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Abstract.  Let H = - A + V + F x  t with V ( x l ,  x±) analytic in the first variable 
and V(x 1 +/a ,  x±) bounded and decreasing to zero as x ~ oo for each a ~ ~. Let 
be an eigenvector of - A + V with negative eigenvalue. Among our results we 
show that for F ~ 0, (~, e-itnO) decays exponentially at a rate governed by the 
positions of the resonances of H. This exponential decay is in marked contrast 
to "conventional" atomic resonances for which power law decay is the rule. 

I. Introduction 

The phenomenon of exponential decay associated with resonances is well known in 
quantum mechanics. Arguments which predict this phenomenon can be found in 
almost any elementary quantum mechanics text (see, for example, [1]). One 
imagines (for example) a Hamiltonian of the form H 0 = - A  + V to be weakly 
perturbed by an operator W which causes an eigenvalue E 0 of H o to disappear into 
the continuum o f H  = H 0 + W. If we prepare our system at t = 0 in a state ~b o with 
Ho~ o = Eo~,o, non-rigorous arguments indicate [i ,  2] that under rather general 
conditions, after a very short time one has 

(0o,  e - i tHOo ) ~ - e -  itE~ (1.1) 

where E,  = E o + A E  - iF/2.  (Here we have assumed (~o, ~o) = 1.) A E  is the energy 
shift due to W which can be computed approximately using Rayleigh- Schr6dinger 
perturbation theory and F is the transition rate given by Fermi's Golden Rule [1]. 

The validity of an equation such as (1.1) has been discussed briefly by Simon [3] 
in the dilation-analytic framework. Simon considers Hamiltonians H which are 
bounded below. In this case he concludes that the best one could hope for is an 
approximate validity when t is not too large (nor too small). The reason for the 
restriction to times which are not too large is easy to understand from the following 
well known argument: Suppose that a bound of the form 

[(0o, e-itH~/,o) I < Ce- ~ltl (1.2) 

were true for some e > 0 and all t > 0 (and thus by the self-adjointness of H for all 
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t~ N). It would then follow by Fourier transformation that the spectral measure 
d(00, Exz(~)Oo) was absolutely continuous with Radon-Nikodym derivative f(~) 
analytic in the strip {z :jim z[ < e}. Since such an f cannot vanish on a set of 
positive measure we must conclude o-(H) = N. 

We consider the Stark effect Hamiltonian in Lz(R3): 

H = H o + V ,  H 0 = - A + F x  1 

The assumptions we make about V are stated precisely at the beginning of Sect. II. 
They are satisfied, for example, if V is translation analytic [4], and for all a e R, 

V(x t + ia, xi)  is bounded and lim t V(x  1 + ia, x±)] = 0. Unfortunately they are not 
X --~ o o  

satisfied for the Coulomb potential. However as noted in [4] they are satisfied if the 

Coulomb potential 1 is replaced by p * i ,  where p is a Gaussian charge distribution. 
4 

r r 

Under our assumptions for F > 0, H has purely absolutely continuous spectrum 
filling all of ~ and thus the objections to a bound of the form (1.2) are no longer valid. 
In Section II we show that the resonances of H in the lower half-plane can be 
numbered so that their widths Pj = - 2Im Ej satisfy 0 < P 1 _-< P2 ~ '  "Pj ~ " "  and 
that for translation entire vectors ~ and q5 satisfying certain domain conditions we 
have the expansion (as t ~ oo) 

(~, e -  "u4,) = ~ Cj(~', ~b)e- it~j + O(e- ~(" + e)/2) 
Fj ~a 

The constants Cj are computed in terms of the projections onto resonance 
eigenfunctions. 

In Section III we discuss the connection between the translation and dilation 
analytic frameworks. 

It is a pleasure to thank Martin Klaus for useful conversations. 
Before we begin it seems fitting to say something about the connection of our 

results with the Lax-Phillips theory of scattering [5] where local exponential decay 
results have been known for some time (see [6] and [7] and references given there). 
On a fundamental level the Stark operator and the operators considered by Lax and 
Phillips are very similar. As shown in [8], for a large class of V, - A + V + Fx~ is 

d 
unitarily equivalent to - i~x x ® I if F ~ 0 and this is also true of the generators of the 

Lax-Phill ips unitary propagators. On the other hand we do not see how to fit the 
Stark operator into the Lax-Phill ips theory although this may be more a function of 
our ignorance than the unsuitability of their framework. 

II. Asymptotics of (~ ,  e -ia~ ~) 

We begin by stating our conditions on E Let H o = -  A + F x  1 in L2(~3), 
v,~(x) = V ( x l  + a, x O. 

a). V(x) is a real measurable function such that for almost all x=, V(z, x±) is an 
entire function of z and the operator Vz(Ho + i)- 1 is compact and analytic for 
all z~C. 
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b). For  each a e R and e > 0 there is a p e (3/2, oo) and two functions V 1 and V z with 

Via = g l  -}- V2, V1 eLP(R3), It v z  II ~ < e 

c). H = H o + V has purely continuous spectrum. 

We remark that a) is just the statement that V is "translation analytic" 
in C as defined in [4]. Also for purposes of orientation it is useful to note that if 
V(z, x±) is entire for each x± with V(x  1 + ia, x±) bounded and decreasing to zero as 
x = (x ~, x±) ~ oo for all a e ~, then a), b), and c) are all satisfied. (The last condition is 

0 
satisfied because the Cauchy formula implies ~-~-~ V(Xl, x±) is bounded and 

1 .  

decreases to zero as Ix1] ~ ~ uniformly in x±, and this implies absence of bound 
states [4].) 

We summarize the relevant results from [4]. Define H(2) = H 0 + V~ + Fa. Then 
the family of operators {H(2) :). e C } is type A analytic in the sense of Kato [9]. The 
spectrum of H(2) is as follows. We have a~ .  (H0~)) -- R + iF(Im ,~o) and for F > 0, 
Im 2 < 0 we have a(H(2)) _c {z :0 > Im z > F(Im 2)}. The spectrum of H(2) in 
{z :0 > I m  z > F(Im 2)} consists of discrete eigenvalues of finite algebraic multip- 
licity. These eigenvalues do not depend on 2 as long as the line R + iF (Im 2) does not 

intersect them. We call all eigenvalues in ~ adi~ (H(2)) resonances of H. It is 
lm 2<0 

shown in [10] that if V is both translation analytic and dilation analytic the 
resonances defined in [4] and [10] coincide. 

The following estimate is useful in controlling any local singularities which V 
may have. 

Lemma 2.1 Suppose f and g are in Lv(N 3) with p > 3. Then there is a constant C 
independent of  F so that 

sup I[f (tto - E + i7)- 11[ < C ! t f  llpt~! -1 + 3/2p (2.1) 
E e ~  

sup II f ( H o  - E + /7 ) -  lg [I < C II f lip llg IlvlT[ -1 + a/p (2.2) 
EeN 

Proof  The basic technique is that used by Kato [11] to prove that certain 
multiplication operators are smooth with respect to - A. We use the formula [4] 

e i t H °  ~ -  e l t F x l / 2 e  - U~eitVxl/2eitae2/12 (2.3) 

to reduce expressions involving H o to those involving only - d. Thus for example 

11 feitn°g l[ = I[ f e - i tAg  I]" (2.4) 

We then use (following Kato [11]) the fact that 

1[ felt~g ]l <= C(p)11 f lip l] g lip t -  3/p (2.5) 
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This gives (for T > 0) 

oo 

{I f ( t t o  -- E + iT)- lg II < C(p) I [I f e - / ,ag  He- "dt  
0 

<= C(p)T-1 + a/v 1[ f lip 1t g tip (2.6) 

A similar result clearly holds i f"/< 0 so that  (2.2) is proved. To  establish (2.1) we write 

I} f ( U o  - E + iT)- i tl2 = II f ( H o  - E + iT)- l(Ho -- E - i?)- i f  H 

1 
It f [ ( H o  - E + iT) -~ - (Ho - E - i7)- * ] f  {I 

=21TI 
<-IT{- ~ll f ( U o  - E - iT)- i f  1{ (2.7) 

The proof  is therefore complete. 
The crucial estimate for our  result is the following. 

Proposition 2.2. Suppose f and g are bounded and have compact support in ~ 3  Then 
for F > O  

lim t[f(no-E-iT)-'gtt=O 
E - + + _ m  

uniJbrmly for T in compacts of  ~\(0).  

Proof We write (for 7 > 0) 

f ( g  o - E + iT)- l g = ~ (feimOg)e - ~te- iEtdt = f ( t ) e -  ietdt 
0 0 

= ~ F(t)e-  iEtdt + f ( t ) e -  iEtdt 
0 e 

The first term has norm < 11 f 1t tlg It ~ while the second can be integrated by parts 
to give 

F(t)e-  i~*dt = - iE-  1 f ( e )e -  ie, + F'(t)e- ietdt 
iE 

We write F(t) using Eqn. (2.3) as 

F(t) = f e"rX~/2 e - itZl eitFxd2 ge-  ~teit3F2/12 

and note that  F'(t) is an integral opera tor  with kernel 

Ce-  vt f (x)g(y)e itF(x~ + YD/2eit3F2/i2 t -  3/2e- i lx  - Y l 2 / d ' t  

. f ( x ~ + y ~ ) +  4 - 2 t - ~ + 4  t- I x - y t 2 - ?  

7 _-> c5 > 0, then the Hi lbe r t -Schmid t  norm of d F ( t )  is bounded  by If 

C(a)t- 7/2e- a,/2 
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Thus  for each e > 0, 

oo 

It f ( H o  - E + i7)- l g II <= (e + ]E J- 1)I[ f [I o~ {t g It o~ + J E] - I  C(b) ~ t -  7/2e- at~2 dt 

This is easily seen to give the result. 
We r emark  tha t  a similar technique can be used to prove  the same result 

uniformly for Y in (0, ~ )  or ( -  0% 0). Thus  for y > 0 one uses Eqn. (2.5) to show tha t  

1i ~ F(t)e-~E~dt + F(t)e-  ~ d t  II -~ 0 as ~ $ 0 uniformly in 7 for ~, > 0 and then inte- 
0 1/e 

1/z 

grates ~ F(t)e-  ~E~dt by parts  as above.  We will have no need for this result however,  

Proposit ion 2.3. Suppose W is a measurable function such that for each e > 0 there 
exist W 1 and W 2 with W = W  I + W  2 and WI~LV(E 3) with ~ > p > 3 / 2  while 
II W2 I{ o~ < e. Then 

lira II[Wtl/Z(Ho - E - iv)- 11WI 1/2 tl = l im II[Wll/2(Ho - E -  iv)- 1t} = 0 
E - ~  + oo E ~ ++_ oo 

uniformly for y in compacts of  ~\{0}. 

Proof  I f  f and  g are in L q with q > 3, a simple approx imat ion  a rgument  shows that  

lim II f ( H o  - E - i7)- lg I1 = 0 with the stated uniformity. In addi t ion Eqn. (2.3) 

shows that  l im I[ f ( H o  - E - iv)- 111 = 0 with the same uniformity.  Using the fact 

tha t  ]Wll/z<:]Wljl/2-j-IWz] 112 and  tha t  I f l}>JfzJ ,  [ g l l > l g z j = > t ] f l ( H o -  
E - iv)- 191 tl > II f2(Ho - E - it ')- 192 It we easily derive the s ta ted result. 

Theorem 2.4. Suppose F > 0 and that V satisfies the conditions a), b), and c) stated 
at the beginning of  this section. Then i f  a > 0 is given, there exists an N (a) > 0 so that 
H ( - 2 / a )  has no eigenvatues in B a = { z  :O> I m z > - a F ,  IRez ]>  N(a)} and in 
addition for any b > a we have 

sup 111 < 
z ~ B a  

where Ba= B a u ( z  : O < I m z < a } .  

Proof  Write V_ ~b = A B  where A = [V_ ib[ 1/2 and B = IV- ib[ 1/2 sgnV_ ib. Let Ho(7 ) = 
- A + Fx  1 + F7, R o = (z - H o ( -  ib))- a, R = (z - H ( -  ib))- a. Choose  N(a) so that  
II B R o A  II < 1/2 for ze/~ a c~ {z "[ Re z] > N(a)} - C a. This is possible by propos i t ion  
(2.3). Then in Ca, the N e u m a n n  series 

~, Ro(VRo)" 
n ~ O  
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converges since we have 

Ro(VRo)  n = R o + RoA (BRoA)" BR  o 
n = 0  n 0 

Thus in C, we have 

l] R II <= II Ro Ii + II RoA II II BRo II (1 - 1 / 2 )  - 1  

Since IIRoll <( (b  - a ) F )  -~ and IIRoAH [[BRol I is bounded in C a by proposition 
2.3, we have 

sup II (z - H ( -  ib))- 111 < oo 
z ~ C a  

The bound sup l l ( z - H ( - i b ) ) - l i l < o o  follows from the anatyticity of 
~o\co 

(z - H ( -  ib))- 1 in the upper half plane and on the real axis. 

Theorem 2.4 implies that if {Ej}[= 1 is a sequence of different resonances in the 

lower half plane then Im E . ~  - oo. We number  the points of U %~so (H( - ia)) so 
J a > 0  

that 

0 >  I m E  1 >_ImE 2 " ' ' - > I m E j  =>'.. 

For Ej~  adi~o. (H(--/a))  we write 

1 
Pj ( ia) = - -  c~ ( z - U ( - i a ) ) - l d z  

2hi I= - ~1 =~ 

where e is small enough so E~ is the only point of o-(H(- /a) )  in iz - Ejl < g. 
Our main result is 

Theorem 2.5. Suppose ~, 4, H otk, and H o~ are entire vectors for the translation group 
U (b) (U (b) f (x) = f (x 1 + b, x±) =_ fb(x)). Then given c~ > 0 we have for t > 0 

(O, e -  an4) = ~ (Oil, Pj( - ia)4-~a) e-itE~ + r(t) 
-- l m  E j  < ct/2 

where 

( ,) [r( t )[<constexp  - e + ~  . 

for some e > O. Here a > ~/2F. The quantities C j = (0~, P j (z)4=)are independent of  z as 
long as F Im z < Im Ej. 

Remark. If 0o is a negative eigenvalue of - A + V where V satisfies the assumptions 
of Theorem 2.5, then 0 is a translation entire vector. In addition, by the C o m b e s -  
Thomas argument [12] (O0)= is in the domain ore  "xl for small [el so HoOo is also 
translation entire. Thus Theorem 2.5 holds for 0 = q5 = Oo. 
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Proof .  Let F ( z )  = (~,  (z - H ) -  i c~) for Im z > 0. F has a meromorphic continuation 
to C which we again denote by F(z) .  For Im z > - a F  this continuation is given 
explicitly by F(z)  = (~9~, (z  - H (  - ia) ) -  1 d? _ ia ). Similarly let G(z)  = (~,  (z - H ) -  1 c~ ) 
for Im z < 0. G has a meromorphic continuation to C which we again denote by G(z). 
For Im z < a F  this continuation is given explicitly by G(z)  = (~k _ ~, ( z -  H ( i a ) ) -  ~qSia). 

Let 

Q(2)= ~ 0 1 i m ( - ~ i ) ( q 6 [ ( 2 + i ~ - H ) - l - ( 2 - i ~ - H ) - l ] ~ ) ' 2 ~  

= - (2h i ) -  a(F(2)-  G(2)) (2.8) 

We have by the spectral theorem, 

(~,  e -  itnd?) = ~ Q ( 2 ) e - i ' ~ d 2  (2.9) 

The function Q has a meromorphic continuation to C given by 

Q(z)  = - (2hi)- l ( F ( z )  - G(z) )  

which by assumption c) of the beginning of this section and proposition 2.4 is 
analytic in a (possibly narrow) strip tim zl < 6. 

We use the identity (for large tEl and 0 < 7 < a) 

( e  - i~ - H ( - / a ) ) -  ~ = ( e  - io;)- 1 + ( E  _ io;)- 2 H ( - / a )  

+ (e  - i~)- ~ H ( -  ~ ) ( e  - i~ - U ( -  ~ ) - '  U ( -  ~) 

in the expression F ( z )  = (qli~ , (z - H( - / a ) ) -  1 ~b _ j and find 

F (E -- iy) = (E -- i°/) - ~(0,,,, ~ -  ,,,) + O ( I E I -  2) 

= (E  - i 7 ) -  1(I/I, q~) -{- O ( l E I -  2) 

for E~ ~ and ]El large, uniformly for ~ in compacts of ( - 8 ,  a). Similarly 

G(E - i~t) = (E - i7)- ~(~, ~) + O(tEI- 2) 

uniformly for 7 in compacts of ( -  6, a). Thus for large [El and ~ in closed intervals 
of ( -  6, a) 

Q ( E  - iy) = O([Et- 2) (2.10) 

We can therefore shift the contour of integration from the real axis in the integral 
of Eqn. (2.9) downward to a line parallel to the real axis picking up contributions 
from poles in the standard way. 

We find 

(qJ, e -  ,,n ~b) = y ,  R e s  F(z)Iz = E, e - , t~ ,  
- I m  Ej  < o;]2 

+ e- t(~ + ~)/2 Q(2 - i(c~ + e)/2)e- i~ad2 
- 0 o  
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where e is chosen so that all E k with - Im E k > e/2 also satisfy - Im E k > - 

Since Q(2 - i(a + e)/2) is in L 1 by the estimate (2.10), the result follows. 

~ + e  

2 

III. Dilation Analytic Potentials 

If  V is only assumed to be dilation analytic with V ( O ) ( -  A + 1)- 1 compact and 
analytic in a strip t im OI < Oo, it can be shown that [10,13] the functions F and G 
defined in the proof  of Theorem 2.5, have meromorphic  continuations to C. (Here, of 
course, q~ and 4' must be dilation analytic vectors.) However because 

lim l l ( -  A e -  21~ + F x l e ~  _ E + i7)- 11[ = oo 
E~+oo 

for any O e (0, re/3) and ~/~ N (see [ 10]), a proof  following that given for Theorem 2.4 
that Q(z) is L I along lines parallel to the real axis must surely fail. We still believe, 
however, that a result analogous to Theorem 2.5 holds for the Coulomb potential. 

Suppose that V satisfies the assumption of Theorem 2.5 and in addition is 
dilation analytic with V ( O ) ( - A + I )  - 1  compact  and analytic in a strip 
IIm OI < Oo. Suppose 4' is a negative eigenvalue of - A + V with non-degenerate 
eigenvalue E(0). Then the functions F and G can also be written for any O with 
0 < O < Max {Oo, ~/3} 

F(z)  = ( 4 , ( -  iO), (z - H ( i O ) ) -  i 4`(i0))  

G(z) = (4`(i0), (z - H ( -  iO)) - 1 4 ' ( i 0 ) )  

for all zeC.  Here 4 ' (O) (x )=ea° /24 ' (e°x )  for OeR.  Clearly then 

(4'ia, P j ( -  ia)4`_ i,) = ( 4 ' ( -  iO), P j ( iO)4 ' ( iO)  ) 

where/3j (iO) is the spectral projection of H (iO) corresponding to the eigenvalue Ej. 
For F small, there is one and only one eigenvalue E j0 of H( iO)  close to E(0) and 

lim (4'( - iO), Pjo(iO)O(iO))  = (4`, 4`) 
F--,O 

(see [10] for a proof). We presume (but do not know how to prove that if F is small 
we can write 

(4`, e -  itn 4`) = (O, 4')#-"~Jo + r(t, F) 

where lr(t, F)I can be made arbitrarily small uniformly in t > 0 if F is chosen small 
enough. This would be an interesting result. 

References 

1. Merzbacher, E.: Quantum mechanics. New York Wiley, 1961 
2. Weisskopf, V. F., Wigner, E. P.: Z. Physik 63, 54 (1930) 
3. Simon, B.: Ann. Math. 97, 247-274 (1973) 
4. Avron, J., Herbst, I.: Commun. Math. Phys. 52, 239-254 (1977) 
5. Lax, P. D., Phillips, R. S.: Scattering theory. New York: Academic Press 1967 



Exponential Decay 205 

6. Lax, P. D., Morawetz, C. S., Phillips, R. S.: Commun. Pure Appl. Math. 16, 477-486 (1963) 
7. Lax, P. D., Phillips, R. S.,: Commun. Pure Appl. Math. 22, 737-787 (1977) 
8. Herbst, I.: Math Z. 155, 55-70 (1977) 
9. Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1976 

10. Herbst, I.: Commun. Math. Phys. 64, 279-298 (1979) 
11. Kato, T.: Math. Ann. 162, 258-279 (1966) 
t2. Combes, J. M., Thomas, L.: Commun. Math. Phys. 34, 251 270 (1973) 
13. Herbst, I., Simon, B. : Dilation analyticity in constant electric field. II. The N-body problem, Borel 

summability. To be submitted to Commun. Math. Phys. 

Communicated by B. Simon 

Received January t 5, 1980 


