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E F F I C I E N T  A N D  O P T I M A L  

E X P O N E N T I A T I O N  I N  F I N I T E  F I E L D S  

JOACHIM VON ZUR GATHEN 

Abstract. Optimal sequential and parallel algorithms for exponenti- 
ation in a finite field containing F~ are presented, assuming that qth 
powers can be computed for free. 
Subjec t  classifications. 68Q40; 11Y16, 12Y05. 

1. I n t r o d u c t i o n  

In this paper, we study the complexity of exponentiation in finite fields. 
This problem is important  in some cryptographic applications,  and has been 
considered for fields F2-. In a specific structured model, appropriate for the 
problem, we derive asymptotically optimal sequential algorithms, and (exactly) 
optimal parallel algorithms. 

Let us first describe the model. We consider exponentiation in a finite field 
Fq= with qn elements, where q is a prime power and n >_ 1. Suppose that  
(~o,---,  t3~-1) is a normal basis of Fq. over a field Fq with q elements, so that  

~i = fl~' for all i. An arbitrary element a of Fq, can be uniquely written as 
a = ~0<i<~ aifli with ao , . . . ,  an-1 E Fq. For any j E N, we have 

aq'-= E a'~] ~= E ai,Bi+j, 
O<i<n O<i<n 

with index arithmetic modulo n. Thus taking qth powers amounts to a cyclic 
shift of coordinates. This may be much less expensive than a general multipli- 
cation. A basic assumption for our algorithms is that  computing qth powers is 
for free. 

This assumption can be justified in several ways: 
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In a normal basis qth powers correspond to a cyclic shift; in this form, 
the assumption occurs in the literature for q = 2 (Beth et al. 1986, Wang 
et al. 1987, Agnew et al. 1988, Stinson 1990). We note that  normal bases 
are easy to find (see von zur Gathen & Giesbrecht 1990 and the literature 
given there). 

' O  In an arbitrary basis a 0 , . . . , a ~ _ l  for Fq. over Fq, a table with the n 2 
q3 

entries a i , for 0 _< i , j  < n, might be precomputed.  Then qth powers 
can be calculated with a table look-up and linear operations. (Here, as 
in the previous point, we think of an element of Fq. as being represented 
by its coordinates in the given basis.) 

The multiplication of two input-dependent  values is often considered to be 
more costly than a scalar operation, such as multiplication of an input- 
dependent  value by a constant, or an addition. In fact, the successful 
non-scalar model assumes all scalar operations are free. Now qth powers 
can be computed with only scalar operations. 

Without  some assumption of this type, no good parallel algorithms are 
possible, with parallel t ime (logn) ~ Our algorithms are ari thmetic 
circuits over Fqn, using ari thmetic operations (in fact, mainly multipli- 
cation) in Fq.. But any ari thmetic circuit for powers in Fq. has depth 
at least n/3 (von zur Gathen 1987, yon zur Gathen & Seroussi 1991), if 
every operation is counted. 

Thus we take as an appropriate model for the exponentiation problem arithme- 
tic circuits over Fq. (using instructions + , - ,  * , / )  with free qth powers. Note 
that  we have motivated the assumption of free qth powers by considering 'qow- 
level" computat ions over Fq, but that  in the sequel we will only speak in the 
"high-level language" of computing over Fqn. 

Section 2 presents an algorithm using size (= total number  of multiplica- 
tions) about n/logq n and depth (= parallel time) about log 2 n. (Size n with 
depth log 2 n is trivial.) For q = 2, this is a slight improvement of Stinson's 
(1990) result of about ~n/log~n. 

In Section 3, a counting argument shows that  the size cannot be improved 
below essentially �89 n. This holds for circuits using +,  - ,  , ,  or using * , / ;  
when all four operations are used, it has to be assumed that  the circuit is 
defined at sufficiently many inputs. (The algorithm actually uses only . . )  

Starting in Section 4, we consider the depth in detail, and prove sharp 
results. We introduce "addition chains with free multiples by q", which torte- 
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spond to "multiplication with free qth powers", and analogous "addi'don/sub- 
traction chains". In both models, we determine exactly the pard;lie1 complexity 
of some e E N, in terms of the "sum of digits" aq(e) in q-dry representation for 
addition chains (namely, [log s er(e)]), and in terms of a similar invarian~ c~(e) 
for addition/subtraction chains (namely, [log~ r ), based o n  a %igned-digit 
representation". 

For q = 2, this signed-digit representation is discussed at length in Reitwies- 
her (1960) who gives an algorithm to compute a~(e) and an optimal reDresen- 
tation. The use of divisions for a related problem, namely modular exponenti- 
ation, was suggested by Jedwab & Mitchell (1989), and they show how to find 
a~(e) and an optimal representation of e (for q = 2). Lengauer $r Mehlhorn 
(1986) and Takagi et al. (1985) use a redundant binary representation, with 
digits -1 ,0 ,  1, to construct binary addition and multiplication algorithms for 
VLSI implementation. 

4 - !  Section 5 provides an efficient way to calculate r re) from e, and also an 
optimal parallel algorithm. This is technically the most challenging part of the 
paper (Theorem 5.4). Section 6 determines the maximal value of ~r~:(e). In 
the last section, Fermat's Little Theorem provides a small surprise: it may be 
more efficient to compute the power e + s(q = - 1) rather than e, for some small 
s; by Fermat's Theorem, these take the same value. 

2. Mult ip l icat ion and free powers 

We consider a standard model for algebraic computation: arithmetic circuits 
(or straight-line programs), which have input gates, constant gates, and gates 
for the addition, subtraction, multiplication, or division of two field elements. 
We only use multiplication in this section. The depth (= parallel time = delay) 
is the maximal length (= number of gates) of paths in such a circuit, and the 
size (= total work) is the number of gates. We can stratify the circuit into 
levels, with input and constant gates at level zero, and otherwise a:gate at 
higher level than any of its two inputs; the number of the highest level equals 
the depth. Then the width (= number of processors) of a circuit is the maximal 
number of gates at any level. Trivially, we have 

width <_ size _ depth- width. (2,1) 

A basic assumption for our algorithms is that qth powers are free. 
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Since a q"  = a for all a E Fq., by Fermat's Little Theorem, we may assume 
that our exponent e satisfies 0 _< e < q". We take the q-ary  representat ion  of e 

e = ~ eiq' with 0 < e0 , . . . ,  en-1 < q. 
o<i<n 

Then x ~ can obviously be computed as follows: 

ALGORITHM 1. 

1. For 2 < j < q, compute x ~, 

2. For 1 < i < n, compute y~ = (xe')  q', 

3. Return x e = 1-I0_<i<n yi. 

Using a binary tree of multiplications (executed from root to leaves) in 
step 1 leads to depth 5 = [log2( q - 1)], width ma• q - 1 - 28-1}, and size 
q - 2 .  (For q = 2, the width is 0.) Step 2 is free. A binary tree of multiplications 
(executed from leaves to root) in step 3 yields depth [log 2 n], width [n/2],  and 
size n - 1. 

Thus we have the following result. 

THEOREM 2.1. Le t  0 < e < qn. Then  x r E Fq.[X] can be c o m p u t e d  in dep th  

5 + [1og2 n], w i d t h  max{25-2, q - 1 - 25-1, [n/2j}, and size q + n - 3, where  

= [log (q- 1)1. 

The idea of the next algorithm is that short pat terns  might occur repeat- 
edly in the q-ary representation of e, and that precomputation of all such 
patterns might lower the overall cost. This idea is useful for "addition chains" 
(see Knuth 1982, 4.6.3, and the references given there) and for "word chains" 
(Berstel & Brlek 1989), and has been applied to our exponentiation problem in 
characteristic two by Agnew et al. (1988) and Stinson (1990). The algorithm 
below answers positively the question about general q~ in the last sentence of 
Stinson's paper. 

We choose some pattern length r >_ 1, set s = [n / r ] ,  and write e = 
~o<i<~ biq r~ with 0 _< bi < qr for all i. 

ALGORITHM 2. 

1. Compute all x d for 2 _ d < q. 

2. Compute all x d for q < d < qL 

3. For 0 _< i < s, compute yi = (xb~) q~. 
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4. Return x ~ = t-I0<i<~ yi. 

The cost of step 1 has been given above. We implement step 2 in [tog 2 r] 
stages 1 , . . . ,  [log2r ] as follows. For any d E N with q-ary representation 
d = ~ i  diq i, let 

~(d) = # { i :  d, r O} (2.2) 

be the q-ary Hamming weight of d. In stage i, we compute all x d (not previously 
computed) with q < d < qr, d ~ 0  mod q, and w(d) < 2 ~. Each new d in stage i 
is of the form d = dl + qJde, for some j >_ 1 and dl, d2 computed before stage i. 
Then 

x d = xd~ . (ze~)q ~, 

and each stage 1 , . . . ,  ~log 2 r7 can be performed in depth 1. 
After the last stage, we have all required powers for d ~ 0 rood q; the ones 

with d = 0 mod q can be computed free of charge. There are exactly q r _ q ~ - 1 _ l  
integers d with 2 < d < q~ and d 7~ 0 rood q. Since each multiplication yields 
a new x d, the total size for steps 1 and 2 is (q - 1)q ~-1 - 1. This also bounds 
the width. 

Since step 3 is free, and we can use a binary multiplication tree in step 4, 
we have the following. 

THEOREM 2.2. Let 0 < e < @, 1 < r and s = [n/r]. Then x ~ e Fq~[x] can 
be computed by multiplications and free qth powers in depth [log2( q - 1)] q- 
[logs rl + Vlog2 sl,  width max { ( q -  1)qr-' _ 1, [s/2j ), and si~e (q - 1)r + ,  - 2, 

For any r , t  E N w i t h n / r  < 2~; we also h a v e s  = [n/r] < 2 ~, and thus 
Iiog2 s] = [log2(n/r)]. If ~ = [log2 r],  then 2 ~-1 < r _ 2 ~ and n / r  < n /2  ~-1. 
T h u s l o g 2 ( n / r  ) < log 2 n - ( A - 1 ) ,  and [log 2s 7 < [log 2n 7 - / ~ + I .  For any 
choice of r we have 

Flog2 n] < [log2 r] + Flog2 s] < Ftog 2 n] + 1. (2.3) 

We give two applications of the theorem. The goal in the first application is 
to minimize the size (and Corollary 3.3 below shows that  the result is asympto- 
tically optimal for large n up to a factor of three), and the goal in the second 
application is to minimize the depth. 

COROLLARY 2.3. Let q be a prime power, n >_ qS, 0 <_ e < qn and either 
q > 3 or n >_ 626. Then x e E Fq. [x] can be calculated by multiplications and 
free qth powers with the foilowing costs: 
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O) depth [log 2 qn] + 2, width less than ~ ( 1  + e), and size less than 
,o2q ~ (1 + e ) ,  where r = (10 logq logq n + 6) / logq n. 

(ii) depth [log2( q - 1)] + [log2 n] ,  width less than E~q~(1 + r and size less 
2n  than lo-~q~(1 + e). 

PROOF. (i) We apply T h e o r e m  2.2 with r = Llogq n - 21ogq logq nJ. Then ,  
using (2.3), the  dep th  is at most  

[log2( q - 1)] + [log 2 n] + 1 _~ [log 2 qn] + 2. 

Fur thermore ,  

n (q--  1)q ~-1 < ( q -  1)qlogqn-21~ n-1 < - -  
- (logq n) 2 ' 

n n 
s - 1  < - <  

- r l o g q n - 2 1 o g q l o g q n - 1  

(2.4) 

We first assume tha t  q > 3. Suppose tha t  u, v E R are such tha t  u, v > 1 and 

2 log 3 z + 1 _< u -__.~1 for all real z > v. (2.5) 
z u 

We then  have logq z < log 3 z, and 

2 logq z + 1 ) - 1  2 logq z + 1 
1 < l + u .  

z z 

for z >_ v, and hence for n > q" we have 

logq n 2 logq logq n + 1 
< l + u .  

logq n - 2 logq logq n - 1 - logq n 

~ ( 2u logq logq n + u ) n 1 +  
s - 1 < logq n logq n 

One checks tha t  u = v = 5 satisfies (2.5). This  and (2.4) imply  the  size 
es t imate ,  and the  wid th  bound  follows from 

n 5 . 0 . 2  

- l o g q n  l o g q n '  
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- ") + < 2 " l o g q n  l o g q n  ~ 

This proves (i) for q _> 3. If we replace log 3 in (2.5) by log2, then the condition 
holds for u = 5 and v = 9.289, and (i) follows for q = 2 and n > 626. 

(ii) We let r~ = 2 ~ be the largest power of 2 not larger than  r = [log q n - 
2 logq logq n J, and s~ = In~r2]. Then r2 _< r and [log 2 r2] + [log 2 s2] = [log 2 n]. 
Furthermore,  n/r~ < 2n/r, and thus s2 _< 2s and [s2/2J _< 2 .  s/2. The claim 
now follows using the estimates from (i). [] 

For small values of n, the theorem will yield similar results, but  with differ- 
ent constants. In this paper, we s tudy the size and depth for exponentiat ion in 
detail; the width is considered in yon zur Gathen (1992). 

3. A lower  b o u n d  on  s i ze  

A counting argument  will now prove lower bounds on the size required for 
exponentiat ion,  asymptot ical ly matching the upper bounds from Section 2. 
We first have to describe in more detail the models of computa t ion  tha t  we 
will consider. First recall arithmetic circuits (or straight-line programs), the 
s tandard model for computa t ion  over a field F ,  as at the beginning of Section 
2. Such a circuit a has input gates whose values are indeterminates  xl . . . . .  x,~, 
constant  gates with values from a field F,  and gates for addition,  subtraction,  
multiplication, and division of previously computed values. At each gate v 
of such a circuit a ,  a rational function fv E F ( x l , . . . , x ,  0 is computed. A 
condition is tha t  no division by the rational function zero occurs. The size of 
a is the total  number  of ar i thmetic  gates + ,  - ,  *, / in a .  

For our purposes the following variant of ar i thmetic  circuits is appropriate. 
We have n = 1. only one input gate v0 with f~o = x = xl ,  a set F G F of 
constants, and only one special output  gate vl, where g is the size of a .  At each 
gate v, 

f ,  = (f~l) q~ o (f~2) v~ E F (x )  (3.1) 

is computed,  where o E {q - , - ,  * , /}  is an operation, fwl and f~2 are previously 
computed results or constants from P, and el, e2 E N. We call such a circuit 
an arithmetic circuit with free qth powers. It computes x e if there exists d E N 
such tha t  f~d = x% We note that the only slightly unnatura l  constraint  is the 
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restriction we will impose on the constants; all algorithms in Sections 2 have 
F = O .  

We denote by r ~  : F --+ F the exponentiat ion function, with ~r~(a) = a e. 
A circuit c~ as above value-computes r@ if there exists d E N such tha t  for any 
a E F in the execution of a under  the subst i tut ion x +-- a, either a division by 
zero occurs (then a is undefined at a) or f~,(a) q~ = a ~ (and c~ is defined at a). 
If a computes x ~, then  a also value-computes Try(a); the reverse implication 
is t rue over infinite fields, but  may  fail over finite fields. This is discussed in 
Section 7. "Value-computing" is a rather  weak notion, and hence appropriate 
for lower bounds,  but  not  necessarily for upper bounds. 

THEOREM 3.1. Let q be a pr ime power, n >__ q, m _> n al~ ~, and F C_ Fq~ with 
~ F  <_ n. Consider arithmetic circuits with free qth powers, constants from F, 
and which are defined for at least m nonzero elements of Fq.. Then there exists 
e E N with 0 <_ e < q~ such that any such circuit value-computing ~r} has size 
at least 

3log 2 n "  1 log 2n " 

PROOF. Let 7 = # P ,  and F = { c l , . . . , c ~ } .  Let c~ be an ar i thmet ic  circuit 
over F = Fqn of size ~ using constants from F, and free qth powers. As above, 
we use f~ E F(x)  for a gate v. We number  the gates of a as 

7 0 _ . ) . , . . .  , ~ - 1 , 1 3 0 ,  V l ,  �9 �9 � 9  Us ,  

with constant  gates v _ - , . . . , v _ l  (and f~_~ = e~ for i > 1), f~0 = x, and such 
tha t  for each i with 1 < i < g there exist j ,  k, el, e= E Z and o E { + , - , * , / }  
such tha t  

f~, = (f~,)q~ o (f~k) q~a, - 7  -< J, k < i, el, e2 E N .  (3.2) 

It is clear tha t  each circuit of size at most • can be brought into this form. 
Since a q" = a for all a E F and we only consider "value-comput ing ' ,  we may  
assume tha t  0 < el, e2 < n in (3.2). We can normalize the circuit so tha t  el = 0 
in (3.2), replacing f ,i  by 

fg- ' = f ,o z?+~176 
and reducing the exponent e2 + n - el modulo n, inductively for i = 1 , . . .  ,g. 
At gate vi with i > 1, there are (7 + i) 2" n .  4 possible choices for the parameters  
j ,  k, e2, o, and hence there are at most 

I I  4n(3 + i) 2 5 (4n)e(7 + g)2e 
l < i < g  

- -  i 
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such circuits. Let a be such a circuit, f = f~, E F(x )  the function computed,  
A C F the set of nonzero elements at which a is defined, and suppose that  
a value-computes r ~  for some e with 0 <_ e < q'~. Then (CA > m, and there 
exists d E N such that  0 < d < n, f (a )  is defined and f (a )  qd = a~ for all a E A .  
By Lemma 3.2 below, for each i with 0 < i < q~/m t he re  is at most  one such 
e with im  < e < (i + 1)m (Le., e is uniquely determined by f , d , i ) ,  and hence 
a value .computes  ~r~ for at most n .  [q'~/m] many e's. 

We have the following inequalities: 

6(log 2 n) 3 < 2log 2 n .  log 2 m < 2log 2 no log 2 m + 8tog 2 rn~ 

log2 m .  (log2 n - 2) .  (3 log2 n + 4) 

< (log 2 m - 2 log 2 n ) .  3(log 2 n) 2 (3,3) 

_< (log 2 m -- log 2 n - I ) .  3 log~ n .  log~ n .  

Now suppose that  all powers ~r~ with 0 _< e < q~ can he value-computed with 
size g. We may assume that  g _< n. By the above we have 

q'~ < n Vq"/m] �9 (4n)e('~ + g)2t < n(q~ + m ) / m  . (16n3) ~, (3.4) 

~ ( q " + ~ )  > -  > ~ ,  1 o ( 3 . 5 )  
g-> 3log 2 n + 4  3tog 2 n + 4  - 31ogqn lo " 

The second inequali ty in (3.5) follows from re < q'~, and the last one from (3.3). 
~3 

LEMMA 3.2. Let g, h C Fq,[X] with gcd(g, h) = 1, j C N, and A ~ F~. \ {0}. 
Then there is at most one e E N with h(a) ~ 0 and g(a) /h(a)  = a e for all 
a E A a n d j  <_ e < j  +(CA.  

PROOF. Suppose that  (g - x~h)(a) = 0 for all a E A, and let 

u = H ( x -  a) e Fq.[x]. 
ae.A 

Then u divides g - x~h. Let v be the (monic) gcd of h and u in Fq.[x]. Then 
v ]g, hence v = 1 and h is invertible modulo  u. It follows that  x e _~ g / h m o d  u.  
There is exact ly one polynomial  of degree less than # A  = deg u satisfying this 
congruence; this proves the claim for j = 0 (and we do no t  use that  0 ~ A ) ,  

x h)ka) = 0 for all a E A and some Suppose that  e < j +(CA, and that  (g d , 
d w i t h j  < d < e .  Then 

I ( g  - - ( g  - = . ( x  - 1 ) ,  
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and hence u I x~-d -- 1. But since e - d < deg u, we have x ~-a - 1 = 0 and e = d. 
[] 

As is usual in counting arguments, the lower bound hold for "most e". In 
fact, given e > 0, it is easy to work out a lower bound that holds for all e with 
at most e. qn exceptions. 

In Theorem 3.1, it is unavoidable to assume that the circuits are defined at 
sufficiently many elements, since 1/(x q" - x) can be computed in size 2, and 
the corresponding circuit is defined nowhere and trivially value-computes 7r r Fqn 
for any e. 

COROLLARY 3.3. Let q be a prime power, n >__ q, and F C_ F~. with # F  < n. 

(i) I f  n >__ q5 and either q >_ 3 or n >_ 626, then any x ~ with 0 <__ e < q~ can 
be computed in size 

n ( 101ogq logq n + 6 )  
logqn 1 +  Iogqn " 

(ii) Let ~ - { + , - ,  *} or ~ = {*,/},  and consider arithmetic circuits with 
operations from ~, free qth powers, and only constants from F. Then 
there exists e E N with 0 < e < qn such that any such circuit va]ue- 
computing 7r~ has size at least 

n ( 2 )  
31ogqn" 1 l o ~ n  " 

PROOF. The upper bound comes from Corollary 2.3 (i). For the lower bounc 
we note that, in the notation of the proof of Theorem 3.1, A = Fq. \ {0} an 
any (a, d) determine e uniquely except that for ~ = {*,/},  e = 0 and e = q~ - 
can both happen. Since we can assume 0 <: d < n, there are at most n valu( 
e such that a value-computes ~r~. (In the exceptional case, there are exactI 
two such e, since then f (a)q = f (a )  = 1 for nonzero a.) Furthermore, we ca 
replace the four choices for o by at most three, and thus (3.4) becomes 

qn < n . ( 3 n / . ( ~ + e ) 2 ,  _<n(12n3) ~. 

A calculation yields the bound. [] 

Under the hypotheses of Corollary 3.3 (ii), we obtain from (2.1) width 
least n/(3clog~ n) .  (1 - 2/logq n) if the depth is at most clog 2 n. 
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The upper and lower bounds have a gap of a factor of 3. To close this gap, 
we observe that  Algorithm 2 can be arranged so that  for all i > fig, (8.2) has the 

special form fi = fi-1 * .fS -~ for some j ,  0 _< j < i, with fl about  (logq n) -1 and 
a fixed k _< fig. For such artificially contrived circuits, the counting argument 
yields indeed g > (n/log, n)(1 - O((logq n) - l ) )  for some e. 

If we consider general ari thmetic circuits, with + , - ,  * , / ,  at mes~ q con- 
stants, and free qth powers, and the stronger notion of computing x ~, then the 
counting argument will again show that  the size is at least n/(3 togq n). (! -o (1) )  
for some e. 

The following questions remain open. 

o Describe a specific e so that  rr~:q, requires size f~(n/logq n). 

o Either improve the width to o(n/logq n), or prove that  the width ~s 
f~(n/logq n), assuming depth O(log n). 

o Prove that  the size is not !ess than n~ logq n + o(n/logq n) for some e. 

4. Addition/subtraction chains 
with free multiples 

The purpose of the remainder of this paper is to study the parallel complexit 9 
of the exponentiation problem, with free qth powers. Only Theorem 4.1 and 
Proposition 4.4 deal with general ari thmetic circuits. Otherwise we consider 
abstractions of algorithms using only multiplication, or only multiplication and 
divisions, namely addition chains and addition/subtraction chains, We deter. 
mine the parallel complexity of exponentiation exactly in this model: 

Compared to  the results of Section 3, the bounds of th is  section have the 
special appeal of being sharp and for individual e, and the drawback that  they 
refer to exact computat ion of x ~ (respectively e); this is partly addressed in 
Theorem 7.3. 

In the usual model of ari thmetic circuits (without free qth powers) this 
parallel complexity has been investigated: upper bounds O(log 2 n) are in Go!0- 
vanov L: Solodovnikov (1987) and Fich & Tompa (1988), O(log n) in Yon zur 
Gathen (1990), all for circuits over Fq, and lower bounds f~(n log q) for circuits 
over Fq. in yon zur Gathen (1987) and yon zur Gathen & Seroussi (!991). 



comput complexity 1 (1991) Exponentiation in finite fields 371 

For e E N with q-dry representation e = ~]i>0 eiq i, let 

i>_o 

be the sum of digits. Thus aq(0) = 0. Note that for d ,e , j  E N we have 
a,(e) _< ( q -  1)[log~ e], and 

aq(qJd) = oq(d), aq(d + e) < aq(d) + gq(e), (4.1) 

with equality in the subadditivity if and only if di + ei < q for all i. 
(4.1) implies that aq(exponent) can at most double in one multiplication 

(with free qth powers), and if x ~ is computed in depth 6, we have 

6 _> [log~ ~(e)l. 

This holds for circuits with addition as well: 

THEOREM 4.1. Let 1 <_ e < q~. The depth of any arithmetic circuit over Fq. 
computing x ~ using +, - ,  *, and free qth powers, is at least [log s aq(e)]. 

PROOF. 

�9 " r 

f = fi~x" + . . .  + fi, x" E Fq, Lx] 

Suppose a is an arithmetic circuit as above computing x% For any 

(4.2) 

aq(f) = max{o'q(i l) , . . . ,  aq(it)}. 

(Thus a2(x 7 + x ~) = 3.) For any gate v of a,  let f~ e Fq.[Z] be the function 
computed at v. At an addition or subtraction gate (3.1) with o E { + , - }  
we have crq(fv) <_ max{C~q(f~l),a,(f~2) }. At a multiplication gate, we have 
cr,(f~) <_ a q ( f ~ ) + a q ( f ~ ) .  By induction on the depth, it follows that for a gate 
v at depth i we have aq(fv) _< 2 i. Hence log 2 c~q(e) = log 2 Crq(fot) <__ depth(a),  
where ve is the output gate. [] 

A very simple type of arithmetic circuit consists just of multiplications and 
qth powers, as in Section 2. Thus only powers x d are computed, for various 
d E N. This type of circuit corresponds to addition chains, where each step is 
an addition of two previous integers, starting with the constant 1. An excellent 
survey of addition chains is in Knuth (1982, 4.6.3). Free qth powers in the 
circuit correspond to free multiplications by q in the addition chain. These 
chains, and a slight generalization, will be our model for the remainder of the 

with i l , . . .  ,it E N pairwise distinct and f i l , . . .  ,fit E Fq,, let 
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paper. In particular, q is now an arbitrary integer at least two (except in 
Proposition 4.4). 

We first show how the lower bound of Theorem 4.1 can be achieved. We 
expand each q-ary digit of e in unary and compute e by a binary tree of ad- 
ditions, with free multiplications by q, using these unary digits as leaves and 
ignoring q-ary digits which are zero. 

EXAMPLE 4.2. Take q = 8 and e = 60423, with octal representation (166007)s 
and as(e) = 20. Then the following gives an addition chain of depth 5 and size 
19 (all numbers are in decimal): 

111 11 11 111 1 1 1 1  1 1 0 1 0 1 1  11 11 1.1 

9 2 2 9 2 2 513 2 2 2 

11 25 4 515 4 

113 2563 

60419 

60423 

In this example, we have used powers of 8 as late as possible~ For a general 
description, it is easier to use the required powers of q right away~ so: that the 
leftmost 9 in the second row above becomes a 9 �9 84. In fact, we cou!d arrange 
the leaves qi in any order; this will be used in the proof of Theorem 4.5 below. 
Formally, we build a binary tree of additions whose leaves are indexed by 

[ = { ( i , j ) : i _ > 0 a n d  l _ < j  <e i} ,  

and where the value at leaf ( i , j )  is qi. This leads, in general, to an addition 
chain of depth [log 2 r and size crq(e) - 1. Thus we have the following result. 

THEOREM 4.3. Let e, q >_ 2. The minimal depth of addition chains ~or e with 
free multiplication by q is exactly [log 2 o'q(e)]. It can be achieved with size 
aq(e) - 1. The maximum value ofcrq(d) for 1 <_ d < q'~ is aq(q~ - t) = ( q -  1)m 

When we also allow subtractions, the lower bound seems to break down, 
since the worst case of Theorem 4.3, namely qn _ 1, can be computed in one 
step (with free multiplication by q). However, the lower bound Survives in the 
following form. 

An addition/subtraction chain with free multiplication by q has constants 
1 and -1 ,  and each gate is an addition or subtraction of two previous values, 
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each mult ipl ied by some power qi of q, with i E N. Such a chain computes e if 
e = qid for some value d occurring in the  chain, and i E N. 

For e E I define 

af(e)  = min{aq(a) + aq(b):  a,b E N, e = a -  b}. (4.3) 

Similar to (4.1), we have for e, d E I and i E N 

a ~ ( e ) = a ~ ( - e ) ,  o '~ (q ie )=o-~(c ) ,  c r ~ ( d + e ) < a ~ ( d ) + ~ r ~ ( e ) .  (4.4) 

The  second equal i ty  follows from the fact that  any minimal representat ion qd = 
a - b will have ao = b0 = 0 (see I in the  proof of Theorem 5.4 below). Instead 
of writ ing e = a - b, it is equivalent to consider "signed-digit representat ions" 
e = ~/>0 eiq i with digits ei from - ( q  - 1) to q - 1. For q = 2, ar i thmet ic  based 
on this representat ion is discussed extensively in Reitwiesner (1960). 

We start  with a lower bound for general ar i thmet ic  circuits with free qth 
powers. 

PROPOSITION 4.4.  Let 1 <_ e < qn, and a an arithmetic circuit with free qth 
powers computing x ~ E Fq~[x]. Then the depth of a is at/east log 2 a~(e )  - 1. 

PROOF. For 

f = f q x  i~ + ' "  + f~,x i' E Fix] 

as in (4.2), we let 

a~(f )  = max{a~(il),. . . ,c~q (i,)}. 

Instead of the rational function f~ E F(x) computed  at a gate v, we keep 
track of an explicit numerator  n ,  E F[x] and denominator  d. E F[x], with 
f~ = n , /d , ,  defined inductively in the natural  way, but  possibly with common 
factors. For a constant  or input  gate v, we have n .  = f~ and d~ = 1. At a gate 
v, with wl,w2, el,e2,o as in (3.1), we set (Ni, Di) = (,.q" d , " )  for i = 1,2, and 

\ - w i  ~ ~ w i  
then 

(NID2 • D, N2,D~D2) if o = •  
(n., d.) = (NIN2, DID2) if o = . ,  

(NxD2, D~N2) if o = / ,  

s~ = max{cr~(n~),(rg(d~)}.  

Clearly (rg is invariant under  qth powers, by (4.4), and one verifies tha t  

Sv <__ sw I + Sw 2 . 
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By induction on the depth i of v, this implies ~hat s.  < 2 i for a~1 gates v. 
Now let v be the output gate, and 6 its depth. Then r = x~ for  some 

k / ] 

d ~ N. It follows that qd divides e and n,/d.o = x ~' with e ~ eq,d, Write 
d,, = fi~x ~ + . . .  + fi ,x ~', as in (4.2); then n~ = f ~ x  q+r + . . .  + fi~x ~'+~. 

Choose some k, 1 < k < t, with 

~ = ma~ ~ ,  (.~,), ~ ( < ) }  = m a•  + ~'), ~(i~)}. 

Then, using (4.4), we have 

~ e') + ~ ( - i ~ )  ~ ( ~ )  = ~ ( e ' )  < ~ t~ + 

_< 2 m ~ { ~ ( n . ) , ~ ( d . ) }  : 2 ~  < 2~+~ 

THEOREM 4.5. Let e,q 6 Z, e # O, q > 2. The minima1 depth o[ addi- 
tion~subtraction chains computing e with free multiplication by q is e• 
[log~ a~(e)] .  It can be achieved with size ~r~(e)- l. 

PROOF. For the lower bound, suppose we have an addition/subtraction chain 
computing e. At each gate v of "~ some e~ E Z is computed, and q~e~ = e 

for some gate v and d 6 N. Denote by D(v) the depth of v, i.e., the length (= 
number of +-gates) of a longest path from the start nodes (with values 1 and 
- 1 )  to v. We show by induction on D(v) that 

~ (e~) < 2 ~(~1. 

The lower bound then follows, using (4.4). The claim is clear at depth zero, 
where e~ = 1 or e~ = - 1 .  So let D(v) > 1. There exist gates wl,w2 of ~/and 
integers ia,i2 C N so that 

ev : qilew 1 J: qi2ew~ , 

and D(wa),D(w2) < D(v). For j = 1,2, choose aj, bj E N with e~ : a. i - 5 i 
and a~(e~j) = ~q(aj) + (rq(bj). Then 

f (q!lal + q~a2) - (r + q % J  
e. = ~ (qqal + qi2b2) - (qilbl + qi~a2) 

In the first case, we have 

~(~)  < ~(q~a~ + q'~a~) + ~(q~'b~ + q'~b~) 

< ~(~1) + o~(a~) + ~(b,) + ~(~) 
_< 2D(wl) J- 2D(~2) _< 2 D(v), 

if v is a +-gaLe 
if v is a - -ga te  
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The second case follows analogously. 
For the  upper  bound,  let e = a - b. We claim that  e can be computed  in 

depth  6 = [log s (crq(a)+ aq(b))]; see Example  4.6 for an illustration. 
We write  ar and bl for the  q-dry digits of a and b, respectively, and expand 

each q-dry digit of a and b in unary: aij = 1 for i _> 0 and 1 _< j _< ai; and 
similarly for b. Let 

I = { ( i , j )  : i  _> 0 and 1 _< j < hi} 

be  the  nonzero positions in the unary  expansion of the q-dry representat ion of 
b, so tha t  aq(b) = # I .  There is an a symmet ry  in that  x :[: y can be computed  
in one step from x and y, but  not - x  - y. Because of this asymmetry ,  we 
distinguish two cases. 

As a first case, we consider aq(a) > aq(b). To each ( i , j )  e I we associate the 
index (u~j, vii) of a unary  digit of a, with vii < a~i , so that  these (u~j, vlj) are all 
distinct.  Using the construct ion for Theorem 4.3, we can find an addit ion chain 
for a + b of depth  6, where at depth  1 all q~q + qi are computed ,  for (i , j)  E I. 
Replacing each such addit ion by q~J - ql, the resulting add i t ion / sub t rac t ion  
chain computes  e, still in depth  6. 

For the  case ~rq(b) > aq(a), we proceed by induct ion on 6. In the case ~ = 0 
(so that  c~q(b) = 1, a -- 0), the  claim is clear. So let 6 > 1, and choose a subset  
I t C I with 

# I  t = min{28-1, # I } .  

Now b t = ~ q~ can be computed  by an addit ion chain of depth  5 - 1, by 
(i,j)EP 

Theorem 4.3. We l e t a ' = a -  ~ q~, and note that a t ~ 0 a n d  
(i,j)EIxP 

+ # ( I  ,, I') <_ 2 

Thus a t can be computed  by an addi t ion /subt rac t ion  chain of depth  at most  
6 - 1, using the first case if aq(a) >_ # ( I  \ I'), and the induct ion hypothesis  
otherwise.  Finally, e = a t - b t is computed  in depth  6. 

In each case, it is easy to verify the  claim about  the size. [] 

EXAMPLE 4.6.  We consider q = 8, n = 6, e = 60423 with octal representation 
(166007)s as in Example 4.2, with as(e)  = 20 and cry(e) = 7, given by the 
following octal addition, according to Theorem 5.4: 

e : 166007 
b : 012001 
a : 200010 
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Then we have the following addition/subtraction chain for e, of depth 3 a~d 
size 6: 

o - 1  i0 l o ! - t  
! 1! ol o lo l l  o 

2 - 9  - 6 3  

119 -505  

60423 

The maximum value In(q-  1)/2J +1  of ~r~(e) for 0 _< e < q~ will be derived 
in Section 6. 

Note that if e < -1 ,  then a~(e) = ~r~:(-e), and an addition/subtraction 
chain for - e  becomes one for e by simply interchanging the roles of the constant 
gates 1 and -1 .  If we disallow the constant - 1  in addition/subtraction chains, 
using only the constant 1, then the depth may increase (e.g., from fi to 2 for 
e = _qi). However, at depth two we then have also e = - 1  available, and thus 
the depth never increases by more than two. 

The proof of Theorem 4.5 shows that allowing to compute - e l  - e2 in one 
step from el and e2 does not decrease the minimal depth. 

If 1 , . . .  , q -  1 are given for free, one finds flog 2 wq(e)] and flog 2 w~:(e)] for 
the minimal depth of addition chains and addition/subtraction chains, respec- 
tively, where wg(e) is the q-ary weight of e as in (2.2), and wq ~ is defined in 
analogy with (4.3). 

For practical purposes, it may be advantageous to compute - 1  first (i.e., 
a -1 for the exponentiation problem) and then only perform additions. This 
increases the size and depth by at most one. 

5. Constructing an addition/subtraction 
chain of optimal depth 

Now that we have determined the parallel complexity in our addition/subtrac- 
tion chain model, we want to efficiently exhibit an optimal algorithm. This 
actually turns out to be somewhat trickier than finding the complexity'. 

Reitwiesner (1960) solves this problem for q = 2, and in fact shows that 
there is a unique "minimal" representation e = a - b in which two adjacent 
positions never have both a nonzero entry (i.e., (a~ + bi)(ai+l + b~+l) = 0 for 
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all i), tha t  this representat ion provides minimal  o'S(e), and gives an algori thm 
to compute  this (a, b). Jedwab  & Mitchell (1989) suggest the  use of divisions in 
modular  exponent iat ion,  and exhibit  an algori thm that  finds the  above minimal  
(a,b) and c~(e) ,  and also an opt imal  addi t ion /subt rac t ion  chain for q = 2. 

By  Theorem 4.5, given e E IN it is sufficient to find a, b E N with e = a - b 
and minimal  aq(a) + crq(b). As usual, we have an integer q > 2, 0 < e < q~, 
and let (e=-l ,  e~-2 , . .  ~ el, e0) be  the q-dry representat ion of e, with e = ~ elq i 
and e ,~_ l , . . . , e0  E { 0 , . . . , q -  1}. We also set e,~ = e_l = 0. Let m = ( q - 1 ) / 2 .  
We define a block for e as an interval of indices B = { j , j  - t , . . . ,  k +  1, k} with 
n > j >_ k >__ O, e j , . . . , e k  >__ m > ej+l, ek > m >_ ek-a, a n d e i t h e r j  > k or 
ek > q/2. Furthermore,  ei < m for the  largest i with k > i >_ - 1  and el r m. 
The right endpoint of this block is k. Let 

/3 = {i : i E B for some block B} (5.1) 

be the set of all indices occurring in some block. 
The  definitions of this paragraph are relevant only for even q. An index i is 

a bump if i r 13 and el = q/2. A bridge is an interval D = { j , . . . ,  k} consisting 
of al ternat ing values (q - 2)/2,  q/2, (q - 2)/2,  q / 2 , . . . ,  q/2, (q - 2) /2  beginning 
and ending with (q - 2)/2,  and with j + 1, k - 1 E/3  and j _> k. We let 

D = {i : i E D for some bridge D} 

be the set of all indices occurring in some bridge. 
Fur thermore,  we define 

7 = 
6 = 

/3(e) = number  of blocks, 

7(e)  = number  of bumps,  

~(c) = number  of bridges. 

Thus  3' = 5 = 0 for odd q. For a digit d E { 0 , . . .  ,q - 1}, we let 

d*=~" d i fO<d<(q-1) /2 ,  
( q - l - d  i f ( q - 1 ) / 2 < d < q ,  

and finally 

(5.2) 

(5.3) 

~- = r (e )  = ~ e~. (5.4) 
O<_i<n 

We now construct  a and b achieving the min imum in (4.3), by defining the 
digits ai and bi of a and b, respectively, for n > i > 0. We first set 

S (ei, 0) if i ~ /3  U :D, (ai, bi) (5.5) [ (0, q - l - e l )  ifiE/3UT), 



378 J. von zur Gathen con~put complexity 1 ~1991; 

and then, for any block B = {j , .  ~., k}, we change bk to bk = q -  ek if k -  1 ~ 7)~ 
and we change aj+l to aj+~ = e/+1+1 if j + l  i[ 7). (Note tha t  0 _< bk~ aj+~ < q.) 
For q = 2, it is not hard to check tha t  two adjacent positions never have both  
a nonzero entry, and hence tha t  we have Reitwiesner's minimal  representation. 

Here are three examples. The first two pairs show tha t  the minimal  (a, b) 
]s not unique. In both  these examples, the (a, b) constructed above ]s given on 
the right hand side. The main task in the proof of Theorem 5.4 below is to 
"transform" the left hand representation into the other one. 

EXAMPLE 5.1. We take q -=- 7, n = 12, and e = 11425349506 with septimM 
representation (553062603604)7. Instead of "e = a - b" we prefer to write 
"e + b = a". We have the following two addition6 both with minimal ~rq(a) + 
aq(b) = 22 (written in septimat representation): 

553062603604 553062603604 
114004100100 , 120010103103 

1000100004004 1003103010010 

Then T(e) = 12, and the five blocks are marked by ovedines. 

EXAMPLE 5.2. VV'e now take q = 8, n = 11, and e = 6908166430. l-n octM 
representation, we have e = (63360440436)s~ and the following two additions, 
both with minimal ~q(a) + ~ = 30: 

633604-40436 633604--40436 
14420000342 , 20020340002 

100000441000 103401000440 

Then T(e) = 21, the four blocks are marked by overlines, and the bump at (2) 
is marked by a dot. 

EXAMPLE 5.3. In the following example, with q = 8, the five blocks are marked 
by overlines, the four bumps by dots, and the bridge by a hat. According to 
Theorem 5.4 (iii), we have cry(e) = 59 + 2 - 5  + 4 - 1 = 72: 

e :  13434104253436144225640145613 
b: 00000000024342034002140032200 
a :  13434104300000200230000200013 
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THEOREM 5.4.  Le t  q >__ 2, n E N ,  and  0 <_ e < q~. For a, b E N w i t h  the  q -ary  

digi ts  as c o n s t r u c t e d  above ,  w e  have  

(i) e=a- -b ,  

(ii) cry(e) = ~rq(a) -t- aq(b), 

(iii) a (e) = + 2 (e) + ' y ( e )  - 

PROOF. (i) Let  c ~ , c n _ l , . . . , C o ,  C_l E {0,1} be the carries p roduced  in the  
q-ary addi t ion e + b, with c,~ = c_1 = 0. We claim tha t  for all i wi th  0 < i < n 
we have 

1 i f i E / 3 U T ) ,  (5.6) 
c~ = 0 otherwise,  

and ei + bi + c~_1 = ciq + ai. This  will prove that  e = a - b. Th e  claims are 
shown by induct ion on i. For i = 0 the addit ion is: 

e : �9 �9 �9 E o  e : �9 �9 �9 e 0 

b: . . .  0 i f O C B ,  and b:  . . .  q - c o  

a :  . . .  eo a :  . . .  0 
i f 0 E B .  

This  proves bo th  claims. For i > 0 we distinguish cases according to the  
construct ion.  

1) If i E B is a right endpoint  of a block, and i - 1 ~ 73, then  e l _  1 = 0 ,  

ci = 1, and 

e i + b i + c i _ l  = e i + ( q - e i ) + 0 = q = c i q + a i .  

2) If i E /3  U 73, but  not as in 1), then ci = ci-1 = 1, and 

ei -k bi -k ci-1 = ei q- (q - ei - 1) + 1 = q = ciq + ai. 

3) If i r  U 73 and i - 1 E/3 ,  then  ci = 0, C i _  1 = 1, and 

ei q- bi q- ci_l = ei + O + 1 = ciq + ai. 

4) I f i r 1 6 2  t h e n c i = c i _ ~  = 0 ,  and 

el + bi + ci-1 = ei -t- 0 + 0 = ciq + ai. 
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(ii) Now let u, v e N with e = u - v and crq(u) + aq(v) minimal.  We wilt 
perform "local t ransformations" on the digits of u and v which do not increase 
the sum of digits, and so tha t  the final t ransformed pai r  of numbers equals 
( , , b ) .  

Denote by ul and vi the q-ary digits of u and v, respectively, and by wi E 
{0, 1} the carry in the i th  position of the addition "e + v": 

ei + vi + w i - 1  = w i q  + u i .  

We first note the following, 

I. I f w i = 0 ,  t h e n u i = e i + w i _ l < q a n d v i = 0 .  I f w i = l ,  t h e n u i = 0 a n d  
vi  = q - (e~ + w i - 1 ) .  

Namely, if both ui and vi were nonzero, we could subtract  I from both of 
them and thus diminish aq(u) + aq(v). 

By I, u and v are determined by e and w~,.. .~Wo. We now describe nine 
properties I I - - X  of u, v, and the w{s which hold after possibly applying some 
local transformations.  Together they  imply tha t  wi = ci for all i, and hence 
tha t  (u, v) = (a, b). 

H. If ei + w~_~ _< (q - 1)/2,  then wi = 0. 

To achieve this, suppose tha t  ei + w i - 1  <_ (q - 1)/2, and let j > i be such 
tha t  vk = q - 1  f o r j  > k > i and v j  r q - 1 .  I f w i  1, then u s i n g I  the 
addition has the form: 

e : ~  6 j  e j _  1 - o .  e i + l  e i  o "  

v :  . . .  v i q - 1  . . .  q - 1  q - e i - w i _ l  . . -  
u :  . . .  u i 0 . . .  0 0 . - .  

This implies tha t  ej_l . . . . .  e i + l  = 0. We t ransform u and v to 

e :  . .~ ej 0 . . .  0 ei .~ 
v~:  . . .  v j + l  0 .- .  0 0 . . .  
u ~: . . .  u j  0 . . .  0 e i + w ~ - ~  . . .  

(The digit sequence '626' in Example 5.1 illustrates the first case, and 15530' 
the second case.) Then e = u t - v I, and 

+  q(v) - + 

= ( j - i - 1 ) ( q - 1 ) + q - e l - w i _ l - ( l + e i + w i _ ~ )  

_> q - 2 e i - 2 w i _ i - l _ > O .  
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Thus the t ransformat ion of (u, v) to (u', v') does not increase the sum of digits. 
(In fact, the minimal i ty  of u, v implies tha t  if w; = 1 before the  t ransformation,  
then j = i + 1, uj = 0, and q = 2ei + 2Wi_x + 1. We had to consider separate ly  
the  case Vi+l = q - 1, because  vi+l + 1 would not be a digit, and then found 
this to be  impossible. A similar non-existent difficulty occurs in IV, VII,  and 
IX below.) 

III. If ei + W~_l >_ (q + 1)/2, then wi = 1. 

To achieve this, suppose that  ei + w i - 1  >_ (q + 1)/2, and let j > i be such 
that  uk = q - l f o r  j > k > i and uj # q - 1 .  I f w i  = 0, then using I t h e  
addi t ion has the  form: 

e : . . .  e j  e j _ ~  . . .  e i + l  e i  " "  

v :  . . .  v j  0 . . .  0 0 . . .  , 

u :  . . .  u j  q - 1  . . .  q - 1  ei + w i - 1  " "  

and ei + W i - 1  < q. This implies tha t  e j _ l  . . . . .  ei+l = q - 1. We t ransform 
u and v to 

e : . - -  ej q - -  1 --- q - -  1 el . . .  
v '  : . . .  v j  0 . . .  0 q - -  ei -- w i - 1  " "  

u '  : . . .  u j + l  0 . . .  0 0 . . .  

(The digit sequence '04' in Example  5.1 illustrates the first case, and '036' the  
second case.) Then e = u ' -  v', and 

+ - ( o , ( u ' )  + 

= (j  - i - 1)(q - 1) + ei + w i - 1  - -  (1 + q - -  e i - -  W i _ l )  

> 2 e i + 2 w i _ l - - l - - q _ > O .  

Thus the t ransformat ion of (u, v) to (u', v') does not increase the  sum of digits. 
(In fact,  if wi = 0 before the t ransformation,  then j = i + 1, vj = 0, and 
q = 2el + 2 w i - 1  - -  1.) 

The proof of (i) implies tha t  II and IIl also hold for cl, ci-1 instead of 
wi, Wi-a, and thus ci = wi follows inductively for all cases covered by II and 
III, provided we can also show it for all other  cases. 

If q is odd, in fact all cases are covered, and (ii) is proven. 
So we may now assume that  q is even. Only the case e i + w i _ l  = q / 2  remains 

uncovered;  thus either el = q / 2  and wi_a = 0, or ei = (q - 2) /2  and w i - 1  = 1. 
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IV. If ei = q / 2  and ei+a >_ q / 2 ,  then wi = 1. 

Assume tha t  wi = 0. By III, we have tha t  wi-i  = 0. The addit ion has one 
of the two forms 

e :  . . .  ei+2 ei+l q / 2  . . . . . .  ei+2 ei+l q / 2  ~oo 

V : . , .  Vi+2 0 0 " o "  o r  . - .  v i +  2 q - -  e i + l  0 , ~ "  

u :  . . .  ui+2 ei+l q / 2  . . . . . .  ui+ 2 0 q / 2  . .~  

We transform this to 

e :  - . .  el+2 ei+l q / 2  . . ~  

v ~: o . .  vi+2 q - e l + l - 1  q / 2  . .o 

u '  : . . .  u~+~ 0 O . . .  

with u}+ 2 = ui+2 + (1 - wi+x). (The digit sequence '44' in Example 5.2 is an 
illustration.) This t ransformation does not increase the sum of digits. (In the 
second form there is a strict decrease, so tha t  this form can, in fact,  not  occur.) 

If wi+l  = 0 and ui+2 = q - t ,  we have to make the appropriate modification: 
let t ing j _> i + 2 be the smallest index with u j  <_ q - 2 and transforming 
( u j , u j _ l , . . . , u ~ + 2 )  into (u i + 1 , 0 , . . . , 0 ) ;  this strictly decreases the sum of 
digits if j > i + 2, and thus can, in fact, not occur. 

V. I f i E B ,  t h e n w i = l .  

Using I, we may- assume ei = q / 2  to prove this. By the definition of a block, 
either i + 1 E B or i - I E Y. If i + 1 E B, the claim follows from IV. If i - 1 E ,3, 
then either e~_l >_ (q + 2)/2 or ei-1 = q / 2  (and then wi-1 = 1 by IV), tn both  
cases, wi_l = 1, and hence wi  = 1 by III. 

VI. If i E !), then wi = 1. 

Suppose { j , . . . , k }  is a bridge with j _> i > k; thus ej = ek = (q - 2)/2 
and j + 1, k - 1 C/~. By V, we have w j + l  = wk-1 = 1. If there is some i with 
j > i > k and wi  = 0, then choose a smallest such i. Then wi-1 = 1, and III 
implies tha t  ei = (q - 2)/2. The addition has the form 

e :  . . .  ei+: ei+l ( q - 2 ) / 2  . . .  
v : ~  y i +  2 v i +  1 0 , . .  

u :  . . .  ui+2 u~+l q / 2  " "  

We transform this to 
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e : . - .  e i + 2  e i + l  ( q -  2) /2  . . .  

v '  : . . .  v~+ 2 q - e i + a - 1  q / 2  . . .  

u' : . . .  u~+ 2 0 0 . . .  

If wi+l  = 1, then  vi+l = q - e i+l ,  and we use u~+ 2 = ui+2 and v~+2 = vi+2. 
The  sum of digits decreases by one, and thus this case is impossible. If wi+l  = 0, 
t h e n i + l  r B by V, and we have ei+t = q / 2  and e~+2 = ( q - 2 ) / 2 .  Thus  

ui+2 <_ (q - 2 ) / 2  < q - 2, and we can use u}+ 2 = ui+2 + 1 and v~+~ = v i + 2 .  

One checks tha t  the t ransformat ion does not increase the sum of digits. (By 
considering a maximal  interval  of "wi  = 0", one can show tha t  this case can, 
in fact,  not  occur.)  

VII. If ei = (q - 2) /2 ,  and ei ther  e i_ l  <_ (q - 2) /2  or ei+l _< (q - 2) /2 ,  then  

i ~ B U I D  and wi = O. 

We have i ~ 13. If i E D, then we have ei+l ,  ei-1 >_ q / 2 ,  which is not the  
case; hence i ~ 7?. Now assume tha t  wi = 1. Then  wi_l = 1, by II. We first 
consider the case e~_l _< (q - 2)/2.  Then  ei_~ = (q - 2) /2  and wi-2 = 1, by II. 
Thus  the addi t ion has the  following form: 

�9 " "  ei+ 1 ( q - -  2 ) / 2  ( q - -  2)/2 . . .  
�9 . .  v i+l  q / 2  q / 2  . . .  

�9 . .  ui+~ 0 0 . . .  

e :  

v :  

u :  

We t ransform this to 

e :  

v ! : 

u t : 

�9 -. ei+a ( q - 2 ) / 2  ( q - 2 ) / 2  . . .  

�9 ". Vi+l+ 1 0 0 . . .  
ui+l  (q - 2)/2 q / 2  

(The  digit sequence '6336' in Example  5.2 is an i l lustration.)  Th en  e = u t - v ', 

% ( u )  + o'q(v) = O'q(U') + aq(v'),  and VII  holds. (If Vi+l = q - 1, we have to use 
the smaliest j > i with ej ~ q -  1, as in II, only to find tha t  this was impossible 
anyway. ) 

The  second case is where ei-1 > (q - 2)/2,  so tha t  ei+l _< (q - 2)/2.  Since 
the case of two consecutive (q - 2) /2 ' s  has been dealt  with, we may  assume 

ei+l < (q - 2)/2.  Then  w~+l = 0 by II, and the addit ion has the form 

e :  . . .  ei+l ( q - 2 ) / 2  - . .  
v :  . . .  Vi+l q / 2  . . .  

u : . . .  u i + l  0 . . .  

Since wi = 1 and wi+l  = 0, we have Ui+l _> 1. We t ransform this into 
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e : . , .  e i + l  ( q - 2 ) / 2  

v ~ : " "  v i + l  0 

u'  : . . .  u i + l  - - 1  q / 2  

o . ~  

Now we have aq(u') + aq(v') < ~rq(u) + aq(v); this shows that  the  si tuat ion 
cannot  occur at all. 

VIII.  If ei = q/2 and wi+l = wi- i  = 0, then wi = 0. 

to 

Otherwise we would transform 

e :  .~ ei+l q /2  ~176 
v :  . , .  0 q /2  . , ,  
u :  . - .  e i + i + l  0 - . .  

e :  ~ ei+l q /2  , . .  
v' : .~ 0 0 , . .  
u' : . , .  ei+l q /2  

IX. If ( e j , . . . ,  ek) is an al ternat ing sequence of  (q -- 2) /2  and q/2  with j ,  k 9( 
/3 U D  and j > k, then wi = 0 for j > i > k. 

We may assume that  (ej, o . . ,  ek) is a maximal  such sequence, and by as. 
sumpt ion does not form a bridge. We claim that  we are in at leas* one of the  
following four cases: 

a) ek-1 < ( q - 4 ) / 2 ,  

b) ek = ek-1 = ( q -  2)/2,  

c) ej+l ~ (q - 4)/2,  

d) ej+l = ej = ( q -  2)/2.  

To show this claim, assume that  all four conditions are false. Then ek--1, e~+l _> 
( 9 - 2 ) / 2 .  Ife~_l = ( q ' 2 ) / 2 ,  then ek = ( Z - 2 ) / 2  since otherwise ( j , . . . ,  k)  would 
not be maximal;  but  this would imply b), and hence ek- i  >_ q/2.  Similarly, 
ej+l >_ q/2.  But  then ca = ej = ( q -  2)/2,  since otherwise k Ca /~ or j Ca/3. 
Either j + 1 ~ 13 or k -  1 r  since otherwise ( j , . . . ,  k) i s a bridge, If k -  1 9( 13, 
then k - 2 9( B, and (j  . . . .  , k, k - 1) would be a longer al ternat ing sequence. 
Similarly, j + I 9( B implies that  j + 2 9( g and that  (j + 1 , j , . . . ,  ~ ,k  - 1 )  is 
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a longer a l ternat ing sequence. In each case, we have a contradiction,  and the 
claim is proven. 

We prove w~ = 0 for j > i > k, by induct ion on i - k in cases a) and b), 
and by induct ion on j - i in cases c) and d). 

In case a), wk-1 = 0 by II, and in case b), wk  = w k - 1  = 0 by VII. Assume 
tha t  wi  = 1 for some i, j > i > k, and choose the smallest such i. We have 
el = q / 2  by II, e~+~ < ( q -  2)/2 since i •/3,  and w~+l = 1 by VIII, so tha t  
ei+a = (q - 2)/2, by II. The addit ion 

e :  . . .  ei+2 ( q - 2 ) / 2  q / 2  ei_a . . .  

v :  . . .  vi+2 q / 2  q / 2  0 . . .  

u : . . .  u i+2  0 0 e i - 1  

can be t ransformed to 

e :  . . .  ei+~ ( q - 2 ) / 2  q / 2  ei_l -.- 
v ' :  - . .  v i + 2 + l  0 0 0 . . .  
u ' :  . . .  u~+2 ( q - 2 ) / 2  q / 2  ei-1 . . .  

(The digit sequence '0436' in Example 5.2 is an illustration.) If vi+2 = q - 1, 
we find the smallest g > i + 2 with vt < q - 2, and t ransform (v~, v t _ a , . . . ,  vi+2) 

to (vt + 1, 0 , . . . ,  0) without  changing ( u e , . . . ,  u~+~); this str ict ly decreases the 
sum of digits and therefore cannot occur. 

So we now assume tha t  a) and b) are false. In case c), w j + l  = 0 by II, and 
in case d), w j + l  = w j  = 0 by VII. Assume wi  = 1 for some i, j > i > k, and 
choose the largest such i. 

If ei = (q - 2)/2, then wi_a = 1 by II, and we t ransform the addit ion 

e : - . .  ei+l ( q - 2 ) / 2  . . .  
v : . . .  0 q / 2  . . .  

u :  . . .  ei+l + l 0 . . .  

to 

e :  " "  ei+l ( q - 2 ) / 2  . . .  
v ' :  . . .  0 0 . . .  
U ' :  " ' "  ei+ 1 q / 2  . . .  

This strictly decreases the sum of digits, and thus cannot occur. (If q = 2 and 
ei+i = 1, then v, u', v' are as above, but  (u~+2, u~+l) = (1, 0); this can indeed 
o c c u r . )  

If c~ = q / 2 ,  then Ci+l _< (q - 2)/2 by III. Furthermore,  ei-1 = (q - 2)/2, 
since c~_1 _> q / 2  implies i E/3,  and e~_l < (q - 4)/2 implies i = k and case a), 
which we ruled out. We transform the addit ion 
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e :  

V :  

U :  

ei+t q/2 ( q .  2)/2 .~ 

0 q/2 - -  W i - i  V i - 1  ~ 1 7 6 1 7 6  

�9 " ei+l Jr- 1 0 Ui-i 

to 

Let 

v p : 

t~ ~ : 

ei+t q/2 ( q -  2)/2 
0 0 0 

ei+l q/2 ( q -  2)/2 + wi_2 

= ~ ( ~ )  + ~ ( ~ )  - (~ , (~ ' )  + ~ ( r  

= e i +  1 + 1 + (q/2 - wi-1) + ui-1 + vi-1 

- ( e i+ ,  + q/2 + (q - 2)/2 + wi_2) 

= u i - 1  + v i - 1  - q / 2  + 2 - w i - 1  - w ~ _ 2 .  

If Wi--1 = 0 ,  then ui-1 = (q - 2)/2 + wi-2, vi-1 = 0, and r! = I If wi,~ = 1, 
then ui_x = 0, vi_~ = (q + 2)/2 - wi-2, and r] = 2 - 2wi_2 >_ 0. In either case, 
the t ransformation does not increase the sum of digits. 

X. I f i e B U ~ D ,  t h e n w i = 0 .  

This follows from 1I if e~ _< (q - 4)/2, from VII if e; = (q - 2)/2 and 
e~_l _< (q - 2) /2 or ei+~ _< (q - 2)/2, from IX if ei = (q - 2 ) / 2  and ei_.:. > q/2 
and e~+l _> q/2, from II and VIII  if ei = q/2 and ei-1 <_ (q 4)/2 and ei+l __< 
( q -  4)/2, and from IX if e~ = q/2 and el-1 = ( q -  2)/2 or ei+l = ( q -  2)/2. 
One checks tha t  this exhaus t s  all possibilities. 

Now V, VI, X, and (5.6) imply that  w~ = e; for all iv and hence (ii). 

(iii) It is sufficient to show that  

~rq(a) + ~rq(b) = r + 2/~ + 7 - 5. 

For 0 < i < n ~ l e t  
~i = a~ + b~ - e~ _> 0 (5.7) 

be the excess over the minimal value e~. Thus ei E {0, 1}, and going back to 
(5.5) and the following paragraph, we find 

~ = ~  ~ ( i C B U Z ~ a n d i - l ~ ) o r ( i e B a n d i - 1 r  

or (i e ~ and ~, = (q - 2)/2) or (i r ~ U ~ and ~ = q /2) .  
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It is sufficient to show that  

ei = 2/3 + 7 - 5. (5.9) 
o<i_<,~ 

Let { j l , . - . , k l } ,  { j2 , . . . ,k2} ,  . . . , { j ~ , . . . , k , }  be a maximal sequence of 
blocks with a bridge De = {kl - 1 , . . .  ,j~+a + 1} between consecutive b]ocks, so 
that  s >_ 1, Dl C_ D for 1 <__ g < s, and j l  + 1, k, - 1 ~ 13 U 79. (In particular, 
{ j l , . . . ,  k,} C_ 13 U :D is a maximal subinterval.) For j l  + 1 > i > k,, e; equals 
1 if and only if 

i = j l  + 1 or i =  k8 or (i e 7? and ei = ( q -  2) /2) ,  

by (5.8). If 7e = (kl - je+l - 2)/2 is the number  of q/2's in bridge De (i.e., the 
number  of bumps in De), then there are 7e + 1 many (q - 2)/2's in De, and 

ei = 2 +  ~ (7~+1)  
jl-l>i>_ks l~g<s  

= 2 +  ~ " / e + s - 1  
1 <g< 8 

= ~_, 7 e + 2 s - ( s - 1 ) .  

Furthermore,  for i not in or adjacent to B U D, ei = 1 only if ei = q/2 and 
i r B. Adding up, (5.9) follows, t:] 

6. The maximal depth 

In this section, we determine the range of values assumed by crg(e) for 0 _< e < 
qL r ( e ) i s  often a reasonable estimator for ag(e) ,  namely 

r(e) _< a~(e) < r(e) + n + (n rood 2) (6.1) 

holds for any non-negative e < q", with n mod 2 E {0, 1}. The left inequality 
follows from Theorem 5.4 (iii) and 5 _< /3, and for the right inequality, we 
consider t he /3+^ / se t s  {i, i -  1} for i a bump or i the right endpoint  of a block. 
These sets are disjoint and contained in { n -  1 , . . . ,  0 , - 1 } ,  hence 

~{(~)  = ,-(~) + 2/3 + ~, - ,~ < ,-(~) + 2~ + -~ _< ~-(~) + ,~ + (n rood 2).  
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For q >_ 3, the upper bound is achieved at any e whose q-ary representation 
( en_ l , . . .  , e0) has en_ i _.~ (q + 1.)/2 for odd i, and e~_i _< (q 3)/2 for even i, 
such as 

( q - l , 0 ,  q - l , 0 ,  q - l , 0 , . . . ) ,  

since then each (n - i) is a block for odd i. For q = 2, we always have r(e)  -- 0. 
Wha t  is the maximal  value of e~(e)?  It turns out to be sometimes smaller 

than  what  would be obtained from maximizing r(e)  in the right ha~d side of 
(6.1). 

EXAMPLE 6.1. For q = 8, we .have some examples with ~s:k(e) = L7n/2j + 1, 
for n = 5 and n = 6: 

44343 43434 43435 443434 443344 434344 
34000 , 00000 , 00003 , 340000 , 340034 , 000034 

100343 43434 43440 1003434 1003400 434400 

THEOREM 6.2. Let q,n C N, q >_ 2. Then the maximM value of ~r~:(e), for 
0 <_ e < q~, is Ln (q -  1)/2J + 1. 

PROOF. Set m = [(q - 1)/2j ,  and let 0 _< e < q~. We first consider the case 
tha t  q is odd, and let a, b be as constructed in (5.5) and the subsequent two 
lines. Since ek >_ (q + 1)/2 and ej+l < (q - 3)/2 in a block (j, . . . .  k), we have 
a i ,  bi <_ m for all i with 0 _< i < n, and an + b~ _< 1. Thus 

~r~(e) < 1 +nm = Ln(q- 1)/21 + 1. 

On the other hand,  the e with q-ary representation (rn + 1, m, r n , . . . ,  m) has 

cry(e) = m -  1 + ( n -  1)m + 2 = n m  + 1, 

by Theorem 5.4 (iii), and thus the upper bound can be achieved. 
Now we consider even q. Using the notat ion ei from (5.7), we have 

= , ( e )  + E = E (e:. + 
0<i<~ o<i<n 

and e* _< m for all i. The idea of the upper bound proof is roughly tha t  every 
index lies in an interval of even length in which the excess is at most 1/2 per 
index on average. More precisely, we claim tha t  for each i, n - 1 > i > 1, we 
h a v e  

e~ + e~_~ + ei + ei-t _< 2m + 1, 

except if 
i f[ 1!3 U D, ei = q/2, ei-1 = (q - 2)/2, i - 2 E/3.  (6.2) 

To prove the claim, we may assume that  e i  = e i - 1  = 1 ,  since e}' _< m for all i. 
Then,  using (5.8), we have one of the following cases: 
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1. i E B ,  i - I  ( _ B U i ) , i - 2 E B ,  

2. i q ~ B U : D , i - I  EB, i -2~_BU:D,  

3. i E D ,  e i = ( q - 2 ) / 2 ,  i - I E B ,  i - 2 r  

4. i ~ B U D ,  e~=q/2, i - I  ~ B U D ,  i - 2 E B .  

In case 1, we have ei-a < (q - 3) /2  and ei*_ 1 < m - 1. In cases 2 and 3, we 
have ei-1 > q/2 and again e~'_l < m - 1. In case 4, we have ei_~ <_ (q - 2)/2,  
and either (6.2) or ei_a _< ( q -  3) /2  and e~* 1 < m - 1. Thus  the claim is proven. 

Now assume (6.2), and define j by n + 1 _> j > i, 

(ej,...,ei_l) = ( e j ,  e j _ l , q / 2 ,  ( q - -  2)/2, q/2, (q  - -  2)/2,...,q/2, (q  --  2)/2), 

and (ej, ej_l)  r (q/2,(q-  2)/2)  (using e.+l  = e .  = 0 ) .  We claim that  

e; + e;_ 1 + ej + ej_~ < 2m.  (6.3) 

To prove (6.3), first suppose that  ej_l = (q - 2)/2.  Then ej # q/2 and j r B 
(since otherwise i fi :D), hence e i _< ( q - 2 ) / 2 .  Then ej = ej_x = 0. Now suppose 
that  ej_~ ~ (q - 2)/2.  Then ej_a < (q - 4)/2,  since otherwise j - 1 E B and 
i E D. Then e~_ 1 < m - 1, ej_ 1 = 0,  and 

e ; + e ; _  l + e J + e j _ l  < m + ( m - 1 ) + l + O = 2 m .  

(6.3) implies tha t  

(4 + ,~) 
j>k>i -1  

1 
<_ 2m + (j - i -  2)(m + -~) + 2m + 2 

1 
= ( j - i + 2 ) ( m + ~ ) .  

Furthermore,  if j 

ej = ej-1 = ~j = g j - 1  = 0,  and 

. 1 
(% + ok) _< (n + I - i)(m+ ~) + I. 

n>k>i-1  

I f j = n ,  t h e n e j = e j = e j _ i = 0 ,  e~_ i < m - l , a n d  

= n + 1, as in the third addit ion of Example  6.1, then 

(4+~k) < m - l + ( ~ - O m +  n - / - 2  
~_>k>i-1 2 

1 1 
= ( n + l - i ) ( m + - ~ ) - - ~ .  

+ 2  
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Putting things together, we have shown that the set {n - 1,. o o~ 0} of indices 
can be partitioned into singletons (i) with e,*. + e~ _< m, and intervals of:even 
length with excess at most 1/2 per index, except that the leftmost interval may 
have excess one more (corresponding to j = n + 1 as above, or e~ = 1 as in the 
first and fourth addition of Example 6.1). Thus 

~ ( e )  <_ n . m  + Ln/2J + 1 = In(q-- t ) /2j  + 1. 

To show that this bound can be achieved, we consider the e with q-dry 
representation 

(q/2, q / 2 , ( q - 2 ) / 2 ,  q/2,(q - 2 ) / 2 ,  q / 2 , . . . ) ,  

as the first and fourth addition in Example 6.1. Then r(e) = n m ,  ~(e) = !, 
~/(e) = [ ( n - 2 ) / 2 J ,  $(e) = 0, so that a t ( e )  = r i m + 2 +  [ ( n - 2 ) / 2 j  = 
L n ( q -  1)/2J + i. [] 

F / 
COROLLARY 6.3. Let q >_ 2, n E N, 0 <_ e < q", and g = 81ogyniq- !)]. Then 
e can be computed by'an addition/subtraction chain with free muItiplication 
by q of depth g, and i f  n(q - 1) is not a power of two, of depth g - 1. 

For large n and randomly chosen e with 0 _< e < q~, the expected value of 
e~(e) is approximately n ( q -  1)(q+ 1)/4q if q is odd, and n ( q -  1)(q+ 2) /4(q+ 1) 
if q is even. For large q, this confirms the intuition that c~g(e) should be on 
average about half as large as the expected value n(q - 1)/2 of crq(e). 

7. Fermat 's  Litt le  T h e o r e m  

In our usual notation, suppose that 0 _< e < qL What is the relation between 
arithmetic circuits value-computing rr*Fq, using only multiplication (or multipii- 
cation and division) and free qth powers, and addition (or addition/subtraction) 
chains with free multiplication by q computing e? Obviously, any chain gives 
an arithmetic circuit computing x *, without changing size or depth. On the 
other hand, an arithmetic circuit a as above computing x * yields a chain for 
e. But "value-computes", as defined in Section 3, only requires a to compute 
some x d with a d = a ~ for all a E Fq.. If a division occurs in a, this is required 
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only for a # 0; in the following, we work with this condition. From Fermat's 
Little Theorem 

Va e Fr \ {0} aq'-I  = 1, 

we find that 

is a necessary and sufficient condition. 
may actually be advantageous: 

d -  e mod q = -  1 

It is somewhat surprising that d > e 

EXAMPLE 7.1. For q = 8, n = 3, e = 342, with octal representation (526)s, 
and d = e + 7.  (83 - 1) = 3919 = (7517)s, we have a~(e) = 9 > 7 = cry(d). 
The two optimal octal additions are: 

e 526 d = 7517 
302 , 301 

1030 10020 

By  Theorem 4.5, x e requires depth 4, while x d can be computed in depth 3. 

We now prove that if we add s(q ~ - 1) to e for small s (namely s < q=), 
• cannot drop by more than two, as in Example 7.1. We first need the then C~q 

following fact about "concatenating" nonnegative integers s, d < q~ to form 
sq '~ + d. We denote by B~ and Bd C_ {0, . . . ,  n -- 1} the set of block indices from 
(5.1) for s and d, respectively. 

LEMMA 7.2. Let q >_ 2, n E N, 0 < d, s < q% Then 

+ d) _ + < + d) + 2,  

and i f  O ~_ Bs, then 

a~q (S) + a~q (d) <_ a~(sq '~ + d) + 1. 

PROOF. The first inequality follows from (4.4). For the second inequality, let 
e = ,qn + d, and denote by Be and :De C {0 , . . . ,  2n - 1} the set of block and 
bridge indices for e, as in (5.1) and (5.2), respectively. Let Cd, Cs _ {0 , . . . ,  n - - l )  
be the set of bump indices for d, 8, respectively. 

We associate to each block { j , . . . ,  k} of s the interval {j + n , . . . ,  k+n} ,  and 
to each block { j , . . . ,  k} of d the interval { j , . . . ,  k}. Then we have associated 
to each block of s or d a block of e, except if 0 E B, and n - 1 E •d, in 
which case two blocks are merged into one. Hence fl(s) + ~(d) </~(e) + 1, and 

+ if 
0 • B, or n -  1 r Bd. (7.1) 
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Similarly, we can associate to each bump  of s or d a bump  of e, excep~ possibly 
for a "border conflict" at n - 1 or n. Thus 3,(s) + 7(d) < 7(e) + 2, and 
~(s) + ~(~) = ~(~) if 

(0 r C, or n - 1 r Ba U Ca) and (0 r U C~ or n - 1 r Ca). (7.2) 

In the same vein, we have 8(s) + ~(d) _> 3(e) - 1, and 6(s) + ~(d) = 8(e) if 

n r  and n -  1 r162 (7.,3) 

Note that  Bs n C, = Bd f-I Ca = O. If (7.1) is not satisfied, then 0 E ~3, and 
n - 1 e Be, and (7.2) and (7.3) hold. Similarly, the  negation of (7.2) implies 
that  n , n  - 1 E Be and (7.3). Lastly, r(s)  + r(d) = r(e).  Thus 

~ ( s )  + ~ ( d )  = ~(s) + 2/~(s) + ~(s) - ~(s) + ~(d) + 2~(~)+  ~(d) - ~(d) 
< ~-(e) + 2~(e) +-y(e) - ~(~) + 2 
= ~ ( e )  + 2. 

This proves the first claim. 
If 0 ~ Bs, we can have equali ty in the second inequali ty onty ~f 3'(s) + 

7(d) = 7(e)  + 2. But  then ~(s)  + ~(d) = fl(e) - 1 and (7.3) holds, so that  
cry(s) + a{(d)  = a~(sq ~ + d). This proves the second claim, c3 

THEOREM 7.3. Let q > 2, n E N, 0 < e,s  < q'~. Then 

a~(e + s(q ~ - 1)) >_ a~q ( e ) -  2. 

PROOF. S e t d = e + 8 ( q  " - l ) , a n d w r i t e d = d l q  n + d o w i t h O ~ d o , d i  < q %  
Then 

e = d -  s(q '~ - l) = (dl - s)q '~ + do + s < q% 

Since do + s < 2q ", we have dl - s = 0 or dl - s + 1 = O. First  suppose that 

dl = s. Then e = do § s, and by (4.4) and Lemma 7.2, we have 

Cr~q (e) < a~(do) + a~(s)  < aq(Sq" + do) + 2 = Crq(d) + 2. 

Now suppose that  dl + 1 = s. Then q= + e = do + s, and if q >_ 3, then 

= a~(q n + e ) <  a~(do) + ~r~(s) 

< cr~q(dxq " + do) + 2 + 1. 



comput complexity 1 (1991) Exponentiation in finite fields 393 

For q = 2, the first equality may fail to hold, since a~(e)  = ~r~(2" -k e) is 
possible. But then either di is odd, in which case 0 t/Bdl and a~(8) _< ~r~(dl), 
or dl is even, in which case a~2(do)+~r~(dl) ~ a~(da2 n + d o ) +  1, by the second 
part of Lemma 7.2. In either case, we conclude that  ~r~(d) > a~(e) - 2. 

It remains open whether o'~(e + s(q n - 1)) _> a ~ ( e ) -  2 for any s E l .  The 
method above will show that (rq~(e + s(q '~ -  1)) _> % ~ ( e ) -  2i if s < qi~. 
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