ACTA MECHANICA

Acta Mechanica 113, 17 (1995)
© Springer-Verlag 1995

Effect of pressure gradient on MHD boundary layer
over a flat plate

P. Sam Lawrence and B. Nageswara Rao, Trivandrum, India

(Received June 22, 1994; revised August 16, 1994)

Summary. The magnetohydrodynamic (MHD) boundary layer flow over a flat plate is examined here for iwo
cases, viz. a uniform free-stream velocity and a uniform hydrostatic pressure. The nonlinear boundary layer
equations are solved using a reliable finite-difference method. The boundary layer physical parameters such
as skin-friction coefficient, displacement, momentum and energy thicknesses of the boundary layer are
determined. It is found that the normal surface velocity gradient decreases with the local magnetic interaction
parameter for the cases of a uniform hydrostatic pressure, whereas in the case of a uniform free-stream
velocity it increases with the interaction parameter.

i Intraduction

Within the boundary layer, the velocity increases from zero at the surface to the free-stream
velocity at the edge of the boundary layer and, therefore, velocity gradients may be appreciable,
even if the viscosity is small. Determination of the wall-shearing stress is one of the important
objectives in the solution of the boundary layer equations. The equations governing the
boundary layer flow in general become nonsimilar due to the presence of a magnetic field or
variable fluid properties. Wu [1] has studied the effects of suction or injection on a steady two
dimensional magnetohydrodynamic (MHD) boundary layer flow on a flat plate. He assumed
that both the free-stream velocity and the hydrostatic pressure were constant as in the case of
boundary layers wherein the magnetic force term or Lorentz force term is absent in the equation
of motion. Chuang [2] has pointed out the shortcomings of Wu’s model and suggested to assume
either free-stream velocity, or the hydrostatic pressure as constant in the solution of the
boundary layer equations, The pressure gradient across the boundary layer is of the order of the
boundary layer thickness and the pressure can be assumed constant across this thin layer. The
pressure gradient along the flow direction may, in certain specific cases, be small or even zero;
but, in general, it is determined by the external flow. Since the effects of viscosity are confined to
a thin layer of fluid adjacent to the boundary, the pressure may be calculated on the basis of
potential flow past the surface. This approach yields a reasonably accurate prediction of the
pressure gradient when the boundary layer is not near to separation. If the free-stream velocity is
constant, then the hydrostatic and magnetic pressure gradients are counter balancing with each
other. For the case of zero hydrostatic pressure gradient, the free-stream velocity decreases along
the flat plate due to the presence of a magnetic force.

Motivated by the work of the above-mentioned authors, the effect of the pressure gradient on
the MHD boundary layer over a flat plate is examined here. The nonlinear boundary layer
equations were solved numerically by the finite-difference method and obtained the boundary
layer physical parameters.
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2 Basic equations and numerical analysis

A steady two-dimensional laminar flow of an incompressible electrically conducting fluid over
a flat-plate (Fig. 1) is considered. The plate is located in the plane y = 0. The x-axis corresponds
to the direction of the flow and the y-axis is normal to the flow direction. u.,(x) is a nonuniform
free-stream flow velocity and B, is a uniform magnetic field applied along the y direction. u and
v are the axial and transverse velocity components in the boundary layer flow. ug and L are
chosen as the characteristic velocity and length for nondimensionalising the flow variables. The
Reynolds number, Re = (Lug)/v, where vis the kinematic viscosity, plays an important role in the
solution of viscous boundary layer equations of motion, as the order of the viscous boundary

layer thickness is 1 / ]/E.

The magnetic Reynolds number, Rem = opux £ opuol <1, where 1/(ou,) can be
thought of as a magnetic “kinematic viscosity”, u, is the magnetic permeability, and ¢ is the
electrical conductivity. Rem acts like Reynolds number (Re) in the magnetic boundary layer flow
which is governed by the magnetic induction equation derived from Ohm’s law and Maxweli’s
equations. When Rem < 1, the field lines are undisturbed by the fluid flow and the strength of the
induced magnetic field is negligible in comparison with the applied magnetic field. This corre-
sponds to the weak interaction of viscous boundary layer equations of motion and Maxwell’s
equations, which is often the case in engineering MHD. Then the Lorentz force term in the
equations of motion is only given by the applied magnetic field, B,. Hence the equations of
motion are decoupled from Maxwell’s equations.

The governing equations for a steady two-dimensional laminar MHD boundary layer flow
on a flat plate with a uniform magnetic field and without an applied electric field are [3]:
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where the kinematic viscosity v = p/p, g is the density, p is the coefficient of viscosity and u; is the
initial velocity profile at any point x, along the flow direction.
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The pressure gradient obtained from the oncoming flow is

1dp du, 0B, u,
- E E Ug Td—;— -+ ——Q—-— (6)
For the specified free-stream flow velocity, u,(x), the pressure gradient is determined from the
Eq. (6) of the oncoming flow, whereas for the specified pressure distribution, u(x) is obtained by
solving Eq. (6). In both cases, u.,(x) is the basic input for the boundary layer equations (1)—(5}.
The boundary layer flow problem is formulated assuming the free-stream velocity, u,, as a
function of x.

Defining
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Egs. (1)—(6) are transformed to

af’ a’ oW
2L g -0% + 5 =0, U
1'/ 6 62 7
20 Lo wL—pu-ryeaa-1+ ®
n
ff=W=0 at p=0, 9
ff—>1 as o0, (10
f=fitn) at {=0. (11)
25 duw 2]?:

Here W=W+ (B — D) yf; f=— I = 6B,*L/ou, is the magnetic interaction

L TR
parameter; and primes denote dﬂferentlahon with respect to #.

The nonlinear boundary layer equations (7)—(11) are the parabolic type partial differential
equations amenable to numerical integration, which can be solved numerically by finite-
difference method. The nonlinear equation (8) is linearised as in [4]. The derivatives in the
n-direction are then expressed by three-point difference formulae, whereas the derivatives in the
¢-direction are approximated by a forward-difference scheme. The finite-difference equations
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obtained from Egs. (7) and (8) are

Amnfr:n+1,n+1 + anfr:1+1,n + Cmnfr;r*-l,n—l = Dmns (12)
Wm+1,n = Wn+in-1+ Wm,n—l "_ Wm,n
+ ZArl[amnfr;t+1,n + bmnfr;l+1,n—1 + cmnfr;,n + dmnfr:t,n—l] (13)
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m and n are the grid points along £ and # directions. The wall = 0 is the grid point n = 1, and
n = oo is taken to be the finite position # = 8, where n = 81. Thus the mesh spacing is 44 = 0.1
and n = 0.1(n — 1). In the ¢-direction, the grid points are denoted as m = 1,2, ... with an
increment A&, which can be specified arbitrarily (say, 0.001). Since the boundary layer problem
is parabolic, the solution marches forward in £ from the known profiles /() at m = 1. For the
grid points n =2, 3, ..., 80, across the boundary layer, Eq. (12) produces 79 equations in 81
unknowns for f; ,. Boundary conditions on f’ supply the fact that f; ; = 0 and f3 g4 = 1, thus
eliminate two unknowns. These 79 equations are now a tridiagonal system of linear equations for
f3.2 through f; g, which are solved by the Thomas method. Using the f’ distribution in the Eq.
(13), the transverse velocity W, , across the boundary layer is obtained. When the solution for
m = 2is found, this acts as an initial condition for m = 3. This process continues for as long as the
boundary data f(¢) and y(&) are specified. A check is made after each step to see if the flow has
separated (i.e., the velocity gradient at the wall is zero). If the separation occurs, the calculation
stops at once. If no separation occurs, the calculation continues until the last position ¢ = &, is
reached.
The wall shearing stress t,, can be obtained from

0 i /
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. e 1
The coefficient of skin-friction, C, [E Ty / 3 gui,] becomes

Re

Cr =f"¢,0) = 2_(Ah {3fm.s — 4fm2}- (14)

The unknown normal surface velocity gradient, f”(&, 0) is obtained from the solution of f(Z, #)
at each grid point m along the £-direction.
The displacement, momentum and energy thicknesses (viz., 6, 85, and J;) of the boundary

layer are
2
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The integrals I1, I, and I5 in Eq. (15) are evaluated numerically from the solution of (£, n} by
using Simpson’s 1/3 rule.

The accuracy of the present numerical scheme is verified with Gortler’s rigorous analytical
solution of laminar boundary layer separation [5] for the free-stream velocity, @, = 1 — %, for
% € [0, 1]. The parameters f§ and y for this case in Egs. (7) and (9) become (&) = 1 — (1 — 287"
and (&) = 0. The initial velocity profiles f/(y) and W = nf/(n) — fi(n) at & = 0 are obtained by
integrating the following nonlinear ordinary differential equations:

f"+ =0, (16.1)
fi=fl=0, f'=04696 at n=0, (16.2)

using a fourth-order Runge-Kutta integration scheme with a fixed step-size An of 0.01. Using
these profiles and following the above described marching procedure, the solution of the
boundary layer equations (7) to (11), is obtained by solving the finite-difference equations (12)
and (13), for ¢ > 0. It is found that the normal surface velocity gradient, f(¢, 0) approaches
zero at & = 0.119, which corresponds to the value of X = 0.127074. This value compares well with
Gortler’s analytical solution [5], X, = 0.126.

3 Discussion

The magnetohydrodynamic boundary layer flow over a flat plate is examined for two cases, viz.
(i) a uniform free-stream velocity and (i) a uniform hydrostatic pressure. In the case of a uniform
free-stream velocity,

U(x) =1y for xel0, L], (17.1)

the pressure distribution is obtained from Eq. (6) as

p(x) =po — % Quo*(I%), (17.2)
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Table 1. Boundary layer physical parameters

Ix Uniform free-stream velocity Uniform hydrostatic pressure
S0 I I, I f0) I I, I

0.0 0.4696 1.2168 4696 7385 0.4696 1.2168 4696 7385
0.1 0.6153 1.0887 4445 7054 04223 1.2871 4818 7523
0.2 0.7393 0.9965 4228 6759 03573 1.4053 5046 7818
0.3 0.8489 0.9249 4037 6491 0.2716 1.5947 5346 .8189
04 0.9482 0.8668 3867 6248 0.1595 1.9749 5770 .8682
0.5 1.0390 0.8185 3715 6026 0.0341 3.1708 6297 9227

where pg is the pressure at x = 0. The parameters in Egs. (7) and (8) become: i, = 1, £ = X,

P(&) = 0 and y(¢) = 2I¢.

For the case of a uniform hydrostatic pressure,
p(x) =po for xel0, L], (18.1)
the free-stream velocity is obtained from Eq. (6) as
Uy (X) = up(1 — IX). (18.2)

The free-stream velocity, u,,(x) decreases along the flat plate with the magnetic interaction
parameter, I. The parameters in Egs. (7) and (8) for this case become: i, =}/1 — 2I¢,

1
E=x (1 -3 IJE>, B=1—(1-2I5"1 and y = —B. For both cases, the parameters § and y

in Egs. (7) and (8) are found to be functions of IZ, in turn functions of I%. Following [6], the
singularity at the leading edge is eliminated by using the transformation { = I¢ in the boundary
layer equations (7)—(11). By replacing £ as { and I = 1, in the Eqgs. (7)—(11), one can get the
transformed boundary layer equations. With this transformation, the boundary layer problem
becomes locally nonsimilar with respect to the local magnetic interaction parameter, Ix. The
solution of the boundary layer equations can also be obtained for x € [0, 1] by specifying the
values for the interaction parameter, I. In order to examine the effect of the pressure gradient on
the boundary layer physical parameters, locally nonsimilar solutions are obtained for the
boundary layer equations. The initial value profiles for the above two cases are obtained from
Eqgs. (16). Using these in the finite-difference equations and following the forward-marching
procedure, the solution of the boundary layer equations is obtained for the two cases. The
nondimensional boundary layer physical parameters such as skin-friction coefficient (f”/(0)),
displacement thickness (I;) momentum thickness (I,) and energy thickness (I3) of the boundary
layer for different values of the local magnetic interaction parameter, IX, are presented in Table 1.
Itis found that the normal surface velocity gradient decreases with the local magnetic interaction
parameter for the case of a uniform hydrostatic pressure. In the case of a uniform free-stream
velocity, the normal surface velocity gradient increases with the local magnetic interaction
parameter. Since the formulation of the problem is general, the solution of the boundary layer
equations can be obtained for any specified free-stream velocity.
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