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Summary. Using the method of inverse scattering, the sup-norms of the solutions of
the Davey-Stewartson Il equations are shown to decay in the order of 1/[¢} as |¢] goes
to infinity. In the focusing case this result is obtained for small initial data, whereas
in the defocusing case it is obtained for general initial data.
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1. Introduction

The Davey-Stewartson II (DSII) equations [8, 1, 2, 7, 17] are model equations in the
theory of shallow water waves. The Cauchy problem for the DSII equations can be
written in the following form:

qr = 2iqr,x, — 16i[R(E|g1P)]g, (L.1a)
g(x,0) = go(x), (1.1b)
where ¢ = q(x1, x2, t) and the operator R, defined by
= &5
RfE) = —4—— 1),
8§+

is the product of two Riesz transforms in the x variable. The “+” (respectively “—")
sign in (1.1a) corresponds to the defocusing (respectively, focusing) case of the Davey-
Stewartson II equations. For simplicity we assume that go(x) is a rapidly decreasing
Schwartz function.

Equation (1.1a) is completely integrable in the sense that it is the compatibility
condition of a Lax pair {10, 11]. The Cauchy problem (1.1) was studied in [10], {11],
and [3]-[5], and [19]-{21] by the method of inverse scattering. It was also investigated
in [14], [15], and [6] by the technique of a priori estimates. Analytic solutions of (1.1)
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was studied in [9]. The optimal long-time decay estimate of O(1/|¢|) was obtained in
[6] for a class of nonlinear Schrédinger equations that includes the DSII equations.
However, the derivation of the decay estimate in [6] requires the initial data to be
small.

In this paper we study the long-time behavior of the solutions of (1.1) by the
machinery of inverse scattering. In this approach we have an explicit formula for the
solution g:

1 R
q(x, 1) = 7 ./Rz dky dies exp(i[k' - x — 2tk k) v (K, x, D (K), 1.2)
where v satisfies the integral equation
1
vk, x, 1) = 1 +— fR ) dky dky ki di] exp(i[(K' — k") - x — 2t (k1ky — k{k3)])

a(KNa (k")

— (", x,0). 1.3
G« Y (13)

The scattering datum «(k) is also a Schwartz function.
We will obtain the decay estimate

lgC. D)l < % vieR (14)
by a careful analysis of (1.2) and (1.3). This estimate is valid for any Schwarz function
qo in the defocusing case and for small g, in the focusing case.

The rest of the paper is organized as follows. In Section 2 we review the method
of inverse scattering that gives us (1.2) and (1.3). In Section 3 we establish some pre-
liminary estimates. The proof of (1.4) is given in Section 4. Some lemmas concerning
technical details or background material are collected in the Appendix.

For convenience we state here some of the notation used in this paper.

We will identify x = (x1, x2) € R? with the complex number x = x; + ix; € C.
The same holds for ¥ = (k1, k2) and k& = k; + ikp. The complex partial differential
operators 9% and dx are defined by

9 178 n a ad 1/ 0 .0
— = = — — 1, — == — -1— 1.
9x 2\ 8x; dxy ox 2\ dx; dxy
We will also use D' to denote the real partial differential operator 8+ /9x! 8x2.

The Fourier transform % of a function f(y1, ..., J») in n real variables is given
by

N1 con) = fo = [ oy 10
The inverse Fourier transform is given by

1
Q)"

F o) = /R dny---dn. e "g(n).

The space of 2 x 2 complex matrices is denoted by M. T1,(4) is the off-
diagonal part of the 2 x 2 matrix 4. The 2 x 2 identity matrix is denoted by 1.
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F(R?) is the space of Schwartz functions. If X is a Banach space, then Cp(C, X) is
the space of bounded continuous X-valued functions on C, Co(C, X) is the subspace
of continnous X-valued functions that vanish at co, and £(X) {respectively, £.(X)}]
is the space of bounded-linear (respectively, conjugate-linear) operators on X.

We will use the letter C with or without subscripts to represent a generic positive
constant that may take different values at different places. Such constants depend
only on the quantities listed in their subscripts.

2. Inverse Scattering

We outline here the method of inverse scattering for the Cauchy problem (1.1).
Details can be found in [19]-[21]. An equivalent method was used in [10], [11], and
BH51

The relevant scattering/inverse scattering problem for (1.1) is associated with the
following elliptic system on the plane:

-
where
0 O1(x)
= . 2.2
ow [Qw) 0 } 22

For simplicity we assume that Qq; and Oy € $(R?).
When Q =0, ¥ = ¢/%/2] is an exponential solution of (2.1) for each k  C. For
0 +# 0, we consider Mo, o-valued solutions of (2.1} in the form of

U (x, k) = ™2y 0x, k) (2.3)
and we require that
| lilm wix, k) =1 2.4)
X | 00

The effect of Q on the solutions of (2.1) is measured by the difference between

u(x, k) and [/ for |x| large. The differential equation satisfied by u is
3 —i(kx +kx _
2% = e T o, b @)

Using the fundamental solution 1/(xx) of the 8; operator we can convert (2.5)
and (2.4) into the following integral equation:

wx,ky=I+— e k). (2.6)

f dx! dx, , exp(—i (kx’' +kx’)/2)
For each k¥ € C equation (2.6) is uniquely solvable in the space Cy(C, Mayp) if Q is
small or if 012 = O21. The following asymptotic expansion of u for large x| can be
derived from (2.6):

m(k) walk) n

px, k) =1+ + ==+
X

@27
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where
—i(kx’ + kx')
2

4

17 . —
wi(k) = — /RZ dx} dx) exp( )(JC’)J’_1 OxHu(x', k). (2.8)

The scattering datum T'(k) is defined by
~i(ex’ + kx')
2

It can be shown that Ti2(k) and 1o (k) € F(R?). The construction of T (k) from Q(x)
through (2.6) and (2.9) is called the direct scattering of (2.1).
If we define v(x, k) by
o ) = e (x, k) p1a(x, ) exp (i (kx + k%) /2)
’ w1 (x, k) exp(i (kx + k¥)/2) w2 (x, k)

then we can also derive from (2.6) the following asymptotic expansion of v for |k
large:

T(k) = «;—Hom(k) = ZLHO f dx} dx exp( )Q(x')/,c(x’, B. (2.9
v B2

], (2.10)

) k)

vk, x) =T 4 . + 2 ., (2.11)
where
I, (x) == 2i Q(x). (2.12)
Moreover, v(k, x) satisfies
d [ (kx + k%) \——
%Y k. x) = exp(m)v(k, DTH (2.13)
Bk 2
and
lim vk, x)=1. (2.14)
k=0

Again we can convert (2.13) and (2.14) into the following integral equation:

exp(i (K'x + k%) /2) —— |
P vk, )T (k). (2.15)

For symmetric or small T, equation (2.15) can be solved uniquely in C3(C, Max3) for
each fixed x € C. We can then derive from (2.15) the following asymptotic expansion
of v for |k} large:

1
u(k,x)=1+ﬂf dk, dF,
m w2

B | e
k 2 ’

vk, x) =1+ (2.16)

where
Bix) = 7% [R  dkydk; exp(i(Rx + KT /2, T, )T E). (2.17)

By comparing (2.16) and (2.17) with (2.11) and (2.12), we find the following
reconstruction formula for O:

1
Ox) = —Z'tnovl (k. x}
i

i (k' TN\ —e—
- 1_,11,[ dK, d¥, exp(»———-——-’( x+“))v(kf,x)r(k’). (2.18)
2mi R2 2
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The reconstruction of Q(x) from T (k) through (2.15) and (2.18) is the inverse
scattering of (2.1). It can be shown that Q' = +Q if and only if 77 = &7
The Cauchy problem (1.1) can be solved by the following procedure.

(1) Let ’
0 qox)
(x) = .
- [ﬂ:%(x) 0 }
Solve (2.6) using Op(x) and obtain the corresponding scattering datum
0 a{k)
Totk) =
o® La(k) 0 ]

through (2.9).
(II) Let T(k,t) = exp(—2itkikz)To(k) be the solution of the following linear Cauchy

problem:
or = —2ik1ky T, (2.19a)
at
Tk, 0) = Tyk). (2.19b)

(L) Let v(k,x, 1) be the solution of (2.15), where the scattering datum T'(k, ) is
now time-dependent, and let Q(x, ¢) be defined in terms of v(k, x, ) and T(k, ©)
through (2.18). Then

Q(xt)-:[ 0 Q(x’t)}

+q(x,1) 0
and ¢(x, ¢) solves the Cauchy problem (1.1).

The solution procedure above can be schematically represented by the following
commutative diagram:

direct scattering

o) TO)

DSII T, =2k, T

20 ()

inverse scattering

In other words, the nonlinear DSII equations are linearized by the direct scat-
tering of the elliptic system (2.1), and then g is recovered from T through inverse
scattering.

For Schwartz class initial data, we have the following theorem [4, 21].
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Theorem 2.1. Let go(x) € F(R?). Then (1.1) has a unique global solution q such that
t —> q(-,t) is a C*® map from R into $(R?), provided the sign in (1.1a) is positive
(defocusing case) or

. . 73 /51 2
I|QO||L1(R2)||6]0|ILOQ(R2)<“2“( > ) (2:20)

when the sign is negative (focusing case). The solution can be obtained by the procedure
(D-(11).

The equation (2.15) with T'(k, t) = exp(—2itkik2)To(k) can be written as

explilk’ - x — 2tk k.
xp(i[ : 1) To (k')

1
H=I+-— | ar dk
vk x. 1) +JT,/RZ 1572 k—k
1 e - k/ _ k// . _ 2t k/ k/ — k//k//
+= / K, dR,dK!dk) xp({l( ) ox — 2k — kik5))
72 Je k — IV = k)

x vk, x, D To(k") To (k). (2.21)
Let v(k, x, ) = vi1(k, x, £). Then (1.2) and (1.3) follow from the procedure (I)—(11I)
and (2.21). Note that v(k, x, ¢} is a smooth function in C x C x R.

3. Preliminary Estimates

Let y (k) € $(R?). We define the operator HY , by

1 exp(i[x - k' — 2tk k}])
I4 _ / / 1™2
(N = — fR | dk; dis —

y (&) £(). 3.1)

It is easy to see ([19], Lemma A.1, and [22]) that HY ,;: Cp(C) —> Co(C) and

172
8
IHY ||,y < ('];“V”LI([RZ) |lVHLoo(R2)) . (3.2)

Equation (1.3) can be written as
v= 1+ H,) . (3.3)
We have ([19], Corollaries 2.4 and 2.12)
I (H%,)? is invertible on C,(C)  ¥xeC, r e R. (3.42)

If condition (2.20) is satisfied, then |HS ,|l¢ c,c) < 1 ([20], Theorem 4.7), and we
have
I+ (H?,)? is invertible on C,(C)  Vx eC, 1 e R (3.4b)

For large |¢| or |x]|, the high frequency oscillation of the exponential function
leads to the decay of II(H;‘,,)ZH wc,Cy- The proof of the following lemma can be
found in [19], Lemma 2.8, and [21], Lemma 5.13.
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Lemma 3.1. Given any € > (, there exists t, > 0 and R > 0 such that
ICHE )2y < (3.3)
for |x| > R or {t| > t..
Combining (3.4), (3.5), and the continuous dependence of HY ; on (x, ¢}, we have
F @)Y gy SCa V.0 €CxR. (3.6)

We can rewrite (1.2) as
1 :
q(x,t) = 5 ./RZ dky dky exp(i[k' - x — 2tk k5o (k)

1 —_—
+ i e dk, dky exp(i[k’ - x — 2ek; k5] w (', x, D (K'), G.7)

T

where w(k, x,t) = vk, x,t) — 1.
The first term on the right-hand side of (3.7) can be estimated by the following
lemma.

Lemma 3.2. Let f be a function of two real variables. If f, f € L*(R?), then

VRZ dyidyz exp(ily - x — 2ty ) O] < Cl fll ey el (3.8)

Proof. For t # 0, the Fourier transform of exp(—2ity;ys) is m|t|~! explinin2/(20)]
([16], p. 206]). Hence

1 n
/ dyrdyrexp(i[y -x —2ty12) f() = —— / dmdm explininz/ 2O f(—x —n)
R2 47 |t| R2
and (3.8) follows. ]

The bulk of the proof of the long-time decay therefore falls on estimating the
second term on the right-hand side of (3.7). It follows from (3.3) that the equation
satisfied by w is

w = £(H )1 £ (H2 Hw.
Hence we have
w = +[IF (H2 )] 1 H )1 (3.9)

The rest of this section will be devoted to estimating functions of the form HY 1,
where y € $(R?). Note that HY 1 is a smooth function of (k,x,¢) € C x C x R.
Let the function g, x be defined by

G 190]() Ja—
gty = 3 O F =R exp(— ¥ ~ k2.
=
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Then we have
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k—-F

1 explifx - K — 2k K ,
HQJ:}E/R? at; i, 220 2D) () - g, 0

exp(ifx - k' — 2tk k}])

1
— dky dk;
+7Tfu;92 165,

k—Fk

25k, (3.10)

Let Fy (K'Y = [y (&) — gy 1 (k))]/ (k — k). It follows from Lemma A.1 in the Appendix
and the Sobolev lemma ([12], p. 243) that 7, 4 € L'(R?) and || &, k]| ;1 (e, is bounded
by a constant C, that is independent of £ € C. We deduce from Lemma 3.2 that

explilx - k& — 2tk k] C
/ dky dky (I — 2) (&) — grak))| = == (3.11)
R? k—k #]
It remains to estimate
1 . gy (k)
— Ak, dk! K — 2tkik Y.
7 /RZ 1 dky exp(ifx - z]) Y
-1 i (am(k)
e

k-

X /{RZ dk dit, exp(i[x - k' — 2tk;k5])

k/

K-k (=K —k?
— exp( 5 ) (3.12)

For the j = 2 term in (3.12) we proceed as follows. Corollary A.3 implies that,
for each k € C, the Fourier transform of [(k" — k)?/(k' — k)] exp(~ |k’ — k|?/2) belongs
to L'(R%), with the L!-norm independent of k. We again deduce from Lemma 3.2

that

& —k)?

C

l/ dk; dky exp(i[x - K —2tk’k’])(k —

()
exp 5 < —

=S CED)

For the j = 0 term in (3.12), we obtain by the substitution &’ = k -+ re’® that

fR K]k exp(ilx K — 2ekiA))

exp(— Ik — k12/2)
K-k

(1 4+ i2¢ sin 29)r2)

2 ) o0 _
= exp(i[x -k — Ztklkz])fﬂ dg et /0 dr exp( >

x exp(ir[(x1

2
= Xp(i[x -k — kalkgn
0

x exp(—i2rt{kycos 8 + ky sind)),

— 2tky) €08 0 + (x2 — 2tky) sin6}])

[oe]
dée_m/ dré(r,8,x,1)
0

(3.14)
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where

—(1 +i2¢sin 26)r?
2

¢, 0,x,6) = exp( ) exp(ir(xy cos @ + x; sin 6)). (3.15)

For ! =10,1,2, ..., the following estimates clearly hold:
/ ldr rl(r, 0, x, 0] < C. (3.16)
R

The Fourier transform %, ¢ of ¢ in r is given by ([16], p. 206)

- )1/2 exp(_ [£ — (x1cos6 + xz5in 9)]2)

@ =
(Fr$)E. 0, x,1) (1+iztsin9 2(1 +i2¢sin @)

Note that
-1 -1

Re . = .
2(1+1i2¢sin0)  2(1 + 442 sin® 0)

Hence there exist positive constants C; (! = 0,1,2,...) independent of (&,6, x, 1)

such that
G

! o
](Dsd’r(f))(f’f,@,X,?)‘ = m (3.17)
Also, we have
C
1 F0) (.0, %0 Loy < “ (3.18)

1 +i2¢sing|/2-1/p’

for any p € [1, oo}. Therefore, it follows from (3.16), (3.17), (3.18), and Lemma A4
in the Appendix that for any p € [1, cc), we have

2w 00
16 -0 / dr é(r, 0, x, 1) exp(—i2rt (ky cos 0 + k1 sin 0))| < Wﬁ%ﬁ (3.19)
0 0
where C, > 0 is independent of (1, &, x).
Similarly, for the j = 1 term in (3.12), we have
TR
f dki dk expli[x - k' — 25;‘;]‘%])’(‘];_‘;{_) exp(—Ik’ —k2/2)
R -
- 0 [ —(1 + i2t sin 20)r?
= exp(i[x -k — 2tk1k2])j dé 6”2’9/ drrexp( d+i 25111 g )
0 0

x exp(ir[(x1 — 2tky) cos 0 + (xp —~ 2tk1) sin 6))

2
= exp(i[x - k — 2tk k) / dg e %*
0

o0
x [ drrep(r, 8, x, 1) exp(—i2rt(ky cos 6 + k1 5in 6)). 320
0



442 L.-Y. Sung

For any p € [1, 00), Lemma A.4 again implies that

27 . oo
f de e~ f drrg(r, 6, x, 1y exp(—i2ri(ky cos 0 + ky sin 9))
0 0

c

4
< T (321)

where C, > 0 is independent of (¢, k, x).
In summary, we have proved most of the following proposition.

Proposition 3.3. Let y € $(R?). Then
H;l‘,l = Ok, x, )+ exp(i[x <k - Ztklkz])[y(k)q)g(k, x, 1) + Gy )Pk, x, )],

where the functions ®; are smooth in all variables, and

Cy
[®yk, x, D] < e

C
|[D20x, k, D)1, [P3k, %, )] < W%W

forall (k,x,1) e Cx Cx Rand pe[l, co). Moreover, we have

_ 2w

o0
Ok, x,t) = — de e"’p/ dr ¢(r, 0, x, 1) exp(—i2rt (ks cos 6 + ky sin 6)),
0 0
and

-1 2n ) oo
Dk, x,1) = — [0 do e %? / drr(r, 0, x, t) exp(—i2rt (ky cos @ -+ ky sin 9)),
0

where ¢ is defined in (3.15).

Proof. 1t only remains to discuss the smoothness of the functions &;. The functions
@, and &3 are clearly smooth by (3.16). The smoothness of ®; then follows from the
smoothness of HY 1. u

Corollary 3.4. Let y € P(R2) and € > 0. Then there exists a positive constant Cy e such
that

c
ngsmﬁ; Vik,x,0)eCxCxR
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4. Long-Time Decay

From (3.1), (3.2), and Proposition 3.3 we have

(HY )*1 = HY (HZ 1)

3
= Wtk,x, 1), (4.1)
=1
where
Mtk x, 5] < % (4.2)
—_ 1 7 7 ]a(k’)lz io
Wolk, x,t) = nzﬁ& dki dk, vk d@e

[e.9]
x f dr §(r 6, x. 1) exp(i2rt(ky sin6 + K; cosf)),  (4.3)
o]
and

ak) (8ge) k) [ " o o0
¥t Jo

1
Wik, x,7) = ;2-/@2 dk, dk,

fes)
X / drrg(r, 0, x, 1) exp(i2rt (k1 sinf + k5 cos6)).  (4.4)
0

Note that by (3.15) the functions ¥, and W3 are smooth in (k, x, 7). Since (Hi,)zl is
smooth in all variables, the function Wy is also smooth in (%, x, £).
We first investigate the function W, (k, x, t). We can write (4.3) as

Walk,x, 1)

1 2x . oo
=_——f dee'Bf drg(r,6,x, 1)
0 ¢

72

X /R i dkydidy £k, k) exp(i2rt (ky siné + k), cos 6))

2
'“(k)l f o "’f drg 8. %.0)

2

—Ik = k122 v
x fR dkj dK @(—g‘—_—k—ul exp(i2rt (K, sin f + K} cos 9))

_ 2 k 27 . o0 [,
+@ff1_‘j{12~}Q[0 dge"?fo drqS(r,&,x,t)/Rz dky dk;
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K —k) — [k — kf? s ,
X exp( ) exp(i2rt(ky sinf + & cos0))
kK —k 2
=T + |o(6) *T + (Bl ()T, )
where
TR = ) — [l + (gl B) K — F) Jexp(—[K' — kI*/2).

-k

By Lemma A.5 in the Appendix, the function f(-, k) is continuous in C and C!
in C\{k}, for each k € C, and there exists positive C, independent of £ € Cand w € R
such that

2
fﬂé(/ dkiZ|(D;@f)(k’e"“’,k)!> <Cy Vko)eCxR  (46)
R R

=1

By the substitution k' = k”e~% we can rewrite 7; as

1 2 ] %) - |
L = - do 679/ dr¢(r,0,x, Z)/ dkg exp(l2rtk/2/)/ dki/ f(k”e*’e,k)
T 0 0 R R
1 2r » oo -
== d 6’9/ dré(r,0,x, 1) f(k, 0, 2r1), (4.7)
VA 0 0
where

fk,0,5) = / dk exp(isky) / dk] f(K"e ™ k). (4.8)
R R
The Sobolev lemma ([12], p. 243) and (4.6) imply that

/ dsif(k,0,5)] < Cq V(k,0)eCxR. (4.9)
R

Clearly, from (3.15) we have for / > 0,
Fo(r,6,x,0)| < C. (4.10)
Therefore, we obtain from (4.7), (4.9), and (4.10) (with / = 0) that

Co
At < T (4.11)

where C, > 0 is independent of (%, x, ¢).
We now turn to the integral Ip. The substitution ¥’ = k + k"e~¥ gives

1 2 ) o0
I, = - / do e2’9/ dr¢(r,0,x,t)exp(i2rt (ky sin 6 + k cos 0))
7= Jo 0

— K’ 2 2
x / K, i e—’flL]L,—'Q exp(i2rtk)
R2

1 2 ) oo
= —2/ do 62’9/ dr ¢(r, 0, x, 1) exp(i2rt (ky sinf + ky cos 0))n(2re), (4.12)
T 0 0
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where

k !
We can evaluate n(s) by (A.11) in the Appendix and obtain

n(s) = f k”dk”—————eXp( 17/2) Xpisky).

_ A
n(s) =2ﬂl_ﬁrf__~*/2_

Let p € (1, o). It is clear from (4.13) that

/dsm(s)lp < 0.
R

For ¢t > 0 we can now rewrite I, as
I, = / dmy, exp(ilki (r sin ) + kz(r cos6)]),
SR+

where the measure dm, , on S x R* is defined by

1 2i0
dmy, = me ¢(§ 8, x, l‘)r](r)drde

445

(4.13)

(4.14)

(4.15)

(4.16)

It is clear from (3.15) that for any p € [1, oc] and / > 0O there exists a positive Cp

such that

o0 p l p o\ Vp y
dr|{ — —,0,x,t <C,t'P.
(fo ’(2t> "’(Zr g ) ) !

Combining (4.14), (4.16), and (4.17) (with / = 0) we find

C
f dime,| < —2—-  V(x,) e CxRT and ¥ p € [1, ).
ST B S

Similarly we can rewrite I3 as

1 27 ) o0
== / do & / dr (.0, x, 1) exp(i2rt (ky sin 0 + kp cos 6))
e Jo 0

7" " _k_ﬁ _|k”|2 . "
X/R dk{ dkzﬁ xp( 2 )exp(zZrtkz)
1 2w ) o)
== do &t / dr ¢(r, 0, x, 1) exp(i2rt (ky sin 6 + ky cos 0))7i(2r1),
T 0 0

where

~ /" ’" E/—, _| le 7
n(s) = f dk| dk; v exp ) exp(isky).
Again we can evaluate 7j(s) by (A.11) and obtain

_ 2 2
7(s) = dr 1—[1+(s /Szz)] exp(—s/2)

(4.17)

(4.18)

(4.19)

(4.20)
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Hence we have
/ds|f)(s)| < 00. (4.21)
R

By (4.10), (4.19), and (4.21) we have

C
| I Sm Vix,k,t) e CxCxR. (4.22)

Summing up, we have shown that, for ¢ > 0, Wa(k, x, 1) = Vo1 (k, x, 1)+ ¥ (k, x, 1)
such that

. Cq
(l) |“1121(k’x7t)‘ = —t_s

(ii) \Ilzz(k,x,t)=|a(k)|2/1 +azmx,[exp(i[kl(rsine)+k2(rcos9)]),

STxR

where dm, , is defined by (4.16).
The function W3 can be analyzed similarly. The analog of /; for W is the integral

1 27

[o o]
— do &> / dr ¢(r, 0, x, 1) exp(i2rt (ky sin 6 + ky cos 6))[1 — exp(—=2r%1%)],
T 0 0

which in view of (3.16) is bounded by C/t. It follows that
Ca
W3k, x, )| < < (4.23)
The following proposition has therefore been established.
Proposition 4.1. Let o € $(R?) and p € [1, 00). Then for t > 0 we have

HE )*1 = filk, x,t) + la () folk, x, 1), (4.24)

where the functions f; are smooth, and

Cy
Atk x, )| < - (4.25)
flk,x, 1) = / dmy ; exp(i[k1(r sin6) + ka2 (r cos 6)]). (4.26)
STx R+

The measure m,, on S* x R is defined by (4.16) and it satisfies the estimate (4.18).
We now return to (3.9). From Proposition 4.1 we obtain
w=wlk,x,t)+wyk, x,1), (4.27)
where

wi(k, x, 1) = £[1F M2 )T fitk, 2, x), (4.28)

walk, x, ) = £[IF M )] (a® £k, x, 1)). (4.29)
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It is not hard to see from the explicit form of f; in (4.26) that w; is smooth in

C x C x R*. The smoothness of w; then follows from that of w and wy.
We deduce from (3.6) and (4.25) that

lwi(k, x,2)| < (—’} V(k,x,t) eCxCxR*. (4.30)
The function wy can be rewritten as
walk,x, 1) = Ela®F folk,x, 0+ [1F H )T @ ) (@) fa(k, x, 1)
= wy(k, x, 1) +wylk, x,1). (4.31)

Let € be any positive number. From Corollary 3.4, (4.26), and (4.18) we have

HE, (ja(0)? folk, x, 1))| =

/ dmy;H}, (lelo)? exp(i[k1(r sin6) + kx(r cos 9)]))
St xR+

dm H l |2 1
Xt x—ire=io, s
S xR+

Cy,
< o /2_1. 4.32)
We then find by (3.2), (3.6), and (4.32) that
lwalk, x,6)| < ts‘;’_: for any € > 0 and V(k, x,1) € C x C x R*. (4.33)

Note that wy; is clearly smooth, and hence w»; is also smooth.
We are finally ready to prove the long-time decay estimate.

Theorem 4.2. Under the same conditions in Theorem 2.1, there exists a positive constant
Cy, such that the solution q(x,t) of (1.1) satisfies

g, 0l < %"I" V(x, 1) e R? xR (4.34)

Proof. By (4.27) and (4.31) we have, for ¢ > 0,
/R i dk; diy exp(ilx - k' — 2tk k5 ))wk’, x, (k') = K1 + Ko1 + K2, (4.35)

where

K= f dky dky exp(i[x - K — 2tkiky ) wi (K, x, Dee(k') (4.36)
R2
and

Kaj = / k| dky exp(ilx - k' — 2tk Ky ])wa, (8, x, D (k). (4.37)
R2
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It follows from (4.30) and (4.33) that

Ca

[K1| + K| < —  V&one R? x R*. (4.38)

Using (4.26) the integral K, can be written as

K21 == dmx,t
SIxR*

X /dekg diy exp(i[k} (x1 — rsin@) + ky(xz — r cos 0) — 2tk; &} ]) lee (k') e (k).

Lemma 3.2 and (4.18) then imply
Co
t

The estimate (4.34) for r > 0 now follows from (3.7), Lemma 3.2, (4.35), (4.38),
(4.39), and the fact that «(k) comes from the scattering datum of

0 qo(x)
G0 = qu(x) 0 }

A similar analysis for # < 0 then establishes (4.34). O

[Ka1] < V(x,1) € R? x RY. (4.39)

Appendix
Lemma A.l. Let y € $(R?) and

y (k) = Y2y [(85y) 0)/51] F = k) exp(—Ik' — k[*/2)
kK —k ’

Fy k) =
Then for each k € C, F, . belongs to the Sobolev space H*(R?) and
1kl ey < CIYles@ey + Iy ), (A1)
where C > ( is independent of v and k.
Proof. Let Q= {k": |k — k| > 1/2} and Q, = {k": |k’ — k| < 1}. Clearly we have
1kl iz < Y azge) + 1Y @) (A2)
A complex form of Taylor’s theorem is

N I @) @G v®] .
)/(k/) — ZZ k l!(j _kl)' (k’ — k)l(k/ _ k)j*l

j=01=0

N+1 7 mept N+1-m
K -k —k
n Rm(k/,k)( )" ( )
= m!(N +1—m)!

m

, (A3)
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where the remainders R,, are C* in k¥’ and

”Rm (', k)“C'(RZ) < ”y”CN‘*‘H"(RZ)’ o= 0, 1, 2.... (A4)
In view of (A.3), (A.4), and the series expansion
_lk/ _ kl2 ) (_1)n , )
— )= — k™" .
xp( 5 2:; S K — K (A5)

the function F, x(k') is C! on Q,, C? on Q,\{#}, and for |I| < 2,
|(Di Fyi) &) < Clliyllcsaey  VE € @\ k). (A.6)
Therefore, F, ; € H*(Q2) and
N Ey il a2y < ChYilcsmey- (A7)
The estimate (A.1) follows from (A.2) and (A.7). |

Lemma A.2. The following convolution formula holds:

2 1— (20, k27 ! —Ix|2/2
%*(E"exp(—%))=n2n+ln! (X %/ /0) exp el ). (A.8)

xntl

Proof. We will establish (A.8) by mathematical induction. We have for x # 0,

exp(—|y|%/2)
/ dyldn—P*M:/ dyrdys
R2 X — y R2

2
— 2
Gy e/

2 1 1\/ 3 Iy
o) o)

_ 2 |x]2

= 7(1 - exp(——2—)>. (A.9)

The case n = 0 of (A.8) follows by continuity.
Let ¢, be the left-hand side of (A.8). We have for x # 0, and n > 1,

1 1 1\/ . —1yP

—/ dJ’1dYZ< +—>(yy” eXP( b ))

X Jre xX—y y 2

2 1 1 3/, —yP - —|yP
x/de“dyz(x—yW)[ ay(y exp( 2 ) e (5

2
Z (- em( 50 )) + Lo (A.10)

X

bn

Il

In the calculation above we have used the identities
on—1 {2
/ dy1 dyzy exp( b ) =0, forn>1,
R? y 2

which are established by switching to polar coordinates.
The induction step follows from (4.10) and continuity. O
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Since the Fourier transforms of 1/x and gne P12 are, respectively ([13], Ap-
pendix BL7), —2mi/€ and (—i)*(2m)E" exp(—|£12/2) (where & = & + i&), the fol-
lowing corollary follows immediately.

Corollary A.3. The foliowing formula holds:

5 (x exp(—|x|? /2))

X

[0 1E17/27 1)) exp(=[§2/2)] -

= (=)' 2" n! s

(A11)

Lemma Ad. If f(x) € LI®), [€) € C'®) N LP(®), for some p € [1.00), and
f HL“’(R) < oG, then

} [G dx fx)e™ ™ < Coll Mz + 1/ Mm@ + 1L 1 Lom)- (A.12)

Proof. Let £ € R, We have the following Sokhotski-Plemelj formula [18]:

1 gy 203 v)
Efg%fdy — (& 4+ €i) =PVor [ 2 (A-13)

We can rewrite (A.13) as

f d §x)™ = pv.s— f g@) £57, (A14)

Applying (A.14) to g = F~1 £, we find

* (x)e ™ = i{é}. - 3._ f{y}
f(} dx f(x)e == 5o PV- A yy i (A.15)

The estimate {A.12) follows from (A.15). o

Lemma A5, Let g € $(R?) and

gk — [gk)y + (338} YK — B)] exp(—Ik' — k[?/2)

FH ) = o

Then f(-, k) is continuous in C and C in C\{k}, for each fixed k, and there exists a
positive constant Cg such that

fdkz(/ dky Y |(Dh Sy e™ k))) <Cy VYo)eCxR. (A.16)

=1
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Proof. The continuity and differentiability of f(k’, k) follow immediately from Taylor’s
theorem and (A.5). ‘

If |k’ —ke™'®| > 1, then we can control (DL f)(K'e'®, k) by the functions g(k'e’®),
[gto) + ((9z0)(K)) (k' €™ — k)] exp ( — |K'e’® — k|*/2), and their derivatives. We have

1
A+ kD (A + k712

(D ) (e, k)| < Cg{

1
tiE |k, — Im(ke=")|][1 + K| — Re(ke )2 } ‘

On the other hand, Taylor’s theorem also implies that |(Dj f)(k'e™®, k)| is
bounded by C 30, o 10" gll ooy if K — ke <2
The estimate (A.16) now follows from the following splitting of the integral:

2
f dk, [ / dky () + / dki(-)]
k) —Tm(ke—")| <1 |k —Re(ke )] <1 Ik} —Re(ke=*){=1

2
+ / dk’z[ / dk;(.)] . .
Vi, —Im(ke=)| 1 R
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