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Influence of large deflections on the dynamic stability
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Summary. The dynamic stability analysis of nonlinear viscoelastic plates is presented. The problem is
formulated within the large deflections theory for isotropic plates, and the Leaderman representation of
nonlinear viscoelasticity for the material behavior. The influence of the various parameters on the stability/
instability possible situation is investigated within the concept of the Lyapunov exponents. In addition, it
is shown that in some cases the system has a chaotic behavior.

1 Introduction

The subject of the dynamic stability of elastic linear structures was extensively investigated in [1],
where the motion is governed by the Mathieu equation and the stability characterizations are
given by the Strutt diagram. Further results were given e.g, in [2], [3], in a review paper and
amonograph. The same happens, for example, in bridge dynamics or in wing flutter (instability of
aircraft in air flow).

When plates are considered, and the deflections are not small compared to the thickness of
the plate but still small with respect to the other dimensions, the analysis of the problem should
be extended in order to include the plate middle plane strains [4], [5], which leads to the theory of
large deflections (see e.g. [6]). The dynamic stability of elastic plates with large deflections was also
investigated in [1] for particular cases.

When the structure is made of a viscoelastic material, the problem becomes much more
complicated since the equation of motion turns out to be an integro-differential one, rather than
an ordinary differential equation as in the elastic case. The solution of this problem in the linear
case was given in [7] within the averaging method, and in [8]—[10] by using the spring-dashpot
representation. The dynamic stability analysis of viscoelastic homogeneous plates, investigated
within the concept of the Lyapunov exponents, was performed in [11]. This procedure was used
also in [12] to investigate the dynamic stability of shear deformable viscoelastic laminated plates.
In these two studies the Boltzmann superposition principle was incorporated, enabling the
modeling of any linear viscoelastic material.

However, it is well known that many materials (polymers, for example) are not linear and
should be modeled non-linearily in order to give an adequate description of their behavior. Smart
and Wiliams [13] made a comparison investigation about the response of polypropylene and
polyvinylchloride, by using three different single integral representations of nonlinear viscoelasti-
city: the Leaderman model [14], the Schapery model [15] and the Bernstein-Kearsley-Zapas
model [16], [17]. Their main conclusion was that the Leaderman model is the most useful
representation, where prediction and simplicity are concerned.

In a previous work by the authors [18], the dynamic stability of nonlinear viscoelastic
homogeneous plates was investigated within the small deflections theory and the concept of the
Lyapunov exponents.
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In the present investigation we use the large deflections theory to derive the integro-differ-
ential equations of motion within the Leaderman model, which are nonlinear from the material
and the geometrical points of view and with time-dependent coefficients.

2 Problem formulation

Within the theory of large deflections, the equations of motion of an isotropic plate subjected to
in-plane loads are (see e.g., [6])

N+ Ny, = ohii 18]
Ny, + Ny x = ohif 2
Mx,xx + ZMxy,xy + My,yy + (wa,x),x + (Nyw,y).,v + (nyw,y),x + (nyw,x),y = QhW (3)

where u, v and w are the displacements of a point on the middle plane in the x, y and z directions
(see Fig. 1), ¢ is the material density, and h is the plate thickness.
The in-plane forces N,, N, and N,, are given by

N,= Nxo +Nx
N,=N,° + N, )
N, =Ny +N,,.

Here N,, N, and N, are the in-plane applied edge loads while N,°, N,° and N, are the in-plane
resultants given by
2

NS, NS NG = [ox 0y 03] dz )

—h/2
where o,, 0, and o,, are the stress components.
The various moments, M,, M,, and M,,, are given by

hi2
[Mx’ Mya Mxy] = jl [O-xa Gy, O-xy] z dz. (6)
—h/2

For nonliner viscoelastic materials, the Leaderman stress-strain constitutive relation is given
by [14]

a(t) = Q0) gle(x)] + §+ Ot — 1) gle(r)] d 7

Fig. 1. Resultants and couples in rectangular Cartesian coordinates
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where
gle(t)] = (1) + ,Bs(t)z + ys(z)3 .

and f and y are constants, such that for small strain g(g) — ¢.
In the state of plane stress for isotropic plates

E(t
0110 = 030 = 05
Q1a(t) = (1) Q1.() )
Qselt) = ' —2V(t) Q1:()

where E(f) is a time-dependent relaxation function which at t = 0 denotes the initial Young’s
modulus of the material, while v(¢) is the time-dependent Poisson’s ratio.
The strain-displacement relations for an homogeneous thin plate are given by

&y = €x — IW 4x
&y ==y — IW,yy 9)
By = Cyy — 22W 4y

and the von Karman strains of the middle plane e,, ¢, and e,, by

ex=Uyx+ Zx
ot W,
1
e,=v,+ 0 w3 (10)

Coy = Uy + 05+ WW,.

By separating the variables, the assumed solution functions for the various displacements are
given in terms ot time and spatial functions,

wix, y, 1) = f1(t) o(x, )
u(x, y, 1) = fo(t) ¥(x, y) 11
U(x’ Vs t) =f3(t) ¢(xa y)

Substituting Egs. (5), (7)—(11) into Eq. (4) yields the following expressions for the in-plane
forces:

1 2
N, = hQ1:(0) {[fz(t) vt 5 (50 q),x)Z] + 8 [fz(t) bt 5 (0 fp,x)Z]
s [fz(t) bt 5 (00 <p,x)2] + [fa(t) b+ 30, <p,y)2]

2 3
+v8, [fs(t) b0+ 50, %)2] +, [fs(f) bt 5 U0, %)2] }
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. 1 2
wh [ =0 {0 FG0 0.0 |+ 8 vt 360 0.7 ]
O+

#7210 o+ 3 G0 0. | +3[ 560 8+ S G010,
o[ 500, + 3600 [+ |00, 300 [Tarm
1 2
¥y =00 {| 0 8+ 001 0, |+ 8, 500, + 5 00 07
1 , P 1 2
+ 7 |:f3(t) ¢+ E(ﬁ(t) ) ] +v [fz(t) Yt 5(f1(t) ?,x) :I

2 1 3
+ v, [fz(t) Vst %(fl(t) <p.x)2] + Vs [fz(t) Vot E(fl(t) co,x)z] }

2

+h f Qult —1) {[fs(‘f) by + %(fl(f) ¢,y)2] + By I:fs(f) b5+ %(fl(‘f) ‘P,y)z]

3
+ Py I:fS(T) ¢,y + % (fl(T) (P,y)z] +v I:fZ(T) l//,x + %(fl(r) (P,x)z]

2 3
B O Ve (0 0 | + | 0 s+~ (i 0 | e B, (13)
2 2

1—v
2

+ ﬁxy[f.’:(t) ¢,x +f2(t) '//,y +f1(t)2 (P,xqo,y]2 + ny[f:i(t) ¢,x +f2(t) lp,y +f1(t)2 (P,x@,y]a}

Ny=h

011050 . + 128 ¥y + [1) 0.20,]

1— .
+h ——Z_V J O 1(t - T){[f?o(‘[) d),x +f2(’lf) ‘ﬁ,y +f1(1:)2 (P,x(P,y]+ ﬁxy[f3('r) ¢,x +f2(T) ‘//’3’
0+

+ 10 020,8 + 15l ¢ + LY, + L) 00,1} dT + Ny, (14)

and substituting Eqgs. (7)—(11) into Eq. (6) yields

M, = —1i(@.x + vp ) (Qu(o) fil) + _f 014 — 1) f1(0) dT)
0+

— 28010, {Qu«» £t [fz(t) bt 5 (50 <p,x)2}

+ J 011(t — 7) fi(v) [fz(t) Y.+ —;—(fl(t) <p,x)2] dr}

o+

1 2
= 319, * 01:0) f1(®) I:fz(t) Yat s (1@ %)2]
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" f Oule — 9 /1) [fz(t) ot 2 (00 <p,x)2]2 dr}
P
L0k + V05 (Qu(O) f07 + f 01t — 1) file) dr)
— 248,10, {Qu«» £ [fa(t) b5t 5 (A0 ¢>,y)2}
¥ j 01t — 9 /i) [fa(f) 8ot 5 (D) mﬂ dr}
3L, {QM(O) £ [fs(t) byt 5 (h) ¢.y)2]2

t . 1 2
+ j 01, — 1) fi(7) [fs(f) ¢, + “Z‘(fl(f) ¢.y)2:| df}

M, = L0+ 9) (QH(O) £ +§ Ouslt — ) /i) dr)
20100 {QM(O) 7050V + 5 0 0.7 |
+ f 61t =9 460 |t e+ 50 0. | dr}
B
3l {Qu«n 70 [ 50+ 3 G007 |
+ j Gutt = 0 | 50 ¥+ 3 Ui 0.0° | dr}
L0703 + 1,0%) (an) S + f Ouslt — ) 1 dr)

ot

~ 28,1104y {Qu(o) fi(®) [fs(t) ¢y + ‘;‘(ﬂ(l’) ¢,y)2}

+ [ Q=050 506, + 5 () 0. | dr}
0+ 1 i

= 39119,y 1 211(0) /1)) l:fs(t) ¢y + 2 (1® ‘f’,y)z}

+ J 011t — 1) fi() [f3(r) ¢y + %(fl(r) q’),y)z] dl}

o+
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(15)

(16)
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M= —[1— 0] 11 (Qu(()) £ + j" Ouslt — ) fi) dr)

—2[1 = v(e)] Bl 1y [Qll(O)fl(t) (50 b + S0 Yy + 10 020,)

+5 013t — ) £1®) (fo(0) box + £o(D) Wy + (0 0.20,) dr}

=3[l — V)] 1] 10.xy [QH(O) £1@) (F5(0) ¢, + £0) ¥y + 1D 020,

+5 0uslt = ) £10) (fo(0) box + o0 Wy + 10 0.40,)° dr]

—4[l —v(O)] ysyl 203, (Qu(O) filey® + J 014t — 1) fi(e)® dT) a7

where I; = h*/12and I, = h*/80. The nonlinear viscoelastic constants y,, ¥y, Bx, ;. 7y and By, are
related to those in Eq. (7).
In this research we consider the following in-plane loads (N, = 0):

N,= —N,,— N,,; cos (61
_ (18)
N, = —N,; — N,, cos (1)

where ¢ is time and 8 is the loading frequency.

Introducing now Eqgs. (12) —(18) in Egs. (1)—(3), the equations of motion are derived in the
form of a system of nonlinear differential equations with time-dependent coefficients for which an
exact solution is generally not available. Thus, the unknown functions f;(z), f2(t) and f3(t) can be
obtained by using the Galerkin method (see e.g. [1] and [19]).

Consider the case of a simply-supported plate, for which the boundary conditions can be
satisfied when the spatial parts of the solution functions are given by

nX . WY
o(x, y) = sin P sin b
X . Ty
= 2 gin 22 1
¥(x, y) = cos L sin (19
X ny
¢(x, y) = sin 2 cos o

and where a and b are the side-lengths of the plate.
By substituting Egs. (12)—(18)into Egs. (1)—(3), and considering terms up to order three, the
following equations of motion are derived:

J1(®) + Q1 — 2y cos (61)] £1(t) + [keS2(t) + kaf3(0) + ks fald)
+ kaf3(®) + (k + ks) £1(0)* + ks f2(8) + kof3()* + k1o f2(0) f3(] f1()

~

= f Dt — 1) f1(%) [0? + ks fo(0) + kafo() + (k + ks) fi(2)

+ ks f2(1)* + ko f3()* + kiofa() f3(0)] dr (20
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o) + A5 + Aofa0) + ka1 fu@ + kiafol0)? + kiafa0)® + kisfo(0) 10 + kief3(0)

+ kia f3(0) 10 + kis 1) + kio(2(0) £3(0)* + f(0) fa(t)?)
= —05: D(t — o) [A1£2(0) + A2 fo(®) + kun /(1) + ki3 fo(1)* + ki fo(0) + kes o) /1(2)

+ k16 f3(1)* + kua fa(@) [l + kisfa(@)® + kio(faft) f5(1) + fo(1) folr)?)] dr 21)
F3O + A2£2(0) + Asf30) + kiofi®) + ks 5@ + kyafs(®) + kusfs() [10 + kisf2(0)

+ kir folt) 1@ + kis o8 + kas(£20) £38 + f5(0) £2(2)°)
= —Ofi D(t — 1) [42£20) + A3 f5(0) + ki2fi(1) + kuafo(@) + kiafa(e)® + k1sfa(®) fo(x)?

+ k6 fo(1 + kar fo(®) [t + kisfo(t)® + kiolfal7) f5(2)* + f3(0) £20)7)] de (22)

wherea=b=14Ly,=y,=v .= p,=f and

2 410440 (m\* _ 4n*1,01,(0) 04
T (l> V=" "7%.0
2 _Nxs+Nys _ Nxd+Nyd
. _wz[l N ] n_z[N_(Nxs+Nys)]

33 —v) [1\? L+ v) (12
A1=A3=~—(-2—7;2—)(ﬁ) w? Az=%n_2—2(z> w?

27

T (1 + V) + 4y,(1 — V)] 0?

32 16(5 + 3v) 1
bo = {am st == i 49— 2 o

- {3n2 [ﬂ(l - % Bt _v)] N i@iﬂ} o

nr 8h?
kg = {%37—;; [p(1 4+ v) + 2y(1 — V)] + 126752 1+ v)} w?
. 729752(418;2 Do s g 2419(;;23\;) I
b= bz @ hie= o ) (] — W2 02
kis= T96_";z—2 w?  kig=vkyzs k7 =vkgs
kig = 5?7 vy + 751 = V2] @* ki = W :

32

ks =k; k6=k7=—§‘l—n

k9=k8.
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Here, » and Q represent the fundamental natural frequencies of the unloaded and loaded plate,
respectively, N is the Euler critical load, # is the excitation parameter and the k;; and k are the
cofficients of non-linearity.

Equations (20)—(22) are the nonlinear integro-differential equations, which govern the
motion of the nonlinear viscoelastic plate subjected to in-plane parametric loading.

3 Method of solation

Here we are interested in the stability of the unperturbed equilibrium of the nonlinear viscoelastic
plate. To this end the integro-differential equations (20)—(22) are investigated. For the handling
of non-linear differential equations with time-dependent coefficients, Lyapunov introduced the
concept of characteristic numbers, the sign of which determines whether or not the unperturbed
motion is stable [20]. The negative values of these chracteristic numbers are referred to as the
Lyapunov exponents.

According to Lyapunov, if all these exponents are negative, the unperturbed motion is
asymptotically stable. In addition, Chetaev [21], [22] showed that if one of the Lyapunov
exponents is positive then the unperturbed motion is unstable. Thus, it suffices to compute the
largest Lyapunov exponent in order to determine the stability of the unperturbed motion of the
non-linear viscoelastic plate in question. The largest Lyapunov exponent of the system is derived
within the following procedure [23]:

Consider the system of ordinary differential equations
X = F(x, t). (23)
For a given solution of Eq. (23), x(r), define the matrix

X x=x(t)
The largest Lyapunov exponent is then determined by solving the equations
y =Gy (25)

and performing the following steps:

(i) For the first time interval, A¢, solve Eq.(25) by considering initial conditions, »(0),
normalized such that ||y(0)] = 1, where |- | is the Euclidean norm.
(1) Compute p; = In [W(48)]
(i) Let z(At) = y(41)/|| n(41)]
(iv) For the second time interval, 24t, solve Eq.(25) with z(A?) as the initial condition
(G has to be changed according to Eq. (24)) and determine u, = In ||y(241)].
{v) Repeat the process for » iterations.

One defines then

1 n
di=—
Sy I (26)

m=1

which, for n— oo, is the largest Lyapunov exponent.
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In order to compute 1, the governing equations (20)—(22) must be reduced to a system of
first-order equations of the form (23).
Declaring the variables x((f) = fi(t), x4(t) = fo(t), x+{t) = f3(t), and x(z), x6(t), and xo{f) the
integrals in Egs. (20), (21), (22) respectively, the following ordinary integro-differential equations
are derived:

J(.:l = X3
%y = —x:[QH1 — 21 cos (1)) + kaxq + kax7 + keXs + ks¥g
+ ng42 + k9X72 + kioXaX7 + (k + ks) xlz] — X3

T

0 .
Xy = o f D(t — 1) x1[@* + kaxa(r) + kax4(t) + KsXa(r)?
O‘f'
+ koxA{(t)* + kyoxa(t) x+(1) + (k + ks) x1(2)*] dt
36'74 = X5

%5 = —[Aixq + A2x7 + x:2(k1s + kisxq + ky7x7)

+ x4%(kys + kyox7) + X7 (ke + k1oxa) + kiaxa® + kigx7’]1 — X

"
o .
Xg = aj D(t — D[ Arxa(t) + A2xy + x4(1) (kiy + Kysxa(z) + Ky 7%+(1))
0+

+ x4(t)? (ks + k19x+(7) + x5()? (k16 + kyoxa(1) + k1ax4(2)® + kigx+(1)%] dr
Xq = Xg
Xg = —[Azxs + Asxy + X, (kyz + kisxX7 + k17X4)

+ Xx7%(kys + kyoxa) + X4 (ki + k1o%7) + kiaxs® + kigxs®] — Xo

t

Xo = g;j. D(t — D[ A2x4(1) + Aaxs + x1(1)? (Ksz2 + kysxa(t) + ky7xa(7))

0+
+ x4(1)? (kys + kioxa(r)) + xa(r)? (k16 + k1oX(1)) + kiax+(1)® 4 ky sXa(t)’] dr. @7
As for the material relaxation function, the standard linear solid model

Ef)=a+be ™™ (28)

is considered where a, b and « are appropriate parameters. Thus, for a material with time
independent Poisson’s ratio one obtains

011 = IE_(QVZ —A+Be™ 29)
so that
py= 2 A+ Be T (30)

0,00 A+B
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Introducing the above model into (27) will affect only the equations for X3, X¢, and Xo. Their
final form is obtained by differentiating via Leibniz’s rule,

Bx1

A+ B

X3 = —0a {X3 + [602 + kaxy + kgx7 + k3x42 + k9X72 + kigx4xs + (k + ks) xlz]}

B
X = —0a { A+ B [A1x4 + Apx7 + x*(k11 + kisxa + ki7X7)
+ x2%(ky3 + ki9x7) + x77(k16 + kioXa) + kiaxs® + k18x73]} 3y

B
7.(9 = — {Xg + — A+ B [AzX4 + A3x7 + X3 (klz + k15x7 + k17X4)

+ x7%(k13 + k1oxa) + X42(k1s + k1ox7) + k1ax7> + k18x43]}.
With (31), the system of equations (25) is given by
V1=
Py = yl{—[QZ(l — 217 cos (00)) + kaxy + kaX7 + keXs + kqXs + ksxa? + koX7? + kyoX4%,
+ (k + ks) x,2] +2x, 2[kelks s + kysxg + kygXq) + kqlkys + kysxo + kygxa) — (k + ks)]}
— y3 — yax1{ks — ko[A1 + k1sx1? + 2x4(ky3 + kyox7) + k1oX7* + 3k14%47]
— kqlAz + kygx1? + 2x4(ki6 + k1oX7) + k1oX7® + 3k1gx4?] + 2kgxy + kiox7}
+ keyexs — yrxi{ka — kelAs + ky7x,% + kyoX7? + 2x7k16 + kioXa) + k1oXs? + 3k14%4%]

+ 2kox7 + kioXa} + k7yoxy

oB
V3 = “A+B yi@? + k3xy + kaxy + kgxa® + kox+? + kyoxaxs + 3%,%(k + ks)]
oB oB
— 0y3 — A+ B yaxiks + kexq + k1oXx7) — A+ B V7x1(ka + kox7 + Kk10X4)

Ya=1ys
_}-)5 = —2y1x1(k11 + k15X4 + k17x7) - y4[A1 + k15x12 + 2x4(k13 + k19x7)
+ kioX7” + 3k1axa®] — Yo — yalAz + kygx1® + 2x4(kss + k1oXa) + kyoXa? + 3kyigx47]

. 20B
Y6 = “A1B Vixi(kis + kisxa + ky7x7)

aB
~ 1B ValAr + ki5x1% + 2X4(k13 + k10X7) + kyoX7® + 3ki4x4%] — ays

aB
“4+B Valds + kig%1? + 2x4(k16 + kyoXa) + kyoX4? + 3kigx4%]

V7 =ys
Vs = —2y1x1(kya + kysx7 4+ ki7xs) — yalAs + ki9x1% + 2x4(k16 + Kk19x7)

+ k1ox7® + 3kigxa®] — ¥o — y1[As + kisx1? + 2x7(kys + kyoxa) + k1oX4> + 3k14x47]
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20B
“A+B
oB
- m Ya
B
T A+B
The system presented in (32) is for the general case when a +b. When a= b, f, = f3 and

Egs. (20)—(22) are reduced to two equations of motion and consequently the system (32) is
reduced to six equations only.

Yo = Vixi(kiz + kisxy + ky7x4)

[As + ki7x1% + 2xalk16 + k19X7) + kioX7? + 3k1sx4%] — ays

yolAs + kisx(® + 2x4(k13 + kioxg) + kioxa® + 3ki4x7%]. (32

4 Numerical results and discussion

In this section the stability of Eqs. (20)—(22) is analyzed with respect to the various parameters
involved. The solution of those equations and of Eq. (25) is obtained within the Runge-Kutta
method [24]. First, it is recognized that for the case where a =k =k; =0 (,j=3,...,10) in
Eq. (20), one obtains the well-known linear Mathieu equation, which was extensively investiga-
ted, e.g., by McLachlan [25].

oot T T T T T T T

1500

H ; ; i H H .0, i i
0 0z 04 0§ 08 1 12 14 18 18 2 0 §00 1000
x 10 t

Fig. 2. The response, f(t), and the largest Lyapunov exponent, 4,, for a =001, o =1, I/h = 50 and
an=00005 byn=05

1500
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a
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0.18 ]
0.t4
0.12]
Al 000} -
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0.07
0
-0.02 1 * : i
0 0.2 0.4 0.6 08 1 1.2 1.4 16 1.9 2 5!700 §100

, ; ; o8 h ) i i i A i H H

0 0.2 04 06 [:3.] 1 12 e 1.8 1.8 2 5006 5io0 5200 5300 5400 6500 5600 5700 5000 5900 6000
t x 10 t

c

Fig. 3. The response, fi(f), and the largest Lyapunov exponent, i;, for n = 0.5, w =1, I/h = 50 and
aa=0, boa=0000001, cxa=00001

When k = k;; = 0 and o & 0 we have
f1(®) + Q%1 — 21 cos (01)] £i()) = —* [ D(t — ) ful) dx (33)

describing the motion of a linear viscoelastic structure. The stability of this equation was
investigated in [11] by using the concept of Lyapunov exponents, and later on analytically
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in [26], [27], where an the expression for the critical (minimum) value of the excitation
parameter, 7., at which instability may occur, was obtained. For the case of the standard
linear solid model it is

2 . 20B
=73 |D©)| = WA+ B (34)
and will be used later on. When k; =0 (i, j =3, ..., 10), k & 0 and o # 0 we have
t
i) + Q[ — 25 cos (98] f1(®) + kA0 = — [ Dt — ©) [0*/i(r) + kfi(x)*] de (35
0+

which describes the motion of a nonlinear viscoelastic plate under small deflections. The
stability of this equation was investigated numerically by the authors of the present work [18],
where it was also shown that in some cases the system turns out to be chaotic. For the case
where o = k;; =0, (1, j = 3, ..., 10) and k #* 0, one obtains

Ffit) + Q1 — 2y cos (09)] f3(1) + kfi(®® =0 (36)

representing a non-linear version of the Mathieu equation, and was examined in [1].

H
08 1

t

Yig. 4. The response, f,(t), and the largest Lyapunov exponent, Ay, for & = 0.01, » = 1, I/h = 50, k;; = 0,
i,j=23,..,10 and a the case of Fig, 2b, b the case of Fig. 3b
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The numerical results herein were obtained by using 4 =0.1,B=09,N,, =N, =0, =o
and 6 = 2m. In addition, the following values for the nonlinear viscoelastic parameters were
considered: y = 2000, y,, = 4500, f = —45 and f,, = —67 as derived for a high density
polyethylene from [28].

Figures 2 and 3 show the response, f;(t), and the largest Lyapunov exponent, 14, drived for
the case where w = 1, and I/h = 50.

In Fig. 2« = 0.01 and g isequal to a)0.0005 (< 5, and b)0.5(> #.). In Fig. 2a the system is
asymptotically stable, that is 4, is negative and the response is approaching zero. In Fig. 2b the
system is stable with limit cycle and 1, — 0.

In Fig. 3 # = 0.5 and the following cases for « are considered: a) 0, b) 0.000001 and c)
0.0001. In Figs. 3a and 3b A, is positive, indicating instability. For relatively large o (case c)
A1 — 0 and the system is stable.

Figures 4a and 4b exhibit the results for the cases of Figs. 2b and 3b respectively, as
obtained within the small deflections theory (by substituting k; =0, (i,j=3,...,10) in
Eq. (20)). In Fig. 4a the system is stable, 1; — 0, while in Fig.4b 1, is positive, indicating
instability.

Figures 5 and 6 show the response, fi(t), and the largest Lyapunov exponent, A, as
derived within the large and small deflections theories, respectively, for the case where

b
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Fig. 5. The response, fi(t), and the largest Lyapunov exponent, 4,, for « = 0.01, w = 25, I/h = 10 and

an=00001, by=05
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I/h=10 (0 =25), « =001 and 5 equal to a) 0.0001, b) 0.5. In Figs.5a and 6a A, is
negative and the response is approaching zero. In Figs. 5b and 6b the system is stable,
A= 0.

From the above we conclude the following:

(i) Due to the stretching of the middle plane, the response amplitude is smaller than that
predicted by using the small deflections theory for relatively large [/h (see Figs. 2—4).

(i} At small ratios of I/h, the small and large deflections theories give practically the same
result.

(iii) From the stability point of view, both theories yield the same behavior when analyzed
within the Lyapunov exponents. However, the stable response within the large deflections theory
can be of multiple frequencies (see Figs. 5—6).

(iv) The material coefficient, «, has a great influence on the system in the sense that an
unstable system may become stable at large values of « (see Fig. 3¢c). The above is correct at
1 > .. But a is one of the parameters by which 7, is determined (see Eq. (34)) in a way that at large
a, 7, is increased, so that o stabilizes the system too.

(v) Atn < 7, the system is asymptotically stable regardless of the values of the viscoelastic
parameters.
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Fig. 6. The response, f,(t), and the largest Lyapunov exponent, A;, for & = 0.01, w = 25, I/h = 10, k;; = 0,
i,j=23,...,10 and an =00001, b4 =05



x7(nT) o

230 D. Touati and G. Cederbaum

Finally, it is noted that the Lyapunov exponents serve also as a powerful tool in the study of
achaotic motion, and actually, the existence of at least one positive Lyapunov exponent indicates
a chaotic state (see e.g. [23], [29], [30]). However, there are other ways to examine the response
nature. Figure 7a exhibits the Fourier power spectrum, phase plane and Poincare map plots of
the instability case given in Fig. 3a, while Fig, 7b shows the same but for the stable case shown in
Fig. 2b. Thus, we believe that more attention should be given to the chaotic behavior possible in
this problem.
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