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boundary layer 

Summary. The magnetohydrodynamic (MHD) boundary layer flow over a fiat plate is examined here for two 
cases, viz. a uniform free-stream velocity and a uniform hydrostatic pressure. The nonlinear boundary layer 
equations are solved using a reliable finite-difference method, The boundary layer physical parameters such 
as skin-friction coefficient, displacement, momentum and energy thicknesses of the boundary layer are 
determined. It is found that the normal surface velocity gradient decreases with the local magnetic interaction 
parameter for the cases of a uniform hydrostatic pressure, whereas in the case of a uniform free-stream 
velocity it increases with the interaction parameter. 

1 Introduction 

Within the boundary layer, the velocity increases from zero at the surface to the free-stream 
velocity at the edge of the boundary layer and, therefore, velocity gradients may be appreciable, 
even if the viscosity is small. Determination of the wall-shearing stress is one of the important 
objectives in the solution of the boundary layer equations. The equations governing the 
boundary layer flow in general become nonsimilar due to the presence of a magnetic field or 
variable fluid properties. Wu [1] has studied the effects of suction or injection on a steady two 
dimensional magnetohydrodynamic (MHD) boundary layer flow on a flat plate. He assumed 
that both the free-stream velocity and the hydrostatic pressure were constant as in the case of 
boundary layers wherein the magnetic force term or Lorentz force term is absent in the equation 
of motion. Chuang [2] has pointed out the shortcomings of Wu's model and suggested to assume 
either free-stream velocity, or the hydrostatic pressure as constant in the solution of the 
boundary layer equations. The pressure gradient across the boundary layer is of the order of the 
boundary layer thickness and the pressure can be assumed constant across this thin layer. The 
pressure gradient along the flow direction may, in certain specific cases, be small or even zero; 
but, in general, it is determined by the external flow. Since the effects of viscosity are confined to 
a thin layer of fluid adjacent to the boundary, the pressure may be calculated on the basis of 
potential flow past the surface. This approach yields a reasonably accurate prediction of the 
pressure gradient when the boundary layer is not near to separation. If the free-stream velocity is 
constant, then the hydrostatic and magnetic pressure gradients are counter balancing with each 
other. For the case of zero hydrostatic pressure gradient, the free-stream velocity decreases along 
the flat plate due to the presence of a magnetic force. 

Motivated by the work of the above-mentioned authors, the effect of the pressure gradient on 
the MHD boundary layer over a flat plate is examined here. The nonlinear boundary layer 
equations were solved numerically by the finite-difference method and obtained the boundary 

layer physical parameters. 
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2 Basic equations and numerical analysis 

A steady two-dimensional laminar flow of an incompressible electrically conducting fluid over 
a fiat-plate (Fig. 1) is considered. The plate is located in the plane y = 0. The x-axis corresponds 
to the direction of the flow and the y-axis is normal to the flow direction, uo~(x) is a nonuniform 
free-stream flow velocity and By is a uniform magnetic field applied along the y direction, u and 
v are the axial and transverse velocity components in the boundary layer flow. Uo and L are 
chosen as the characteristic velocity and length for nondimensionalising the flow variables. The 
Reynolds number, Re = (Luo)/V, where v is the kinematic viscosity, plays an important role in the 
solution of viscous boundary layer equations of motion, as the order of the viscous boundary 

layer thickness is 1 / V ~ .  
The magnetic Reynolds number, Rein = a/aeUooX < a/aeuoL ~ 1, where 1/(O'/ae) can be 

thought of as a magnetic "kinematic viscosity", /ae is the magnetic permeability, and a is the 
electrical conductivity. Rem acts like Reynolds number (Re) in the magnetic boundary layer flow 
which is governed by the magnetic induction equation derived from Ohm's law and Maxwell's 
equations. When Rein ~ 1, the field lines are undisturbed by the fluid flow and the strength of the 
induced magnetic field is negligible in comparison with the applied magnetic field. This corre- 
sponds to the weak interaction of viscous boundary layer equations of motion and Maxwell's 
equations, which is often the case in engineering MHD. Then the Lorentz force term in the 
equations of motion is only given by the applied magnetic field, By. Hence the equations of 
motion are decoupled from Maxwell's equations. 

The governing equations for a steady two-dimensional laminar MHD boundary layer flow 
on a flat plate with a uniform magnetic field and without an applied electric field are [3]: 

c~u av 
+ ~-- = O, (1) 

vy 

~u au 1 dp aBTu O2u 
- -  = + v - -  ( 2 )  u -~x + v Oy Q dx Q Oy2, 

u = v = 0  at y = 0 ,  (3) 

u ---, u~(x) as y ---, oe, (4) 

u(x = xo, y) = u,(y), (5) 

where the kinematic viscosity v =/a/0, Q is the density,/a is the coefficient of viscosity and ui is the 
initial velocity profile at any point Xo along the flow direction. 
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Fig. 1. MHD boundary layer along a flat plate 
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The pressure gradient obtained from the oncoming flow is 

1 dp du~ 6Br2u~ 
e dx - uo~ -~x § - - Q  (6) 

For the specified free-stream flow velocity, u,~(x), the pressure gradient is determined from the 
Eq. (6) of the oncoming flow, whereas for the specified pressure distribution, uoo(x) is obtained by 
solving Eq. (6). In both cases, u~(x) is the basic input for the boundary layer equations (1)-(5). 
The boundary layer flow problem is formulated assuming the free-stream velocity, u~, as a 
function of x. 

Defining 

= x/L, p = y / - ~ / r , ,  ~ = u/u0, ~ = ~  l/~luo, ~ = u~luo 

and introducing 

r = S ft~ dx, t l = a ~ y / ] / ~ ,  a = ftoof'(r tl) and W = e Vc2~/~o, 

which give 

d~ 1 &/ _ &/ d~ 1 t7~ &/ 1 
d---x = -s 0.oo, 8x 8{ dx - L 2r rl(fl - 11, ~yy = ~ a~ ]/Rel(20,  

~x ( ) =  ( ) + ~ x  ()=~-~-}- 2r ( ) + r l ( f l - 1 ) ~ ( )  , 

8 Or/ c~ 1 8 

0-7 () = gyy N () = ~a~ ~ ~ ( ) ,  
82 f&l'~ z 8 z 1 R e - 2  85 

ay2 () = ~-~-y) ~--~2 () = L-~ 2--~ uo~ ~'-~2 (), 

Eqs. (1)--(6) are transformed to 

af' Of' ~3W 
2r ~ + flf' + rl( f l -  1) ~ + ~ = O, (7) 

Of' Of' O2f ' 
2{f' ~ -  + l~ ~ -  = fl(1 _f ,2)  + y(1 - f ' )  + --,&/2 (8) 

f ' = W = 0  at t /=0 ,  (9) 

f ' ~ l  as t/--,oo, (10) 

f '  =f((r/) at ~ = O. (11) 

2~ dab 2Ir 
Here 1~= W+ (fl - t) t/f'; fl = ~ de ; 7 = ~--; I = aByZL/puo is the magnetic interaction 

parameter; and primes denote differentiation with respect to t/. 
The nonlinear boundary layer equations (7)-(11) are the parabolic type partial differential 

equations amenable to numerical integration, which can be solved numerically by finite- 
difference method. The nonlinear equation (8) is linearised as in [4]. The derivatives in the 
t/-direction are then expressed by three-point difference formulae, whereas the derivatives in the 
~-direction are approximated by a forward-difference scheme. The finite-difference equations 
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obtained from Eqs. (7) and (8) are 

Am.f,~+i,.+l + Bm.f/n+l,n + Cmnf'+i,.-i ----  D~., 

Win+l,. = W,.+I,.-i + W.,,.-i - W~,. 

+ 2Aq[a=.J'+~,. + b,..j'+~,._~ + c,..ff,. + d,..f/.,.-1] 

(12) 

(13) 

where 

1 ITV~,n 
A,~. - 2(Aq) 2 + 4(aq~' 

1 24*  , , 1 
B,..= ~ - ~  + ~ f  f ' , .  + fl'f,~,. + ~ y*, 

Cm. - 
2(Aq) 2 4(A~)' 

= ' - 2 ' + '  ' ' Din. f',n+l ~/n,. f ' " -*  -- I/V,.. f'"+* --f""-* 
2(At/) 2 ' 4(aq) 

a~. = - R -  S -  T, b~. = R -  S -  T, 

+ f l * + 2 ~ ( ] ~ , . ) 2 + 7  * 1 - ~ f ' , .  , 

c m . = - R - S + T ,  d , . . = R - S + T ,  

1 1 f l ,  T =  1 fl* R = ~ ~*(~* - 1), S = ~ , ( - ~  ~*, =/~(r 

1 
~* = ~(r 4" = r = ~ (r + ~ ) ,  

1 

m and n are the grid points along ~ and q directions. The wall ~/= 0 is the grid point n = 1, and 
~t = oo is taken to be the finite position q = 8, where n = 81. Thus the mesh spacing is A~/= 0.1 

and q = 0.1(n - 1). In the i-direction, the grid points are denoted as m = 1, 2 . . . .  with an 
increment A 4, which can be specified arbitrarily (say, 0.001). Since the boundary  layer problem 

is parabolic, the solution marches forward in ~ from the known profiles fi'(~/) at m = 1. For  the 

grid points n = 2, 3, ..., 80, across the boundary  layer, Eq. (12) produces 79 equations in 81 

unknowns for f~,.. Boundary conditions on f '  supply the fact that  f~,l = 0 and f~,sl = 1, thus 
eliminate two unknowns. These 79 equations are now a tridiagonal system of linear equations for 
f~,2 through f~,so which are solved by the Thomas  method.  Using the f '  distribution in the Eq. 
(13), the transverse velocity W2,, across the boundary  layer is obtained. When the solution for 

m = 2 is found, this acts as an initial condition for m = 3. This process continues for as long as the 
boundary  data fl(~) and ~(~) are specified. A check is made after each step to see if the flow has 
separated (i.e., the velocity gradient at the wall is zero). If  the separat ion occurs, the calculation 
stops at once. If no separation occurs, the calculation continues until the last position ~ = ~ . . . .  is 
reached. 

The wall shearing stress Cw can be obtained from 

y=o ~=o L \ ~1/,=o 
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[/11 The coefficient of skin-friction, C I -= Zw ~ ~u~ becomes 

Cy R ~  ~ =f"(~,  0) = 1 ~/ 2 ~ {3J~,,3 -- 4f',2}. (14) 

The unknown normal surface velocity gradient, f"(~,  0) is obtained from the solution off'(~, r/) 
at each grid point m along the l-direction. 

The displacement, momentum and energy thicknesses (viz., 61, 62, and 63) of the boundary 
layer are 

i U g 2 

0 

= --~ ((1 - f ' ) ,  f ' (1  - f ' ) ,  f ' (1  _f,2)) dr/ 

0 

= (Liar) ] / ~ t R e  (11, Iz, I3). (15) 

The integrals 11, 12 and 13 in Eq. (15) are evaluated numerically from the solution off'(~, t/) by 
using Simpson's 1/3 rule. 

The accuracy of the present numerical scheme is verified with GSrtler's rigorous analytical 
solution of laminar boundary layer separation [5] for the free-stream velocity, fi~ = 1 - 2, for 
2 e [0, 1]. The parameters ]~ and 7 for this case in Eqs. (7) and (9) become fl(~) = 1 - (1 - 24)-1 
and 7(~) = 0. The initial velocity profiles fi'(r/) and W = r/J)'(r/) - fi(r/) at ~ = 0 are obtained by 
integrating the following nonlinear ordinary differential equations: 

fi'" + f" f'" = j , j z  0, (16.1) 

fi = f i ' =  0, ]~"= 0.4696 at t /=  0, (16.2) 

using a fourth-order Runge-Kutta integration scheme with a fixed step-size Ar/of 0.01. Using 
these profiles and following the above described marching procedure, the solution of the 
boundary layer equations (7) to (11), is obtained by solving the finite-difference equations (12) 
and (13), for ~ > 0. It is found that the normal surface velocity gradient, f"(~, 0) approaches 
zero at ~ = 0.119, which corresponds to the value of 2 = 0.127 074. This value compares well with 
G6rtler's analytical solution [5], ~ p  = 0.126. 

3 Discussion 

The magnetohydrodynamic boundary layer flow over a fiat plate is examined for two cases, viz. 
(i) a uniform free-stream velocity and (ii) a uniform hydrostatic pressure. In the case of a uniform 
free-stream velocity, 

u~(x) = Uo for x ~ [0, L], (17.1) 

the pressure distribution is obtained from Eq. (6) as 

1 
p(x) = Po - ~ ffUo2(I2), (17.2) 
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Table 1. Boundary layer physical parameters 
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Uniform free-stream velocity Uniform hydrostatic pressure 

f"(0) 11 12 13 f"(O) 11 I2 13 

0.0 0.469 6 1.216 8 .469 6 .738 5 0.469 6 1.216 8 .469 6 .738 5 
0.1 0.615 3 1.088 7 .444 5 .705 4 0.422 3 1.2871 .4818 .752 3 
0.2 0.739 3 0.996 5 .422 8 .675 9 0.357 3 1.405 3 .504 6 .7818 
0.3 0.8489 0 . 9 2 4 9  .4037 .6491 0.2716 1.5947 .5346 .8189 
0.4 0.948 2 0.866 8 .386 7 .624 8 0.159 5 1.974 9 .577 0 .868 2 
0.5 1.0390 0.8185 .3715 .6026 0.0341 3.1708 .6297 .9227 

where Po is the pressure at x = 0. The parameters in Eqs. (7) and (8) become: t7~ = 1, 4 = s 

fl(r = 0 and 7(4) = 214. 
For the case of a uniform hydrostatic pressure, 

p(x) = Po for x ~ [0, L], (18.1) 

the free-stream velocity is obtained from Eq. (6) as 

u~(x) = u0(1 - Is (18.2) 

The free-stream velocity, u~(x) decreases along the flat plate with the magnetic interaction 

parameter, 1. The parameters in Eqs. (7) and (8) for this case become: t~| = ] / / 1 -  214, 

4 = 2 1 - }- I~ , ~ = 1 - (1 - 214) -1, and y = - 8 .  For both cases, the parameters B and ? 

in Eqs. (7) and (8) are found to be functions of I~, in turn functions of 12. Following [6], the 
singularity at the leading edge is eliminated by using the transformation ~ = I4 in the boundary 

layer equations (7)-(11). By replacing ~ as ~ and I = 1, in the Eqs. (7)-(11), one can get the 
transformed boundary layer equations. With this transformation, the boundary layer problem 

becomes locally nonsimilar with respect to the local magnetic interaction parameter, I2. The 
solution of the boundary layer equations can also be obtained for ~ e [0, 1] by specifying the 

values for the interaction parameter, I. In order to examine the effect of the pressure gradient on 
the boundary layer physical parameters, locally nonsimilar solutions are obtained for the 

boundary layer equations. The initial value profiles for the above two cases are obtained from 
Eqs. (16). Using these in the finite-difference equations and following the forward-marching 
procedure, the solution of the boundary layer equations is obtained for the two cases. The 

nondimensional boundary layer physical parameters such as skin-friction coefficient (f"(O)), 
displacement thickness (I1) momentum thickness (I2) and energy thickness (I3) of the boundary 
layer for different values of the local magnetic interaction parameter, I2, are presented in Table 1. 

It is found that the normal surface velocity gradient decreases with the local magnetic interaction 

parameter for the case of a uniform hydrostatic pressure. In the case of a uniform free-stream 
velocity, the normal surface velocity gradient increases with the local magnetic interaction 

parameter. Since the formulation of the problem is general, the solution of the boundary layer 
equations can be obtained for any specified free-stream velocity. 
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