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Summary. Using the method of inverse scattering, the sup-norms of the solutions of 
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1. Introduction 

The Davey-Stewartson II (DSII) equations [8, 1, 2, 7, 17] are model equations in the 
theory of shallow water waves. The Cauchy problem for the DSII equations can be 
written in the following form: 

qt = 2iqxlxz -- 16i[R(:i:lq[2)]q, (1.1a) 

(1.1b) q(x ,  0) = q0(x), 

where q = q(xl ,  x2, t) and the operator R, defined by 

~1~2 ~(~), 

is the product of two Riesz transforms in the x variable. The "+"  (respectively " - " )  
sign in (1.1a) corresponds to the defocusing (respectively, focusing) case of the Davey- 
Stewartson II equations. For simplicity we assume that qo(x) is a rapidly decreasing 
Schwartz function. 

Equation (1.1a) is completely integrable in the sense that it is the compatibility 
condition of a Lax pair [10, 11]. The Cauchy problem (1.1) was studied in [10], [11], 
and [3]-[5], and [19]-[21] by the method of inverse scattering. It was also investigated 
in [14], [15], and [6] by the technique of a priori estimates. Analytic solutions of (1.1) 



434 L.-Y. Sung 

was studied in [9]. The optimal long-time decay estimate of O(1/I t l )  was obtained in 
[6] for a class of nonlinear Schr6dinger equations that includes the DSII equations. 
However, the derivation of the decay estimate in [6] requires the initial data to be 
small. 

In this paper we study the long-time behavior of the solutions of (1.1) by the 
machinery of inverse scattering. In this approach we have an explicit formula for the 
solution q: 

1 s dk~ dk~ e x p ( i [ k ' . x  - 2tk' lk~l)v(k' ,  x ,  t)oe(k'), (1.2) q(x ,  t) = ~ 2 

where v satisfies the integral equation 

1 
fR  dk'l dk~2dk; dk2' exp(i[(k '  - k ' )  v(k,  x ,  t) -= 1 4- ~ 4 . x - 2t(k~k' 2 - k'l'k2')]) 

ot(k')ot(k") 
I I  x _ _  v(k  , x ,  t). (1.3) 

( k  - k ' ) ( k '  - k " )  

The scattering datum c~(k) is also a Schwartz function. 
We will obtain the decay estimate 

Cqo 
Ilq(', t)llL~ < - -  V t  c ~ (1.4) 

Itl 

by a careful analysis of (1.2) and (1.3). This estimate is valid for any Schwarz function 
q0 in the defocusing case and for small q0 in the focusing case. 

The rest of the paper is organized as follows. In Section 2 we review the method 
of inverse scattering that gives us (1.2) and (1.3). In Section 3 we establish some pre- 
liminary estimates. The proof of (1.4) is given in Section 4. Some lemmas concerning 
technical details or background material are collected in the Appendix. 

For convenience we state here some of the notation used in this paper. 
We will identify x = (x> X2) C [~2 with the complex number x = x1 + ix2 E C. 

The same holds for k = (kl, k2) and k = kl + ik2. The complex partial differential 
operators OY and Ox are defined by 

3 1(3@1 ~X2) 3 1 (  3 3 ) 
O--x = 2 § i , Ox 2 071 i Ox2 

We will also use D~ to denote the real partial differential operator Ol1+ti/Oxtl 10x~ 2. 
The Fourier transform ~ of a function f ( y a  . . . . .  yn) in n real variables is given 

by 

( ~ f ) ( 0 1  . . . . .  On) = f07)  = [ d y l . .  "dyn e- iOy f ( y ) .  
d~ n 

The inverse Fourier transform is given by 

lfo (~-!g)(y)  -- (27r)n ,, d o 1 " "  don e iyeg(o) .  

The space of 2 x 2 complex matrices is denoted by M2• rio(A) is the off- 
diagonal part of the 2 x 2 matrix A. The 2 x 2 identity matrix is denoted by I. 
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,~o(~2) is the space of Schwartz functions. If X is a Banach space, then Cb(C, )0 is 
the space of bounded continuous X-valued functions on C, C0(C, X) is the subspace 
of continuous X-valued functions that vanish at ee, and ~(X) [respectively, ~c(X)] 
is the space of bounded-linear (respectively, conjugate-linear) operators on X. 

We will use the letter C with or without subscripts to represent a generic positive 
constant that may take different values at different places. Such constants depend 
only on the quantities listed in their subscripts. 

2. Inverse Scattering 

We outline here the method of inverse scattering for the Cauchy problem (1.1). 
Details can be found in [19]-[21]. An equivalent method was used in [10], [11], and 
[31-[51. 

The relevant scattering/inverse scattering problem for (1.1) is associated with the 
following elliptic system on the plane: 

where 

O__~ = Q~, (2.1) 
o2 

0 Q12(x) ] (2.2) 
Q(x )  = Q21(x) 0 " 

For simplicity we assume that QI2 and Q21 E ~([~2). 
When Q = O, ~p = eikX/2t is an exponential solution of (2.1) for each k c C. For 

Q r O, we consider M2• solutions of (2.1) in the form of 

and we require that 

O(x ,  k) = eikx/2 #(x, k) (2.3) 

lira /z(x, k) = 1. (2.4) 
IxL~c~ 

The effect of Q on the solutions of (2.1) is measured by the difference between 
~(x, k) and I for lxl large. The differential equation satisfied by/z is 

a~ {- i(~x + kx) \ 
0---2 = exp~ ~- ) Q(x)[~(x,  k).  (2.5) 

Using the fundamental solution 1/Orx) of the O~ operator we can convert (2.5) 
and (2.4) into the following integral equation: 

1 f , exp(-i(kx' + k~7)/2) . . . . . . . .  
lz(x,  k) = I + zr-- JR2 dx  1 dx~ x - x '  - ~ t x  ) l z~x ,  ,'c). (2.6) 

For each k ~ C equation (2.6) is uniquely solvable in the space Cb(C, M2x2) if Q is 
smaU or if Qt2 = Q2> The following asymptotic expansion of/z for large Ix1 can be 
derived from (2.6): 

[~(X, k) = I -~ ~-l~k!x q- ---~-[--'',/Z2(]r (2.7) 
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where 

glo Vl(X) = 2i Q (x). (2.12) 

Moreover, v(k, x) satisfies 

Ov ( i (kx  2 + k x ) )  v(k'x)T(k) (2.13) ~(k, x) = exp 

and 
lira v ( k , x )  = I .  (2.14) 

Iki~ee 

Again we can convert (2.13) and (2.14) into the following integral equation: 

1 [ exp(i(k'x + k ' 2 ) / 2 ) - -  
v(k, x) = I + -- dk' t dk' 2 v(k, x)T(k'). (2.15) 

rc JR2 k - k ~ 

For symmetric or small T, equation (2.1.5) can be solved uniquely in Cb(C, M2• for 
each fbxed x E C. We can then derive from (2.15) the following asymptotic expansion 
of v for Ik[ large: 

01(x) ~2(x) (2.16) v(k, x) = I +  --V- + - ~ -  + ' " '  

where 

1 ~ dk~ dk' 2 exp(i(k-Tx + U-~)/2)(k') j-lv(k',  x)T(k'). (2.17) 

By comparing (2.16) and (2.17) with (2.11) and (2.12), we find the following 
reconstruction formula for Q: 

Q(x) = l Ilovl(k, x) 

= 1 FI ~ [ dk,ldk~2 {i(-~x+k'Y)'~ ,,, . . . .  2fri Je2 exp~ -~ )vtK,  x)~(k ). (2.18) 

s (-i([~x'+kx-v)) 
lxj(k) = ~1 2 dx' 1 dx; exp 2 (x') j-1Q(x')tx(x', k). (2.8) 

The scattering datum T(k) is defined by 

2 i fo ,(-i([cx'2+kx-7)) r ( k )  = l-[o/A.t(k ) ~- ~-~-1~ o 2dx'ldX2 exp -- Q(x')#(x',k). (2.9) 

It can be shown that T12(k) and Tz1(k) ~ 5~ The construction of T(k) from Q(x) 
through (2.6) and (2.9) is called the direct scattering of (2.1). 

If" we define v(x, k) by 

[ tql(X,k) #12(x,k)exp(i(-kx + k~)/2) ] (2.10) 
v(x, k) ~- /~21 (x, k) exp(i(kx + k2)/2) ~zzz(x, k) ' 

then we can also derive from (2.6) the following asymptotic expansion of v fbr ]k[ 
large: 

Vl (x) v2(x) (2.11) v(k,x) = r + - T -  +--/5-- + . . . ,  
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The reconstruction of Q(x) from T(k) through (2.15) and (2.18) is the inverse 
scattering of (2.1). It can be shown that Qt = +Q if and only if T t - . =  4-T. 

The Cauchy problem (1.1) can be solved by the following procedure. 

(I) Let 

Qo(x) = • 0 " 

Solve (2.6) using Qo(x) and obtain the corresponding scattering datum 

T o ( k )  = 
0 a(k) ] 

• 0 

through (2.9). 
(II) Let T(k, t) = exp(-2itktk2)To(k) be the solution of the following linear Cauchy 

problem: 

OT 
- 2iklkzT, (2.19a) 

Ot 

r ( k ,  0) = r0(k).  (2 .19b)  

(III) Let v(k, x, t) be the solution of (2.15), where the scattering datum T(k, t) is 
now time-dependent, and let Q(x, t) be defined in terms of v(k, x, t) and T(k, t) 
through (2.18). Then 

I 0 q (x, t) ] 
Q(x,t) = •  0 

and q(x, t) solves the Cauchy problem (1.1). 

The solution procedure above can be schematically represented by the following 
commutative diagram: 

Q(0) - -  

DSII t 

Q(t)  ~- 

direct scattering 

inverse scattering 

,. T(O) 

Tf = -2ikikzT 

T(t) 

In other words, the nonlinear DSII equations are linearized by the direct scat- 
tering of the elliptic system (2.1), and then q is recovered from T through inverse 
scattering. 

For Schwartz class initial data, we have the following theorem [4, 21]. 
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Theorem 2.1. Let  qo(x) E S~ Then (1.1) has a unique global solution q such that 
t > q(, ,  t) is a C ~ map  f rom  ~ into 57(N2), provided the sign in (1.1a) is positive 

(defocusing case) or 

1130 [[LI(R2)[tq0 IIL•(R2) < -~- (2.20) 

when the sign is negative (focusing case). The solution can be obtained by the procedure 
a)-aii). 

The equation (2.15) with T(k ,  t) = e x p ( - 2 i t k l k z ) T o ( k )  can be written as 

s " 1 , , e x p ( i [ U . x  - 2tklU2] ) To(U) 
v(k,  x ,  t) = [ + - -  dk  l dk  2 

rc z k - k f 

1 f I , 1, , e x p ( i [ ( U - k ' ) . x -  2t(k~U 2-k] 'k~f)])  
+ ~ JR dk ldk2dk l  dk2 4 (k - k ' ) (k  I - k I') 

• v (k  II, x ,  t )To(k ' )To(k ' ) .  (2.21) 

Let v(k,  x ,  t) = via(k, x ,  t). Then (1.2) and (1.3) follow from the procedure ( I ) - ( I I I )  
and (2.21). Note that v(k, x, t) is a smooth function in C x C • ~. 

3. Pre l iminary  Es t imates  

Let v (k )  ~ , ~ 0 ( ~ 2 ) .  We define the operator  HxYt by 

1 /~  i , exp(i[x-  k I - 2t/~k;]) 
--  dk  I dk  2 _ k I g ( k f ) f ( k l ) .  (3.1) (ItxY'tf)(k) = 7r : k 

Y . It is easy to see ([19], Lemma  A.1, and [22]) that Hx,t. Cb(C) - - +  Co(C) and 

• (3.2) IlHx,t II~ec(cb(c)) _< II y II L,(~2) II y I1Lo~(~2) 

Equation (1.3) can be written as 

73 1=[= c~ 2 = (n~,~)  v. (3 .3)  

We have ([19], Corollaries 2.4 and 2.12) 

I -  (Itx~,t) 2 is invertible on Cb(C) Yx c C, t E [~. (3.4a) 

If condition (2.20) is satisfied, then It• ~ t llse~(c~(c)) < 1 ([20], Theorem 4.7), and we 
have 

I + (I-I~,t) 2 is invertible on Cb(C) Vx 6 C, t c N. (3.4b) 

For large [tl or Ixl, the high frequency oscillation of the exponential function 
leads to the decay of ~ 2 II(H~,t) II~ecc~(c)). The proof  of the following lemma can be 
found in [19], Lemma  2.8, and [21], Lemma  5.13. 
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Lemma 3.1. Given any e > 0, there exists t, > 0 and R > 0 such that 

I[(n~,t) 2 Ee(cb{c)) -< E, (3.5) 

for  [xl > R or Lt[ > t,. 

Combining (3.4), (3.5), and the continuous dependence of H~, t on (x, t), we have 

u 2 - 1  II [I T (Hx,,) ] II (cb{c)) -< V(x, t) e c x E. (3.6) 

We Can rewrite (1.2) as 

1 
q(x ,  t) = ~ i  

1 
f ~  dk '  1 dk'  2 exp( i [k ' ,  x - 2tk~U2])w(k', x ,  t )a(k ' ) ,  (3.7) +2-~i 

where w(k,  x ,  t) = v(k,  x ,  t) - 1. 
The first term on the right-hand side of (3.7) can be estimated by the following 

lemma. 

Lemma  3.2. Let  f be a funct ion o f  two real variables. I f  f ,  f c L 1 (~2), then 

fR  d y l d y 2  exp(i [y ,  x 2 t y l y 2 ] ) f ( y )  < (3.8) CllfIILI(R2) It1-1. 
2 

Proof  For t r 0, the Fourier transform of e x p ( - 2 i t y a y 2 )  is 7rltl -a exp[iolOZ/(2t)] 
([16], p. 206]). Hence  

fo lfo 2 dy l  dy2 exp(i[y �9 x - 2 t y l y z ] ) f ( y )  -- 47r Itl 2 dold~2 e x p [ i r h o z / ( 2 t ) ] f ( - x  - O) 

and (3.8) follows. [] 

The bulk of the proof  of the long-time decay therefore falls on estimating the 
second te rm on the right-hand side of (3.7). It follows from (3.3) that the equation 
satisfied by w is 

w = • -4- (~Ix~ 

Hence we have 
w = -4-[1 qz (H" )2y I (H~  t)21. (3.9) x , t  J 

F The rest of this section will be devoted to estimating functions of the form I-Ix,tl , 
where F 6 5~(E2). Note that I-IxY, t I is a smooth function of (k, x, t) ~ C x C x E. 

Let  the function gr,k be defined by 

2 ( o ~ y ) ( k ) -  
gy,k(k') = j; o ~ j---T--. (k' - k) j exp ( - lU  - k[2/2). 
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Then we have 

1 [ exp(i[x,  k' - 2tk~k'2] ) 
H ~  t 1 -- JR dktl dk; " = rc 2 k - k' (y(k') g-e,k(k )) 

1 [ exp(i[x- /d  - 2tk~k;]) , 
+ -- dk~ dk~2 gy,k(k ). (3.10) 

rc JR2 k - U 

Let Fx,Zk') = [y(V) - g x , k ( k ' ) ] / ( k -  k'). It follows from Lemma A.1 in the Appendix 
and the Sobolev lemma ([12], p. 243) that b'x,~ c LI(N 2) and lJ/~X.kllLt(~2 ) is bounded 
by a constant C x that is independent of k c C. We deduce from Lemma 3.2 that 

dk, exp(i[x,  k' - 2tk'lk'2] ) C x 
dkl2 (y(k') - gx,Zk')) < - - .  (3.11,) 

2 k -  k' - Itl 

It remains to estimate 

1 s d k l d k ,  2 exp(i[x Z 2 t k ' k  ' ngy ' k ( k ' )  

- 1  p 2  (a~y)(k) 
7- j.~,o J~ 

s k' ( k , -  k ) ;  / - I k ' -  kl 2 
x dk  i d k '  2 exp(i[x " - 2tk'lk;]) k ' -  k exp~ ~ / .  (3.12) 

For the j = 2 term in (3.12) we proceed as follows. Corollary A.3 implies that, 
for each k ~ C, the Fourier transform of [(k' Zkk)2/(k ' - k ) ]  exp(-Ik '  - klZ/2) belongs 
to LI(R2,),  with the Ll-norm independent of k. We again deduce from Lemma 3.2 
that 

s ) , , (k - k) - I k  - k l  2 C (3.13) 
2 dk~ dk;  exp(i[x- k' - 2tklk2] ) k' - k exp ~ -< ]7/" 

For the j = 0 term in (3.12), we obtain by the substitution k' = k + re iO that 

2 k' ^ - '  . . . .  exp(- lk '  - kt2/2) 
dk'  1 dk' 2 exp(i[x " - ZtlClR'2]) k' - k 

= �9 k f o 2 ~ r e - i ~  e o d O  dr ( - ( t + i 2 s i n 2 0 ) r  2 ) t  
exp(i  [x - 2tklk2]) exp 2 

.to 

x exp( ir[(x l  - 2tk2)cos 0 + (x2 - 2tkl)sin 0]) 

= exp(i[x - k - 2tklk2] dO e - i~ dr  4)(r, O, x ,  t) 
30  

x e x p ( - i 2 r t ( k 2  cos 0 + kl sin 0)), (3.14) 
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where 

- ( 1  + i2t sin20)r2"~ ,. , 
05(r, 0, x, t) = exp ~ ) expttr  txa cos 0 + x2 sin 0)). (3.15) 

For l = 0, 1, 2 . . . . .  the following estimates dearly hold: 

~ ]dr r105(r, O, t)l Cl. (3.16) X, <_ 

The Fourier transform ~r05 of 05 in r is given by ([16], p. 206) 

( 2n ,1/2 { [~--(X 1 COS0 + x 2 s i n 0 ) ] Z )  
( ~ r r  l + i 2 t s i n O )  e x p , -  2(l  + i2 t s inO)  " 

Note that 
- 1  - 1  

Re2(1 + i2t sin o) = 2(1 + 4t 2 sin 2 0) '  

Hence there exist positive constants C1 (l = 0, 1, 2 . . . .  ) independent of (~, 0, x, t) 
such that 

Cl (3.17) 
[( / r  D ~r_ , .~ ,  0, x, t)[ _< I1 + i2t sin011/2" 

Also, we have 

cp (3.~8) 
II (~r05)(', O, x, t)IIL~(~) < I1 + iZt sinOfl/z-1/P ' 

for any p c [1, e~]. Therefore,  it follows from (3.16), (3.17), (3.18), and Lemma A.4 
in the Appendix that for any p ~ [1, ec), we have 

f0 27r [ ~  ~- kl sin 0)) Cp (3.19) dO e-i~ ao dr 05(r, O,x, t) exp ( - i2r t  (kz cosO < [t[1/2_l/p , 

where Cp > 0 is independent of (t, k, x). 
Similarly, for the j = 1 term in (3.12), we have 

' k 
fR z dk' l d k ~ e x p ( i [ x . U -  , , (k - ) , 2tklk~] ) ~ exp(- Ik  - k12/2) 

f0 27r f0 e~ //--(1 + i2tsin20)r2"~ : exp(i[x . k - 2tklk2]) doe  -zi~ dr r exp~ -~ ) 

x exp(ir[(xl - 2tk2)cos 0 + (x2 - 2tkl)sin 0]) 

---- exp(i[x - k - 2tklk2]) dO e -2i~ 

f? x dr r05 (r, O, x, t) e x p ( - i 2 r t  (k2 cos 0 + kl sin 0)). (3.20) 
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For any p e [1, cx~), Lemma A.4 again implies that 

fo2~r dO e-2i~ fo~176 dr r~b(r, O, x, t) exp ( - i2r t  (k2 cos O + ki sin O ) ) 

Cp 
< (3.21) --[t[1/2-1/p' 

where Cp > 0 is independent of (t, k, x). 

In summary, we have proved most of the following proposition. 

Proposition 3.3. Let Y ~ S~ �9 Then 

HxYt 1 = "1 (k, x, t) + exp(i[x �9 k - 2tklkz])[y(k)~e(k, x, t) + (O~v)(k)qb3(k, x, t)], 

where the functions ~j  are smooth in all variables, and 

Cv 
l % ( k , x , t ) l  <_ ~[(, 

[~2(x,k, t)[ ,  leO3(k,x,t)t < Cp [t[l/2-1/p ' 

for all (k, x, t) E C • C x ~ and p e [1, ~a). Moreover, we have 

- 1 s  2~ fo ~ q~2 (k, x, t) = - -  dO e -i~ dr ~ (r, O, x, t) exp ( - i2r t  (k2 cos 0 + kl sin 0)), 

and 

-lfo   /o dP 3 (k, x, t )  = - -  dO e -2i~ dr r49 (r, O, x, t) e x p ( - i 2 r t  (k2 cos 0 + kl sin 0)), 
Tt" 

where 4) is defined in (3.15). 

Proof It only remains to discuss the smoothness of the functions qsj. The functions 
q~2 and ~3 are clearly smooth by (3.16). The smoothness of dO 1 then follows from the 

• smoothness of I l x , t l .  [] 

Corollary 3.4. Let g ~ if(R2) and E > O. Then there exists a positive constant C>, s such 
that 

Cy,e 
IH~,tl[ < it IV2_------ 7 V(k,x,t) E C x C x ~ .  
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4. Long-Time Decay 

From (3.1), (3.2), and Proposition 3.3 we have 

(H~.t) 21 = H~, t (I-Ix~ t 1) 

3 
= ~ .:(k, x, t), (4.1) 

j=l  

where 

and 

Cot 
ItPl(k,x, t)l 5 ~ ,  (4.2) 

i fo dk~dk,2]ot(k')12j;2~ tP2(k, x, t) = ~-~ 2 ~ dO e i~ 

/7 • dr c~(r, O, x, t) exp(i2rt(k' 1 sin 0 + k~ cos 0)), (4.3) 

I f~ dk~dk:2ot(k:)(O'~'(x)(k:) fo2ZCdOe2iO ,v3(k,x,t)= ~ 2 F--k- 

f: • dr rq~ (r, O, x, t) exp(i2rt(k' 1 sin0 + k; cos0)). (4.4) 

Note that by (3.15) the functions ~2 and tI/3 are smooth in (k, x, t). Since (H~,t)21 is 
smooth in all variables, the function tPl is also smooth in (k, x, t). 

We first investigate the function tPz(k, x, t). We can write (4.3) as 

~2(k, x, t) 

_ 1  [2~ s 
- - ~  Jo dOei~ dr~(r ,O,x , t )  

f dk~ dk' 2 f(k' ,  k) exp(i2rt (k~ sin 0 + k~ cos 0)) • 
dR 2 

§ - - 7 -  dO e iO drd~(r, O, x, t) 

• s  dk~ dk' 2 exp(-k:[U_-kkt2/2) exp(i 2r t (k'~ sin 0 + k~ cos 0)) 

+ Jr 2 dO e i~ dr ~(r, O, x, t) 2 dk:l dk:2 
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where 

(k' - k) { - I k '  - kl 2 )  / 
x ~ exp , ,  ~ exp( i2r t (k  1 s i n O +  k~ cosO)) 

= 11 q-Ioe(k)1212 -[- ((aEloel2)(k))I3, (4.5) 

I~(U)[ 2 - [l~(k)] 2 -t- ((0~loel2)(k))(FTk~ k)] exp ( - l k  / - k12/2) 
k' f (  , k) = k I - k 

By Lemma  A.5 in the Appendix, the function f ( . ,  k) is continuous in C and C 1 
in C\{k}, for each k ~ C, and there exists positive Ca independent of k ~ C and co ~ 
such that 

s , dk'2 dk~ ~ I(Ok, f ) (  , ) 5_ G 
Ill_<l 

By the substitution k / = k ' e  -i~ we can rewrite 11 as 

V (k, co) ~ C x I~. (4.6) 

112 /o s s I1 = 7 g  jo d o e  i~ d r 4 ) ( r , O , x , t )  dk'2'exp(i2rtk'2 I) dk~f f ( k ' e - i ~  

1 [2~ foOO = 7-2 Jo dO e i~ dr 4)(r, O, x, t ) f ( k ,  O, 2rt),  (4.7) 

where 

f(k,O,s) .tdk2expOsk~).]R" " io = " " dk  1 f ( k  e ,k) .  (4.8) 

The Sobolev lemma ([12], p. 243) and (4.6) imply that 

s d s l f ( k , O , s ) l < _ C a  V(k, 0) ~ C x ~. (4.9) 

Clearly, f rom (3.15) we have for l _> 0, 

Ir14)(r, O, x, t)] < Cl. (4.10) 

Therefore,  we obtain from (4.7), (4.9), and (4.10) (with l = 0) that 

G 
II1[ _< [~-, (4.11) 

where Ca > 0 is independent of (k, x, t). 
We now turn to the integral I2. The substitution k I = k + k ' e  -i~ gives 

fo Jr fo 4)(r, O,x,  t) exp(i (kl sin 0 + k2 cos 0)) 
1 ~ oo 

][2 = ~-~ dO e2iO dr 2rt 

s exp(- Ik '12/2)  
X 2 dk ' (  dk~  k "  exp(i2rtk'2') 

1o /5 1 2zc dO e 2i0 dr  4)(r, O, x, t) exp( i2r t (k l  sin0 + k2 cosO))o(2rt) ,  (4.12) 
7r 2 
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where 
exp( - I / ' 12 /2 )  

O(s) = JN dk~' dk 2' 2 k" exp(isk~). 

We can evaluate o(s) by (A.11) in the Appendix and obtain 

O(s) = 2zr 1 - exp( - s2 /2 )  (4.13) 
S 

Let p ~ (1, oo]. It is clear from (4.13) that 

fr dslo(s)[P < oo. (4.14) 

For t > 0 we can now rewrite I2 as 

12 = Js~ x~+ dmx,t exp(i[kl (r sin 0) + k2(r cos 0)]), (4.15) 

where the measure dmx,t on S 1 x N+ is defined by 

2 ~  e l  2io [ r ) dmx,t = dp~ ~ ,  O,x, t_ o(r) dr dO. (4.16) 

It is clear from (3.15) that for any p E [1, oc] and l > 0 there exists a positive Cpd 
such that 

( f o ~  / r ,X,  / r ) p)l/p dr ~ )  4)~-~,O,x,, < Cp,, t i/p. (4.17) 

Combining (4.14), (4.16), and (4.17) (with I = 0) we find 

fs dlmx'r[ < (4.18) 
Cp V(x,t) ECx~+ andVpc[1, ee). 

l x ~ +  -- t1-1/p 

Similarly we can rewrite I3 as 

1 fo27rdOe3iO fo~dr(a(r,O,x,t)exp(iZrt(kl sinO + k2cosO)) I3 = ~5 

fu  k'--7 f - lk '12"~  x z dk; dk~ ~ e x p ~ )  exp(iZrtk~) 

f? yo Jr 2 d o e  3i0 dr(a(r,O,x,t)exp(i2rt(klsinO+k2cosO))~(2rt), (4.19) 

where 
I" d k "  " k '-7 /-Ik"12"~ 0(') = J~2 a dk2 ~-~ exp~ ~ )  exp(isk•'). 

Again we can evaluate ~(s) by (A.11) and obtain 

1 - [1 + (s2/2)] exp( - s2 /2 )  
O(s) = 4~r $2 (4.20) 
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H e n c e  we have ~ dsl~(s)l < oc. (4.21) 

By (4.10), (4.19), and (4.21) we have 

C 
1/31 < -  V ( x , k , t )  e C x C x R .  (4.22) 

- Itl 

Summing  up, we have shown that,  for  t > 0, ~Pz(k, x, t) = q~21 (k, x, t)+~Pz2(k, x, t) 
such that  

C~ 
(i)  I q/21 (k, x ,  t)l _< - - ,  

t 

f s  dmx,~exp(i[kl(rsinO) +k2(rcosO)]), (ii) q)22(k, x, t) = lot(k)[ 2 lxR+ 

where  dmx,t is def ined by (4.16). 
The  funct ion qJ3 can be analyzed similarly. The  analog of  12 for qJ3 is the  integral  

1 
f2~ dO e 3i~ fo ~176 dr (b (r, O, x, t-~ exp(iZrt (kl sin 0 + k2 cos 0))[1 - exp ( -2 r2 t2 ) ] ,  

YTj0 
which in view of  (3.16) is b o u n d e d  by C/t .  It  follows that  

C~ 
IqJ3(k, x, t)] _< - - .  (4.23) 

t 

The  following propos i t ion  has the re fo re  been  established.  

P ropos i t ion  4.1. Let c~ E 5f(R 2) and p E [1, oc). Then for t > 0 we have 

(Hx~,t)21 = jq(k, x, t) + le~(k)12 f2(k, x, t), (4.24) 

where the functions f j are smooth, and 

Ca 
IA(k,  x, t)l _< - - ,  (4.25) 

t 

f2(k, x, t) = [ dmx,t exp(i[kl(r s in0)  + k2(r cos 0)]). (4.26) 
Js 1 x ~ +  

The measure mx,t on S 1 x ~+ is defined by (4.16) and it satisfies the estimate (4.18). 

We now re turn  to (3.9). F r o m  Propos i t ion  4.1 we obta in  

w = wl(k, x, t) -k w2(k, x, t), (4.27) 

where  

wl(k, x, t) = + [ I  qz (tt~,t) 2] l J i ( k  ' t, x),  (4.28) 

w2(k, x, t) = + [ I  qz (H~x,t)Z]-l(lot(k)12f2(k, x, t)). (4.29) 
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It  is not hard to see f rom the explicit form of f2 in (4.26) that w2 is smooth in 
C • C • I~ +. The  smoothness of Wl then follows f rom that of w and w2. 

We deduce from (3.6) and (4.25) that 

I w l ( k , x , t ) l  < C ~  u 2 1 5  +. (4.30) 
t 

The function w2 can be rewritten as 

w2(k, x ,  t) = •  x ,  t) + [I q: (I-Ix ~ t)2]-1 (ttx ~ t )2(~(k)  2fz(k, x, t)) 

-= w21(k, x, t) + toz2(k , x, t). (4.31) 

Let  E be any positive number.  From Corollary 3.4, (4.26), and (4.18) we have 

f s  dm~x ' tH~' t ( [c~(k)12exp( i[k l ( rs inO)+k2(rc~ IH~,t(Iot(k)lZf2(k, x ,  t))l = lxN+ 

JsflxR+ , / ~ " - -  1LIc~lal 2 1[ t~,,, x, t l" x_ire-io , ! �9 I 

Col,6 
< t3/2_------ 7.  (4.32) 

We then find by (3.2), (3.6), and (4.32) that 

Ca,, for any ~ > 0 and u (k, x, t) ~ C x C x ~+.  (4.33) [w22(k,x,  t)l ~ t3/2_e 

Note that w21 is clearly smooth, and hence w22 is also smooth. 
We are finally ready to prove the long-time decay estimate. 

Theorem 4.2. Under the same conditions in Theorem 2.1, there exists a positive constant 
Cqo such that the solution q(x ,  t) o f  (1.1) satisfies 

Cqo N2 [q(x, t )[  < - -  V(x, t) ~ x ~. (4.34) 
It[ 

Proof. By (4.27) and (4.31) we have, for t > 0, 

s dk'2 exp( i [x -  k' - 2tk~k;])m(k',  t~o,(k') = X~ + X2~ + / (22 ,  (4.35) X, 
2 

where 

and 

f~ ! ! f l t K1 = d k  1 d k  2 exp(i[x - k' - 2 t k l k 2 ] ) w l ( k ,  x ,  t)ot(k') (4.36) 2 

K2j 2 dk~ dk '  2 exp(i[x - k' - 2 t k l k2] ) w 2 j ( k ,  x ,  t)c~(k'). (4.37) 
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It follows from (4.30) and (4.33) that 

[K1] _~ IK221 _< Ca V (x, t) @ ~2 x ~+.  (4.38) 
t 

Using (4.26) the integral K21 can be written as 

K21 = i f dN~x.t 
J S I x ~+ ' 

x f dk~ dk'  2 exp( i  [k' 1 (xl - r sin 0) + k; (x2 - r cos 0) - 2tk~k;])I~(k')12c~(k'). 
jN2 

Lemma 3.2 and (4.18) then imply 

Ca N 2 N +. (4.39) IK211 < - -  V(x, t) e • 
t 

The estimate (4.34) for t > 0 now follows from (3.7), Lemma 3.2, (4.35), (4.38), 
(4.39), and the fact that a(k) comes from the scattering datum of 

[ 0 q~ 1 
Qo = +qo(x)  0 " 

A similar analysis for t < 0 then establishes (4.34). [] 

Appendix 

Lemma A.1. Le t  7" e 8e(~ 2) and 

y(k') - Y~,j2 0 [ (O~y)(k) / j !]  (k' - k) j exp(-Ik '  - kl2/2) 
F y , ~ ( k ' )  = k '  - k 

Then for  each k c C, Fy,k belongs to the Sobolev space H2(R e) and 

IIFy,kllH2(~2) 5 C(llyllc3(~2) + I/YJfH2(~2)), (A.1) 

where C > 0 is independent o f  y and k. 

Proof. Let f~l = {k': [k r - kl > 1/2} and ~22 = {k': Ik' - kl < 1}. Clearly we have 

IIF• _< C(llYll~2<~) + Ilvllc2(~z)). (A.2) 

A complex form of Taylor's theorem is 

N j [(ol),)(k)][(o~-l)/)(k)] ( ~ - - ~ ) l (  k' 

j=0 l=0 

N+I (k' - k) m (U - k) N+l-m 
+ ~ Rm (k', k) (A.3) 

m=0 m ! ( N  + 1 -- m)!  ' 
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where the remainders Rm are C ~ in k' and 

[[Rm(',  k)llcr(R2) _< IIYIIcN+I+r(R2), r = 0, 1, 2 . . . .  ( A . 4 )  

In view of (1.3), (1.4), and the series expansion 

e x p ( - ' U 2 k l 2 ) = s  k ' - k l  2n, (1.5) 
n=0 2nn! 

the function F• is C 1 on fa2, C 2 on S22\{k}, and for Ill < 2, 

I(D~,Fr,k)(k')l <_ Cllvllc3(u~) vk' ~ ~22\{k}. (A.6) 

Therefore, Fr, k c H2(~2) and 

I1F• I1H2(•2) ~ C [[ g [I c3({]~2) �9 (A.7) 

The estimate (A.1) follows from (A.2) and (A.7). [] 

Lemma A.2. The following convolution formula holds: 

1 ( (ix_~_~)) 1-(Y-~=olx[2J/(2JJ'))exp(-lxl2/2, 
- * 2 ~ exp - zt'2n+ln! (1.8) 
X X n+l 

Proof We will establish (A.8) by mathematical induction. We have for x ~ 0, 

L2dyl dy2 exp(-'y[2/2) - Lz dyl ~ 1  x - y dy2,~. ~,y (yexp(-Iyl2/2)) 

s (1 2 dyl dy2 
x 2 x y 

expt-7- U 
The case n = 0 of (1.8) follows by continuity. 

Let q~n be the left-hand side of (A.8). We have for x 7L 0, and n > 1, 

1 [ ( l x  y ~ ) ( ( ~ ) )  - -  + y ~  exp 0,, = jR 2 dyl dy2 

fo (1 _ 2 dyl dy2 - 
- - X  2 X y 

27r { _,, IZ--IXl2~ 2n 
= ~ - ~ - - x  exp t  T ] ]  + -7-r 

In the calculation above we have used the identities 

f ~  -n-1  / [ ]2 -  2 dyl dy2-~-  exp(-I--~ I- ) = 0 ,  f o r n > l ,  

which are established by switching to polar coordinates. 
The induction step follows from (A.10) and continuity. 

 exp(12)) 
(A.9) 

(A.10) 

[] 
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Since the Fourier transforms of 1/x and ~ne -Ixl2/2 are, respectively ([13], Ap- 
pendix B1.7), -2rci/~ and (-i)~(2zr)~ n exp(-t~12/2) (where ~ = ~1 + i~2), the fol- 
linking corollary follows immediately. 

Corollary a.3. The following formula holds: 

o~( 2n eXP(xlXt2 /2) ) 

= (_i),~_17r2n+ln ! [(~'--0 [~ [2J/(2JJ!)) exp(-[~ Iz/2)] - 1 $,,+I (A.11) 

l_emma A.4. /f  f (x )  E LI(t~), f(~) e CI([R) n Lp(R), for some p ~ [1, oo), and 
lIf'llz~(m < co, then 

/2 1 dx f (x)e  -ix~ < Cp(llftlL~(R) + IIf'ltL~(m + [lo?[t~,(R))- (A.12) 

Proof Let ~ c N. We have the following Sokhotski-Ptemelj formula [18]: 

1 f , g(y)  1 r g(v) g(~) 
= p.v.v--7 ] ay ~ + - -  (A.t3) lim~,0 ~ j a y  y _ (~ + ei) zrct de y - ~ 2 

We can rewrite (A.t3) as 

1 fo~ 1 s g(y) g(~) dx ~(x) ix~ = p.v. 2rci~ dy ~ 4- ~ 2  (A.14) 

Applying (A.14) to g = ~ - l f ,  we find 

fo =dx  f(x)e-iX+ - f(~)2 &p.v.zn, ,of f (y )  (a.lS) 

The estimate (A.12) follows from (A.15). c3 

Lemma A.5. Let g ~ 5~ 2) and 

g(k') - [g(k) + (O~g)(k)(U- k)] exp(-lk' - k12/2) 
f(k' ,  k) = k' - k 

Then f( . ,  k) is continuous in C and C 1 in C \ {k}, for each fixed k, and there exists a 
positive constant Cg such that 

dk': dk i ~ l ( n ~ , f ) ( k  e , k) < Cg V (k, w) E C x N. (A.16) 
lz1_<1 
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Proof The continuity and differentiability of f ( k  r, k) follow immediately from Taylor's 
theorem and (A.5). 

If Ik '-ke-i~~ > 1, then we can control (Dtk , f ) ( k ' e  i~ k) by the functions g(k'ei~), 
[g(k) + ((Of:g)(k))(k'e i~ - k)] exp ( - Ikre i~ - k[2/2), and their derivatives. We have 

l ~ ico { l 
(Dk, f ) ( k e  ,k)[ _< Cg (1 + Ik;[)(1 + lk~l 2) 

+ [1 + Ik~ - Im(ke-i~~ H- IU 1 - Re(ke-i~~ " 

On the other hand, Taylor's theorem also implies that I D t kre i~ ( k'f)( ,k) I is 

bounded by C ~ml=0 IIDmgllL~(~ 21 if Ik' - ke-&~ < 2. 
The estimate (A.16) now follows from the following splitting of the integral: 

fk'2-Im(keJ~)l<l dk;[ fkd k'i-Re(ke "~)]<1 dk'l(')-]- fk'l-Re(ke-i~)[>ldkl(')l 2 
[]  
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