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NCI: THE A U T O M A T A - T H E O R E T I C  
V I E W P O I N T  

P I E R R E  M C K E N Z I E ,  P I E R R E  PI~LADEAU 

AND DENIS THt~RIEN 

Abs t rac t .  Concepts from the Mgebraic theory of finite automata are 
carried over to the "program-over-monoid" setting which underlies Bar- 
rington's Mgebraic characterization of the complexity class N C  1. Sets of 
languages accepted by polynomial-length programs over finite monoids 
drawn from a given monoid variety V emerge as fundamental language 
classes: as V ranges over monoid varieties these classes capture and 
indeed refine the usual bounded-depth circuit parametrization of non- 
uniform N C  1 subclasses. Here it is shown that any two separable such 
language classes can be separated by a regular language. Basic proper- 
ties of these language classes are exhibited. New conditions are given un- 
der which distinct varieties tead to equal or to distinct language classes, 
thus sharpening our knowledge of the internal structure of non-uniform 
N C  1. The paper concludes with the statement of a conjecture whose 
proof would refine and then resolve most open questions about this in- 
ternal structure. 
Key  words.  Automata. circuit, complexity, monoid, variety. 
Subjec t  classifications. 68Q15, 68Q70, 20M35. 

1. I n t r o d u c t i o n  

Over the last ten years a great deal of effort was devoted to the study of 
"small" complexity classes believed to be properly contained in the familiar 
class P T I M E .  An important such class is N C  !, defined in terms of bounded- 
indegree uniform Boolean circuit families of logarithmic depth [33, !5]. Interest 
in N C  1 and its subclasses stems from several sources: first, these classes are 
relevant to the study of relativized complexity [17, 1, 48, !9, 23]; second, they 
play a role in the study of parallel computation [15]; third, significant lower 
bounds can be proved concerning them [1, 48, 17, 37, 19, 41]. 

Partly in order to study N U  1 restrictions, Borodin et al. and Chandra et aI. 

in 1983 introduced bounded-width branching programs [10, 14]. Three years 
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later, Barrington proved in a far-reaching paper that  width-5 polynomial-length 
branching programs precisely characterize non-uniform N C  1 [2]. Barrington's 
slick construction exploited a consequence of the algebraic property of non- 
solvability of the symmetr ic  group of degree 5. The bounded-width branching 
program model thus gave rise to the "non-uniform deterministic finite automa- 
ton" [2, 8] or "program over a monoid  M "  or "M-program"  [26, 9]. Recall 
that  a monoid is a set equipped with an associative operation and an identi ty 
element; a monoid is aperiodic iff no subset of it forms a non-trivial group, 
and it is solvable iff no subset of it forms a non-solvable group. All monoids 
considered in this paper are finite. Deep connections between M-programs 
and circuit complexity were soon uncovered: when M ranges respectively over 
aperiodic monoids [8], solvable monoids [8] and non-solvable monoids [2], poly- 
nomial length M-programs precisely characterize the non-uniform versions of 
the classes A C  ~ A C C  ~ and N C  1 (where A C  ~ and A C C  ~ are defined in terms 
of bounded-depth  unbounded-fan-in circuits with gates from {V, A} and from 
{V, A, MODq}  respectively, a MODq gate output t ing  1 iff the sum of its binary 
inputs is a mult iple of the integer q); even more strikingly, in the cases of A C  ~ 

and A C C  ~ the hierarchies induced by taking the exact depth of the circuits 
correspond to natural  parametrizations of aperiodic and solvable monoids [8]. 

Independently from the above research, the last 25 years have seen the 
growth of an elaborate theory elucidating connections between combinatorial  
properties of classes of regular languages and algebraic properties of the fi- 
nite au tomata  which recognize these languages (see [16, 34]). In particular, 
this theory has been very successful in the study of regular languages whose 
minimal  automata,  viewed as monoids of transformations on their state sets, 
exclude non-solvable groups (i.e. are solvable monoids). As an oft-cited ex- 
ample, the regular languages accepted by aperiodic finite au tomata  are the 
star-free languages [38]. Countless further examples arise from the nilpotency 
class parametrizat ion of nilpotent groups [46], from parametrizations of solv- 
able groups and solvable monoids [42, 45], or from a wealth of natural  monoid 
classes drawn from semigroup theory (see for instance [39, 11, 27, 16, 12]). 

In the context of polynomial-length M-programs, the full power of N C  1 

is at tained as soon as M contains a non-solvable group [2, 3]. Hence from 
the M-program point of view a great deal of the internal structure of N C  1 

is determined exclusively by solvable monoids. Since solvable monoids are 
precisely those which are well understood in the restricted setting of au tomata  
theory, it is compelling to systematically probe the connections between N C  1 

subclasses and M-programs under the guidance of the algebraic theory of finite 
automata.  This is the purpose of the present paper. 
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Because the uniformity issue in the definition of circuit-based complexity 
classes is extraneous to the connections with M-programs discussed in this 
paper, we focus on non-uniform N C  1 and its subclasses. Much of our work 
would apply to any reasonable uniform version of these classes because the 
languages which we use to discuss the separation of the non-uniform classes 
are regular languages. Membership of a regular language in: a natural non- 
uniform complexity class should certainly be preserved under any reasonable 
uniformity criterion (and non-membership is preserved under any criterion). 
We nonetheless take care to distinguish between our usages of N C  1 and of 
non-uniform N C  1. 

The central concept in the ensuing theory is found to be the family P ( V )  of 
languages recognized by polynomial-length M-programs when M ranges over 
monoids in monoid varie ty  V. Indeed the fundamental notion of a. naturM 
class of monoids is that of a variety; this concept, adapted from univeisal al- 
gebra, plays an important role in the theory of regular languages. Informally 
speaking, a variety of monoids is a class of monoids which share a set of prop- 
erties. For example, the class of monoids whose elements satisfy a fixed set 
of equations forms a variety; a specific example is the variety of commutative 
monoids, defined by the equation x y  = y z .  See section 2 for technical defim- 
tions and further motivation. Monoid varieties are thus the  natural units in 
the classification of all monoids and classes P ( V )  arise as the natural units in 
the classification of languages accepted by M-programs. 

In this paper we begin by identifying basic properties of language classes 
5D(V). We note that such classes are closed under Boolean operations, under 
quotients, and under a restricted version of inverse morphism which we call 
inverse "length-multiplying" morphisms. Then we observe that, any two sepa- 
rable classes 7)(V) and. T~(W) can be separated by a regular language. This 
is of particular interest in light of the close connection emphasized herein be- 
tween classes 79(V) and subclasses of non-uniform N C  1. The reasoning !ending 
to our observation points to candidate regular languages, namely "word prob- 
lems" over appropriately defined monoids, for separating the various subclasses 
of N C  1 thought to be distinct. 

Then, in the context of classes 70(V), we relate different ways of extending 
a variety V to the combinatoriM operation of adding a "level of counting" in 
the corresponding classes of circuits. From this, and fl'om the correspondence 
established by Barrington. Straubing and Th~rien between applying a wreath 
product and increasing the depth of an unbounded-fan-in circuit [8~ 6], we 
rederive in a uniform manner and extend the connections between circuits and 
M-programs: as V ranges over well-studied monoid varieties, 7~(V) ranges over 
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a very extensive list of subclasses of non-uniform N C  1 including, in fact, all 
such subclasses considered in the recent literature with the exception of those 
defined in terms of threshold functions [29] (see nonetheless [9]). Therefore, 
the classes :P(u not only provide a unified picture of the internal structure of 
non-uniform N C  1 but the details of this structure almost completely hinge on 
what emerges as the core question in the theory: 

[ Exactly when does V 5r W entail 7)(V) # T~(W)? 

A complete answer to this question would settle most major open questions 
about N C  1 and non-uniiorm N C  1, including, for instance, the computational 
power of bounded-depth circuits made up solely of M O D o  gates, and the precise 
relationship between A C C  ~ and A C  ~ or N C  1 (see [49]). We are unable to claim 
a complete answer to this question here. However, noting that the rich lattice 
of monoid varieties affords a much finer parametrization of non-uniform N C  1 

than that merely obtained in terms of circuit types and circuit depth, we are 
able in some cases to establish new algebraic conditions, on varieties V and W,  
under which class 7~(V) differs from 7)(W) or under which T'(V) = T'(W). To 
discuss these in the sequel we will say that V and W spli t  if :P(V) r ~ ( W )  
and that V and W merge otherwise. 

Known results about N C  1 immediately answer our core question in the 
case of several pairs of varieties V and W.  For instance, Barrington's work 
[2] implies that V and W merge whenever each contains a non-solvable group. 
On the other hand, for p a fixed prime, it follows from Smolensky's lower 
bounds [37, 41] that V and W split whenever exactly one of V and W has 
the property that the order of each group in the variety is a power of p. We 
give new answers to the question of the splitting or merging of varieties in the 
case of Abelian monoid varieties, nilpotent group varieties, J-trivial monoids, 
R-trivial monoids, and the variety B2 (see the next section for definitions). We 
prove that any two distinct Abelian monoid varieties split, that the variety of 
nilpotent groups of expollent q merges with the variety of nilpotent groups of 
exponent q' if and only if q and q' have the same prime divisors, and that J,  
R and B2 all split from each other. Our arguments in some cases are Ramsey- 
theoretic and are thus weaker but substantially simpler than, say, those of 
Smolensky [41] or of Furst, Sa.xe and Sipser [17, 19]. 

The final contribution of this paper is the statement of a single conjecture 
whose validity would provide in a single blow the expected answers to just 
about all open questions concerning the internal structures of N C  1 and of non- 
uniform N C  ~, with the exception of those involving bounded-depth threshold 
circuits. Indeed, verifying our conjecture would allow utilizing known results 
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from automata theory to separate A C  ~ CC O, A C C  ~ and NC ! (where CC~ -- 
also called pure A C C  by Yao [49]~comprises the union over all constants q 
of the sets of languages recognized by families of constant-depth unbounded 
fan-in circuits built solely from gates computing the MODq function): more- 
over strictness of the natura l  subhierarchies induced by considering the exact 
(constant) depth of the underlying circuits would follow. Validity of our conjec~ 
ture would also provide a common proof to separation results in [17] and [40]. 
Informally, this conjecture states that the situation with regard to the ability 
of solvable monoids to recursively count subwords, in the restricted se'Lting of 
regular language recognition, carries over verbatim to the more genera1 setting 
of classes To(V). We refer the reader to section 4 for the precise statement of 
this conjecture. (In passing we note that a related conjecture which however 
does not take the precise depth of circuits into account appears in [3]i see also 
[30].) 

This paper is organized as follows. Section 2 contains background and 
definitions. Section 3 develops basic properties Of classes To(V). Section 4 
ingroduces and then treats the fundamental question of the splitting or the 
merging of monoid varieties. Section 5 concludes with a discussion and pointers 
to further work. 

2. Background and notat ion  

We use "C" to denot.e proper inchlsion. By [n] we mean the se~ ~1 ,2 , . . . ,  n}. 
For sets S and T we write S T fox' the set of all functions f : T ~ S. A morphism 

from a monoid M to a monoid N is simply a function from M to N mapping 
the identity of M to the identity of N and verifying r  = r  for each 
x, y C M. We will require the following fact: 

FACT 2.1. (Ramsey, see [18]) Let s, k and c be positive integers. There exists 
an integer Ramsey(s  + k, k, c) such that for any larger integer n the following 
holds: n > s + k and any assignment of one of c colours to each k-eIement 
subset of [n] results in a particular (s + k )-element subset of In] all of whose 
own l~-element subsets are a,ssigned the same colour. 

2.1. F r o m  a u t o m a t a  .... In this subsection we outline the salien~ [ea~ures of 
algebraic automata theory: more details can be found ill [16, 34]. 

The class of regular subsets of A* can be defined as the smal}est family that 
contains the empty set and that is closed under Boolean operations (if L1 and 
L2 are regular~ then so are L1 U L2 and A*\  L1), letter-concatenation (if L1 and 
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L2 are regular, so is LlaL~ for any a E A) and star (if L is regular, so is L*). A 
famous theorem of Kleene [22] asserts that L is regular iff it can be recognized 
by a finite automaton. The algebraic approach replaces automata by monoids. 
A language L is rnorphism-recognized or .M-recognized by a monoid M iff there 
exists a morphism 0 : A* -+ M such that L = 0-1(F) for some F C_ M. 
The equivalence between recognition by automata and morphism-recognition 
by monoids is readily proved, so that Kleene's result can be restated as saying 
that a language is regular iff it can be M-recognized by a finite monoid. We will 
write .At(A*, M) for the collection of subsets of A* that are M-recognized by 
M and Ad(M) for the union, over all alphabets A, of the collections Ad(A*, M). 

Viewing monoids as language recognizers, it is natural to introduce an or- 
dering on finite monoids, based on their computing power. For monoids M, N, 
we thus define that M M-divides N, written M-<~N, iff 34(M)  _ Ad(N), 
i.e., any language M-recognized by M can also be M-recognized by N. The 
relation of M-division clearly forms a partial order 1. 

The following structural characterization of M-division is fundamental.  

FACT 2.2. M-~MN iff M is a morphic image of a submonoid of N. 

The last result implies that the algebraic structure of a monoid imposes 
combinatorial constraints on the languages M-recognizable by this monoid: 
much of the research on regular languages has focussed on making explicit 
the relationship between combinatorial descriptions of languages and algebraic 
properties of their recognizers. The proper level at which to consider this 
relationship was shown by Eilenberg [16] to be that of varieties. A class V 
of finite monoids forms a variety iff it is closed under M-division and finite 
direct product. Denote by Ad(A*,V) the class of subsets of A* which are 
M-recognized by a monoid in V, and by M ( V )  the union, over all alphabets 
A, of the classes 3A(A*,V). If V is a variety, it can be shown that, for each 
aiphabet A, AA(A*, V) is closed under Boolean operations and under left and 
right quotients (if L E Ad(A*,V), so is 'u-IL = {z :  ux ff L} and Lv -1 = {z :  
zv E L} for any u, v E A*); moreover the class M(V) is closed under inverse 
morphisms (if L C A/I(A*,V) and r  B* --* A* is a morphism, then r E 
r V)). In fact, the mapping V --+ Ad(V) is a bijection between monoid 
varieties and classes of regular languages satisfying these closure properties. 

1The partial order -<~ is actually defined oil t, he ~-34-classes where the equivalence "34 
is defined by M~.~ N iff 

M - ~ N  and N-<~M. 

[n view of Fact 2.2, we know that _ ~  is the isomorphism equivalence. 
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A classical example of this bijection relates star-free languages and aperiodic 
monoids [38]; other examples give combinatorial descriptions of the classes of 
languages recognized by commutative monoids [t6], nilpotent groups [46], J-  
trivial monoids [39], solvable groups [42, 45], solvable monoids [45], the variety 
generated by inverse semigroups [25] and monoids whose regular J-classes are 
rectangular bands [36]. 

A slightly different point of view on the above notion of ~4-recognition 
by monoid can be given The operation of a monoid M induces a canonical 
surjective morphism rlM : M* -* M, which is defined by evaluating the product 
of the elements of a given sequence. Any morphism from A* to M can be viewed 
as a morphism r : A* ~ M* which is then composed with V.M: the action of 
is thus a "preprocessing" that transforms an input sequence z in A* to a string 
r in M*, the set of words over the alphabet of M~ and r is then evaluated 
according to the "transition function" riM. Let the set of word problems over M, 
denoted W ( M ) ,  be the family {rlMl(rn) : m C M} of subsets of M*: obviously 
W ( M )  c_ 3d(M*, M)  and the computing power of a monoid M is characterized 
in a strong sense by the languages in W(M) .  

FACT 2.3. Let V be the variety generated by the monoid M: then ,~4(A*,V) 
is the Boolean algebra generated by the Ianguages of the form ~-I(L), where 
r : A* --* M* is a morphism and L E W(M).  

2.2 . . . .  to  p r o g r a m s .  In this subsection we describe how the classical notion 
of recognition by a monoid, which is based on morphisms as described in the 
previous subsection, can be extended by allowing more general mappings be- 
tween monoids: this new class of functions, which we call programs, constitutes 
the key to the algebraic understanding of non-uniform NC 1. 

Fix a finite set A and a monoid M. An M-program is a sequence r = (r 
where, for each n, r is determined by a sequence ~'1 . . .  ut(~) of instructions, each 
instruction having the form (i, f )  for some i E In] and f E M A. (Occasionally 
~b~ is referred to as an "n-input M-program".) Setting, for any x = al - . .  a~ E 
A ~, (i, f ) (z)  = f(ai), r A '~ ~ M is then defined as mapping z to the product 
in M of the elements u l ( z ) : . ,  v't(,O(x). In this way the M-program r induces a 
map r : A* --* M. Program r has polynomial length if there is a constant c such 
that I(n) C O(nC). A subset L of A* is program-recognized or P-recognized by 
M iff there exists a polynomial length M-program r : A* --* M and a sequence 
(F~) of subsets of M such that L N A ~ = r for each n. The class of 
languages thus recognized by M will be denoted by P(A*, M) and P ( M )  will 
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stand for UA 5a(A*, M).  For a variety V, the important class 

U 5a(M) 
MeV 

is denoted 5a(V). 
EXAMPLE. The (non-regular) language L = {w E {0, 1}* ] w is a palin- 

drome } is 5a-recognizable by a transformation monoid M on 3 points. Indeed 
define the transformations 

(123) (123) (123) (123) 
a =  2 2 3 ; b =  3 1 3 ; c =  1 3 3 ; e =  1 2 3 

and define for each n the n-input M-program r = v lv2 . . ,  v2[~12j as follows, 
where we represent an instruction ( i , f ) ,  i E [hi, f :  {0, 1} --* M, as the triple 
( i , f (O), f(1)):  

ul = (1, a, e) 
~2 = (n,  b, c) 
.3 = (2, a, e) 
u4 = (n - 1, b, c) 

"~L,,/2J-, = (Lnl2J,a, ~) 
v 2 [ n / 2 j  = ([n/2] + 1,b,c) 

Then because 

ab= 1 1 3 ; e c =  1 3 3 ; a c =  3 3 3 ; e b =  3 1 3 ' 

one sees that,  for any w E {0, 1} n, r fixes 1 iff w is a palindrome. Setting 

F = {t ~ M I t  fixes 1}, 

with M the transformation monoid generated by {a, b, c, e}, thus yields L N 
{0, 1} '~ = r for each n. Note that in this example we do not make use of 
the flexibility allowing different accepting sets tbr different input lengths�9 [] 

Note that we do not impose conditions, apart from length, on the sequence 
(r defining a program r Such a non-uniform model of computation can 
thus recognize non-recursively enumerable sets: for example, any L C_ {a}* is 
5a-recognized by any monoid M. On the other hand, we believe that all results 
presented here can be made to carry over to the usual uniform settings (see for 
instance [15, 4] for appropriate definitions). 
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Observe finally that in the same way as a morphism into a monoid M can be 
"factored through" the evaluation morphism r/M (see the end of subsection 2.1), 

an M-program ~ : A*-+  M can be viewed as (p : A* ~'.~ M* ~ M, where 
qS' : A* -+ M* is given by o without doing the multiplication in M. Formally 
if w C A* is a word of length n and the n th program is ~b~ = ul . . .  t'~(,~ i, then 

= c M "  

2.3. So lvab le  m o n o i d s .  We refer the reader ~o any text on group theory 
for the definitions of solvable groups, simple groups, and non-solvable groups. 
A monoid is solvable iff none of it, s subsets are non-solvable groups. Solvable 
monoids have been investigated in depth from the algebraic point of view and 
from the point of view of their power as M-recognizers. In this subsection 
we gather known facts about solvable monoids and we introduce some of the 
monoid varieties which will be referred ~o in this paper. 

Let Msol denote the variety of solvable monoids. Conceptually, the "sim- 
plest" varieties contained in Msol are the Abelian varieties Comt,q defined for 
any t >_ 0 and q _> 1 as follows: Comt,q is the variety generated by the one- 
generated monoid Ct,q determined by the equation x t = a: t+q. It is known that 
jDl(Comt,q) is the Boolean algebra of languages defined by counting prescribed 
input letters "threshold t and modulo q" [16]. Now the following language 
construction, based on the idea of "counting subwords in context", extends 
this notion of counting in order to provide a thorough analysis of the internal 
structure of M~ol [45]. For any t _> 0. q >_ 1. let 7~,q denote the finite-index 
congruence on the natural integers defined by 

iT t ,q j  iff ( i = j )  or (min{i , j}  >~  a n d q i i - j ) .  

Now let L o , . ~  C A*, a ~ , . . . , a , .  E A,  w E A* and define [Wi[Lo,~,c 1 ........ L~] 

to be the number of factorizations of w in the form w = woalw~ . . .  a~w~ with 
wi E L i  for i = 0 , . . . , r ' .  (When a C A we write ]'wl~ for I'~I~*oA*.) Finally, 
define the language 

[Lo, al, L1 , . . . ,  a~, L~]~,~,q 

as the set {w : i 7,,v i'u~l[L0,fZl,L1 ....... .,L,.]}. This construction induces an op- 
eration on varieties as follows: for any V, define Qt ,vV  to be the smallest 
variety containing V and the syntactic monoid of any language of the form 
[L0, a~, L~ , . . . ,  a~, L,.]i,t,q where L0 , . . . ,  L~ are in A4 (V). There is an operation 
on monoids corresponding to this product on languages, hence a purely alge- 
braic description of Q,,qV can be given [35, 47]. Let a!so Q V  be  the join over 
all t and q of the Qt,qu then M.~ol is the smallest variety closed under the 
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Q operator. If t is fixed to 0, the Q-closure of the trivial variety defines the 
variety Gsoi of solvable groups, and if q is fixed to 1 instead, the variety A of 
aperiodic or "group-free" monoids is obtained. 

A natural parametrization of the variety A can be obtained with the oper- 
ator Q1,1. Let B1 = Coml,1 and Bk = QI , IBk-1  for all k > 2. 

FACT 2.4. A = U Bk. 
k>l 

The hierarchy given by the Bk corresponds to the well known dot-depth hier- 
archy for k _> 2 (as adapted from the semigroup version given in [16]). Other 
well-studied aperiodic monoid varieties are Jk C Jk+l C J C R C B2, where for 
any k Jk is defined as the variety generated by the syntactic monoids of the lan- 
guages A*alA* . . .  akA*, and J and R are the varieties of J-triviM and R-trivial 
monoids respectively (see [34]). Now fix a finite alphabet A. Say x = a l a 2 . . ,  ar 
is a k-subword of w iff r _< k and w can be written woaawla2w~.. ,  arwr. Define 
for each k > 1 the equivalence relation ~k on A* as follows: u " k  v iff u and v 
possess the same set of k-subwords. Further, define - k  refining "~k as follows: 
u - k  v iff each prefix of u is ,,~k-equivalent to some prefix of v and vice versa. 
We will require the following: 

FACT 2 .5 .  a )  [39] For any k ~_ 1, L E M ( A * , J k )  iff  L is a union of ,'~k-classes. 

b)  [16, 12] L E M ( A * ,  R) iff there is a k such that L is a union of =_k-classes. 

c) [12] M ( A * , R )  is the the set of languages which can be writ ten as disjoint 
union of languages of the form 

AoalAla2A2 . . . arA,~ 

with n > O, a l , . . .  ,a,~ e A, A~ C_ (A \ {ai+l}) for 0 < i _< n - 1 and 
A ~ C A .  

We now recall the definition of the wreath product, which plays a crucial role 
in the algebraic decomposition of solvable monoids. If M and N are monoids, 
the wreath product N o M  is the set N M x M  equipped with the binary operation 

= ( f "  

with 

f " :  M - ~ N  

w ~ [f(x)][f'(mm)]. 
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Then for any monoid M, denote by 2f/ the monoid obtained from the right 
regular representation of M by adding the constant transformations, and define 

as the variety generated by the monoids .g/, M E V. Finally, for any two 
varieties V and W,  define V * W  as the variety generated by all wreath products 
N o M with N E V, M E W [16, 34]. 

FACT 2.6. a) [44] For any t >_ 0 and q _> 1, Comt,q*V C_ Q~,qV. 

b) [30] For any ~ _> 0 and q _> 1, Corn~,q.V _C Q~,qV. 

We say V is a group variety iff it only contains groups. The wreath product 
closure of solvable groups yields the group variety G~ol and the wreath product 
closure of Gsol and A yields M~ol [24]. Turning to G~ol, let next Gp be the 
variety of p-groups, where p is a prime integer, and for any q > !, Gnil,q be the 
smallest variety containing Gp for all prime divisors p of q. It is well-known 
that Gp is closed under wreath product. We will also use the following: 

FACT 2.7. [45] For any group variety V, Q0,qV = Gni|,q*V. 

2.4. N C  1 and its subclasses. The complexity class non-uniform N C  1 is 
defined as the set of languages, over alphabet {0, 1}, which are recognized by 
logarithmic-depth Boolean circuit families whose gates are NOTs and bounded- 
in-degree ANDs and ORs [33, 15]. Since we occasionally mention the uniform 
version, simply written NC 1, of this class, note for definiteness that we then 
refer to the UE. uniformity criterion adopted by Cook [15, Page 5]. Following 
Barrington and Th~rien [8], we generalize to an arbitrary finite alphabet A by 
allowing input gates "a E B?" which produce the Boolean value 1 iff the input 
symbol a belongs to the subset B of A. 

We will use the following precise definitions of subclasses of non-uniform 
NC 1. Define for any L C A*: 

o LEAC~ foreachn ,  L O A  ~ = A  ~ o r L M A  '~=0;  

o for k > 0, L E AC~ iff, for each n, L A A" is a constant-size Boolean 
function of languages of the form AND(L1,. . . ,  L~) where 

L~ E AC~ U {AJ- '  aA'~-J : j E [n],a E A} 

and ~" ~ O(n~).  
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Here AND(L1,.. . ,LT) stands for NI<i<T L~: observe that, when A = {0, 1}, 
intersecting with AJ-11A ~-j amounts to feeding the j th  input bit into the 
AND gate while intersecting with AJ-10A ~-j corresponds to feeding in the 
negation of the j th  input. This definition of AND as an intersection accounts 
for a larger alphabet in a natural way. Note further that, by DeMorgan's laws, 
our circuits do not require unbounded-fan-in OR gates because constant-size 
Boolean combinations, including negations, are permitted at each level. 

Starting with the same basis, we define the classes CC~ (ACC~ by 
using languages of the form MODq(L1,..., Lr) instead of (in addition to) AND 
in the inductive step, where 

MODq(L,,.. .Lr) = {x e An: [{i:x e Ldt = 0 (mod q)}. 

Finally we set A C  ~ = Uk AC~ CC~ = Uk CC~ ACC~ = Uk ACC~ 
C C~ = Uq CC~ and ACC ~ = Uq ACC~ �9 For each k, this definition of 
AC~ is equivalent to that used in [8] and for each q r 2, the classes CC~ 
and ACC~ coincide with those tbrmulated in [6]. 

We now state the known algebraic characterizations of the complexity sub- 
classes of non-uniform NC 1 which we just defined. These results are implicit 
in (or are easy consequences of) earlier work by Barrington, Straubing and 
Th6rien [8, 6]. 

THEOREM 2.8. a) The [ollowing holds: 

AC ~ = 7V(COml,t), 

cc~(q) = ~ ( C o m 0 , q ) ,  

ACC~ = ~ ( C o m , , q ) .  

b) Let, for any k >_ 1, Vk, Uk,q and Wk,q be varieties such that 

AC~ = P ( V ~ ) ,  

CC~ = P(U~,~) ,  

ACC~ = ~(W~,~) .  

Then 

A Ck+ 1 ~  = , f ) ( C o i T l l , l , ~ , r k ) ,  

cc~ : "p (Como ,~ .v~ ,~ ) ,  

ACC~ : ~ ( C o m , , ~ . W ~ , ~ ) .  
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3. Basic propert ies  

In this section we investigate general properties of the classes ~ ( V ) :  we no~e 
some of their closure properties, and we observe that  the regular languages in 
these classes completely characterize the classes. Here N and M are arbitrary 
finite monoids, and V is an arbitrary monoid variety. 

LEMMA 3.1. a) K L E P(A*,M) then its complement L C= P(A*,M). 

b) If n~ E P(A*,M1) and L2 E T'(A*,MI) the~:~ L~ N L2 E P(A*,MI x MI). 

c) !f L E P( A*, M1 x MI) then L is a (finite) Boolean combination of languages 
in P(M1) and P(MI). 

PROOF. Part  (a) is obvious. To prove (b), let 91 [~2) be an n-input M1- 
program (Ml-program) recognizing L 1 N A n (L 2 f-'l An) ,  W e  replace each in- 
struction ( i , f )  of 91 by (i, f )  where f(a) = (f(a), 1M:); similarlv replace each 
instruction (i, f )  of r by (i, f )  where f(a) = (1M1, f(a)). The program w ob- 
tained by concatenating 91 and 92 is such that  .~b(x) = (r r and thus 
recognizes L1 A L~ n A n using the obvious accepting subset of M1 x MI. The  
nth  term in the sequence (r has length IOtt + 1r hence polynomial in n. 
Finally for (c), suppose a language is P-recognized by an M-program o = (r 
with M E M1 x /142. Then this language can be written as a finite union of 
languages each of which is P-recognized by (r using an accepting sequence 
(F~) composed solely of the empty  set and a fixed singleton subset of M1 x M2 
Pick any such language L in the finite union. Using projections we construct 
r and r from p, and (F~ 0)) and (F~ 2)) from (F~), such that  L = L1 N L2 
where L1 is P-recognized by M~ via 91 with accepting sequence (F,~ ~)) and L2 
is P-recognized by M~ via 92 with accepting sequence (F,(2)). [] 

The proofs of the tbllowing three lemmas are similar in flavor to that  of 
Lemma 3.1, and are omitted.  

LEMMA 3.2. If N-<mM then P(N) C P(M). 

LEMMA 3.3. P ( M )  is closed under left and right quotients. 

Note that  contrary to the situation with M-recognit ion,  P ( M )  is ~ot closed 
under quotient by a non-singleton set of words (see [30, page 58]). 

LEMMA 3.4. Let 0 be a polynomial length program defining 0 : B* ---> A*. If 
L e P(A*, M) then O -1 (L) ~ P(B*, M). 
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We say a morphism 0 : t3" --~ A* is length-multiplgin 9 ifffor some k, !O(b)l = 
kfor  a l l b E B .  

COROLLARY 3.5. P ( V )  is dosed under (t~nite) Boolean operations, two-sided 
quotients and inverse length-multiplying morphisms. 

The class P(A*,M) obviously includes the set Ad(A*,M) of all regular 
subsets of A* that  are recognized by M in the sense of classical au tomata  theory: 
in general it includes much more. For example, all regular languages belong 
t:o ~ (G)  when G is a non-Abelian simple group; moreover we have ment ioned 
that  for any M, P(M)  includes non-recursive languages. Nevertheless, it turns 
out that  the regular languages in 7P(V) completely characterize the class. This 
has the striking consequence that any two separable families P ( V )  and P ( W )  
can be separated by a regular language. To see this, recall from subsection 2.1, 
for a monoid M, the evaluation morphism ~]M : M* -~ M and the set IV(M) 
of word problems over M. 

LEMMA 3.6. rf IV(M) C_ P ( V )  then P ( M )  C P (V) .  

PROOF. Suppose IV(M) ___ P (V) .  Consider a language in P(A*, M). Then 
this language is P-recognized by an M-program a = (cry). Now this language 
can be written as a finite union of languages each of which is P-recognized by 
( ~ )  using an accepting sequence (F~) composed solely of the empty  set and a 
fixed singleton. Hence by closure of P ( V )  under finite union (Corollary 3.5), 
it sumees to argue that  for each m E M we have c~g~(m) E P (V) .  Empty  sets 
in the relevant accepting sequences can be inserted subsequently. 

Now fix rn E M and suppose that  for some fixed n > 1 the program as is 
determined by the sequence of instructions ulu2.., uz. Since IV(M) _C P ( V ) ,  
there exists N E V such that  r/Ml(rn) is P-recognized by an N-program (r 
with an accepting sequence (Hk). Hence M nv t (rn) = We construct 
an n-input N-program ~bn from r by replacing each instruction (i, f ) ,  i E [r], 
f : M ~ N, by ( j ,h) ,  where u~ = (j,g) and h : A --+ N is defined by 
h(a) = f(g(a)). Thus, tbr any z E An: 

It, 

iff ~r~(z) = rn. 

Hence program ~b,~ with accepting set Hi recognizes ~r~ -1 (rn) so that  a sequence 
= (~bn) constructed in this fashion accepts ~r-l(rn) and has polynomial  length 

by virtue of the polynomial size of ( ~ )  and of (~bk). 

Denoting by Reg the set of all regu!ar languages, we thus have: 
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THEOREM 3.7. "P(V) = T'(W) i//"P(V) Yl Reg = 7P(W) (3 Reg. 

PROOF. Only the "if" direction needs proof, so suppose that P ( V )  .O Reg = 
P ( W )  Cl Reg. By symmetry  it suffices to argue P(V~ r) C "P(V). Pick any 
M E W.  Since languages in W(M)  are regular and certainly 

W ( M )  C 34(M)  c_ P ( M )  C P ( W ) ,  

we deduce W(M) C ;D(V). By Lemma 3.6 this implies J~(M) C_ P(V)..'~Ience 
~(W) C ~ ( v ) .  [] 

4. Algebraic classification of  N C  1 

In this section, we investigate in some detail the internal structure of non- 
uniform NC 1 as determined by the classes P (V) .  Our results divide into two 
groups: we present criteria under which distinct varieties merge, and then 
we establish a number of separation results. We are led finally to a natural 
conjecture whose verification would simultaneously imply most known results 
and settle several major open questions about NC t and non-uniform NC 1. 

THEOREM 4.1. [2] Any monoid variety V containing a non-AbeJdan simple 
group satisfies P(V)  = non-uniform NC 1. 

Theorem 4.1 is a strong "merging result" which states 5~ = P ( W )  = 
non-uniform NC 1 for any two varieties V and W not contained in M~o~ (= the 
wreath product closure of aperiodic monoids and solvable groups). As already 
indicated, in order to study the internal structure of NC ~ we can thus zestrict 
our attention to solvable monoids. The next theorem explains the relationship 
between wreath products by "Abelian counters" and the ability of monoids to 
"count recursively" in the context of M-programs. 

THEOREM 4.2. a) Let V be a non-trivial variety, t r 0 or q r !; then 
p ( Q , , q v )  ' - = P~Comt,q*V).  

b) I f V  is  ~ n o n - t r i v i a l  group ,,~,,'iety, t, h e n  P(G,~V)  = P ( C o m , , q , V ) .  

PROOF. At the expense of introducing further automata theory, Theorem 4.2 
could be obtained as a consequence of Theorem 2.8 by adapting an argument 
due to the second author [30, page 70]. However we give a direct proof here. 
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By Fact 2.6, C o m , , q , V  and Com~,q ,V are both  contained in Q~,qV, there- 
fore it suffices to show that  the language L = [Lo, al ,  L 1 , . . . , a r , L r ] i , t , q  be- 
longs to ~(A*, eom,,~,V) when L0 , . . .  L~ are in M ( V ) .  Let Ct,q be the  one- 
genera ted monoid generat ing the variety Corot,q, with its generator  denoted 
c. Let Mi be the syntact ic  monoid of Li with Oi : A* ---+ Mi  being the  syn- 
tact ic  morphism.  Let S be a non-trivial monoid in V with s E S, s 7~ is .  
Consider a word x E A '~, a sequence cr = ( i l , . . - , i ~ )  with 1 < il < . . .  < 
i,. _< n and write x = w o b l w l . . ,  b~w~ for the induced factorization of x: let 
M = 11//0 x S x M1 x . . .  x S x M~ and ~ : M --+ Ut,q be defined by )~(m) = lc,,q 
for all m E M. Construct  the (Ct,q o M)-program qSo = (1, f l ) . . .  (n, f,~) = 
r fi~)r . . . . .  (i~, f~)r162 such tha t  Cj,~(x) = (~, (m0, l s ,  m a , . . . ,  l s ,  m~)) 
with 

f Ok(wk) i f / c = j ,  
1Mk otherwise, 

and v J,/i ks ) (  z ) = ( ) ~ , ( 1 M 0 , s l , l u ~ , ' ' . , s ~ , l M ~ ) ) w i t h  

s i f k = j a n d b k = a k ,  
sk = l s  otherwise. 

Thus r  = (A, (Oo(wo), s~, O ~ ( w l ) , . . . ,  s,., O~(w~))), where 

s if bk = ak, 
sk = !s  otherwise. 

Case 1: V is a group-variety. Let ~bo = r f)r where f : A --+ C~,e o M 
is defined for all a E A by f ( a )  = (p, (1M0, ls ,  1M~,. . . ,  lS, 1M~)) and p : M -+ 
C~,q is such tha t  

~((r/20, 31, 'rlZl,... ,  St, /7Zr)) ---- ~ C if mk E Ok(Lk) and sk = s for all k, 

L lct,q otherwise. 

Thus V)~(x) = (p, (1M0,1s, 1MI , . . . ,  1s, 1Mr)), where ,o : M --+ C,,q has the  
proper ty  tha t  

= ~  c i f w k E L k  and bk = ak for all k, 
p(1M) [ lc,.q otherwise. 

Concatenat ing  the programs g)r for all sequences a we get ~b : A '~ --+ C~,q o M 
such tha t  ~b(x) = (p, 1M) where p(1M) = c i if [Zl[go,~,L~ ..... ~,Cr] "Tt,q i. Hence L 
is (Ct,q o M)-recognizable.  
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Case 2: V contains non-groups. The argument here is very similar. The 
only difference comes in the way in which the "M-component"  in the wreath 
product  Ct,q o M is reset in the forming of ~b~. Instead of tacking on r 
(which in the group case cancels the effect, on the M-component ,  of the Ieftmost 
r162 by raising the occurring element to the IMlth power), one tacks on the 
constant map which sends all elements of M to 1M (~hese constant maps are 
available by definition of ~r), [] 

Here are some consequences of Theorem 4.2. 

COROLLARY 4.3. [8] For ~I1 k > 2, Ag~ = P(Bk) .  

PROOF. Appeal to Fact 2.4 and Theorem 2.& [] 

Now define Gl,q as  C o m 0 , q  and, for each /~ > i Gk+1,q as  CTz,il,q~k~-k, q. 

COROLLARY 4.4. For any q, q; having the same set of prime divisors and any 
k >_ 2, CC~ "P(Gk,q)= "P(Gk,r CC~ 

PROOF. We know that Gmt,q*Gk,q = Qo,qGk,q (see Fact 2.7) and that  
Qo,pV = Qo,p~V for any variety V, p prime and c _ 2 [30, page !40]: Further- 
more, for any relatively prime integers r and s, Qo;T.~V = Qo,~V x Qo,~V [44]. 
Thus, for k >_ 2, Gk,q = Gk,q, if q and q' have the same set of prime divisors. [] 

From Smolensky's result [41] and Theorem 4.2 we may deduce the following. 

PROPOSITION 4.5. a) _For any non-trivial variety V and any prime p: 
P(Como,p*eomo,p*V) = ~(Qo,p(Q0,pV)) = P(Qo,pV) = ,~(Com0,v*V). 

b) For any non-trivial group variety V and any prime p: 
P(Como,p .Com0,p*V)  = P(Qo,p(Qo,pV)) = P(Qo,pV) = P(Com0,p*V) .  

PROOF. We only need to show the middle equality, the others being special 
cases of Theorem 4.2. 

From Theorem 4.2 and Corollary 4.4, we see that  the operation Q0,p applied 
to any variety V has the effect of adding a level of MODp gates plus some 
constant Boolean operations to the circuits corresponding to V. 

Smolensky's technique of using polynomials to recognize languages [41] 
yields that  any constant depth circuit using only MODp gates (of polynomial 
size fan-in) and constant fan-in Boolean gates is equivalent to a circuit having 
only one MODp gate (of polynomia.1 size fa~n-in) with N C  ~ circuits as  entries. 
[] 
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Notice that this is in fact a result on varieties, namely that Qo,p(Qo,pV) = 
Qo,pV for any variety V (see [30, chap. 6] and [3t]). As a special case we have 
the following. 

COROLLARY 4.6. CC~ = CC~ ~) = 7)(Gp) = P(Como,p*Com0,p) = 
CC~(p) for any prime p and any c~ >_ 1. 

Our last merging result involves the reversal operator. For any V, let V a 
denote the variety generated by the syntactic monoids of the languages L R, 
where L belongs to .M(V). In general V r V R, yet because programs can 
"scan their inputs" in arbitrary order, it is straightforward to show: 

THEOREM 4.7. P ( V  V V R) = 79(V). 

4.2. Sp l i t t i ng  var ie t ies .  In this subsection we discuss known cases in which 
distinct varieties V and W lead to distinct P ( V )  and "P(W), and we establish 
a number of new such results. We begin with the conceptually simple Abelian 
monoid varieties. 

THEOREM 4.8. / f  V and W are distinct commutative varieties then 5D(V) 
p(w). 

PROOF. An Abelian variety is determined by the monoids Ct, 1 and Co, q it 
contains. 

Case 1:G,1 E V \ W.  Let L = {x:  Izl= > t} _c {a, b}*. Clearly L E "P(V). 
Let M E W:  we can suppose M = Ctl,1 x . . . U t r a  x Co,q1 x...Uo,q~, with 
maxt~. < t. Any M-program can be written in the form r = (1 , f~) . . .  (n, f~). 
Let t = t -  1 and (~ = lcmqi. We choose n large enough so that t + ~ 7 + t  
instructions make use of the same function f .  Among the set of corresponding 
positions, choose any two subsets of cardinality t- and [ +  (t respectively: let x 
and y be the two input strings defined by setting the corresponding positions 
to a and all others to b: then, for some m, r = m + { x f(a) + (q + t) x f(b) 
and r = m + (g + ~) • f ( a )  + t • f(b). Thus r  = r while x ~ L and 
y C L .  

Case 2: C o , q C V \ W .  Let L = { x : ] x ] ~ - 0  (modq)}  C {a,b}*. Clearly 
L E P(V) .  Let M E W:  we can suppose M = Ctla x. . .Ct~, l  • C0,ql x. . .Co,q, ,  
with q not dividing lcmqi. Let t = max t~, o 7 = lcmql and c be the least non- 
negative integer such that q t { + (7 + c. We choose n large enough so that 
2[ + 2q + c instructions are using the same f .  As above we define x and y by 
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setting t+q+c and t+2q+c  positions respectively to a: then, for some m, r = 
m + ( t + q + c )  x f (a )+( t+q)  x f(b) and r = m+([+ 2q+c) x f ( a ) + t x  .f(b). 
Hence r = r while x e L and y ~ L. [] 

In the case of aperiodic monoids, Corollary 4.3 together with Sipser 'sproof 
that the AC~ hierarchy is infinite imply that the in(Bk) hierarchy is infinite 
(this was also noted in [8]); moreover if V D A, then V includes a non-trivial 
cyclic group and in(V) contains the language MOD e for some q, which is 
outside AC ~ by [17], hence: 

THEOREM 4.9. a) [17] in(V) C in(A) i//'V C_ A. 

b) [40] in(Bk) C in(Bk+~_) for any k > 1. 

In view of Theorem 2.8 and Corollary 4.3, we see that, for any variety V 
the question of whether in(V) = in(Bk) has been answered except ior those 
varieties which are not contained in Bk and which do not contain Vk+l  (as 
defined inductively in the statement of Theorem 2.8). We provide some partial 
answers pertaining to the internal structure of B2. 

THEOREM 4.10. in(Jk) C C in(J) C in(R) C in(B:). 

PROOF. The two leftmost strict inclusions in the chain can also be found in 
[28]. Fix k > 1. To show in(Jk) C in(Jk+l), we will prove that the !angnage 
Y = ({0,1}*1)k+1{0,1} * does not belong to P(J~) .  (Y E M ( J k + l )  by Fact 
2.5, hence Y E in(Jk+l).) Suppose to the contrary that an M-program r with 
M E Jk accepts Y. Then, viewing program r as a~ : {0, 1}* -* M* it follows 
from Fact 2.5 that, for each n, r  N {0, 1} '~) is a union of ,-,k-cIasses. We will 
show this to be impossible. 

Let s be the number of words of length at most k over the alphabet M; for 
any z e M*, [z]~ k is determined by the set {u :  lul < k, u is a subword of z}, 
hence there can be at most 2 ~ ~k-classes. For any i G In] let x1 be the binary 
string having 1 in position i iff i E I. For any k-subset I of [n] define X(I) so 
be the set of subwords of length _< k appearing in r there are thus _ 23 
possible colors and, by Fact 2.1, the integer n = Rarnsey(s + k -~- !, k, 2 ~) has 
the property that we can find a subset I G [n] of cardinMity ~ + k + 1 such 
that all k-subsets contained in I have the same color, i.e. r  = r 
whenever J and K are k-subsets of I. 

Suppose I = { i l , . . . , i s+k+l}  and consider x j  where J = {il . . . .  ,ik}: then 
x j  has only k l 's  in it and thus x j  ~ Y. We can find a subword z of length at 
most s in r  such that z "~k G~(xJ). There is thus a set S of < ~ positions 
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in z j  such that every subword of length _< k of q~n(zj) has an occurrence which 
is induced by positions in S. The set I \ S has cardinality >_ k + 1; define y by 
setting y~ = 1 if i E I \ S and y~ = (xj)i  if i r I \  S: thus y C Y and y agrees 
with x j  in the positions of S. Hence, if u is a subword of length _< k in 4,~(xj), 
there is an occurrence of u induced by positions of S and u must appear as a 
subword of y. Conversely if u appears as a subword of ~b~(y) let T be a set of 
_< k positions in y inducing an occurrence of u in qS,~(y). Then ]T Cl I I _< k and 
consider any k-set K C_ I such that T N I C_ K. Thus u appears as a subword 
of r and also as a subword of r since J and K have the same color. 
This shows that Cn(zj) "k  Cn(y), whereas z j  r Y, y e Y: thus r does not 
recognize Y. This concludes the proof that P(Jk)  C P(Jk+l) .  

This also proves that 5a(Jk) C 7)(J) for each k. Indeed if some fixed P(Jk)  
were equal to 5a(J) then 5a(ak+l) C 7'(Jk) would follow. 

To prove that 7'(J) C 7)(R), we modify the above Ramsey argument slightly 
in order to show that the language K = c*bA* with A = {a, b, c} cannot be 
accepted by an M-program with M E Jk for any k. This suffices since Fact 2.5 
implies Y E M ( R ) ,  hence Y E P (R) ,  and further if Y belonged to J then it 
would belong to ak for some fixed k. 

The Ramsey argument is adapted as follows. Let s be as before and set 
n = Ramsey(s  + 3k + 2,2k,2~). Then pick {i~,i2,. . . i~+3k+2} _C In] such that 
~(x~) "~k qS(x2) for any two inputs zl and x2 of length n having the sub- 
word (ab) k occurring at 2k positions chosen from {i l , i2 , . . .  i~+ak+2} (and let- 
ter c everywhere else). Then define x of length n having (ab) k at positions 
i~+k+a, i~+k+4, �9 . . ,  i~+ak+l, i~+ak+~ and letter c everywhere else. Clearly x ~ Y. 
However the k-subwords in qS(x) are collectively determined by at most s of the 
positions {il, i2, . . ,  i,+3k+2} (and some positions outside {il, i2 , . . ,  i~+ak+2}) in 
x, so that there remain at least k + 2 "free" positions to the left of i~+k+a 
within {il, iz , . . ,  i~+ak+2}: we set position i,+k+2 in z to b and call the resulting 
input word y. Then y E Y. However the same argument as before shows that 
~b(x) ~ ~b(y): by having kept k + 1 "free" positions to the left of the b inserted 
to obtain y we maintain the ability to insert an a to the left of this b when 
necessary to complete any k-subword of y (including a k-subword of y involving 
as many as k of the k + 1 free positions) into a length-n word having (ab) k at 
2k positions in {il, i2,.. ,  i~+a~+: } (and c everywhere else). This concludes the 
proof that P ( J )  C P(R) .  

Finally we prove 7)(R) C 7)(B2). Let A = {a, b, c} and let L = (c*ac*bc*)*; 
L C Rat(B2) and we claim that L {t P (R) .  Suppose to the contrary that 
L E P(R) .  Then, for some M E R, an M-program (qS,~) with accepting 
sequence (F,~) accepts L. Now fix rt and view ~b~ : A '~ --+ M*. Consider the 
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regular language K = , ~ ( F ~ ) .  Since K E Ad(M' ,  M) and M E R, it is known 
[34, page 112] that K can be written as a disjoint union of products of the form 
B~b~B~... b~B 2 where b~ E M, B~ C_ M \  {b~+~}, and B~ C M; we say that such 
a product has degree s and we observe that it is unambiguous i.e. if a word 
x belongs to the product there is a unique factorization of x as xoblx l . . ,  b, xs 
with xi E Bi. 

Let x E LN A ~, then r = Woblwl...b~w~ with w~ E B / f o r  s o m e  K "  = 

B~blB~.. .b~B 2 in the disjoint union expressing K. Let r = 
r162 . . .  v~r be the corresponding factorization of r suppose a~aot~her word 
y E L M A ~ is such that Cn(y) = zob~z~.., b~z~ is also in K' and induces the 
same factorization of r Write x = udv and y = uev' with d and e distinct let- 
ters: we claim that r is in K ~ and induces the same factorization: indeed 
u(uev) = v(x) or v(uev) = r,(y) for each instruction of r so "~i{X) E B~" iff 
~i(uev) E B* and Vi(X) = bi iff v~(v.ev) = bi. But it is easily verified that when 
udv E L and d r e then uev cannot be in L. Thus any set of s instructions 
of r can give rise to Cn(x) = woblwl ...b~w~, wi E B[, for a unique x. If 
K = K1 U : . .  Kt and  r is the maximum degree of the K~, we would have. at 

( 1 ) words of L ill 6~l(It'), w h e r e / i s  the length of r Since 1L most rt MA~t 
k / 

is exponential in n we get a contradiction. [] 

Consider now solvable groups: 

THEOREM 4.11. a) ")9(V) C 7)(Gp) i/~'V C Gp. 

b) 7)(Gull,q) = 7)(Gnn,q,) iIf q and q' have the same prime divisors. 

PROOF. If p is prime, it can be shown that a p-group cannot recogmze the 
language AND [7] nor the language MODq if q is not a power of p [43], Now 
if V ~ Gp then either V contains a non-triviM aperiodic monoid (which can 
compute AND) or V contains a cyclic group of order q unequal to any power 
of p (which can compute MODq). This proves part a). 

For part b), if q and q' have tile same prime divisors then Gnn,q = G~m,q,, 
proving one direction. The converse is proved using [7, Theorem 6] and an 
adaptation of a subsequent lemma [7, page 121], to wit: Let G be ~ ni!potent 
group of exponent q and nilpotency class m and suppose that L C {0, t}* 
belongs to 7~(G) by means of the sequence (r of n-input G-programs. Then 
for n sufficiently large, any input w E {0, 1} n is such that among the n input bits 

p \  
there exists a subset S of @ +[l~ identical bits such that r Cn(w), 
for w' the input obtained from w by complementing all bits ill S. 
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It follows that if prime p does not divide q then MODp ~_ P(Gnil,q). On the 
other hand clearly MODp E P(Co,r C_ P(Gnn,q,) for any q' which is a multiple 
of p, completing the proof. Note that the exponent 1 + [log2(rn[)] of q was 

( q  1+ [l~ (m!)]) 
chosen because adapting the lemma in [7] requires that i be 

divisible by q for 1 < i < m; this is clearly the case since gcd(q l+I]~ i!) <_ 
q fl~ for each such i. [] 

We also mention the following consequence of the work of Smolensky and 
Razborov. Let Mp be the largest variety such that the only groups belonging 
to the variety are p-groups. 

THEOREM 4.12. [41, 37] P ( V )  C_ P(Mp)  iH'V C_ Mp. 

4.3. T h e  m a i n  c o n j e c t u r e .  Theorem 2.8 asserts that the natural subclasses 
of A C C  ~ can each be characterized in the form ~(Comt,q*V) for some ap- 
propriate variety V consisting of solvable monoids only. It is thus crucial to 
understand what can be done by a polynomial-length program over a monoid 
Ct,q o T with T solvable. Because of Theorem 3.7, we need only concentrate on 
the regular languages that can be recognized in this way. 

The computing power of a morphism over Ct,q o T is well-understood. Es- 
sentially the morphism can only count, with respect to 7t,q, the number of times 
that an input x C A* can be factorized as x = xoaxl ,  with a E A, Xo E Lo, 
where L0 is M-recognized by T. More intuitively, given input x = a l . . . a n ,  
the morphism "looks" at the n factorizations x = ( a l . . .  a~-l)ai(a~+~.., an) and 
counts how many times ai = a and al .  . . ai-1 E Lo. 

The proof of Theorem 4.2 shows that a program of length O(n c) over Ct,q o 
T 2c+1 can be used to count, with respect to 7t,q, the number of times that 
an input x of length n can be factorized as x = xoax l . . . a~x~ ,  where each 
ai E A, each xi C Li for some Li M-recognized by T. Intuitively, the O(n c) 
intructions are used to "look" at the O(n ~ c-tuples of positions in the input, 
and the program counts how many times the induced factorization belongs to 
LoalL1 . . .  a~Lc. 

We conjecture that this feature characterizes the computing power of poly- 
nomial length programs over monoids in Comt,q*V when V contains only 
solvable monoids. 

CONJECTURE. Let V be contained in M~ol, t > 0 or q > 1, then P ( W )  C_ 
"P(Qt,qV) implies W C Q~,qV. 

Verifying this conjecture would yield the following corollaries: 
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COROLLARY 4.13. I f  the above conjecture is true then: 

a) A G  o C A V V ~  C non,uni form N C  1 for all q > 1; 

b) CC~ C ACC~ for all q > 1; 

c) ACC ~ C non-uniform NC1; 

d) AC~ C AC~ [401 for all k >_ 1; 

e) dCC~ C dCC~ for alt k >_ 1 and q > 1; 

f) CC~ C CC~ (q) for all k > 1 and q 7~ pl for some prime p and some 

l > l ;  

g) AC~ is incomparable to any class CC~ to CC~ or to CCO; 

h) CC~ and CC (q') are incomparable when q,q' do .or same 
prime divisors. 

PROOF. From Theorems 2.8 and 4.2, we may characterize each of the circuit 
classes in this corollary (except possibly non-uniform N C  1 which equals T'(V) 
for any V containing a non-solvable group) by programs over varieties built up 
from Comt,q using repeated applications of the operation Qt,q for appropriate 
choices of t > 0 and q > 1. The statements in the corollary then follow from 
the conjecture using the following separation results on varieties: 

a) Let Msoi(q) be the closure of COml,q by the operation Qr and M be the 
variety of all finite monoids; then A C Msol(q) C M for all q > 1; 

b) Let Gsol(q) be the closure of Com0,q by the operation Q0,q; then GsoI(q) C 
Msol(q) for all q > t; 

c) Msol C M; 

d) J C Bk C Bk§ for all !c >_ 2; 

e) Let Msol,l(q) = Coml,q and Msol,k(q) = ~LqMsolk-i(q) for ]c ~ 1; then 
MsoLk(q) C Msokk+~(q) for all/c _> 1 and all q > 1; 

f) Let Gsol,l(q) = Com0,q and Gsol,k(q) = Q0,qGsol,k-l(q) for_ .~ => ~~ then 
GsoLk(q) C GsoLk+~ (q) for all k _> 1 and all q > ! not a power of a prime; 

g) A is incomparable to any group variety; 
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h) Gsol(q) and Gsol(q') are incomparable when q and q' do not have the same 
set of prime divisors. 

For d) see [13]; for f) see for example [44]; all the other strict inclusions are 
more or less part of the folklore of semigroup theory. 

Let us argue that  the conjecture implies ACC~ C non-uniform NC 1 for 
all q _> 1. Suppose for a contradiction that  ACC~ = non-uniform NC 1 for 
some q _> 1. Then P ( M )  = non-uniform NCI= ACC~ = •(Msol(q)) _C 
P(Q0,qMsol(q)). By the conjecture, this implies M C_ Q0,qMsol(q) = Msol(q), 
contradicting a) above. 

As another example, suppose to the contrary that  AC~ o = A Ck+ ~ for some 
k _> 1. Then P(Bk+I)  = AC~ = AC~ = P(Bk)  C_ P(QI,IB~-~),  with 
Bo the trivial variety and where the last step in the case k = 1 follows from 
COml,] G QI,IB0 = J. Applying the conjecture, Bk+a C_ QI,IBk-1. When 
k _> 2, Qt,IBk-1 = Bk, contradicting d) above. When k = 1, J C B2 provides 
the contradiction. 

All other consequences of the conjecture follow in a similar way. [] 

Our conjecture is closely related to other conjectures--formulated in terms 
of formal logic and which would characterize the regular languages in ACC~ 
(see [31) and CC~ (see [43], and also [32])--in the sense that  it would yield 
many of the same separation results. Notice though that  the conjecture in this 
paper is much more fine grain (i.e., Corollary 4.13 d), e) and f)). However a 
finer grain conjecture in the logical framework may also be given (see [30]). 
Also, a proof of the logical conjectures would yield a proof of our conjecture 
and vice-versa. 

5. C o n c l u s i o n  

When the classical notion of recognition by morphisms is extended to that  of 
recognition by polynomial-length programs, the lattice of finite monoid varieties 
very naturally provides a detailed and elegant parametrization of non-uniform 
NC 1 and its subclasses. The difficult combinatorics underlying open questions 
like the status of ACC ~ relative to ACC~ or to non-uniform N C  1 do not 
vanish just because these classes suddenly fit in a global algebraic picture. 
Indeed the sceptic might be tempted to brush off the algebraic viewpoint on 
the sweeping grounds that  the difficulty in answering open questions about NC 1 
lies in the intricacies of the programs rather than in the algebraic properties 
of the monoids over which these programs are defined. But such an extreme 
position is untenable not only because we have listed here a myriad of (old and 



354 McKenzie, P~ladea.u & Thfirien comput compiexity ! (199t) 

new) pairs of splitting varieties (see Section 4.2) but because for the ':'touchy" 
varieties involved in our Conjecture (see Section 4.3) the answers are simply not 
known. Barrington and Straubing have in fact shown recently that the power 
of programs of length n log log n is completely determined by the algebraic 
properties of the underlying monoids and that such programs behave in a strong 
sense like morphisms [5]. 

One of the major problems in our algebraic classification lies in the fact 
that two different monoids or two different varieties of monoids may actually 
P-recognize the same class of languages. We would thus like to determine 
what properties allow a monoid to have a stronger P-recognizing power than 
another monoid. Obviously "being M-divided by" is su~icient, as was noted in 
Lemma 3.2. However it is not necessary. Indeed we may have P ( M )  C P ( N )  
without having M - ~ N .  A closer look at M-division reveals the following 
property (see [30, page 54]): let ~ : M* --* M be the canonical morphism, 
then M - 4 w N  iff for each P C_ N, N M-recognizes r]-r(P). This suggests 
the following definition: M P-divides N iff for each P C_ M, N P-recognizes 
r/- l(P).  This turns out to be the right definition of division at the level of 
programs. For example, we get. that M-<~N iff P ( M )  C ~)(N) [30, page 
57]. This basic idea is used by the second author to develop a new theory of 
varieties of monoids and varieties of languages which is adapted to recognition 
by programs [30, chap. 3]. 

The most obvious question left open in this paper is to prove (or disprove) 
the far-reaching conjecture discussed in Section 4.3. Another open question is 
why the non-uniform NC 1 subclass TC ~ (defined in terms of bounded-depth 
circuits of MAJORITY gates [29]) is left out of the monoid-theoretic framework. 
No obvious monoid variety V seems to have the property that TC ~ = P ( V )  
(unless, say, TC ~ in fact equals non-uniform NC1). Yet B~dard. Lemieux 
and McKenzie prove that TC ~ as well as classes apparently larger than NC 1. 
can be captured by replacing monoids with (non associative) groupoids [9]. 
The generalization from "computation over monoids" to computation over 
groupoids" leads to several further questions, including that of developing a 
theory of finite groupoids, perhaps along the lines of the well-developed theory 
of monoids which forms the basis of the work reported here. 
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