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Summary. We extend the analysis of Kiyotaki and Wright, who study economies 
where the commodities that serve as media of exchange (or, commodity money) are 
determined endogenously. Kiyotaki and Wright consider only steady-state, 
pure-strategy equilibria; here we allow dynamic and mixed-strategy equilibria. We 
demonstrate that symmetric, steady-state equilibria in mixed-strategies always exist, 
while sometimes no such equilibria exist in pure-strategies. We prove that the 
number of symmetric steady-state equilibria is generically finite. We also show, 
however, that for some parameter values there exists a continuum of dynamic 
equilibria. Further, some equilibria display cycles. 

1. Introduction 

Kiyotaki and Wright (1989) study economies where the objects that serve as media 
of exchange, or money, are determined endogenously. It is shown that different 
objects can play the role of money, depending on parameters that describe their 
intrinsic properties, and that there can sometimes exist multiple equilibria with 
different monies for given parameter values. The analysis in that paper is incomplete, 
however, in the sense only symmetric, steady-state, pure-strategy equilibria are 
considered. We extend the model here to allow mixed-strategy equilibria (which can 
also be interpreted as pure-strategy but nonsymmetric equilibria) and to allow 
dynamic (that is, not necessarily steady-state) equilibria. 

This allows us to do several things. First, we show by construction that 
symmetric, steady-state equilibria always exist in mixed-strategies, while for some 
parameter values it was discovered in Kiyotaki and Wright (1989) that no such 
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equilibria exist in pure-strategies. Second, we show that new mixed-strategy steady- 
state equilibria can arise when there is a unique pure-strategy equilibrium, and these 
equilibria imply different monies. However, we prove that generically in parameter 
space the number of steady-state equilibria is finite; this means that the model does 
not allow just anything .to happen in terms of determining the equilibrium money, 
and is also important for the usual reasons concerning comparative statics and 
related issues (see, for example, the discussion in Kehoe 1985). 

When we extend the analysis beyond steady-states, the set of equilibria becomes 
considerably richer. We demonstrate that in certain regions of parameter space 
there can exist a robust continuum of equilibrium paths. That is, for certain 
nonempty open sets of parameters, there is a stationary steady-state equilibrium 
such that for any initial values of the predetermined variables in some nonempty 
open set, there exists a continuum of initial strategies such that the economy 
converges to the steady-state along a path from these initial conditions. Hence, given 
the predetermined variables, there is a continuum of initial conditions for trading 
strategies all of which are consistent with equilibrium. We also show that the model 
can display equilibria that are stable limit cycles. In these equilibria, the trading 
strategies and, therefore, the commodity monies vary cyclically even though the 
fundamentals of the model are stationary. 

It is worth remarking that several of our results are reminiscent of those derived 
for overlapping generations economies, and that we exploit the same types of tools 
that are used in the study of those economies. For example, using similar techniques, 
Kehoe and Levine (1984) demonstrate the generic finiteness of the number of 
steady-state equilibria in overlapping generations economies; Kehoe and Levine 
(1985) analyze the possibility of a continuum of dynamic equilibria converging to 
a steady-state; and Benhabib and Day (1982), Grandmont (1985), and Azariadis and 
Guesnerie (1986) analyze the possibility of cycles and even more complex dynamics. 
It is also worth pointing out that our results are not special cases of general theorems 
in the repeated game literature. In particular, the model we analyze is an anonymous 
sequential game (in the sense of Jovanovic and Rosenthal 1988), which means that 
any results hinging on "reputation" are irrelevant here. 

The remainder of the paper is organized as follows. In Section 2 we review the 
basic model and describe the results in Kiyotaki and Wright (1989) on the existence 
of symmetric, steady-state, pure-strategy, commodity money equilibria. (That paper 
also considered economies with fiat money, but we restrict attention to the 
commodity money case.) In Section 3 we extend the model to include mixed- 
strategies and dynamics. In Section 4 we construct a steady-state equilibrium in 
mixed-strategies in the region of parameter space for which no equilibria exist in 
pure-strategies. In Section 5 we prove that the number of steady-state equilibria is 
generically finite. In Section 6 we demonstrate that a robust continuum of dynamic 
equilibria can arise. In Section 7 we construct cyclic equilibria. In Section 8 we 
conclude. 

2. The basic model 

Time is discrete and continues forever. There are three indivisible goods, labeled 
i = 1, 2, 3. There is a continuum of agents of unit mass, with equal proportions of 
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three types: type i consumes only good i and produces only good i + 1 modulo 3 
(type 1 produces good 2, type 2 produces good 3, and type 3 produces good 1). For  
each type i, u is the utility of consuming good i, and ci~ is the disutility of storing 
good j  for one period. The cost of production is normalized to zero, and fie(0, 1) is 
the discount factor. Assume that only one good at a time can be stored, and assume 
for now that storage costs are ordered ci3 >c~2 >c~1 for all i. This is the 
consumption-production-storage specification called Model A in Kiyotaki and 
Wright (1989). That  paper also describes a version called Model B, which reorders 
production so that i produces i -  1 rather than i +  1, or, equivalently, reorders 
storage costs. It will be more convenient here to have i always produce i + 1, and 
to differentiate alternative versions of the model by reordering storage costs. 

Agents meet randomly in pairs at each date and trade bilaterally if and only if 
it is mutually agreeable. When type i acquires good i, he immediately consumes it, 
produces a new unit of good i + 1, and stores it until the next date. Hence, in 
equilibrium type i always enters a trading period with an inventory of either good 
i + 1 or good i + 2, and never good i. This means that p(t) = [Pl (t), p2(t), P3 ( t ) ] ,  where 
p~(t) is the proportion of type i agents holding good i + 1 at date t, completely 
describes the distribution of inventories at a point in time. A steady-state 
distribution satisfies p(t)  = p for all t. As in Kiyotaki and Wright (1989), we restrict 
attention in this section to steady-states. 

Agents choose strategies for deciding when to trade, given the strategies of others 
and p. For  now, as in Kiyotaki and Wright (1989), we consider only time-invariant 
pure-strategies. Thus, a strategy for i is a function r~:{1,2,3}2~{0, 1}, where 
zi( j, k) = 1 ifi wants to trade goodj  for good k and z~(j, k) = 0 otherwise. We assume 
u is large enough that agents always trade for and consume their own consumption 
goods, so that z i ( j , i ) =  1 for all j. (A simple sufficient condition for this is 
(1 - f l)u > c~j - Cik for all i , j ,  k; much weaker conditions would suffice, but this one 
is easy to check, as shown in Kiyotaki and Wright 1989.) We also assume that 
zi(j ,  k) = 0 if and only if zi(k, j) = 1, which means that if an agent trades j for k then 
he will not trade k forj. Therefore, each type i's strategy is completely specified once 
we decide whether 0-i = z~(i + 1, i + 2) is 1 or 0. If ai = 1, then i is willing to trade his 
production good i + 1 for the intermediate good i + 2, which he later uses to buy 
his consumption good; if a~ = 0, then i keeps his production good until he can trade 
for his consumption good directly. In other words, choosing 0-~ amounts to choosing 
whether type i uses good i -t- 2 as a medium of exchange. 

A symmetric, steady-state, pure-strategy equilibrium is defined to be a vector of 
inventories p = (Pl,P2,P3) and a vector of strategies 0- = (0-1,0-2, 0-3) such that: (1) 
when agents use strategies a, the resulting steady-state inventory distribution is p; 
and (2) for all i, 0-~ maximizes expected discounted utility from consumption net of 
storage costs, given cr and p. The following result from Kiyotaki and Wright (1989) 
describes the set of such equilibria when c~3 > cl2 > oil .  In order to reduce notation 
in our statement of this result, we normalize utility (with no loss in generality) so 
that f lu/3 = 1. Given this, it turns out that everything depends on the single 
parameter 61 = c13 - c12, which is the difference in storage costs type 1 would incur 
if he acquired good 3 as a medium of exchange. 

Proposition 1. Suppose ci3 > ci2 > Cil" Then if 61 > 1/2, a = (0, 1,0) is the unique 
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symmetric, steady-state, pure-strategy equilibrium; if~l < ~ - 1, a = (1, 1, 0) is the 

unique such equilibrium; if w/2 - 1 < 61 < 1/2, there exists no such equilibrium. 

The intuition behind this result is straightforward. Assume that o" 2 -----1 and 
a 3 = 0, and consider the best response problem of a type 1 agent. (It is easy to show 
that a2 = 1 and o- 3 = 0 are best responses for type 2 and type 3, for all parameter 
values, when either al  = 0 or 1 - see below.) The instantaneous cost to type 1 of 
trading good 2 for good 3 is 61, the increase in one-period storage disutility. The 
instantaneous benefit is the increase in the probability of meeting someone with 
good 1 next period who is willing to trade, [P3 - (1 - p2)]/3, times the discounted 
utility of consumption, flu. Now al = 1 if and only if the cost is less than the benefit, 
which reduces to the condition 61-< P3 - (1-- P2). But P2 and P3 depend on 
strategies. Simple calculations reveal that a = (0, 1, 0) implies P3 - ( 1  - P 2 ) =  1/2, 
and so o-z = 0 is the best response as long as 61 > 1/2 (if good 3 is much more costly 
to store than good 2, type 1 opts for direct barter rather than using a medium of 

exchange). Also, a = (1, 1, 0) implies P3 - (1 - P2) = x//~ - 1, and so a 1 = 1 is the best 

response as long as 61 < v / 2 -  1 (if good 3 is not too much more costly to store, 
type 1 opts to use it as a medium of exchange). 

If x/2 - 1 < 61 < 1/2, then no symmetric, steady-state, pure-strategy equilibrium 
exists. When all type 1 agents refuse to accept good 3, type 2 agents end up holding 
more of good 3 and less of good 1, which means type 1 agents ought to accept 
good 3 to facilitate trade with type 3, given 61. On the other hand, when all type 1 
agents accept good 3, type 2 agents end up holding less of good 3 and more of 
good 1, which means type 1 agents do not need to trade with type 3 and ought to 
refuse to accept good 3. Apparently, to get an equilibrium we require that some but 
not all type 1 agents accept good 3, or, equivalently, that type 1 agents accept good 3 
with probability strictly between 0 and 1. We analyze this situation in Section 4. 
Another possibility would be to have type 1 agents accept good 1 at some dates 
and not others, a situation we consider in Section 7. 

3. The generalized model 

Let si(t) be the probability that type i plays strategy ai = 1 at date t, and let 
s(t) = [sl(t), Sz(t), s3(t)]. If the probability of agent i trading good i + 1 for good i + 2 
at date t is s~(t), then the probability of him trading good i + 2 for good i + 1 is 
1 - si(t ). This implies that whether an agent prefers good i + 1 or good i + 2 at date 
t does not depend on the good with which he enters the period. Given s(t), the 
"trading matrices" in Figure 1 depict the probability of exchange in any particular 
meeting - excluding cases where two agents of the same type meet, since we can 
assume with no loss in generality that individuals never trade with their own type. 

Given any path for the strategy vector s(t), the transition equation for the 
inventory distribution is given by p(t  + 1) = y[s(t), p(t)], where y:N3 x N 3 ~ N 3 .  By 
looking at the trading matrices one can compute the explicit functional form of ~, 
which we write as 

(3.1) 7(s, p) = p --  1 G(s, p), 
.5 
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Type 2 
3 1 

Type 1 

2 s 1 1 

3 0 1-s 2 

Type 1 meets type 2 

Type 3 
1 2 

Type 2 

3 s 2 l 

1 0 1-s 3 

Type 2 meets type 3 

Type 1 
2 3 

Type 3 

s 3 1 

0 1 -s 1 

Type 3 meets type 1 

Figure 1. Training matrices. 

where G(s,p) = [Gl(S,p), G2(s,p), G3(s,p)] and  

(3.2) G,(s, p) = PiPi+ l s i -  (1 - pi)[(1 - Pi+2)(1 - si) d- Pi+2 d- (1 - p~+ 1)(1 - si+ 1)]. 

The  first te rm on the r igh t -hand  side of  (3.2) represents  the measure  of type i agents  
who switch f rom good  i + 1 to good  i + 2 t h rough  exchange,  while the second te rm 
represents  the measure  of  type i agents  who switch f rom g o o d  i + 2 to good  i + 1 
t h rough  exchange,  c o n s u m p t i o n  and  p roduc t ion .  
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We now describe the individual decision problem. Let Vii(t) be the expected 
discounted utility at the end of period t for type i given an inventory of good j (the 
payoff, or value, function). If we define Ai(t)= Vi,i+ 1 ( 0 -  Vi,i+ a(t), the maximizing 
choice of si(t) satisfies: 

[ {0} if Ai(t ) > 0 
/ 

(3.3) s,(t)eJ [0, 1] if A~(t) = 0 
! 

{1} if Ai(t ) < 0 

For  example, for type 1, if Al(t ) = V12(t) - V13(t) > 0 then he should set s~(t) = 0 
and not trade good 2 for good 3; if A ~(t) < 0 then he should set s~(t) = 1 and trade 
good 2 for good 3 whenever he can; and ifAa(t ) = 0 he is indifferent and may choose 
the probability s~(t) to be anything between 0 and 1. 

To illustrate the technique we explicitly derive As(t ). Consider a type 1 agent 
with good 2 at the end of period t. He first pays his storage cost ca2 and, next period, 
he meets an agent of type 1, 2, or 3, each with probability 1/3. If he meets another 
type 1, he does not trade and leaves with Va2(t+ 1). Now suppose he meets 
a type 2, who will always want to trade given our type 1 agent holds good 2. With 
probability pz(t + 1), the type 2 agent has good 3 and our agent chooses the 
probability of trade sl(t + 1), while with probability 1 - p2(t + 1) the type 2 agent 
has good 1, there is a double coincidence of wants, and our agent definitely trades, 
consumes and produces a new unit of good 2. Now suppose he meets a type 3. With 
probability 1 - p3(t + 1) both agents have good 2 and they cannot trade, while with 
probability p3(t + 1) the type 3 agent has good 1 and our agent wants to trade, so 
type 3 chooses the probability s3(t + 1). 

If we write this out explicitly, the payoff for type 1 with good 2 at t is given by 

V12(t) = -c~2  + ~[Va2(t + 1) + p2(t + 1){sa(t + 1)Va3(t + 1) 

+ [1 - s l ( t +  1)] V12(t + 1)} + [1 - p2(t + 1)][u + V12(t + 1)] 

+ [1 - p3(t + 1)] V12(t + 1) + p3(t + 1){s3(t + 1)[u + Va2(t + 1)] 

+ [1 - s3(t + 1)]V12(t + 1)}3. 

Simplification yields 

Va2(t ) = -c12  + 1 - p 2 ( t  + 1) +p3(t  + 1)s3(t + 1) + flV12(t + 1) 

~ p2(t + 1)sa(t + 1)Al(t + 1), 

using our normalization flu~3 = 1. A similar analysis for the case where type 1 has 
good 3 at t yields 

V13(t) = -- cl 3 + [1 - -  pe(t + 1 ) ]  [1  - -  s2(t + 1 ) ]  + P3(t + 1) + flV13(t + 1) 

+ ~ { [1 -- p2(t + 1)] [1 -- sz(t + 1)] + 1 -- [1 -- P3(t + 1)]s~(t + 1)}A~(r4 1). 
_5 
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Substracting these two equations, we arrive at 

Al ( t  ) ---- 61  "J- [1 -- pz(t + 1)]s2( t  -t- 1) --  p3(t + 1)[1 -- S3(t + 1)] 

+ fl[1 -�89 + 1)sl(t + 1)+ [1 -p2( t  + 1)] [1 - s2 ( t  + 1)] 

+ p3(t + 1) + [ 1 - p 3 ( t  + 1 ) ] [ 1 - s l ( t  + 1)]}]Zlx(t + 1). 

By symmetry, for any type i, we can write 

(3.4) Ai(t ) = Fi[s(t + 1), p(t + 1), 6], + flQi[s(t + 1), p(t + 1)]Ai(t + 1), 

where 6i = ci,i + 2 - c i , i  + 1, (5 = (61, g) 2, 63), and we define 

(3.5) Fi(s, p, 6) = 6 i + (1 -- Pi+ x)Si+ 1 - P~+2( 1 - -  s i + 2 )  

(3.6) Q~(s,p)= l 1 - ~ [ p i +  ts i  + (1 - p i+  1)( 1 - s i+ 1) + p i+  2 + (1 - p~+a)(1 - s l ) ] .  

It will be convenient below to write A(t) = [Ax(t), A z(t), A 3(t)] and F(s, p) = [Fx(s, p), 
F2(s, p), F3(s, p)]. Given any path for Is(t), p(t)], a path for Ai(t ) satisfying (3.4) implies 
the maximizing choice of s,(t) at every date via the best response condition (3.3). 
Notice that [s(t), p(t)] does not pin down the sequence Ag(t), however, without some 
condition on Ai(0), and without At(0 ) there is nothing to pin down the initial choice 
of st(0 ) in the model; this will be important in Section 6. 

In any case, we now have the following definition. A (symmetric) equilibrium, 
given an initial distribution of inventories p(0), is a path [s(t), p(t), A(t)] such that: 
(1) given strategies s(t), p(t) satisfies the transition equation (3.1) for all t; and (2) 
given [s(t), p(t)], At(t  ) and si(t ) satisfy the best response conditions (3.3) and (3.4) for 
all t. A steady-state equilibrium can be defined by [s(t), p(t), A(t)] = (s, p, A) for all t, 
such that: (1) given s, p is a fixed point of the transition equation; and (2) given (s, p), 
A~ and s~ satisfy the best response conditions. Notice that when A(t) = A for all t, 
(3.4) implies 

(3.7) [ 1 - flQ~(s, p)] Ai = Fi(s, p, 6). 

Since flQt(s, p) < 1, all that matters for the best response condition in steady-state is 
the sign of Fi(s, p, 6). 

4. S t e a d y - s t a t e  equ i l ib r ia  

In this section and the next we restrict attention to steady-state equilibria. Our 
immediate goal is to fill in the gap in Proposition 1 by constructing a mixed-strategy, 
symmetric equilibrium (or, equivalently, a pure-strategy but nonsymmetric equili- 
brium) in the region of parameter space for which no pure-strategy, symmetric 
equilibrium exists. 

We will construct a steady-state equilibrium in which s2 = 1, s3 = 0, and 
sl ~ [0, 1] will be determined as a function of the parameters. Because Proposition 1 
refers to the case where 61 > 0, 6 2 < 0, and 63 > 0, in this equilibrium type 2 always 
trade their production good 3 for a lower storage cost good 1, type 3 never trade 
their production good 1 for a higher storage cost good 2, and type 1 may or may 
not trade their production good 2 for a higher storage cost good 3. That this may 
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be an equil ibrium is suggested by the observat ions  at  the end of Section 2; it is also 
suggested by Theo rem 7 in Aiyagari  and  Wallace (1991) (see also Theo rem 7 in 
Gintis  1989), which says that  there always exists a mixed-strategy,  s teady-state  
equil ibrium in fairly general  versions of this model  in which every agent  always 
accepts the lowest s torage cost good. 

If  we substi tute s 2 = 1 and  s 3 = 0 into (3.5) then 

Fl(s, p, 6) = 61 + (1 - P2) - -  P3 

Fz(S  , p ,  6 )  -= 6 2 - -  pl(1 - sl) 

F3(s, p, 6) = 63 + (1 - Pl)S> 

For  any 62 < 0 we have F 2 < 0, which implies s2 = 1 is a best response for type 2; 
similarly, for any 63 > 0 we have F 3 > 0, which implies s 3 = 0 is a best response for 
type 3. Fo r  type 1, the sign ofF1 depends on p. Solving for the s teady-state  inventory  
distr ibution p = 7(s, p) as a function of sl,  we find 

p = l-x/1 + sl/(1 + sl), (x/1 + sl - 1)/Sl, 1]. 

(This holds for s 1 > 0; for s 1 = 0, take the limit.) Hence,  

F1 = 61 - ( , , / i  + sl - 1)/sl.  

A strategy s 1 is a best response as long as it satisfies condi t ion (3.3). 
Combina t ions  of 61 and Sl consistent with (3.3) are computed  to be 

6 1 < , , / 2 - 1  and s l = l  

. , / 2 - 1 < 6 1 < 1 / 2  and s 1 = ( 1 - 2 6 1 ) / 6 2  

1 / 2 < 6 1  and s l = 0 ,  

as shown in Figure 2. Hence, an equil ibrium exists for all 61 > 0, filling in the gap 
in Propos i t ion  1. Not ice  that  the two pure :s t ra tegy equilibria in Propos i t ion  1 
reappear  for appropr ia te  values of 61, and are connected by mixed-s t ra tegy 
equilibria. We also point  out  that  it is equivalent  to reinterpret  our  symmetr ic  
mixed-s t ra tegy equilibria as nonsymmet r i c  pure-s t ra tegy equilibria, where the 
fraction s 1 of type 1 agents play strategy a 1 = 1 with probabi l i ty  1 while the fraction 
1 - s 1 play a 1 = 0 with probabi l i ty  1. 

In t roduc ing  mixed-strategies leads to other  new possibilities. Fo r  example,  
suppose sl = 1, s2 = 0, and s3e(0, 1). It  is not  difficult to check F 1 < 0, F2 > 0, and 
F3 = 0, so that  these are indeed best responses, if and only if the following condit ions 
are satisfied: 

w / 2 - 1 < 6 3 < 1 / 2  and s 3 = ( 1 - 2 6 3 ) / 6  ~ 

61 _< (fi2 + 263 - 1)/(63 - 62) 

6 2 ~ - - ( 1  - -  2 6 3 ) 2 / ( 6  2 - -  633). 

Hence, in a certain region of pa rame te r  space, this is an equilibrium. But, f rom 
Propos i t ion  1, there already exists an equil ibrium with sl = 1, s2 = 1, and s 3 = 0, as 
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Figure 2. Equilibrium value ofs t as a function orbs. 
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long as 61 < x/~ - 1. For  a nonempty open set of parameter  values these equilibria 
exist simultaneously. This raises the question of just how many steady-state 
equilibria there might be. In the next section, we prove the number  is finite. 

5. Generic finiteness of steady-state equilibria 

To prove generic finiteness of the number  of steady-state equilibria we utilize the 
transversality theorem of differential topology (see Guillemin and Pollack 1974, 
pp. 68-69, or Hirsch 1976, pp. 74-77). Similar results have been obtained for finite 
n-person normal  form games by Harsanyi (1973) and van Damme  (1983). Because of 
the interaction of p and s in the payoff functions, however, their results do not apply 
directly to this model. 

We use the following notation: If F(x, ~) is a function of a vector of variables x 
and a vector of parameters  c~, then we write f~(x) = F(x, ~z) for fixed ~. 

Transversality Theorem. Let F : X  x A ~ Y, where X c R ~ is contained in the closure 
of an open set and A c IR "~ and Y c N"  are open sets. Suppose that F is continuously 
differentiable of order r, where r > max (l - n, 0). Suppose too that, if (x, e ) eX  x A 
satisfies F(x, ct) = 0, then DF(x,  ct) has rank n. Then f~(x) = 0 implies Df,(x)  has rank 
n for all ~ in a subset of A of full Lebesgue measure. 

Notice that, if I < n, then the n x I matrix Df , (x )  cannot possibly have rank n. The 
conclusion of the theorem, in this case, is that for all e in a subset of A of full Lebesgue 
measure, there is no x e X  such that f , ( x )  = O. 

The intuition behind this theorem is one of counting equations and unknowns. 
If  1 < n, then there are more equations than unknowns; we therefore would not 
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expect there to be any solutions if we have sufficient freedom to perturb the 
equations. If  l = n, then there are the same numbers  of  equations and unknowns;  
we therefore would expect any solutions to the equat ions to be locally unique if we 
have sufficient freedom to perturb the equations. Indeed, if the n x n matrix Df~(~) 
has rank n, then the inverse function theorem tells us that  the solution ~ to the 
equat ion f , (2 )  = 0 is locally unique. If  l > n, then there are more  unknowns  than 
equations; we would therefore expect there to be an infinite number  of  solutions. 
Al though we could use this theorem and the implicit function theorem to count  
degrees of freedom and parameterize the set of  solutions, we are concerned here 
only with situations where l = n. In this case, the formal criterion for sufficient 
freedom to perturb the equat ions is that  the n • (l + m) matrix DF(x,  ~) = [D1F(x, a), 
D2F(x, ~)] has rank n whenever F(x, ~) = O. 

Applying this theorem to our  commodi ty  money  economy,  we are forced to 
consider different cases: 0 < s i < 1 for all i; si = 0 for some i; and s~ = 1 for some i. 
In  each case, equilibria are solutions to a different set of  equations. In the case where 
0 < si < 1 for all i, equilibria are solutions to E(s,p, 6) = 0 where E : ~ x  3 • IR 3 x ~ .3  

IR3 x Ill a is given by the rule E(s, p, 6) = [F(s, p, 8), G(s, p)] and F and G are given as 
in Section 3. In cases where s~ = 0 or sl = 1 for some i, we replace equat ion i of  
F(s, p, 8) = 0 with si = 0 or  si - 1 = 0. Therefore, here we solve E(s, p, 8) = 0, where 
E(s, p, 8 ) =  [if(s, p, 8), G(s, p)] and ff is formed appropriately.  In  all of these cases, 
(s,p)eiR 3 x 11t 3 is the vector of  endogenous  variables and 8eiR 3 is the vector of 
parameters.  Let 

D = {6~IR3181 > 0 ,  62 < 0 , 8 3  5 0 )  

be the set of parameters.  Since the impor tant  distinction between different versions 
of the model  is whether two of the 81 are negative and one positive or  vice-versa 
(this is the distinction between Model  A and Model  B in Kiyotaki  and Wright  1989), 
we accommoda te  all relevant cases with this specification. 

Proposition 2. For  all 6 in a set of  full Lebesgue measure in D, there is a finite number  
of  steady-state equilibria. 

Proof.  The strategy of p roof  is simple: We first apply the transversality theorem to 
each of  the cases discussed above, where (s, p) is allowed to range over a set contained 
in the closure of an open set. We then use the inverse function theorem to show that  
solutions to each system of equat ions are locally unique for all 6 in a set of full 
Lebesgue measure in D. Finally, we restrict (s, p) to a compact  set and argue that  
the number  of  equilibria is, in fact, finite. 

All equilibria lie in the set 

S =  {(s,p)eiR 3 x IR310 < s~ < 1, 0 < p ~ <  1}, 

which is obviously compact .  Observe that  there can be no equilibrium in which 
p, = 0 for some i, since the steady-state condit ion p = 7(s, p) implies that  in this case 
Pl = P2 = P3 = 0 and sl = sz = s3 = 1, which cannot  be best responses for any 8~D. 
Indeed, no  matter  what  p is, sl = sz = s3 = 1 cannot  be best responses. In applying 
the transversality theorem, we therefore restrict our  at tention to the set 

S' = {(s,p)eS[O <p~ for all i, s~ < 1 for some i}, 
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which is contained in the closure of  the open set defined by letting all the inequalities 
be strict. 

First, consider the case where E(s, p, 6) = [F(s, p, 6), G(s, p)], which corresponds 
to equilibria where 0 < s, < 1 for all i. In  this case, 

DE(s,p,6)=~DIF(s,P, 6) D2F(s,P, 6) D3F(s,P, 6)I. 
k DiG(s,P) DEG(S,P) 0 

Notice D3F(s, p, 6) is the 3 x 3 identity matrix. If  we could show that  the 3 x 3 matrix 
DiG(s,p) has rank three, we would  then know that  DE(s,p,6) has rank six. The 
transversality theorem would imply that, for all 6 in a set of full Lebesgue measure, 
the 6 x 6 matrix 

De~(s,p) = F Dif~(s'p) D2I~(s'P)] 
L D1G(s,P) D2G(s,P) ] 

has rank 6 whenever e~(s, p) - -0 .  The inverse function theorem would then imply 
that  any such solution has an open ne ighborhood  in ]R 3 x N a in which it is the only 
solution. To see that  D ~ G(s, p) has rank three, we compute  it: 

D i G(s, p) 

[ PaP2 + (1 - p0(1 - P3) (1 - pt)(1 - P2) 

= 0 PEP3 + (1 - p2)(1 - p~) 

(1 - p3)(1 - p t )  0 

0 t ( 1  - p 2 ) ( 1  - p 3 )  �9 

P3Pi + (1 -- p3)(1 -- P2)J 

This has rank three, as required, because it has sign pat tern 

i+ +o0 01 0 + + o r 0  . 

+ o r 0  0 + 

The cases where we replace Fi(s,p, 6 ) =  0 with s~ = 0 or  s i - 1  = 0 are more  
complicated. We can still argue that  DF(s, p, 6) has rank three because it contains 
three linearly independent  columns, those columns in D i f for which ffi(s, p, 6) equals 
si or si - 1 and those columns in D3/7 for which fi(s, p, 6) equals Fi(s, p, 6). We now 
need to find three linearly independent  columns in [D i G(s, p), D2G(s, p)] that  do  not  
include the columns in D i G(s, p) for which/7~(s, p, 6) equals s~ or s i - 1. 

The case where s~ = 0 for some i is the easiest. Here, we can argue that  the matrix 

O2G(s, P) 

-P2Sl + (1 -- p2)(1 -- S2) 

+ P3 + (1 -- p3)(1 -- Sl) 

- (1 - p2)s2 

p3s3 -F (1 -- p3)(1 -- Sl) 

pisi + ( 1  - -  P i ) ( 1  - -  S2) 

P3S2 d- (1 -- p3)(l -- s3) 
+ Pl + (1 - p0(1 -- s2) 

- -  ( l  - -  p3)$3 

--(1 -- pi)sl 

p2s2 + (1 -- p2)(1 -- S3) 

plS3 + (1 -- pl)(1 - -  s 1 )  

+ P2 + (1 -- p2)(1 -- s3) 
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has rank three because it has sign pat tern  

I _ +  + o r 0  - o r 0 1  

o r 0  + + r 0 ~ ,  

L+ orO - orO + 

and at least one of the potential ly negative elements is zero. 
In cases where s ~ -  1 = 0 for some i, we need to consider combina t ions  of  

columns f rom D~G and D2G. When s~ - 1 = 0, for example,  we choose the second 
and third co lumn from D~G and the first column from DzG. These columns form a 
3 x 3 matr ix  with sign pat tern  

+ i r O  0 + 1 + orO -- orO , 

+ + orO.l 

which has rank  three. The cases where s2 - 1 = 0 or  s3 - 1 = 0 are similar. In  the 
cases where sl - 1 = 0 for two i, we combine  one co lumn form D1G with two f rom 
D2G. We have a l ready ruled out  the case where si - 1 = 0 for all i. 

N o w  consider the set of  pairs (s,p)sS' that  satisfy any of the var ious 
combina t ions  of equat ions  E(s, p, 6) = 0. This set includes the set of equilibria, but  
m a y  be larger since there is no guarantee  that  the appropr ia te  inequali ty in the best 
response condi t ion (3.3) is satisfied if sz = 0 or  si - 1 = 0. The  set of cS such that  all 
of the solutions to these equat ions are locally unique has full Lebesgue measure  
since it is the intersection of  a finite n u m b e r  (the n u m b e r  of  possible cases) of  sets 
of  fult Lebesgue measure.  Consequently,  for a lmost  all 6 the set of  equilibria consists 
of locally unique points. 

Suppose now that  we allow (s, p) to range over  all orS. Could there be an infinite 
n u m b e r  of equilibria? If  there were, then there would be a convergent  subsequence 
of equilibria since S is compact .  There  would then be two possibilities: this 
convergent  subsequence could converge to (s, p)~S' or it could converge to (s, p) for 
which s 1 = s 2 = s3 = 1. If (s, p)~S', then it too is an equilibrium, but  it would not  be 
locally unique, which is a contradict ion.  If  s~ = s2 = s3 = 1, any sequence converg-  
ing to (s, p) would eventually violate the best  response conditions. Consequent ly,  
for all r in a subset of D with full Lebesgue measure,  there is a finite number  of  
s teady-state  equilibria. [ ]  

Several extensions of  the result are possible. First, since S is compact ,  we could 
argue that  the set of  6 for which the number  of  equilibria is finite is also open. Second, 
it is easy to see that  for a lmost  all 6, the inequalities in the best response condi t ion 
(3.3) must  be strict if si = 0 or  s~ = 1; otherwise, the equil ibrium would be a solution 
to a system with more  equat ions  than  unknowns.  Third,  using an index theorem, 
we could argue that  for a lmost  all ~ the number  of  equilibria is odd (see, for example,  
Mas-Colel l  1985). 
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6. Dynamic equilibria 

We now turn our attention to equilibria in which the strategies s(t) and inventories 
p(t) vary over time. In this section, we show that there may be a robust continuum 
of dynamic equilibria, in contrast to the case of steady-states. Although many 
different types of dynamic equilibria are possible, for simplicity we will restrict 
attention for now to the case where 0 < s~(t) < 1 for all i and t, and look for dynamic 
equilibria that converge to a steady-state. The constructioh here was suggested by 
an example in Aiyagari and Wallace (1992) with fiat money. 

The fact that 0 < s~(t) < 1 for all t requires At(t ) = 0 for all t, or Ft[s(t),p(t), 8] = 0 
for all t, by equation (3.4). Notice that the condition F[s(t), p(t), 8] = 0 is actually 
linear in s(t), and can be written 

0 1-- p2(t) Pa(t) o J "  " l Fs'('~l P3(t) -- 81] 

1 - p t ( t )  p2(t) L s3(t)J p2(t) 63 

As argued in the previous section, Pi > 0 for all i in any steady state equilibrium. 
Thus, if we start with pi(0) > 0 sufficiently close to a stable steady state, then pg(t) > 0 
for all t and the above equation can be solved to yield s(t) = rp[p(t)] for all t (given 
a fixed 6). In particular, suppose that A(t + 1) = 0 and every agent i is indifferent 
between goods i + 1 and i + 2 at date t + 1. Then we can choose s(t + 1) arbitrarily, 
and if we choose s(t + 1) = ~o [p(t + 1)], subject to the condition st(t + 1) E(0, 1) for all i, 
this guarantees A(t) = 0. In other words, if agents are willing to randomize at t + 1, 
then as long as we choose s(t + 1) appropriately they will also be willing to 
randomize at t. 

We can use this logic to construct a continuum of dynamic equilibria, given the 
initial inventory distribution p(0) (which is fixed by nature). First, choose s(0) so that 
st(0)~(0,1 ) for all i. Given [s(0),p(0)], the transition equation implies p(1)= 
y[s(0),p(0)]. Now set s(1)= q~[p(1)], so that F[s(1), p(1), 6] = 0, which means that 
A(0) = 0 as long as A(1)= 0, and our original choices of st(O ) are indeed best 
responses as long as A(1)= 0. Continuing in this manner, p(2)= 7[s(1), p(1)], and 
we can set s(2) = (p [p(2)] to guarantee that A(1) = 0 as long as A(2) = 0. This implies 
the transition dynamics for p(t), 

p(t + 1)= y[~0(p(t)), p(t)] = T[p(t)]. 

Notice that s(0) is not pinned down in any way here. Consequently, since 
p(1) = 7[s(0), p(0)], even given p(0), p(1) is not pinned down. 

Any path satisfying p(t + 1) = T[p(t)] and s(t) = q~[p(t)] for all t is an equilibrium 
with all agents mixing, as long as 0 < s~(t) < 1 for all t. A steady-state (g, p) solves 
p = T(p) and g = tp(p). The linearization of T(.) around a steady-state p is 

[p(t + 1) --/5] = DT(p)[p(t) -- p], 

where D T  = D17Dq) + D27. We are interested in constructing an example where all 
of the eigenvalues of the 3 x 3 matrix DT(p) are less than one in modulus. Given 
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such an example, we can use the implicit function theorem and the local stable 
manifold theorem (see Irwin 1980) to argue that, for all [s(0),p(0)] in an open 
neighborhood of (g,p), there exists an equilibrium path [s(t),p(t)] satisfying 
p(t + 1) = Tip(t)] and s(t) = q~[p(t)]. 

For  one such example, consider the economy where ~ = (0.05, -0 .05,  0.05). It 
has a steady-state (g, p) with 

g-- (0.7270, 0.5538, 0.6850), p = (0.6349, 0.7070, 0.6740). 

At this steady-state, the eigenvalues of DT(f)) are 

2 = 0.2151, 0.5021 + 0.0850i, 0.5021-0.0850i, 

each of which is less than one in modulus. Hence, the local stable manifold theorem 
implies that, for all p(1) in some open set containing/5, p(t + 1) = Tip(t)] converges 
to p. It is easy to verify that the conditions of the implicit function theorem are 
satisfied. Thus, for all [s(0), p(0), p(1)] in some open set containing (g, p,/5), the vector 
s(0) satisfying p(1) = ~[s(0), p(0)] varies continuously with [p(0), p(1)]. Furthermore, 
for fixed p(0), the implicit function s(0)= O[p(0), p(1)] is an invertible function of 
p(1). Since p(1) can vary over an open set and still produce a path that converges to/5, 
s(0) can also vary over an open set and, together with a fixed p(0), produce a dynamic 
equilibrium that converges to (g,/5). 

Equilibrium paths for s j 

I I I I 

0 1 2 3 4 
i I I I 

5 6 7 8 

Equilibrium paths for pj 

P2 

I I I I I I I 

1 2 3 4 5 6 7 

Figure 3. Equilibrium paths for strategies and inventories. 
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Figure 3 shows the dynamic path of the above example beginning from 
p(0) = (0.2,0.9, 0.8) and s(0)= (0.5,0.5,0.5). Given p(0), the system converges for a 
fairly wide range of s(0), although for other values of s(0) it does not, and eventually 
some or all si(t) leave [0, 1]. This is true for a fairly wide range of p(0). Finally, this 
example of a continuum of equilibria is robust. It is easy to verify that the 6 x 6 
matrix Deo(s,p) has full rank. Consequently, the parameters 6 = (0.05, -0.05, 0.05) 
constitute a regular economy, and the implicit function theorem implies that the 
steady-state equilibrium (g,/5) varies continuously with 6. Small perturbations in 6 
produce small perturbations in the matrix DT(p), and the continuity of the 
eigenvalues in the elements of this matrix therefore implies that small perturbations 
in 6 still yield economies in which all three eigenvalues are less than one in modulus. 
Hence, all economies with 6 close to (0.05, -0.05, 0.05) will display qualitatively 
the same three dimensional indeterminancy. 

Although we do not present the details here, it is easy to produce examples with 
a lower dimension of indeterminancy. Suppose, for example, D T  has two 
eigenvalues less than 1 and the third greater than 1 in modulus. Then the local stable 
manifold theorem says that there is a two dimensional manifold of inventories p(1) 
near/5 that lead to convergence to/5. The implicit function theorem implies that, 
for fixed p(0), this corresponds to a two dimensional manifold of initial strategies 
s(0). Similarly, we could produce examples with no indeterminacy or with one 
dimension of indeterminacy; everything depends on the numer of stable eigenvalues 
of DT. Furthermore, in this section we have only considered dynamic equilibria 
where si(t)s(O, 1) for all i and for all t. One could also consider dynamic equilibria 
where some types use pure-strategies while others use mixed-strategies, or where a 
given type fluctuates between strategies. We take a step in this direction in the next 
section. 

7. Cyclic equilibria 

Here we construct a dynamic equilibrium where sl(t ) : 1 if t is odd and s~(t) --- 0 if 
t is even, while s2(t ) = 1 for all t and s3(t ) = 0 for all t. In this equilibrium, Al(t  ) will 
fluctuate between positive and negative, and so type 1 agents will be willing to trade 
good 2 for good 3 in one period but not the next. (Note that, when A~ > 0, they are 
not willing to dispose of good 3 and produce a new unit of good 2, as long as there 
is a sufficiently high cost to doing so.) Given these strategies, it is easy to confirm 
that the dynamical system p(t + 1) = ~[s(t), p(t)] converges to a two-cycle: p(t) = pe 
if t is even and p(t) = pO if t is odd, where 

pe = (0.7741, 0.4531, 1.0), pO = (0.8494, 0.4432, 1.0). 

We now verify that for certain parameter values the above strategies are best 
responses. It is easy to check this for types 2 and 3 whenever 62 < 0 and 63 > 0. For 
type 1, we have 

Al(t ) = 6 a - pz(t + 1) + ~[2 - p2(t + 1)Sl(t + 1)]Al(t + 1). 
3 
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In a two-period cycle, Al( t )  = A e if t is even and A~(t) = A ~ if t is odd; that  is, 

= - p o  + A e 

= 61 - p ~  + ~(2 - p ~ s ~ ) A  e. A o 

This can be solved to yield 

= 6t - pO + ~(2 -- p~176 - p~), q~A e 

= 6 1  - + p sg( l - ~A o p~ 

where ~ > 0. The  cyclic strategy &(t)  = 0 if t is even and sl(t) = 1 if t is odd is a best 
response for type 1 as long as A e _> 0 >_ A ~ Since s], s ~ p~ and p~ are known,  these 
inequalities depend only on 61 and fl, and Figure 4 shows the region of(fl, 6 0 space 
in which d e _> 0 and A ~ _< 0 both hold. In this region all of the equilibrium conditions 
are satisfied. 

The  same procedure  can be used to construct  equil ibrium cycles of other  
periodicities, and Figure 4 also shows the region of (fl, 61) space in which there exists 
a three-cycle equilibrium, with s2(t)= 1 for all t, s3 ( t )=0  for all t, s l ( t )=  
(0, 0, 1, 0, 0,1 . . . .  ). Not ice  both  of these cyclical equilibria exist only for values of tS~ 

that  do not  allow a steady-state equil ibrium in pure-strategies - that  is, w/2 - 1 < 
61 < 1/2. Finally, we point  out that  these cycles are stable. Given cyclic strategies, 
p(t) locally converges to a cyclic distribution, and as long as A~(t) alternates in 

0.46 

0.45 

0.44 

0.47 

81 

Figure 4, Regions where cycles exist. 
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sign in the right way in the limit, it will alternate in sign close to the limit. Thus, the 
cyclic strategies will also be best responses in the neighborhood of the limit cycle. 
Given p(0), there will be cyclic strategies that imply p(t) converges to a limit cycle, 
and in certain regions of parameter space these strategies are best responses along 
the entire path. 

8. Concluding remarks 

We have generalized the commodity money model in Kiyotaki and Wright (1989) 
by introducing mixed-strategies and dynamic equilibria. This allows us to construct 
mixed-strategy, steady-state equilibria in regions of parameter space for which no 
pure-strategy, stready-state equilibria exist. We have established generic finiteness 
of the set of steady-state equilibria. We have also described some interesting 
dynamic equilibria. As pointed out in the introduction, this model displays several 
properties that have been established for overlapping generations models, and we 
can analyze the models using very similar techniques. 

One issue not addressed here is the existence of an equilibrium for arbitrary 
initial inventory distributions. It is straightforward to prove the existence of such 
an equilibrium by adapting an approach used in overlapping generations models, 
for example, by Balasko, Cass and Shell (1980): truncate the economy at some finite 
date f by arbitrarily choosing the value functions V~j(t-), prove existence for the finite 
economy using a standard fixed point argument, let f increase to infinity, and take 
the appropriate limits. However, as pointed out in Aiyagari and Wallace (1991), the 
hard part in this model is establishing that the equilibrium discovered in such a 
manner is nondegenerate. An extension of the technique they use for steady state 
equilibria would have to be used to show that nondegenerate dynamic equilibria 
exist (subject to certain parameter restrictions, of course; if storage costs are 
sufficiently high then all agents will want to freely dispose of their initial inventories 
and drop out of the game). 

Another issue not addressed here is the existence of sunspot equilibria, where 
the equilibrium strategies and hence commodity monies fluctuate randomly over 
time even though the fundamentals of the model are deterministic. Such equilibria 
can arise in overlapping generations models, of course. Exploring the possible 
relevance of sunspots in this model is left to future research. 
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