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Abstract. We extend Witten's proof of the positive mass theorem at spacetike 
infinity to show that the mass is positive for initial data on an asymptotically 
flat spatial hypersurface Z which is regular outside an apparent horizon H. In 
addition, we prove that if a black hole has electromagnetic charge, then the 
mass is greater than the modulus of the charge. These results are also valid for 
the Bondi mass at null infinity. Finally, in the case of the Einstein equation 
with a negative cosmological constant, we show that a suitably defined mass is 
positive for data on an asymptotically anti-de Sitter surface S which is regular 
outside an apparent horizon. 

1. Introduction 

The gravitational potential energy of any system is always negative because 
gravity is an attractive force. In Newtonian theory one can shrink any system to an 
arbitrarily small size and make the total energy indefinitely negative. However it 
appears that one cannot do this according to the general theory of relativity. As 
one considers smaller and smaller configurations for the system, the potential 
energy becomes more negative but the total energy, i.e. the rest mass plus potential 
energy plus kinetic energy seems to remain positive. At a certain critical size an 
outer future trapped surface appears [1, 2]. This is a closed spacelike 2-surface 
which is in such a strong gravitational field that the outgoing future directed light 
rays or null geodesics orthogonal to it are converging, i.e. they are being dragged 
back by the gravitational field. The outer boundary of the region on a spacelike 
hypersurface which contains outer future trapped surfaces is called the future 
apparent horizon [2, 3]. By the singularity theorems (see [2]) the system must 
collapse to produce a spacetime singularity provided that certain physically 
reasonable conditions hold. According to the unproved but very plausible cosmic 
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censorship hypothesis, this singularity is not visible to observers at a distance but is 
hidden in a black hole the boundary of which is a null surface called an event 
horizon. It is also generally assumed that any black hole has positive mass which, 
by the equivalence principle, means positive total energy. It was therefore 
conjectured that any physically reasonable system would have positive total 
energy or mass. 

In recent years this conjecture has been proved by Schoen and Yau [4, 5]. 
Their proof was based on the calculus of variations applied to surfaces of extremal 
area and volume. Although the basic idea of the proof was simple, the details 
became rather complicated when one allowed for the most general fall-off 
conditions at infinity. A completely different proof was given by Witten [6] based 
on a spinor field which satisfied a Dirac-like equation on a spacelike 3-surface. 
Unlike the Schoen and Yau proof, which applied whether or not there were 
apparent horizons, the Witten proof, in its simplest form, worked only when there 
were no horizons on the initial surface. Witten pointed out that his proof would 
also work if there was a horizon which separated our region of the spacelike 
surface from another asymptotically flat region. In the case of a stationary or static 
black hole, the no-hair theorems (see [2, 7] for reviews) essentially prove that the 
metric must be one of the Kerr-Newman solutions. These can be analytically 
continued to internal asymptotically flat regions. However in a general non- 
stationary solution containing an apparent horizon, there is no reason to believe 
that one can analytically continue the solutions to another asymptotically flat 
region. 

The purpose of this paper is to show how Witten's arguments can be extended 
to the case where black holes are present without assuming anything about what 
happens inside a black hole. We shall show that the total mass is positive for initial 
data on a spacelike surface ~ which is regular outside a future or past apparent 
horizon H provided that the dominant energy condition [8, 2] holds. We also 
show that the mass is positive in the case of a maximal initial surface ~ which is 
regular outside some minimal 2-surface H, as was first proved by Schoen and Yau 
[4]. 

In addition, we prove that the square of the total mass of a spacetime 
containing a black hole is greater than or equal to the sum of the squares of the 
total electric and magnetic charges (in suitable units) provided that the matter 
obeys the dominant energy condition and the local charge density is not greater 
than the local energy density [9]. Similar proofs could also be given for the 
positivity of the Bondi Mass which is measured at null infinity instead of at 
spacelike infinity. To do this, one simply modifies the proofs given here according 
to the methods used in [10]. In the case of the Einstein equation with negative 
cosmological term, we prove that a black hole solution which tends asymptotically 
to anti-de Sitter space has a positive value of a quantity which can be interpreted 
as the mass in this situation [11]. The proofs will be given in terms of 4 component 
spinors which can be generalized immediately to black holes in higher dimensional 
spacetimes which admit spinors. In the appendix we give the key steps of the 
proofs in terms of 2 component spinors for the case of 4-dimensions. 
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2. Witten's Formula 

We shall use a metric guy with signature ( -  + + +)  and 7-matrices which obey 

7u7 v + 7~7 u = 2g uv . (1) 

Greek indices will run from 0 to 3 and Latin indices from 1 to 3. Indices with hats 
will refer to an orthonormal frame, and those without will be coordinate indices. 
The 7 a matrices are hermitian and 7 6 is anti-hermitian. 

Consider a spacelike 3-surface 2; with induced metric h u, embedded in the four 
dimensional spacetime -A(, g,~. We choose our tetrad so that the 0-vector is 
orthogonal to 22. One then has the following relation between the projection into 2; 
of the 4-dimensional spinor covariant derivative, (4)V~, and the intrinsic 
3-dimensional covariant derivative (3)V,: 

(4) V/~,~ _ ((3) Vt ~ 1 b 6 - ~+gKa~? 7 )e, (2) 

where Ka~ are the triad components of the second fundamental form of Z. If one 
multiplies by 7 a and sets the result equal to zero, one obtains the Witten equation 
which can be rewritten as 

),a(3)g~e = ~ K "6e - ~  y , (3)  

where K = K~. If one multiplies by gt (t  indicates hermitian conjugate), acts on the 
result with 7b(3)g~,, and uses the Ricci identity, one obtains 

(3)[Ta(g¢(4) Fag) = ((4-)Vag)l"((4)Fag) + l g t  ((3) R + K 2 _ K a b K a b  + 2(3)[7a(Kab _ habK) . /by6)g ,  (4) 

where (3)R is the Ricci scalar on X of the induced metric h u. 
The Einstein equation implies 

(3)R + K 2 - K~b K~b = 16~T66 , (5) 

(3)Fa(Kab - h a b K )  = 8n T 6b . (6) 

The dominant energy condition [2, 8] states that 

T6 6 > I ~t~I. (7) 

With this condition the last term on the right hand side of Eq. (4) is non-negative. 
If one integrates Eq. (4) over the region of S bounded by a 2-surface H and a 
2-surface at infinity, one obtains 

g?(4) Vo~dA a _  ~ g?(4)V~edA ~ > S (4)Vae)?((4) W~)dS.  (8) 

Witten's argument is then as follows. Let S be asymptotically fiat. Choose a 
spinor field e on S which satisfies Eq. (3) and which approaches a covariantly 
constant non-zero spinor g0 at infinity. Then the first term on the left hand side of 
Eq. (8) is 

4neto(P 6 + P~Ta76)eo, (9) 
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where p6 and pa are the ADM mass and momentum, respectively, of the spacetime 

If (9) is positive, it follows that 

p6 > ipal . (10) 

This will be true in the case when there are no horizons on Z. In the next section 
we shall show that if there is an apparent horizon on 1;, one can choose a 
boundary condition for e, on I I  such that there will exist solutions of the Witten 
equation which tend to a constant spinor ~0 at infinity and which make the 
horizon term in Eq. (8) zero. This will show that the ADM mass of an 
asymptotically fiat spacetime that contains black holes, must be positive. 

If (9) is zero, then P~ is null. From (4)-(8), it then follows that on 22, (~)V:=0, 
and the energy-momentum tensor is null (i.e., for some null vector l ~, TaP= PLY). 
This implies that spacetime is fiat. To show this, one can trivially modify the proof 
of [12] by the inclusion of the boundary condition discussed in Sect. 3. 

3. Boundary Conditions 

We consider first the problem of proving that there are solutions of the Witten 
equation (3) in the case where I; does not have an inner boundary. Rather then 
deal with spinor fields which tend asymptotically to a constant value at 
large distances on 1;, it is convenient to make a conformal transformation to 
compactify 1; by adding a point, I, at infinity. Thus if 1; were diffeomorphic to R 3 we 
would obtain a compact manifold 2 diffeomorphic to S 3. The metric h~: on ,~ is 
conformally related to the metric h~i on 1; 

[lij : Qa-hij  , (] 1) 

where f2 = 0 at I and f2 > 0 on 1;. Strictly speaking the metric hij and the conformal 
factor f2 will be smooth only in the case that the &momentum is orthogonal to 1;, 
i.e. P" = 0. However the case of non-zero pa has been considered by other authors 
[13]. We are primarily concerned with the behavior on the horizon rather than at 
infinity, so we shall consider only the case that P"=  0. 

The field 5 = e/g22 obeys the equation 

va + 2 = 0 ,  (12) 

where 9°=f2-27a and (3)V a is the covariant derivative of the metric /~ij- The 
conformal factor required to compactify an asymptotically fiat initial surface 1; is 
of the form 

, ( 1 3 )  
r 

where r is an asymptotic radial coordinate. Thus provided that 

(1) 
K = O  ~ ,  (14) 
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which is a reasonable assumption, the matrix fS-2K76 will be bounded on 2. The 
spinor field ~ obeys a skew adjoint elliptic equation (12) on 2. Suppose that there 
were a solution, ~1, of (12) that was everywhere regular on 2~. Then (2291 would be 

a solution of Witten's equation (3) on 2; which approached infinity like r~. This 
4 

would lead to a contradiction with Eq. (8) because the surface terms on the left 
would be zero but the volume integral of ((4)Vas)¢((4)Vag) would be positive. It 
therefore follows that the differential operator in Eq. (12) has a unique inverse or 
Green's function G(x, t) on 2. Given a spinor eo at I, 02(x)G(x, I)'g o defines a spinor 
field on 22 which obeys Witten's equation (3) and which approaches a constant 
spinor go at infinity. 

We shall now consider the case where 2; has an inner boundary H. We now 
wish to find a solution of Witten's equation (3) on the region Z outside H with the 
same behavior at infinity and with some suitable boundary condition on H. By the 
previous compactification technique we can transform it into a problem of finding 
a Green's function for Eq. (12) on a compact manifold 2 with a boundary H (which 
may have more than one connected component if there is more than one black 
hole). 

It is convenient to choose our tetrad so that the zero-vector is orthogonal to 2;, 
the one-vector is orthogonal to H and Rointing into 2; and the 2 and 3 vectors lie in 
H. One can then multiply Eq. (3) by 71 to obtain 

(3)rz~_ ~;k,~(3)~^~ ± ~ 5 , <  (15) , 1 ~ - - - -  g , A ~ - - 2 x x f  ~, o 

= __ ? iyA(2)Vdg __ ½(j + Kyiy6)e, ( 1 6 )  

where capital Latin indices run over 2 and 3, (2)V a denotes the covariant derivative 
on spinors in H with respect to the intrinsic metric and J is the trace of the second 
fundamental form of H in Z. One can see from Eq. (16) that the derivative of e 
normal to H is determined by the values of e on H. Thus if one imposed the 
boundary condition that e vanished on H, then it would have to vanish 
everywhere. 

What one needs is a boundary condition which restricts the freedom of e on H 
by half. The condition that we shall use is 

?iVbe=e. (17) 

The eigenvalues of the Hermitian matrix 7i78 are ± 1 so condition (17) does indeed 
restrict e by half on H. With this boundary condition the conformal Witten 
equation (12) on Z is skew-adjoint Equation (12) together with the boundary 
condition (17) forms an elliptic boundary value problem [14]. 

The boundary term on H in Eq. (8) can be expressed as 

8~ ~ e*(d + ( K -  K i i)yi76 + 2?iy~oA)edA, (18) 

where 

1 ~ ~ 6 ( 1 9 )  Ods=(2)[TAe . -k~Kd~ 7 y e .  
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The operator/9 A is the 4-cgmponent version of the '~edth" operator, 6, of Geroch et 
al. [-15]. The operator ~/17AD A anticommutes with 717°. Thus the last term in (18) is 
zero if (17) holds. The condition that H be a future apparent horizon implies that 
J + K - K i i  =0. Thus the boundary term on H in Eq. (8) vanishes if (17) holds. 

We now discuss the existence of solutions to Witten's equation with this 
boundary condition. Suppose that Eq. (12) had a non-zero solution ~1 with the 
boundary condition (17). Then f22~1 would be a spinor field on Z which obeyed the 
Witten equation (3), the boundary condition (17) on H, and which decreased to 

zero at infinity like r~. This would again lead to a contradiction because the 

boundary terms would be zero. This shows that the conformal Witten equation 
(12) with the boundary condition (17) has no zero modes on S. This suggests that 
there exists a Green's function to this elliptic boundary value problem (see Sect. 
10.6 of [14]). The existence of such a Green's function probably can be 
rigourously proved by the methods of Parker and Taubes [13]. Thus we obtain 
solutions of the Witten equation on Z which obey the boundary condition (17) and 
which approach a constant spinor at infinity. The boundary term on H for these 
solutions will be zero. Thus the mass will be positive. If H were a past apparent 
horizon one could use a similar boundary condition to (17) but with a minus sign. 

The positivity of mass can be proved under slightly different conditions. 
Suppose that S is a 3-surface which is maximal, i.e. K = 0 .  Then one can derive a 
slightly different identity: 

7i76 anticommutes with 7~TA(;)V~. Thus the surface term on the right hand side of 
(20) is zero if J = 0, i.e. if H is a minimal 2-surface in the maximal 3-surface. At each 
point of H the future or past directed outgoing null geodesics orthogonal to H will 
be nondiverging, depending on the sign of K~ ~. However H need not be either 
future or past trapped because the future directed null geodesics may be 
converging only over part of H and the past directed null geodesics converging 
over the other part. Nevertheless the fact that one can prove that the mass is 
positive in this situation regardless of what lies inside H suggests tha t / - /must  lie 
behind the future or past event horizon although no proof of this is known to us. 

We have proved the positivity of the mass for black holes in the general theory 
of relativity in four dimensions. However the proof generalizes to black holes in 
spacetimes with any number of dimensions and signature ( -  + + . . .  +)  provided 
that the corresponding Einstein equation and the dominant energy condition hold, 
and that the spacetime admits a spin structure. This may be relevant for Kaluza- 
Klein theories. 

4. The Electromagnetic Case 

In this section we showif ~# contains a charged black hole hole, then M 2 >= Q2 + p2 
where Q is the electric charge and P is the magnetic charge in Gaussian units with 
G = c = 1 and M is the norm of the ADM 4-momentum P~. The proof is along 
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similar lines 
derivative acting on spinors is replaced by the super-covariant derivative 

i 
(4) ~Tlt~, = (4)V#8 -J- ~ F~t~?,ay~yfi. (21) 

The Witten equation now takes the form 

~/,~(3)Vae+½K~16 ~ t a 6 b 
- ~7 (E~-ygBf,)?/ 7 7a e = 0 ,  (22) 

where 

to that given in the last two sections except that the covariant 

Fg6 = Eg, (23) 

. . . . .  (24) Fag -- f;abcB , 

7 g = ~6V~75y5. (25) 

Using the Maxwell and Einstein equations one then obtains the identity [9] 

e,t((3)[Ti~)dAi = ~ d(4) lTi~dAi + ~ ((4)[7ae)~((4)~'~)dZ 
oa H ,~ 

+ 4re ~ d ( T ~  + 7376 T~ ) -  i76(J~o - 7sJ~))ed,r,, (26) 

where T ~"v is the energy momentum tensor of the matter fields, i.e. the total energy -/LV 
momentum tensor T~, minus the energy momenturri tensor of the Maxwell field, J~ 
is the electric current and j u the magnetic current. We shall assume that the 
matter energy-momentum tensor obeys the condition 

T~0~o ) > ITS) W~o,,)a + (j~)2 + (joN)2] 1/2. (27) 

This is just the local version of the inequality that we are going to prove between 
the total mass M, the electric charge Q, and the magnetic charge P. In ordinary 
Maxwell theory the local magnetic current J~  will be zero but there may be a 
global magnetic charge because of the non-trivial topology of a black hole. 

The surface term on H in Eq. (26) can be expressed as 

1 ~ d ( j + ( K _ K i i ) y i ~ 6 + 2 7 ~ . i O i + 2 i y 6 ( E i _ Y g B i ) ) e d  A (28) 
8rc n 

The matrix 76~ i anticommutes with yiTJD a, 76, and y6yg so that the last two 
terms in (28) are zero if the boundary condition (17) holds. Thus the whole surface 
term will be zero if H is a future apparent horizon• Similarly the surface term will 
be zero if H is a past apparent horizon and one uses a boundary condition like (17) 
but with a minus sign. 

The argument is now similar to that given before. We assume that Pa = 0. One 
can compactify S by adding a point at infinity to obtain a smooth manifold Z with 
boundary H on which ~ = e/f22 obeys the equation 

- ~- y e + ~ (76(Eb - "?gBb)7~TbT~). (29) 
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The coefficients on the right hand side of (29) will be bounded on ~ and the 
equation will be elliptic with the boundary condition (17). As before one can show 
there are no zero modes for the equation or its adjoint. Thus one can use the 
Green's function of the infinity point to construct solutions of Eq, (22) on 22 which 
obey the boundary condition (17) on H and which approach a constant spinor e o 
at infinity. 

The surface term at infinity in Eq. (26) can be expressed as 

4~Co(M- i76(Q- 7 ~ P))% . (30) 

This must be non-negative for any e o which implies that 

M >=(Q2 _}_ p2)1/2. (31) 

5. The Cosmological Case 

In this section we shall consider solutions of the Einstein equation with a 
cosmological constant 

R~-  ½gu~R + Ag,, = 8~ ~ .  (32) 

We are mainly interested in spacetimes which contain black holes, however, our 
results apply equally well to spacetimes without black holes. 

There are black hole solutions to (32) with positive A [16]. However these are 
asymptotic to de Sitter space and so do not have a spacelike infinity at which to 
define a mass. There are also black hole solutions with negative A which are 
asymptotic to anti-de Sitter space. The simplest of these is the Schwarzschild 
anti-de Sitter metric 

ds 2 = -  (1 -2Mr  A~ 2) dr2+(1 2Mrdr2 3"'-) +rZ(dOZ+sin2Odcp2). (33) 

At this stage the quantity M should be regarded simply as a parameter. 
However we shall introduce an expression for the mass of an asymptotically 
anti-de Sitter spacetime which is the analogue of the mass in asymptotically flat 
spacetimes and which will equal M for the metric (33). This mass is not conserved 
because spacelike infinity in asymptotically anti-de Sitter spaces is timelike [-2] 
and so gravitational radiation can come in or go out at spatial infinity. Hence it is 
analogous to the Bondi mass in asymptotically fiat spacetimes. 

We shall consider metrics which have a conformal structure similar to that of 
anti-de Sitter space outside some bounded region. This means that they have a 
timelike spatial infinity I with topology S 2 x IR 1. The future event horizon will be 
defined to be the boundary of the points from which it is possible to escape to I in 
the future direction. With the usual weak energy condition on Tu~,, and assuming 
cosmic censorship, any future trapped surface must lie behind the event horizon. 
We shall prove that the expression that we shall give for the mass is positive for 
initial data on an asymptotic anti-de Sitter surface 22 which is regular outside a 
future apparent horizon H. 
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As in the electromagnetic case we 
which, in this case, is 

where 

introduce a supercovariant derivative, 

3/z 2 = - A. (35) 

In anti-de Sitter space the connection given by (34) is flat. This means that there 
are four linearly independent supercovariantly constant spinor fields. These can be 
realized in the following way. 

Consider the hyperboloid 

3 - ( X  0)2 + (X 1)2 + (X 2)2 + (X 3)2 _ (X 5)2 = _ (36) 
A 

in 5-dimensional flat space with signature - + + + - .  This has topology S I x 1R 3 
with the S t being timelike. Anti-de Sitter space is the universal covering space of 
the hyperboloid. It has topology IR 4 and no closed timelike lines. The 
5-dimensional flat covariant derivative projected into the hyperboloid can be 
related to the 4-dimensional intrinsic covariant derivative by 

(5) V ~_(4)~ ~_ 1~ ,~ ,L. (37) 

= (4)Vu e + ½/~yny%. (38) 

where K.~ is the second fundamental form of the hyperboloid and the pentad 
(5-frame) is chosen so that the 5-direction is orthogonal to the hyperboloid and the 
(0-3) directions lie in the hyperboloid. A constant spinor ~o in the 5-dimensional 
space will obviously satisfy 

(5) Vueo = 0 .  (39) 

This e o is readily related to a supercovariantly constant spinor e I which satisfies 

(4)~Tue 1 = 0  (40) 

by 

q = (1 + 7~)eo . (41) 

Thus there are four linearly independent supercovariantly constant spinors in 
anti-de Sitter space: [Note that (7~) z = - 1, so that the determinant of (1 + 7 ~) is 
non-zero, i.e. (1 +75) is not a projection operator.] 

In analogy with the electromagnetic case, we define the cosmological Witten 
equation to be 

7a(~*)~e = O. (42) 

In terms of the intrinsic 3-dimensional derivative, this is 

7 "(3) V~e + ½ K76e + ~#~ = O. (43) 

~4)~7u =(e)vu + ~Tu, # (34) 
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The Witten identity in this case is 

+ }S((3)R + K 2 - Kab Kab -t- 6#  2 + 2 (3)Va(K "b- gabK)Yb76 ) ~. (44) 

The constraint equations now are 

(3)R -b g 2 - K,b Kab + 6# z = 16re T66, (45) 

(3) g~(K,b _ ~bK) = 8 ~ T 6b. (46) 

Thus the last term on the right of (44) will be positive semi-definite provided that 
the energy momentum tensor obeys the dominant energy condition. 

We now integrate (44) over a surface S whose inner boundary is a future 
apparent horizon H and which asymptotically resembles the X o = 0  surface in 
anti-de Sitter space. We thus obtain 

# ~,(,)LedA, > # e,(4)VoedA". (47) 
oo H 

One can show that if e satisfies the boundary condition (17), then the surface term 
on H vanishes. The cosmological Witten equation (42) on I2 asymptotically 
resembles the ordinary Witten equation (3) on an asymptotically null surface in an 
asymptotically flat spacetime. The existence of asymptotically constant solutions 
to equations of this type has recently been established [17]. 

Let e satisfy Eq, (42), boundary codition (17) and asymptotically approach a 
supercovariantly constant spinor eo, Since the horizon term in (47) vanishes, the 
surface integral at infinity will be positive semi-difinite and will be zero only if the 
space is exactly anti-de Sitter. We define 0(3,2) momenta ps ,  a n d / ~  such that 
this surface term is [18] 

^ ^ ^ 

4~Co(pS~y~y ° + 7°P~#7~7~)~ o . (48) 

In asymptotically Schwarzschild-anti-de Sitter spacetimes, ps i=  p~O =0, and p~6 
can be interpreted as the total energy. The positivity of (48) then implies that 

p~ 6 > 0. (49) 

We note that in Schwarzschild-anti-de Sitter, pSO coincides with usual mass 
parameter M. 

This definition of the massP "~6 seems to agree with that of Abbott and Deser 
[11] who gave a similar argument for believing that the mass would be positive for 
asymptotically anti-de Sitter metrics without horizons. 

Appendix 

In this appendix, we outline the key steps of the positive mass theorems proved in 
this paper, in terms of two component spinors. Throughout the appendix, we 
follow the notation of Pirani [19]. It should be noted that this entails our use of 
the metric signature (+  - - - )  which is opposite to that employed in the main 
body of this paper. 
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We first consider uncharged black holes in asymptotically flat spacetimes. Let 
be an asymptotically flat slice which begins at an apparent horizon H. Let t u be 

the unit normal to Z and D, be the projection of the four-dimensional derivative 
into Z. (This was previously denoted by (4)V,.) In this case one can prove the 
positivity of mass by considering only a single two component spinor a n. Witten's 
equation [Eq. (3)] is 

D AA,O~ A = 0 .  (A1) 

From this, it follows that 

-- D,,(taa' ~:A,Dm%) = - taa' (Dm%) ( O " ~ , )  + 4re TuvtUk ~ , (A2) 

where k*= eu~". If T~ obeys the dominant energy condition, then the right-hand 
side of (A2) is non-negative. Integration of (A2) over Z then yields 

- -  tAA" ~:A,DmO:AdS~ >= ~ --  tA'4' ~A ,D~cq4dS~  " 
H 

(A3) 

If c¢ A asymptotically approaches a covariantly constant spinor ~o a, then the 
boundary term at infinity is 4rcPuk~, where Pu is the ADM four-momentum, and 
k~-  M-M' 

- - ~ o  ~o • 
To discuss the boundary condition for a ~ on H, we introduce a spinor basis 

(o A, i A) on H such that oA8 A' and iA{ A" are the outgoing and ingoing null vectors 
orthogonal to H, oA~ a' is tangential to H, and % i  A = 1. We now expand c~ A in terms 
of this basis as 

~A = X o  A q. H A  (A4) 

The boundary term on the horizon becomes [see Eq. (18)] 

[0XJ( + #YY+ 2 Re 7F(6X + I~X ) dA,  (A5) 
H 

where 6 is the differential operator 6 = oA~ -A' VaA,, Q = OabOa is the convergence of 
outgoing null vectors, # = ia6iA is the divergence of ingoing null vectors, and 
fl=iaOOa. (Here 6+/1 is the Geroch-Held-Penrose [15] operator 6, edth.) By 
definition, 0 =0  on a future apparent horizon. The boundary condition that we 
impose on H is [Eq. (17)] 

Y--o~AOA = 0 .  (A6) 

Thus, with this choice of boundary condition, the boundary term (A5) vanishes. 
Therefore, if c~ A is a solution to (A1) which satisfies (A6) on H, and approaches 

a constant spinor c~o A asymptotically, then (A3) implies 

P,k~ >= O. (A7) 

Since k~ is an arbitrary null vector, this shows that P,  is future directed. If H was a 
past apparent horizon, then # = 0  and one can use the boundary condition X 
= iA% = 0 on H to establish a similar result. 
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We next consider charged black holes in asymptotically flat spacetimes. Let N 
and D m be as before. We define the Maxwell spinor ~0MN by 

1 
F ~  = - ~  (~NeM,N, + ~M,N,eMN). (A8) 

To treat this case, we need to introduce a pair of two component spinors (c~ a, fiA'). 
The supercovariant derivative defined by Eq. (21) is 

[TMM,fl A, ~- I~JVI, M,[~ A, - ~O A,M,a M . (A9) 

The Witten equation (22), is 

b AA,(X A = D AA,O~ A -- t AA, teB'q)ABfl B, = O, 

b AA,[3 A' = D AA,fl  A" + t AA,tBB' ~oA'B,lX B --'~ 0, (A10) 

If these equations are satisfied, then one obtains the identity (26): 

-- Dra[tAA" ~A,bmO~A + tAA'flAbraflA, ] 

= -- tAA'[(bmiXA) (bmO;A ,) Dr- (bmflA,) (bra]~A) ] -}- 47z T(~)t"~ ~ 

+ 4rc[J, tV(~8"fiB,) + Ja#(C~B/~R)], (A11) 

where T(~'~ ) is the matter energy-momentum tensor, ~ '=  eN~N' +/~N~N' and 

1 
J AA'-~- ~ ~TA'BeBA (112) 

is a complex current which is related to the electric and magnetic currents j E and 
J~  by 

J ~ =  1 ( j ~ _ i j M ) "  (A13) 
l/2 

If T(~ ) satisfies Eq. (27), then the right hand side of (All)  is non-negative. 
Integrating (All)  over Z yields 

-tAA'(~A,D~C~A + f lAD~t3A , )dS~  ~ -- tAA'(~A,Dma a + fiADmfiA,)dS m . (A14) 
H 

The boundary term is identical to the uncharged case [Eq. (A5) for eA and fiA'] 
apart from the addition of the term 

.[ [(t~AB(~M" flM,),~A,., -t- ~A'.'(o~M~M)~A.] tbdSa. (A 15) 

On H, if both a A and flA" satisfy the boundary condition (16) then this extra term 
vanishes. So the entire boundary integral on H again vanishes. At infinity, if a A 
and flA' approach the supercovariantly constant spinors c~ A and fiOA', then the 
boundary term becomes 

4rcEP,~) + I/2Q Re(e~/~OA)+ V2P I m ( 0 ~ A f l 0 A ) ]  • (116) 
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Equation (A14) states that this must be positive for all cd, fl0A'. Hence 

pup , ,  > Q2 + p 2  (a17) 

Finally, we consider black holes in asymptotically anti-de Sitter spacetimes. 
The supercovariant derivative in this case is [Eq. (34)] 

feM~t,a A = gMM,O:A + KeMafl~t ,  , 

Vuu ' f l  A' = VMU'fi A" + K e u '  a 'aa , (A18) 

where K2= -{A.  (We define our cosmological constant A such that it is negative 
for anti-de Sitter spacetime.) Let Z be a spacelike surface from H which 
asymptotically resembles the X ° ---0 surface in anti-de Sitter spacetime. The Witten 
equation in this case (43) is 

b AA,O~ A = D AA,O~ A -1- ~" K fl A, = 0 

b AA,fl A' = D AA,fl A' -1- 3 KO:A = 0 (A19) 

These equations imply (44) that 

- Dm[tAA'(~A,Dm % + flADmflA,)] = -- taA'[DmeAD%~A , + DmfiA,DmflA] + 4rC T.vt"~ v . 

(A20) 

If T~v satisfies the dominant energy condition, then the right-hand side is 
non-negative. We now integrate (A20) overS. If cA, flA' satisfy boundary condition 
(A6) then the horizon terms vanishes. If they asymptotically approach super- 
covariantly constant spinors eo a and r i o , ,  then the surface term at infinity is finite, 
and can be related to psu p~ in the same way as Eq. (48). 
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