the distributional sense. That (1.25)/(1.26) is also the "correct" 
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SPDE for the mass distribution associated with (1.12) follows from the fol- 
lowing lemma. 

Lemma 1.3 Suppose (1.12) has a solution (r 1 (t, ro),... ,rN (t, ro)). Then XN(t) 
:= ~iUl aigri(t ) is a weak solution of (1.25)/(1.26). 

Proof 

(i) fu( t )  satisfies (1.27) by ItS's formula. 
(ii) The mass conservation (1.26) follows from the construction. [] 

Let us now briefly describe the content of the following sections. In Sect. 2 we 
show existence and uniqueness for the (microscopic) SODE (1.12). In Sect. 3 
we show existence for the (mezoscopic) SPDE (1.25)/(1.26) for any (adapted) 
initial condition ~ The solution is constructed via extension by continuity of 
X(t, XN(0)) := ~y(t ,  XN(O)) := XN(t) to X(t, Xo) and by showing that this 
"extension" is a weak solution of (1_25). In Sect. 4 we show that if X0 E 
H0 then X(t, Xo) G C([0, cxD); H0) a.s. (H0-valued continuous functions), and 
we obtain an equation for I l x ( t ,  x 0 ) t l g  n �9 This equation shows in particular 
that (1.25) does not satisfy the coercivity conditions in Pardoux's variational 
approach [23] and its generalization by Krylov and Rozovskii [18]. In addition 
to (1.12) we consider in Sect. 2 a microscopic equation where the measure 
valued input is not the empirical process but some arbitrary process ~( t ) .  
The empirical process associated with this SODE satisfies a "bilinear" SPDE. 
Results on this "bilinear" SPDE and the quasilinear SPDE are used to prove 
uniqueness for (1.25)/(1.26) in Sect. 5 provided X0 E H0. In Sect. 6 we look at 
a special semilinear case of (1.25)/(1.26), where Fken(r) =/~:(r)6k~. Referring 
to [16] we conclude that under these assumptions the solution of (1.25)/(1.26) 
tends to a macroscopic PDE if c ~ 0 (the correlation length of the fluctuation 
forces tends to 0) for appropriately chosen initial conditions. 

Next we comment on the basic idea of our approach and some related 
work and on other approaches to SPDE's. The solution of the (mezoscopic) 
SPDE (1.25) is obtained by solving the (microscopic) SODE (1.12) for an 
arbitrary number of  particles but keeping the total mass constant, and by 
extending the empirical process associated with (1.12) to other measure-valued 
initial conditions. The idea to start with microscopic equations (for the posi- 
tions of branching particles) and then to obtain the mezoscopic mass distribu- 
tion by some sort of extension appeared already in [5], which laid the basis for 
a new area, namely "superprocesses". By choosing finitely many uncorrelated 
Brownian motions the empirical process in Dawson's case does not directly sat- 
isfy an SPDE. Indirectly, however, in the one-dimensional case the martingale 
problem is well-posed for a diffusion limit of Dawson's model. Correlations into 
the fluctuation forces for a system of N interacting and diffusing particles were 
to our knowledge first introduced by Vaillancourt [25] but again restricting the 
noise to N Brownian motions for N particles, which again excludes the empiri- 
cal process XN (t) as a candidate for the solution of an SPDE. Looking at (1.13) 
we see that an essential difference to Vaillancourt's model (and other particle 
models) is the perturbation of each of the N particle positions by the same 
infinitely many Brownian motions. It is this feature which leads to Lemma 1.3 
and the extension procedure in Sect. 3 with the result that our solution is 
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strong in the probabilistic sense (on the same ((2, ~ ,  fit, P), same Brownian 
sheet). In Vaillancourt's model one can get weak solutions (in the probabilis- 
tic sense) for some infinite particle limit by solving a martingale problem [6]. 
Since solving (1.25)/( 1.26) is achieved by solving (1.12) and extension we will 
call this the particle approach to SPDE's. It should be mentioned that in the 
absence of fluctuation forces, i.e., where (1.12) becomes an ODE, this approach 
is used to obtain numerical solutions of certain first order PDE's, e.g., of the 
Euler equation for the vorticity of an incompressible ideal two-dimensional fluid 
(cf. [20]). Finally, we want to mention Borkar's paper [1], where the SODE for 
the position of one particle in a random medium (represented by a Brownian 
sheet and random measures) is considered. Also the time evolution of an 
associated mass distribution (not the empirical distribution of an N-particle 
system) has been analyzed in [1]. 

Apart from the aforementioned relation of our approach to Dawson's and 
Vaillancourt's work it is essentially different from the techniques (and the 
spirit) used so far, say the semigroup approach ([3, 26, 13-15], etc.), the varia- 
tional approach (Pardoux, loc. cit., Krylov and Rozovskii, loc. cit., etc.) as well 
as from the general functional analytic methods used to derive strong solutions 
of certain quasilinear SPDE's by Dalecky and Goncharuk [2]. In particular, 
the assumptions on the fluctuation part in Daletcky's and Goncharuk's paper 
are quite restrictive and not satisfied by (1.25). G/irtner [11] uses a system of 
diffusing particles with mean field interaction to obtain quasilinear macroscopic 
PDE's. An adaptation of his techniques to our framework should yield macro- 
scopic limits for (1.25) also in the general quasilinear case provided that the 
fluctuation forces for different particles become uncorrelated in the limit. This 
problem will be investigated in a forthcoming paper. 

Let A be the Laplacian, considered as a self-adjoint operator on H0. I i.s 
the identity operator on H0. Set A := (I - 1/2A). Then for any c~ C R0 A ~ is 
defined through the spectral resolution of A and is self-adjoint. Let C~  (R d, R) 
the subspace of C~' (R d, R) whose elements are infinitely often differentiable. 
For e > 0 set 

^\ 1/2 and [I cPl]~:-- (q~, qJ/~ , where q~, ~b E C ~ ( R  d, R). 
Let Ha be the completion of C~  (R d, R) in H0, identify H0 with its strong 

dual H~ and denote by H_~ the strong dual of H~. The norms [[ �9 [[_~ on H_~ 
are Hilbert norms, and we easily see that if q~, ~ E H0 

{q), t)}_~ = (A-}~o,A-~O}o 

(cf. [13]). Hence we have the scale of Hilbert spaces 

Ha c H~ C H0 = H~ c H_  B c H_~ (1.28) 

for 0 < fl < ~ with dense continuous inclusions. By [24] 

Ha C C~" (R d, R) 

if m + d/2 < c~ with continuous inclusions. Since [1[" [[[1 is stronger than [[[. [IlL 
we obtain 
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(M, ?2) C H_~ for all ~ > 1 + d/2 .  (1.29) 

Finally, some remarks about notation. If M1 and M2 are metric spaces 
C(M> M2) is the set of continuous functions from M1 into M2. If B and I~ 
are normed spaces, s176 1~) will be the space of linear bounded operators 
from B into I~ and ]l'l[w(n, fi) the usual operator norm on 5~'(B, I]). For B = I] 

we will just write s instead of A~ 1]). If we want to specify on 
which variable a given differential operator acts we will indicate this by writ- 
ing the variable as a subscript, e.g., (Ar f ) ( r ,  q) means the Laplace operator 
acts on f ( . ,  q) as a function of r, and q is considered a parameter. Finally, 
we will endow R dN with the metric pN(rN, qN):= maxt_<i_<N p(r i, qi), where 
rN := (r 1 . . . . .  rN), qN := (ql . . . . .  qN) E R dN. 

2 The microscopic equations 

We derive existence and uniqueness for the (microscopic) SODE 
(Theorem 2.2). In this derivation we also obtain bounds for some other 
(microscopic) SODE's which depend on some given measure processes (which 
are not necessarily the empirical processes associated with those equations 
((2.2)). 
Set 

Md := {# E M : # is a finite linear combination of point measures on R a} . 

Further, we introduce the following metric spaces of Ma, resp. M valued o~o- 
measurable random variables and of continuous adapted M-valued processes: 

Jffo := L2(~2;Mc/), Jr := L2 (O;M) ,  Jr := L2(O; C([0, T ] ; M ) ) ,  

where the metric on the first two spaces is given by (E? 2 (#, 1~))1/2 for #, fi E 
J/{0 and on the last one by (E SUPo_<t_< T ?2(#t, fit)) 1/2 for #t, fit E J//[0, T]- Note 
that ~ 0  and ~'[o,T] are complete, since M is complete. In what follows we 
will always assume that our random variables are adapted if this does not 
automatically follow from their definition. Consider the following Rd-valued 
SODE: 

dz(t)  = F(q/( t ) ,  z ( t ) )  dt + f ~ ( q l ( t ) ,  z ( t )  - p)w(dp,  d t ) ,  

z(O)=zo,  ~ E JCEo, T]. (2.1) 

Denote a solution of (2.1), if it exists, by z(t, qr z0), and let ~d be the Bore1 
a-algebra on R d. 

Lemma 2.1 (I) There is a unique ~,~-adapted solution z ( . ,  ~ zo) E C([0, oo); 
R d) a.s. 

(II) Let ~1, ~ c J{[0,T] and zo, t, zo,2 two initial conditions. Then for any 
T > 0  
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where 

E sup p2 (z (t, ~1, zo, 1 ), z (t, ~2, Z0,2))  
O<_t<<_T 

< 3 exp (Ca, F,K(T 2 + T)){Ep2(zo, 1, Z0,2) ~- c~,r,x(T + 1) 

0 
(2.2) 

-2 2 2 2  2 ~ 2 2  C~,r,x := c d {2cac K + d  GCr) . (2.3) 

(III) For Vt > 0 the map (co, 4) H z(t, ~ (o)), ~o, 4) from 0 x R d into 
R d is ~ t  | ~d _ Nd_measurable 

Proof (i) Let q~(- ) be RCvalued, adapted and dt | dP-measurable stochastic 
processes, d = 1, 2. Set for ~' = 1, 2 

t t 

qt(t)  := qe(0) + f F ( % ( s ) ,  q t (s))ds  + f f j ( % ( s ) ,  qe(s) - p)w(dp, ds) . 
0 0 

(ii) By (1.3) and (1.16) 

p f ( ~ l ( s ) , q f f s ) ) d s ,  fF (~ f f s ) , q2 ( s ) )d s  < ~CKcadfp(qffs),qz(s))ds. 
0 0 

Further, from (1.3), (1.7), and (1.18) we obtain 

p f (~ qffs)) ds, f f(~ qz(s)) ds 
0 

t 

_< ~Ca~ f sup  1 :~: - Iff~Q (s, d~, drl)(K(q2(s ) - ~ - p) 
+ , - 0  P 

-K(qz ( s )  - tl - P))I ds (2.4) 

(with Q• (s) E C ( o ~  (s), ~ f  (s)) arbitrary). Moreover, by (1.3) and (1. l 9) 

p F ( ~ I  (s), q2 (s)) ds, fF(~/2 (s), q2 (s)) ds 
0 

t 

<= ~CaCKX/2d f y2(~ (s), ~2(s))  ds . (2.5) 
0 

(iii) By (1.21) 
t 

Ifo f ( ~  (~/l (S), ql (S) -- p) -- J (q]/l (S), q2(s) -- p)}w(dp, ds)] 

t 

<_ d2~c2r f p2(ql(s), q2(s)) ds , 
0 

and by (1.22) 
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I i f  {J(~tl(s),qz(s)- p ) -  J ( ~ / 2 ( s ) , q 2 ( s ) - -  p ) } w ( d p ,  ds) 1 

d 
< ~ a~qmam-lmq~a~-lfh sup 

f ~ ~ f f f (Fk jm(qz(s )  - p - ~ + ~) - Fkjm(qz(s) -- p -- ~ + ~))2 
0 [ + , -  

1/2 

• dp Q• d~, d~l) } 
J 

{ ~ ~ f f f (rkj~(qz(s) - p - ~ + ()  - r~j~(q2(s) - p - ~ + ())2 

1/2 

• Q• d~, dq)} ds (2.6) 

(with Q• E C(~f(s), Ylf(s)) arbitrary). 
Hence, as in step (ii) 

[if {J(~,(s),q2(s)- p)-J(~/2(s),q2(s)- p)}w(dp, ds)] 

t 
2 ~ 2 2  2 < d CaCrfYz(~/l(s),~2(s))ds. (2.7) 

o 

(iv) Steps (i) (iii) in addition to Doob's inequality and (1.3) imply 

E sup pZ(~l(t),~z(t))<3EpZ(ql(O),q2(O)) 
O<~t<T 

T 
+ 3Ca, r,x(T § 1 )fEp2(ql(s), q2(s)) ds 

o 
T 

+ 3ca, r ,x (V + 1 ) f E ~ ( ~ l ( S ) ,  ~/2(s)) d s .  
o 

(2.8) 

(v) Choosing first ~1 -= ~/2 the existence of a unique continuous solution fol- 
lows from (2.8) and the contraction mapping principle. Having thus established 
the existence of unique solutions z(-, ~ t ,  z0,t), ( = 1,2, (2.2) follows from (2.8) 
and Gronwall's lemma. 

(vi) ([II) follows from (2.2) (for @/1 ~ ~/2) exactly as in the classical proof 
of the Markov property for SODE's (cf. [9, Chap. XI, Sect. 2]). [] 

Theorem 2.2 To each ~o-adapted initial condition rN(O) E R dN (1.12) has 
a unique ~t-adapted solution rN(',rN(O))E C([O, oo);R aN) a.s., which & an 
RaN-valued Markov process. 

Proof (i) Let qx,~( ' ) :=  (q) ( ' )  . . . . .  q~t ( ' ) )  be RaN-valued adapted and dt | 
dP-measurable stochastic processes, # = 1,2. Set for ( =  1,2, 
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and 

N 

~Jt(t) : =  i~=laiC~q~(t) 

P. Kotelenez 

t t 
i q~(t) := qt(O) + f F(q/l(s), q~(s)) as + f f j (~ t ( s ) ,  qi:(s) - p)w(dp, ds) . 

o o 

(if) By steps (if) and (iii) in the proof of  Lemma 2.1 (cf. (2.4), (2.6)) we 
obtain for any i E { 1 . . . . .  N} 

E sup 
O<_t<_T 

p2((/il(t),4i2(t)) <= 3Ep2(q](O),qi~(o)) 

T 
q- 3Ca, F,K(T q- 1)fEp2(q~l(S), q~2(s)) ds 

o 

T 
+ 3ca, r,x(T + 1 )fEp2N(qN,1 (S), qN,2(S)) ds,  

o 

(2.9) 

whence (with pN(rN, qN) defined at the end of  Sect. 1) 

E SUpo<_t<rp2(~N,l(t),~N,2(t)) ~ 3NEp2N(qN, I(O),qN,2(O)) 

T 
+ 6Nca, r,x(T + 1 )fEp2U(qN, I(S), qN,2(S)) ds.  

o 

(2.10) 

(iii) The contraction mapping principle implies now the existence of  a unique 
continuous solution. The Markov property follows as for It6 equations with 
perturbations by finitely many Wiener processes (cf. (Ill) of  Lemma 2.1 and 
Dynkin, loc. cit.). [] 

3 The Mezoscopic equation-existence 

The empirical process :~fN(t) is considered as a map ~N(O) e--+ ~(t~N(O))  := 
~'X (t) from the space of  ~o-adapted M-valued random variables into the 
space of  adapted continuous M-valued processes. The first main result is that 
this map has a unique extension from discrete M-valued initial conditions 
Y(N(O) to general (~o-measurable) M-valued initial conditions Y[o, denoted 
by s (Theorem 3.4). Then it is shown that this extension is a weak 
solution of  the mezoscopic SPDE (1.25) (Theorem 3.5). 
Let q/l E ~(0,7 for any T > 0 and z0ji, i = 1 . . . . .  N ~0-measurable random 

variables with values in R a, 1 = 1,2. Consider the two systems of  SODE's: 

dz~(t) = F ( ~ z ( t ) ,  z~(t)dt + f J (~ t ( t ) ,  z~(t) p)w(dp, dt) 
(3.1) 

z~(0) = z~,l, i = 1 . . . . .  N, l = 1,2.  
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By Lemma 2.1 (3.1) has unique continuous solutions z~(t) for i = 1,.. . ,  N and 
l =  1,2. Set 

N 
~CVN, I(t ) := ~ aifz~(t ) . (3.2) 

i=1 

Lemma 3.1 For any T > 0 

E suPo<t_< ~, 7~(~N,I(t), ~ N , 2 ( I ) )  

< 3 exp(ca, GK(T 2 + T))ET~(~NA(O),~N,2(O)) 
T 

+ 3 exp(ca, r,K(T 2 + T))a2Ca, r,K(T + 1)fE722(q/l(t),~2(t))dt. (3.3) 
0 

i i Proof (i) Let us first assume that z0, l =: ~l is deterministic, i = 1 . . . . .  N, l = 

1,2. zl(t, Yll, r) is the solution of (2.1) with 0y = Y/1 and z ( 0 ) : = r E  R a. If 
r = r then zl(t,q/t,~) = z~(t), the ith component of the solution of (3.1). Let 
Q+(0) E C(~e~l(0), ~ 2 ( 0 ) )  and f E Cb(R2a; R). Then 

f f Q+(t, dr, dq)f(r, q) := f f Qi  (0, dr, dq)f(zl(t, ~l  (t), r), z2(t, ~2(t), q)) 
(3.4) 

defines Q~(t) E C(~Cg,~l(t), ~Cr~2(t)). Thus, for arbitrary Q+(O) E C(~e~i(O ) , 

~q(~2(O)) using (3.4): 

E supo_<t_< ~ ~ f fQ•  dr, dq)p2(r, q) 

E supo_<t< r ~ ffQ• dr, dq)p2(zfft, ~l(t),  r),z2(t, ~2(t), q)) 

<-_ ~ f f Q• dr, dq)E SUPo<t<_rp2(zl(t, ~l(t), r),z2(t, c~2(t), q)) 
+, 

< ~ f f Q + ( O ,  dr, dq)3 exp(c~ rK(T 2 + T)) 

x p2(r,q) + Ca, r,K(T + 1)fE~(~ffs),~z(s))clr 
0 

by (2.2). 
(ii) Since Q+(O) c C(~.4F~1(0),~..~2(0)) arbitrary we obtain (3.3) for 

deterministic initial conditions. 
(iii) By Lemma 2.1, part 3), z~(t, qlt(t),zio, l)=zl(t,~/l(t),r)lr=z,l,~ and av- 

1 N eraging over the distribution of  (Zo ~, 1,..-, z~,0,1, z0,2 . . . . .  z0, 2) implies (3.3) for gen- 
eral initial conditions. [] 

Set 
~e(t, ~ ~N(0))  := ~jv(t, ~, ~N(0) ) ,  

where the right hand side is given by (3.2) and ~ E (Yr 
{~~ 1 (O), ,-~N,2(0)} �9 
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Corollary 3.2 The map ~ N ( O ) ~  ~e~(',@g,~N(0))from Mffo into Jg[o,r] 
extends uniquely to a map ~ ( 0 )  H ~ ( .  81,~o) from .~o into ~g[0,r]. More- 
over, let L~oj, :Uo,2 ~ J/o and ~1, ~2 ~ ~//[o,r] for all T > O. Then for any 
T > 0  

E SUPo_<t_< r y~(~(t, Ygl(t), ~eo, l ), ~e(t, ~2(t), ~0,2)) 
< 3 exp(%r,K(T  2 + T)){Ey2(~eo,a,~eo,2) 

T 
+ a2c~,r,K(T + 1 )fET~(qll(t) ,  ~ dt} (3.5) 

o 

with c~,r,K given by (2.3). 

Proof Since by (3.3) ~eN(0)~-~ ~( . ,q / ,~eN(0))  is uniformly continuous we 
can extend it by continuity to all ~o  E JH0 by the density of Jffo in JHo . 
(3.5) follows immediately from (3.3). [] 

Corollary 3.3 Let rN(', rN(O ) ) and qN(" ,qN(0)) be two solutions of  the SODE 
(1.12) with initial conditions ru( O ) and qN( O ), respectively, and let ~N(  t ) and 
~N(t)  be the empirical processes associated with rN(t) and qN(t), respectively. 
Then for any T > 0 and all N E N. 

E sup y~(~YN(t),~N(t)) <= FT, a,r, KET~(XN(O),CYN(O)), (3.6) 
O<_t<_T 

with 

cr, a,r,K := exp(6a2Ca,r~<(T 2 + T ) e x p ( Q r ,  x (T  e + T) ) ) .  (3.7) 

Proof Set ~ l ( t )  := ~N(t)  and ~2(t)  := ~N(t)  and apply (3.3) and Gronwall's 
inequality. [] 

Let ~N(t)  be the empirical process for (1.12) starting at ~N(0). Set 

~(t,~N(O)) : :  fN( t ) .  

Theorem 3.4 The map fN(O)  ~ f ( ' , f u ( O ) )  from Jffo into ~([0,r] extends 
uniquely to a map ~o H X(. ,~ro)  from J{o into J/l[o,r]. Moreover, for any 
f o, go E J/go 

E sup 7~(~(t, Xo),Y'(t,~ KEY~(f~o,Y/o), (3.8) 
0_<t_<r 

where FT, a,r,x is given by (3.7). 

Proof The same argument as for Corollary 3.2 using (3.6). [] 

Next we will show that our extensions from Corollary 3.2 and Theorem 3.4 
are weak solutions of the associated SPDE's. First we start with 9r(t, gro) from 
Theorem 3.4 and note that (1.26) follows from the definition of X(t, A%). 

Theorem 3.5 For any cp E C3(Ra, R) and Y(o E Jgo(SF(t, SKo),Cp) satisfies 
(1.27), 0 < t < oo. 

Proof (i) By the choice of ~illaz,ol{lL and lll0~kq, lll~ < oo for k,l  = 1 . . . . .  d. 
So the right hand side of (1.27) is defined for Z(t, X0). 
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(ii) Set hN(t) := Y(t, fo ) - -  f ( t ,  fN(O)) , f ( t )  := ~c(t, fo ) , fN( t )  := 5F(t, 
~ VN(0) ) .  Then 

t _ } 2  

d t 
= Y~ f E f f h u ( s ,  dr)hx(s, dq)Ok~o(r)~lq~(q) 

k , l ,m=l  0 

x f j k , . ( f ( s ) ,  r - p).  Jlm(f(s),  q -- p) dp ds 

--* 0, as N ~ oo, by (3.8) and the boundedness of all terms different from hN. 
Next 

t 2 

{ o j / i ~ ,  ~ i ~ ,  �9 - ~ -  s ~ i ~ , ~ ,  �9 - ~ w ~ ,  ~ ~. ~/} 
t d 

< [l[~Plll2fdsEff[fu[(s, dr)lfNl(s, dq) ~ a .~q.q~a"- lna~- l~  
0 l ,k ,m=l n, ff 

,_ - i - x - p )  • +~._ ~ f f QiN(S,d~,dq)f (Fkm.(r 

1 

- f  ~n(r - ~ - x - p))2 dp) 7 

xSUpy +, ~-  f f Q ~ N ( S , d ~ , d n ) f ( r l m ~ ( q  - ~ - y - p )  

I 

- I ' I m e ( q  - ~l - Y - P ) ) Z d P  (*)  

(with QiN(S ) E C(f• f iN(S) ) arbitrary (cf. (2.6))) 

t 

< ~ (~a)ed3c2ll[~olll~EffflfN](s, dr)lfNl(s, dq) 
+,-- 0 

x f f Q ~ N  (s, d~, dr/)p2(~, ~/) ds 
t 

< ~ (?~)2d3c2a2l]lcPlll2fEffQ~(s, d~, dq)p2(~, t/) ds. 
+,-- 0 

Hence, by the arbitrariness of QN(S) the left hand side of (*) is bounded above 
by 

t 

const IIIq~lJl~'fE?a2(f(s),fN(s)) ds ~ 0 by (3.8). 
0 

(iii) The convergence to 0 of the corresponding deterministic integrals can 
be proved in the same way. [] 

Again let q) E C3(Ra, R) and Yr E d//f0,rl for any T > 0. Consider the follow- 
ing bilinear equation on M in weak form: 
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1 d 
d(~~ (p) = }  ~ (Dkl(~l(t))~(t), 0~1(o} dt 

k, l=l 

+ (A~(t),F(~l(t)). V(o} dt 

+ ( ~ ( t ) , f J ( ~ / ( t ) , .  - p)w(dp, d t ) .V@ 
~e(0) = ~0  E J/{0. (3.9) 

Theorem 3.6 Let ~ ( ' , ~ , ~ o )  be the extension obtained in Corollary 3.2. 
Then ~ ( . ,  Y], ~o) is a weak solution of (3.9). 

The proof is a simplified version of the proof of Theorem 3.5. [] 

4 The Mezoseopic equation-Lz-results 

The main result of this section is Theorem 4.14, which implies that for ini- 
tial conditions YCo(dr)= Xo(r)dr (i.e. havin 9 a density with respect to the 
Lebesgue measure dr) such that Xo E L2(RU, dr) YC(t, YEo) also has a den- 
sity with respect to the Lebesgue measure in L2(Rd, dr), X(t, Xo), which sat- 
isfies the mezoscopic SPDE (1.25). Moreover the explicit representation of 
NX(t, Xo)II~ n in (4.29), where I1" I]0 is the L2-norm, shows that the variational 
methods of Pardoux and Krylov and Rozovski cannot be applied to the SPDE 
(1.25). 

Let T(t) be the heat semigroup on H0. For 2 > 0 the resolvent of 
�89 is defined by ( 2 -  � 8 9  = f~'~e-;~tT(t)fdt, where f E H0. We will 

denote by G(t,r):= ( 2~z t ) - a /Zexp (~ )  the kernel of  T(t). Setting for f E 

H0 Ilfll-2n,~ := 114"(2- 1A -"  ) fll0, it follows that 11"11-2.,~ and 11"ll-2n are 
equivalent norms on H0 and by extension also on H-2~. Let ~ be the 
smoothness index from (1.9). Since ~ > d/2+ 1M C H_~. Moreover, by 
(1.7)/(1.9) Dkl(f) for f E M defines a bounded multiplication operator on 
Hm whence both f and D k l ( f ) ' f  are in H_~, i.e., in the domain of 0~z 
considered as an unbounded operator on H-(~+2). Fix m __> ~ /2  + 1 and set 
R;~ := 2m(2 - 1 -m 2A) . We will consider R~ both as a bounded operator on H0 
and (by extension) as a bounded operator from H-era into H0. Let ~ C Jg[0, r] 
for all T > 0 and ~ ( . ) : =  ~(.,YC,~e0) the solution of the bilinear equation 
(3.9) which was derived in Corollary 3.2 and Theorem 3.6. Set 

Z;~ := R ~  e . 

Abbreviate (cf. (1.24)) 

/~kl(s) := DkI(Yr 

L(s) := F(Yl(s)), 

dM(s) := f J(~C(s), �9 - p)w(dp, ds). 

Then we have the following equation on H0: 

t d 

zj~(t) = z~(o) + f�89 ~ a~dbL.C(s)bk~(s)) ds 
0 k,l--1 

t t 

- fV.R;~(Ar(s)L(s))ds - fV .R~(~(s )dM(s) ) .  (4.1) 
0 0 
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It6's formula yields for n > 1, 

IIZ~(t)llg n =  IIZ~(O)llg" 
d t 

k , l= lO 

t 
2(n- - l )  

- 2nfllz~(s)llo (Z~(s), V.R~(~(s)L(s)))o ds 
0 
t 

2(n 1) 
-- 2nftlZ)~(s)l[o (Z)o(s), V "Ra(~(s)  dM(s)))o 

0 
t 

+ nf]lz;~(s)]] 2(n t)[V-R;~(~(s) dM(s))] 
0 

t 

+ n ( n -  1)fllZa(s)ll2(n-z)[{Z;.(s),V.R~(~;(s)dM(s)))o]. (4.2) 
0 

The mutual quadratic variation of dM(s, r) and dM(s,q) is given by 

d 

a[Mk(s, r), Mr(s, q)] = ~ f Jk j (~(s) ,  r - p)Jl j(Yl(s) ,  q - p) dp ds 
j = l  

=: bkt (s, r, q) ds 

(cf. (1.14)). 
Set 

a 1 
f)kt(s,r,q) := j--~l 2 f {~ - p) - JkJ(Yl(s)'q - p)} 

x {oClj(Yt(s),r - p ) -  J l j (YC(s ) ,q -  p)} dp.  

By the same techniques as in (1.21 ) for all s > 0, r, q E R a 

2 r 
]Dkz(s,r,q)l < , -2  2 P ( , q )  (4.3) aCaC F "-~ . 

Clearly 

�89 q, r) + �89 r, q) = -Dkt(s, r, q) + �89 {/3kt(s, r )  +/3kl(s, q)} .  (4.4) 

In what follows we will assume that for some n > 1 and some 2 > 0, 

Ell/J~(o)llg" < o~. ('4.5) 
By the equivalence of  the norms [1" H--2m, Z, ")~ > O, (4.5) will be satisfied for 
all 2 > 0 if it holds for some 2 > 0. 

Lemma 4.2 A.s. for  all t > 0 

V.R;~(~(s) dM(s)) + ~ f (z,~(s), 021R~(~(s)Dkt(s)))o ds 
k, /=l  0 

t 

<= 2~ . 16dZ~ear~]fllR;~l~l(s)l12 ds.  
0 

(4.6) 
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Proof  
( i )  

Ei 
d t o c  oo 

= 2 22ruff  "" fe-~(u'+'+~zm)dul ...du2m (4.7) 
k, l=l  0 0 0 

f f (O~z, ra(u l  + .  + u2m, r - q))  

x ~ ( s ,  d r ) ~ ( s ,  dq){Dkt(S, r, q) - Dkl(s, r)} ds 

by (4.4) and the fact that in the above integration the roles of r and q can be 
interchanged. Hence the left hand side of (4.6) equals 

d t o o  

E 22ruff  "'" f e-~(~'++~2m) d u l . . . d b t 2 m  
k , l = l  0 0 0 

2 ff(ak~,ra(u~ + . . .  + U2m, r -- q))  

x ~ ( s ,  d r )~ ( s ,  dq)L)kz(s, r, q) ds .  (*) 

(ii) Next, 

d 

2 O~l#G(u,r- q) < 2~ 
k, l=l  

1 6 d ( I r -  ql 2 
\ 16u 2 

m +  e x p ( - 4 u  )G(2u, r - q ) ,  

(4.8) 

whence by (4.3) 

d d 2 ~ ) )O  - 2-2 2 -  (9 l, rG(u,r - q kt(s,r,q) < 22 16d c CrCaG(2u, r - q) . 
k,/= 1 

(iii)l First we change variables 2uk =: vk, k = 1 . . . . .  d, and note that 
IIR~R7~ Ilse(H0) < 1 (cf. [4, p. 48]) which implies by unique extendibility to 

H-zm for f C H-2m 
Ilfll_2m 4 ----< Ilfll-2,,,~- (4.9) 

This in addition to steps (i)-(ii)  implies (4.6). [] 

In the right hand side of (4.6) the derivative operators from the left hand side 
have disappeared. If ~e > 0 (4.6) would suggest a Gronwall estimate of the 
left hand side. The following observation shows how to get rid of the gradients 
in the two other integrals in (4.2). For sufficiently smooth functions f and F 
we obtain for l = 1 , . . . ,d  

2(f ,  c3t( f . F ) ) 0  = (f2, 0iF)0, (4.10) 

where f . F  is pointwise multiplication. (4.10) is equivalent to 

2(f ,  (0 i f )  .F)0 = - (f2, ~?lF)0 �9 (4.11 ) 

Moreover, (4.10) implies (for the stochastic differential by (1.13)) 
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2(Zx(s), V.  (Z~,(s)L(s)))o = (Z2(s), V-L(s))o,  
(4.12) 

2(Z2(s), V-(Z2(s)dM(s)))o = (Z2(s), V .  dM(s))o . 

Set 

e~(s, ~) := (Z~(s), V .  (Zx(s)L(s)) - V.Rj~(~(s)L(s)))o. 

Lemma 4.3 A.s. for  all s >= 0 

IBl(S,2)l ~ 2 d 3 c K C J [ I R ~ I ~ I ( S ) [ I  2 �9 (4.13) 

Proof  
Let f E M, f)~ := R ~ f  and F be a sufficiently smooth function from R d 

into R d. Then 

I f f 2 ( r ) f ( V ~ G ( u ,  r - q ) ) f ( a q ) .  (F(q) - F ( r ) )  dr] 
d 

< 2.2~ max II[F~lllld f I f ~ l ( r ) G ( 2 u ,  r - q ) [ f [ (dq )dr .  
l 

(Similarly to (4.8)). Moreover, 

(f,~, V - ( f a . F ) ) 0  = (f~, (V/ ,0"F)0  + (f2, V . F ) 0 .  

This in addition to (4.9) implies (4.13). 

Lemma 4.4 A.s. for  all 0 < s < t < oo 

t t 
3 ~ 2 2  4 f[(Z~(.),V.aM(u))o] < a coc~fllZ~(u)llodu. 

s s 

Proof  
Set f := Z~(u). Then 

[( f ,  V .  dM(u))o] 
d 

= ~ f f f ( q ) f ( r )  ~ q n q e f . . . f ~ / ( u , d ~ l ) . . . Y / ( u ,  dCn) 
l , k , m = l  n,t~=l 

x ~ d t l l ) . . .  ~(u ,  dq~) 

• f~k,rFkm,(r -- p -- (41 + . - .  + ~n))" 

01,qFlm~(q - p - (vii -[- --- -[- ~ e ) ) d p d u d r  dq 
- - 3 ~ 2 2  2 

< a CaC r ( f f ( r ) d r )  du.  [] 

(4.14) 

Lemma 4.5 A.s. for  all 0 < s < t < eo, 

t t 

f[(Za(u), VR~(Lr(u)dM(u)))o] < 2~33e~]c2rd3fllRal~l(u)[14 du.  
s s 

Proof  
(i) 

{V-R~(~r(s) aM(s)) - (VR~,~r(s)). dM(s)}(r)  

(4.15) 
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�9 d a oo ~ 254(ql - rl) 
= ~ ) m f  . . .  f e - , t ( u , + . . _ + ~ ) d U l . . . d u m f 4 ( ~ l ~ . _ _ ~ U m  ) 

l = l  0 0 

( ir _ q]2 
4(~1 ~-~.~.m)) xexp 

% 

x ~ ( s ,  dq) .  G(2(ul + , . .  + Urn), r -- q)(dMl(s,  q) - dMl(s,  r ) ) .  

Hence by (4.3) and (4.9) 

[V. R) , (~(s )  d M ( s ) )  - (VZx(s)). dM(s)]  

< 2~32d2462aC211R~lLrl(s)llg ds .  

(ii) Now (4.15) follows using (4.12) and (4.14) in addition to 

[(Z~(s), V-R)~(&,~f(s) d M ( s ) )  - (VZ),(s)). dM(s))o] 

_-__ ItZ~(s)ll~. [V.Rj(~(s)  d M ( s ) )  - (VZ~(s)). dM(s)]  

(cf. [21, Chap. 2.42]). [] 

The previous lemmas lead to the following important estimates. 

Lenuna 4.6 (i) For any t > 0 

t 

EllZ~(t)[lg ~ < Ell/J~(o)llg" + C.,a,r,K f EIIR~IY'I(s)[I 2" ds; (4.16) 
0 

(ii) f o r  any T > 0 

T 

E supo<t_< v IIz~(t)ll 2n <= fllZ~(0)llg" + e.,o,r, KfEIIRxI~I(s)II 2~ ds 
0 

1 

+c,,~,r,K IJRal~J(s)ll4"ds . (4.17) 

Here 

C . . . .  F,K := (nd26c262a((n - 1)33d + 64) + 4dncacx)2~ (4.18) 

both in (I) and (II). 

Proo f  (I) follows from (4.2), (4.12) and Lemmas 4.2, 4.3, and 4.5. 
(II) follows from the previous step, (4.2), and the Burkholder-Davis-Gundy 
inequality. [] 

R emark  4. 7. If we knew that f dE l l~ ( s ) i J  2n ds < ec, resp. frEllL~(s)[[4~ ds < 

oc Fatou's and Gronwall's lemmas would imply bounds for Ell~(t)l] gn, resp. 

Esupo<_t<_r[l~(t)[[g n by multiples of EII~(0)j[02", resp. (EljL1e(0)[lo4n)�89 It is 
actually not even necessary that ~ be derived from Corollary 3.2. More pre- 
cisely, let ~e(-,Yg, Z0) be a solution of (3.9) such that ~e(-,~ is a linear 
combination of processes from J//[0,rl A C([0, T]; H0) with ~g E J~I0,r] for all 
T > O. IfEllZol[ 2n < (x3, o~f(.,~',Z0) will satisfy (4.1) and hence for any t =< T 
there is a er < oo such that 
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E[l~(t ,~,Zo)[[~ n ~ eTEIfZoll~" < ~ .  (*) 

On the other hand, if we assume ~ ( s )  > 0 we can apply the Gronwall lemma 
to (4.16) and obtain: 

Corollary 4.8. Suppose ~e(s) > 0 a.s. for all s > 0. Then for any t > 0, 

EllZ)~(t)ll 2" < exp(e,,a,r, xt)EllZ~(O)[[~". (4.19) 

Proof The proof follows from (4.16) and from Gronwall's lemma. [] 

Corollary 4.9 Suppose 5e(s) > 0 a.s. for all s > 0 in addition to ~e(0)=:  
Z(0) ~ H0 and EIIZ(0)II  < for some n > 1. Then for any t > 0, ~ ( t )  =: 
Z(t) E H0 and 

EIIZ(t)l[ 2" <= exp(c. , . ,r ,  xt)EIjZ(O)ll 2" . (4.20) 

The proof follows from (4.19) and Fatou's lemma. [] 

Remark 4.10 Set ~e(t, qg(t),~eN~(0)) := ~eN~(t), where ~eNi(t ) is the Jordan 
decomposition if the empirical process ~N(t )  defined by (3.2). It follows 
directly from the definition that both ~( t ,  q/(t), ~+(0 ) )  and ~e(t, qC(t), ~eN(0)) 
are solutions of (3.9) with initial conditions ~+(0 )  and ~N(0),  respectively. 
Since the extended process from Corollary 3.2 ~ ( t , ~ ( t ) , ~ o )  is obtained by 
extending both the positive and negative components we obtain "extensions" 
~(t ,  Yl(t), ~ o ) ) =  ~+(t ,  ql( t) ,~o) which satisfy (3.9) with initial conditions 
~e0i. Therefore we will assume in what follows 

M 
~e(t, q/(t), ~e0) = ~ 7l~e(t, qr ~ f t ) ,  (4.21) 

/=1 

where M E N, 7l 6 R and ~ ( t , Y / ( t ) , ~ l  ) are positive, resp. negative exten- 

sions of empirical processes ~xi( t)  with ~(0,l E J/{0. Clearly, ~( t ,  q/(t), ~0 )  
satisfies (3.9) with ~e(0) =: ~0. 

Theorem 4.11 (I) Suppose EIIZoll~" < c~ for some n > 1 in addition to 
(4.21). Then for any t > O~( t )  =: ~ ( t )  E H0, Z(t) is adapted and Z(t, og) 
is 2n-integrable over [0, T] • f2 with values in H0 for arbitrary T > O. More- 
over, for any t > 0 

E[[Z(t)[[ 2n < exp(c . . . .  r, xt)E[[Zo[[ 2". (4.22) 

(II) Suppose Ellzoll  4~ < ~ for some n > 1 in addition to (4.21). Then 
for any T >= O, 

E sup IIZ(t)ll~ ~ <2exp(c2  .... r, KT)(EIIZoII4") �89 (4.23) 
O<_t<_T 

Here Cm,,,r,x, is 9iven by (4.18), where m E {n,2n}. 

Proof The 2n-integrability of Z(t) as an H0-valued process follows from 
the 2n-integrability of its positive and negative components Z(t, q l ( t ) , ~ z  ), 
whose integrability properties follow from those corresponding properties' of 

• Z;~(t, Y1(t),Zr, t) and from (4.20). (4.22) and (4.23) follow from (4.16) and 
(4.17), respectively. [] 
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In what follows we will derive an expression for IIz(t)ll~) ~ using It6 's  formula, 
where Z(t)  is the measurable H0-valued version of  ~e(t) from (4.21), which 
was obtained in Theorem 4.11. The following lemma will be used at various 
steps in that derivation. 

L e m m a  4.12 Let f , 9  E H0 nLl (Ra ,  dr) and set 9;~ :=  1(/~ - I )91  + 191, where 
k~ := R~ for some n > 1. Then for any k E N 

oo (x) 

l ima~o~f  f . . .  fe-;~("~++u~))o k dul . . ,  dug f a ( b / 1  + . . .  + b/k,/" - -  q )  
0 0 

I f ( q )  - f(r)ldqg~o(r) dr = O. (4.24) 

Proof (i) Let c~ > 0 be given and denote the multiple integral on the left hand 
(q-r) side of  (4.2) by A( f ,  9). By change of  variables p := ~/~ 

f f ff(u, r - q ) l f ( q )  - f(r)lg~(r) dq dr 

= f f G ( 1 ,  p ) i f ( r  + pvru) - f ( r ) ]  dp 9;~(r)dr 

= f f G ( 1 ,  p ) i f ( r  + P v ~ )  - f ( r ) l  dpg;o(r)dr 
BL 

+ f f G ( 1 ,  p ) i f ( r  + P v ~ )  - f ( r ) ]  dpg2~(r)dr 
B~ 

=: Az,(u) + ACL(u), 

where BL = ( p  ~ R ~ : IPl --< L},B~ = I ~ \ B L , L  > 0. 
c L 2 (ii) On B L, G ( 1 , p )  < 2exp(mg-)G(2 ,  p )  which implies 

A~(u) < 2exp {117112 + 11911~} =< 

for L sufficiently large. 
(iii) Let m denote the d-dimensional Lebesgue measure and set 

1 
F(r,u)  .-- m(Bv/~L) B f  L ]f(r + q) - f ( r ) ]  dq.  

We have 

0 <= fG(1 ,  p ) i f ( r  + px/~) - f ( r ) ]  dp < const. LaF(r,u) ~ 0 as u ~ 0 ,  
BL 

m-a.e. (m-almost everywhere) by the Lebesgue differentiation theorem. 
(iv) To conclude from (iii) AL(~) --+ 0, 2 ~ oc for any v > 0 we first set 

1 
H f ( r )  := sup m ~ , , ) f l f ( r  + q)] dq,  

u > 0  \ UJBu 

which is the Hardy-L i t t l ewood  maximal function for f ,  and 
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Let N E N. Then 

fF(r ,~)g:~(r)dr  

fiI f ( r )  := Hf(r)  + I f l ( r ) .  

V V 
=- f {t:if>N}F (r, ~) g2(r)dr W f {Bf <N}F (r, ~) ga(r)dr 

=: b~(v,N) + II~(v,N). 

(v) Our assumptions on g imply 9,~ E H0 ALl(Ra, dr), and we easily check 
that both {gx} and {g 2} are uniformly integrable. Hence, for any v > 0,N E N, 

II)~(v,N) --+ O, as ,t ~ co. 

(vi) I2(v,N) < 2( f  l{frf>_N}(r)g](r)dr)�89 0, uniformly in v and 2 as 

N ~ oo, since {92} is uniformly integrable and m{filf > N} ~ 0, as N ~ ~ .  
(vii) By steps (iv)-(vi) we first choose N = N ( e )  for given ~ > 0 such 

for all v,'1 and then choose 2=-'1(v,N,e) such that for that I2(v,N) < 
This implies for any v > 0, L > 0. 2 > '1(v,N,e), lI;~(v,N) < 3" 

(viii) By change of variables 

{ A ( f , g )  = f . . .  f e-(Vl+'"+Vm) dVl . . .dvm AL -~ 
0 0 

+ ACL(VI + ' " +  
k 

<= . . .  f e - ( V l + + ~ ) d v l  . . .dvm AL + (*) 
o o ,1 

by step (ii) for sufficiently large L. Since 

(VI -~-. +t)m) 
AL 2-" ~ const. L2([[f[[~ + I[g[l~) 

(vii) and Lebesgue's dominated convergence theorem imply that for any L 
the multiple integral in the right hand side of (*) will be less than 5/2 for 
,1 >__ ,1(L, 6) = ,1(L(6), 6). [] 

Set for ~ E [0, T], 

d 
~e(/))(Y/(s), r)"  lim ~ ~2,l=1/3kl( s, r, q) ,  (4.25) 

q--+r k, l= 1 

which exists by assumptions (1.7), (1.9) and the definition of Dk1(s,r,q) (cf. 
(4.4)). We obtain from (1.9) 

~ 2 ^ q) -2 2 akl, rDkl(S , r, < 6dc a c F . (4.26) sup 
q k,l=l 
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Let us now abbreviate Dkt(@(s), r, p) d[Mk(s'r)~l(s'q)] (instead of/)kl(s, r, q)). 
" - -  d s  

Theorem 4.13. Suppose Z(t) is given by (4.21) and E]IZoII 4" < cc for some 
n >_ 1. Then 

(I) for  any t > 0 

(II) 

t 

IIZ(t)llg" = IIZollg ~ 4- nfllZ(s)ll~(n-~)(Z2(s), 2(b ) (~ / ( s ) ) )o  ds 
0 

t 

- ~fllZ(s)ll~o ("- '~(z~(s), V . F ( ~ ( s ) ) ) o  ds 
0 

t 

- ,, f IIZ(s)l lg("-')(Z=(s), v .  f j ( ~ ( x ) , .  - p)w(dp, ds))o 
0 

t 

+ n(~ - 1 ) f  IIZ(s)l lg("-~)ffZ2(s, r)Z=(s, q) 
0 

x rj,qD~l(~(s),r,q d r d q d s  ; 
k 

(4.27) 

Z(. ) E C([0, cx~); H0) a.s. (4.28) 

Proof (i) The assumption implies by (4.14) that the stochastic integral in 
(4.27) defines a real valued square integrable continuous martingale. Since by 
assumption (1.8) [[IV.F(YC(s))[[[ < deacx we obtain from (4.26) that the right 
hand side of (4.27) defines a continuous real valued process. 

(ii) We will first replace the martingale and the last quadratic variation inte- 
gral on the right hand side of (4.2) by their respective limits (cf. Lemma 4.5). 
(ii. 1) Recall that Z;~(s) = R;~Z(s). Then 

(z~(s), V.R~(Z(s)c lM(s)  ) - (VZ~(s) ) ) .dM(s))o  
d ~ c ~  

= ~ f ... fe-;4"'+'"+"m)2mdul...dum 
l=1 0 0 

x {ffO~,rG(u~ + . . .  + Um, r - q)Z(s ,  r) 

x Z)~(s, r)(dMl(s, q) " dMl(s, r)) dq dr 

(rz - ql) Iq - riG(u1 + . . .  +Um, r - q)(Z(s,q) 
- f f ( u l  +. . .+Urn) 

-Z(s 'r))Z '~(s 'r){  dMl(s'q)-dMl(s'r)lq rl } d q d r )  

=: I)o(ds) + II~(ds). 
4 

(ii.2) 12(ds) = ~_~Fi,;~(ds), where 
i=1 

--L ..(DO 
Fi,~,(ds) - ~ f e-~(~++~btm dul ...dum 

/ = i 0  0 

x f f G ( u ~  + . . .  + u~,r - q)fi,~o(s,q,r)Ol, zdMt(s ,q)dqdr  
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and 

(ii.3) Clearly, 

f l,;~(s,q,r) := Z2(s,q), 

f 2,2(S, q, r) := (Z(s, r) - Z(s, q))Z~(s, r), 

f 3,,~(s, q, r) :---- (Z,~(s, r) - Z(s, r) )Z(s, q), 

f4,)~(s, q, r )  := (Z(s, r) - Z(s, q))Z(s, q). 

Fl,,~(ds) = ( Z 2 ( s ) ,  V ~  

(ii.4) fo[II2(du)] --~ O, as 2 --* oo by (4.3) and (4.24). 
(ii.5) Similarly, 

t 
f[Fi,;o(du)] ~ O, as 2 --+ oc for i = 2, 4 .  
0 

(ii.6) 

t t 
f [F3,;~(du)] < c a'2 c2 fll(R;~ - I)Z(u)I]2IIRaIZI(u)[]~ du -~ O, as 2--~ cx~ 
0 0 

(ii.7) Since Z~(s,r) ---+ Z2(s,r) dP | dt | dr a.e. and since Z~(s) is uni- 
formly integrable with respect to 

t t 
f[(Z2(u), V .  dM(u))o] --~ f[(Z2(u), V .  dM(u))o] as 2 -~ cx~ 
s s 

a.e. uniformly on bounded intervals [s, t] c [0, e~). 
Altogether we obtain from (ii. 1 )-(i i .7) and the definition of  Dkl(Y/(s), r, q) 

that the last quadratic variation integral in (4.2) tends a.s. to the last integral 
in the right hand side of  (4.27) uniformly on bounded intervals, where we 

1 2 also use the identity (Z;~(s), (VZ;,(s)).  dM(s))o + ~ (Z~ (s), g .  dM(s))o = 0. By 
choosing a subsequence 2 ~ oe, we obtain that also the martingale in (4.2) 
tends to the martingale in (4.27) a.s. uniformly on bounded intervals. 

(iii) In view of  Lemma 4.2 (cf. (*)) and Lemma 4.12 we see that the 
first integral plus the quadratic variation integral in (4.2) tends a.s. to the first 
integral in the right hand side of  (4.27) uniformly on bounded intervals as 
~ ---~ OO. 

(iv) Similarly for the deterministic integrals with the gradient operator. 
(v.1) By the previous steps the convergence of  the right hand side of  (4.2) 

to the right hand side of  (4.27) is uniform a.s. So we may assume that on the 
same measurable set f20 with P(f20) = 1 we have: (1) Z(t) E H0 uniformly in 
t; (2) R ~  = R~Z is continuous with values in H0; (3) I]Z(. )H0 is continuous. 

(v.2) Now we easily see that for co E f20 Z( .  ) is weakly continuous, whence 
by the continuity of  ]]Z(-)]]0 we obtain (4.28). [] 

Next we consider the quasilinear SPDE (1.25)/(1.26) with its weak solution 
from Theorems 3.4 and 3.5. 

Theorem 4.14 Suppose X(0)  =:  X0 E Ho and EIIXoII~" < oo for some n > 1. 
Then 

(I) f ( t )  =:  Y( t )  E H0 a.s. for all t > O; 
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(II) 

t 

IIx(t)l l~ ~ : IlXoll~" + nfllX(s)ll~<"-t><X2(s), ~(~)(X(s)>o dx 
0 

t 

- n  f IIY(s)[lg(n-1) {X2(s), V . f (X(s)) )o  ds 
0 

t 

-nfllX(s)ll~("-~) (X2(s), v .  f j ( X ( s ) , .  - p)w(dp, ds))o 
0 

t 

+n(n - l )fllX(s)ll20(n-z) f fX2(s , r~2(s ,q )  
0 

x (X(s),r,q drdqds, 
k 

(4.29) 

with 

d 

D~l(X(s),r,q) := ~ f  J k j ( X ( s ) , r -  p ) j l j (X ( s ) , q  - p)dpds;  
j = ]  

(III) 

(IV) for any T > O, 

X(.  ) C C([0, ~ ) ;  H0) a.s.; (4.30) 

E sup IIX(t)ll 2n ~ 2 exp(c2.,a,r,KT)(glIXoll4@, (4.31) 
O < t < T  

with c2n, a,r,x given by (4.18). 

Proof Set Yr and apply Theorem 4.13 and (4.23). [] 

Remark 4.15 If n = 1 in (4.29), it follows that our quasilinear SPDE 
(1.25)/(1.26) cannot be treated by the usual variational methods on Ho (cf. 
[23] and the generalization of Pardoux's variational approach by Krylov and 
Rozovskii [ 18]). 

5 The Mezoscopic equation-strong uniqueness 

We obtain strong (It6) uniqueness for the (mezoscopic) SPDE if the initial 
condition Xo is in Lz(R d, dr). 

Theorem 5.1 Suppose Xo E Ho and E{IX0[] 4 < c~. Let X( . ,Xo)  be the weak 
solution of (1.25)/(1.26) from Theorems 3.4 and 3.5 startin9 at Xo. Let 
Y(.,Xo) be an arbitrary solution of (1.25) / (1.26) with Y(O) = Xo such that 
Y(.,Xo) E C([0 ,~ ) ;H0)  a.s. Then a.s. 

x( . ,Xo)  - r( . ,xo) .  (5 .1)  
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Proof (i) Let Z(., Y, Xo) be the solution of  (3.9) from Corollary 3.2, where 
Y(t) := Y(t, Xo). Set 

Z ( . ,  Y,0) := Z( . ,  Y, X0) - Y( . ,X0).  

Obviously, 2' solves (3.9) with initial condition 2(0)  = 0. By Lemma 4.6 and 
Remark 4.7 2 ( . ,  If, 0) -= 0 a.s., whence 

Z( . ,  Y, Xo) =-- Y(',Xo). 

(ii) Applying now (3.5) we obtain 

E sup 7~(X(t, Xo), Y(t, Xo)) = E 
O<~t<_T 

sup ~](z(t, Xo),Z(t, r(t),x0)) 
O<_t<_T 

T 
< const fE72(X(s,Xo), Y(s,Xo)) ds. 

0 

This implies (5.1) by Gronwall 's lemma. [] 

6 The Macroscopic equation 

We now assume for simplicity 

(i) qn = 0,n > 1; 
(ii) F is diagonal with Fk~ = / ~ , k  = 1 , . . .d ,  where /~ is the kernel from 

Example 1.1; (6.1) 
(iii) d => 2. 

Consider the following (macroscopic) PDE on H0 

~ X(t) = l A x ( t )  - V(X(t)F(X(t))); X0 E H0 M M, [[Ix0[l] < co. (6.2) 

Suppose that (6.2) has a unique weak solution E C([0 ,oo) ;Ho)  such that 
Illx(t)[ll < ~ and X( t )  E H o O M  for all t > 0. Set 

AN "={rN E R  dN " 3( i , j )  : 1 :< i < j _ - < N  such that r i = r  j} 

Let ~N(0)  = ~-]iN_l ai@o E M such that P{rN(O) f[ AN} = 1 for all N E N, 

where r : v (0 )=  (r01 . . . . .  r~).  Let X~(t,Y'N(0)) be the empirical process for 

(1.12) (which is a solution of  (1.25)/(1,26). Let ~p c Cb(Rd, R). By analogy 
with Theorem 4.4 o f  Kotelenez [16] we expect the following: 
I f  E(XN(0),  (p} --, (X0, q~} then there is a sequence r  ~ 0, as X ---+ eo such 
that for any t > 0 N ~ oc implies 

E(~fe(N)(t,'~Fx(O)), 9} ~ {X(t, Yo), ~0}0" (6.3) 

Acknowledgement. The final version of the paper has profited from careful refereeing. 



188 P. Kotelenez 

References 

1. Borkar, V.S.: Evolution of interacting particles in a Brownian medium. Stochastics 14, 
33-79 (1984) 

2. Dalecky, Yu.L., Goncharuk, N.Yu.: On a quasilinear stochastic differential equation of 
parabolic type. Stoch. Anal. Appl. 12 (1), 103-129 (1994) 

3. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Cambridge: Cam- 
bridge University Press. 1992 

4. Davies, E.B.: One-parameter semigroups. London, New York: Academic Press 1980 
5. Dawson, D.A.: Stochastic evolution equations and related measure processes. J. Multivar. 

Anal. 5, 1-52 (1975) 
6. Dawson, D.A., Vaillancourt, J.: Stochastic McKean-Vlasov Equations. (Preprint-Techni- 

cal Report No. 242, Carleton University Lab. Star. Probab. 1994 
7. De Acosta, A.: Invariance principles in probability for triangular arrays of B-valued 

random vectors and some applications. Ann. Probab. 2, 346-373 (1982) 
8. Dudley, R.M.: Real analysis and probability. Belmont, California: Wadsworth and Brooks 

1989 
9. Dynkin, E.B.: Markov processes. Vol. I. Berlin Heidelberg New York: Springer 1965 

10. Fife, P.: Models for phase separation and their mathematics. In: Nonlinear Partial Differ- 
ential Equations and Applications. Mimura, M., Nishida, T., (eds.) Tokyo: Kinokuniya 
Pubs., to appear 

11. Gfirtner, J.: On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 187, 
197-248 (1988) 

12. II'in, A.M., Khasminskii, R.Z.: On equations of Brownian motion. Probab. Theory, Appl., 
Vol. IX, No. 3, (1964) (in Russian) 

13. Kotelenez, P.: On the semigronp approach to stochastic evolution equations. In: Arnold` 
L., Kotelenez, P., (eds.): Stochastic space-time models and limit theorems. Dordrecht 
Reidel, D., pp. 95-139 (1985) 

14. Kotelenez, P.: Existence, uniqueness and smoothness for a class of function valued 
stochastic partial differential equations. Stochastics and Stochastic Rep. 41, 177-199 
(1992) 

15. Kotelenez, P.: Comparison methods for a class of function valued stochastic partial 
differential equations. Probab. Theory Relat. Fields 93, 1-19 (1992) 

16. Kotelenez, P.: A stochastic Navier-Stokes equation for the vorticity of a two- 
dimensional fluid. (Preprint # 92-115, Case Western Reserve University) 

17. Kotelenez, P., Wang, K.: Newtonian particle mechanics and stochastic partial differential 
equations. In: Dawson, D.A., (ed`) Measure Valued Processes, Stochastic Partial Dif- 
ferential Equations and Interacting Systems. Centre de Recherche Math~matiques, CRM 
Proceedings and Lecture Notes, Vol. 5, pp. 139-149 (1994) 

18. Krylov, N.V., Rozovskii, B.L.: On stochastic evolution equations. Itogi Nauki i tehniki, 
V1NITI, 71-146 (1979) 

19. Lebowitz, J.L., Rubin, E.: Dynamical study of Brownian motion. Phys. Rev. 131, (6) 
2381-2396 (1963) 

20. Marchioro, C., Pulvirenti, M.: Hydrodynamics in two dimensions and vortex theory. 
Comm. Math. Phys. 84, 483-503 (1982) 

21. Mctivier, M., Pellaumail, J.: Stochastic integration. New York: Academic Press 1980 
22. Nelson, E.: Dynamical theories of Brownian motion. Princeton, N.J.: Princeton University 

Press 1972 
23. Pardoux, E.: Equations aux derivees partielles stochastique non linearies monotones. 

Etude de solutions fortes de type Itd. These (1975) 
24. Triebel, H.: Interpolation theory, function spaces, differential operators. Berlin: VEB 

Deutscher Verlag der Wissenschaften 1978 
25. Vaillancourt, J.: On the existence of random McKean Vlasov limits for triangular arrays 

of exchangeable diffusions. Stoch. Anal. Appl. 1988 
26. Walsh, J.B.: An introduction to stochastic partial differential equations. In: Hennequin 

P.L. (ed.) Ecole d'Ete de Probabilities de Saiut-Flour XIV-1984. Lecture notes in Math- 
ematics 1180. Berlin Heidelberg New York: Springer 1986 


