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Abstract. A Lorentzian splitting theorem is obtained for spatially closed space- 
times. The proof employs and extends some recent results of Bartnik and 
Gerhardt concerning the existence and rigid uniqueness of compact maximal 
hypersurfaces in spatially closed space-times. A splitting theorem for spatially 
closed time-periodic space-times, which generalizes a result first considered by 
Avez, is derived as a corollary. 

1. Introduction 

Yau [t2] has posed the problem of establishing a Lorentzian splitting theorem 
analogous to the splitting theorem of Cheeger and Gromoll [5] for Riemanuian 
manifolds. In this paper we prove the following splitting result for spatially dosed 
space-times. 

Theorem 1.1. Let V be a space-time which has the following properties: 
(A) V contains a compact Cauchy surface. 
(B) V satisfies the timelike convergence condition, i.e., Rio(X, X)>= 0 for all 

timelike X. 
(C) V contains a timelike curve which is future and past complete. 
(D) For each p ~ V, every future (past) inextendible null geodesic q issuing from 

p reaches a point in the timelike future (past) of p, i.e., ~I(~I+(p) :[: ~b (rlC~I- (p) ~: ~). 
Then V splits into the pseudo-Riemannian product of (~R, - dt 2) and (M, h), 

where M is a smooth compact spacetike hypersurface and h is the induced metric on 
M. In particular if V is Ricci flat and dim V= 4 then V is fiat. 

Remarks. We shall always use the term "hypersurface" to mean "hypersurface 
without boundary." Put more succinctly, condition (D) states that there exists a 
null cut point along each future and past inextendible null geodesic. In Sect. 3 it is 
shown that for space-times admitting a compact Cauchy surface, (D) is equivalent 
to the requirement that there be no observer with a nontrivial future or past event 
horizon. 
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Theorem 1.1 can be viewed as a singularity theorem of sorts: If Visa space-time 
satisfying (A) and (B) which does not split in the sense described above (e.g. is not 
static) then either (C) fails to hold, in which case V is singular in the usual sense, or 
(D) fails to hold, in which case one suspects the occurrence of a singularity. 
Interpreted in this way, Theorem 1.1 is an example within singularity theory of a 
rigidity result in the sense described in Cheeger and Ebin [4]. 

The proof of Theorem 1.1 rests heavily on different aspects of the important 
recent papers of Bartnik [2] and Gerhardt [7]. Gerhardt ([7], Theorem 7.4) has 
proved a splitting result for the region between two compact maximal hypersur- 
faces in a globally hyperbolic space-time satisfying the timelike convergence 
condition. In order to use this result to prove Theorem 1.1 it will be necessary to 
establish new criteria for the existence of compact maximal hypersurfaces. By 
using singularity theory in an essential way we are able to modify an existence 
proof of Bartnik ([2], Theorem 4.1) to establish the existence of compact maximal 
hypersurfaces in space-times satisfying (A)-(C) and a compactness condition 
implied by (D). This existence result is presented in Sect. 2. In Sect. 3 we obtain a 
number of equivalent characterizations of condition (D) and present the proof of 
Theorem 1.1. 

In Sect. 4 we derive as a corollary to Theorem 1.1 the following rigid version of 
Tipler's [11] No Return Theorem, which settles a problem dating back to the 1963 
paper of Avez [1]. 

Theorem 1.2. Suppose V is a spatially closed time-periodic space-time which satisfies 
the timelike convergence condition. Then the conclusions of Theorem 1.1 hold. 

Avez had considered the Ricci flat case, but his proof contains a well-known 
error (see Marsden and Tipler [10]). 

In order to simplify some statements occurring in the following sections, we 
shall refer to the hypotheses of Theorem 1.1 by letter only. Frequent use is made of 
the causal theory of space-time, for which Hawking and Ellis [9] is a standard 
reference. 

2. Existence of Compact Maximal Hypersurfaces 

Theorem 2.1. Let V be a space-time satisfying ( A ) , ( B ) , and ( C ) . Let S be a smooth 
compact spacetike hypersurface in V such that the collection of compact spacelike 
hypersurfaces meeting S stays in a compact subset of V Then V contains a smooth 
compact maximal hypersu(ace which meets S. 

The proof is a modification of Theorem 4.1 in Bartnik [2]. The essential new 
ingredient is the application of singularity theory, for which one needs the timelike 
convergence condition. In fact Theorem 2.1 is false without this assumption. 

We shall isolate in terms of a lemma precisely what is needed from Bartnik's 
proof. First, let us introduce some notation. Let t: V~IR be a smooth time 
function all of whose level surfaces are Cauchy. Let So be the slice t = 0. V is 
homeomorphic to IR x So via the correspondence p*-~(t(p), n(p)), where n : V ~ S  is 
projection along the fiowlines of Vt into So. For tl, t2 E IR, let 

cg = {u e C2(So): graph u is spacelike and tl =< u__< t2}, 
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where graph u -  {(u(x), x) : x E So}. Let H(u) = mean curvature of graph u, and 
H°(u) (x) = mean curvature of the slice t = u(x) at the point (u(x), x). (We use the 
sign convention in which H > 0 corresponds to expansion on the average of the 
future pointing normal.) 

Lemma (Bartnik [2]). Let t : V-~ ]R be a smooth time function such that the slice So is 
compact. Fix e > 0  and tl < 0 < t 2 .  I f  for each a, 0<o-<  1, u~Cg satisfies the strict 
inequality 

whenever u satisfies, 

t 1 < U < t  2 , 

H ( u )  = (1 - G ) v ( u ) H ° ( u )  + ~u , 

where v(u) is defined as in [2], then there exists u~ ~ Coo(So) such that 9raph u~ is 
spacelike and has mean curvature H (u~)=eu~. 

Proof of Theorem 2.1. Choose a smooth time function t: V-*R whose level 
surfaces are compact Cauchy surfaces. By Budic et al. [3] S is Cauchy and hence 
can be represented as a graph over the slice t = 0. By Proposition 3.2 in Bartnik [2] 
one can choose the time function so that S corresponds to the slice t=0 .  
Furthermore by rescaling the time function one can choose times 
. . . t , _ l < t , < t , + l . . .  such that to=0,  t ,-,-t- oo as n ~ + o o  and for n+0 ,  

It.I > InlZ.,  (2.1) 
where 2, = sup JH,1 and H,  is the mean curvature of the slice t -- t , .  

For  each positive integer n define, 

c#, = {u ~ C2(S): graph u is spacelike and t_,  < u < t,}. 

Suppose for some a, 0 < cr < 1, u s cg, obeys 

H(u) = (1 - ~)v(u) H°(u) + n- au. 

At points where Vu = 0, v(u) = 1. Thus, if u = t. at its maximum, then the equation 
above becomes, H(u) = (1 - o-)H, + n-  it,. 

Hence, 

H ( u ) -  H,  = n -  l(t, - nGH,) > n-  a(t, - n2,) > 0, 

where the last inequality follows from (2.1). However, since graph u lies below the 
slice t = t, we must have H(u) < H,  at any point of tangency. Arguing similarly at a 
minimum of u shows that u obeys the strict inequalities t_ .  < u < t,. Thus, by the 
lemma there exists u, e C°°(S) with mean curvature, 

H(u,) = n-  lu, .  (2.2) 

Suppose the family {u,}~= 1 obeyed a uniform height estimate independent of n. 
Then by the gradient estimate in Gerhardt ([7], Theorem 4.1; see also Theorem 3.1 
in [2]) and standard estimates for linear and quasilinear elliptic equations (see 
Gilbarg and Trudinger [8]), the family would be uniformly bounded in C 2' k-norm. 
Hence, one could extract a subsequence {u,~} converging to u ~ CZ(s) with mean 
curvature zero. By standard regularity results u would be Coo. 
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The desired height estimate can be obtained using singularity theory. By the 
compactness assumption it suffices to show that graph u, meets S for all n. If graph 
u, does not meet S then by (2.2) the mean curvature 0f graph u, is either everywhere 
strictly positive or everywhere strictly negative. Suppose H(u,)< 0. Since we are 
working in a globally hyperbolic space-time, standard singularity theory (see e.g. 
Hawking and Ellis [9]) implies that every future inextendible timelike curve 
issuing from graph u, has finite length. But this contradicts assumption (C). 

Finally, since graph u, meets S for all n, the limit surface of mean curvature zero 
must also meet S. 

3. Proof of Theorem 1.1 

We begin this section by establishing a number of equivalent characterizations of 
condition (D). 

Theorem 3.1. Let V be a space-time which contains a compact Cauchy surface. Then 
the following conditions are equivalent: 

(D 1) Condition (D) holds. 
(D2) For each compact set K C V, the collection of achronal subsets of V which 

meet K is contained in a compact subset of V. 
(D 3) All closed achronal subsets of  V are compact. 
(D4) 3I+(p), ~I-(p) are compact for all p c  V. 
(D 5) For each inextendible timelike curve 7, I + (7) = I -  (7) = V, i.e., there are no 

observer horizons. 

Proof. (D 1) ~ (D2): Let W + = ~) E+(p), where E + ( p ) - J + ( p ) - I + ( p ) = 3 I + ( p ) ,  
p~K 

since V is globally hyperbolic. We prove that W ÷ is compact. Let T be a smooth 
future pointing unit timelike vector field on V. Define, 

X = {(p, N): N is a null vector at p e K such that (N,  T)  -- - 1 }. 

is a compact subset of the null vector bundle over E 
We prove sequential compactness. Let {qk} be a sequence in W +. Then 

qk-----expVkSkNk for some (Pk, Nk)~ ~ .  There is a subsequence, again denoted by 
{(Pk, Nk)}, such that (Pk, Nk)~(P,  N)  ~ Y .  Let t/: [0, a)--, V be the inextendible null 
geodesic defined by: q(s) = exppsN. 

We claim that g-- l imsupsk<a.  Indeed, suppose g>a. Then, by taking a 
subsequence, we can assume Sk T S> a. By assumption p ~ 17(s0) for some so ~ (0, a). 
Consider the null geodesic t/k defined by: ilk(S)= expp~SNk. Since So < g, ilk(So) is 
defined for all k sufficiently large. Since Pk ~ P  and t/k(So) ~q(s0), we have for k large, 
Pk ~ qk(So) < ~Ik(Sk) = qk, which contradicts qk E E + (Pk)" 

Hence, ~=iim sUpSk < a. Let q = r/(g). Clearly q ~ E+(p), otherwise qg E l+(pk) 
for some k. Thus {qk} has a subsequence converging to q e W + . Therefore, W + and 
similarly W- ,  which is defined time-dually, are compact. 

Let S be any achronal subset of V which meets K. To complete the proof 
we show that SCJ+(W-)~J-(W+). Let p~Sc~K. The argument showing that 
W + is compact implies in particular that E + (p) is compact. Standard arguments in 
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causal theory can be used to show that E+(p) is an achronat Cauchy surface, but 
this fact follows, in particular, from Corollary I in [6]. Hence, for each q ~ S either 
q ~ l+(E+(p)) or q ~ J - (E+~)) .  However the former case violates the achronality 
of S. Thus, SCJ-(E+(p))CJ-(W+). One shows similarly that SfiJ+(W-).  

(D 2) => (D 3): This follows immediately. 
(D3) ~ (D4): The sets 8I-+(p) are closed and achronal. 
(D4) ~ (D5): Let 7 be an inextendible timelike curve in V. For each q~ V, 

E-(q) is compact and hence, as discussed above, is an achronal Cauchy surface. 
Thus 7 meets E-(q) and hence q~I+(7). Therefore I+(7)=V and similarly 
I - (7 )=  V. 

(D 5) ~ (D 1): Suppose (D) does not hold. Then, without loss of generality, 
there exists a future inextendible null geodesic t/issuing from some point p such 
that I - (q)n t /=¢ ,  and hence 1-0/ )+ K One easily constructs an inextendible 
timelike curve 7 such that 7 C I -  (r/). But then I -  (7) =~ V, contradicting (D 5). [] 

The proof of Theorem 1.1 employs the splitting result of Gerhardt [7, 
Theorem 7.4] mentioned in the introduction which we now discuss in more detail. 
Given a smooth spacelike hypersurface M C V we can introduce the associated 
normal exponential map • defined by, ~(v,p)=exppzN, where N is the future 
directed unit normal to M. 

Theorem (Gerhardt [7]). Let V be a space-time satisfying (A) and (B). Let M1 and 
M 2 be compact maximal hypersurfaces in V with d(M1, M2) = 6 > 0 (d = Lorentzian 
distance function). Suppose that the collection of compact spacelike hypersurfaces 
meeting J + ( M 1) c~ J-(Ms)  remains in a compact subset of V. Then M 1 C I (M2) and 
the normal exponential map ~: [0,6] x MI~J+(MOc~J-(M2) is an isometry 
(where it is understood that [0, 6] x M 1 carries the Lorentzian product metric 
-dzZ®h, h=induced metric on M1). 

We now proceed to the 

Proof of Theorem 1.1. Let {S, : n ~ 7Z,} be a family of compact slices of some smooth 
time function such that S, CI-(S,+O for all n and V= U J+(Sn)c3J-(S.+I) .  In 

n~Z 

view of Theorem 3.1 ((D) ~ (D 2)) all the hypotheses of Theorem 2.1 (with S = SO 
are satisfied. Thus for each n ~;g, there exists a smooth compact maximal 
hypersurface M, which meets S,. By choosing the S,'s sufficiently far apart one can 
ensure that d(M,,M,+O=6,>O for all n. Again, since ( D ) ~  (D2) all the 
hypotheses of Gerhardt's splitting result are satisfied. Thus, for each n, Mn 
C I - ( M , + 0  and the normal exponential map (b,:[O, f J x M , - , J + ( M , )  
nJ - (M,+ 1) is an isometry. Furthermore, U J+(M,)c~J-(M,+ 1) = V (as follows 

neZ 

from (D) or (D 2)). It is then not difficult to see that the isometrics ~,  fit together so 
/ 

exponential map ~o :(a, b) x Mo-~ V (where a = - ~ 6_, that the normal and 
\ \ n = l  

= ~ 6,} is an isometry, Finally, (C) implies that a = -  oo and b = o% b which 
n = O  / 

completes the proof. 
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4. Spatially Closed Time-Periodic Space-Times 

There have been several definitions of SCTP (spatially closed time-periodic) space- 
times to appear in the literature. We adopt the following definition. 

Definition 4.1. A space-time V is SCTP if 
(1) V contains a compact spacelike Cauchy surface S, 
(2) there exists a discrete group of isometries if, : V--, V, n s Z, such that S, 

CI-(S~+ 0 and V= U J+(S,)c~J-(S,+O, where S,=~,(S), and 
n ~ Z  

(3) for each p e S there exists a positive integer n such that p 4 ~p,(p). 

The definition of a SCTP space-time given in Tipler [11] essentially requires 
only that (1) and (2) hold. A space-time which is SCTP in this sense can have some 
undesirable features. For example one can construct space-times which satisfy (1) 
and (2), but which do not satisfy (D) and do not contain any compact maximal 
hypersurfaces. The definitions of a SCTP space-time given in Avez [1] and 
Marsden and Tipler [10] require that the discrete isometry group arise as a 
subgroup of a timelike N-action, i.e., an N-action whose orbits are timelike curves. 
Condition (3) is then automatically satisfied. 

The significance of condition (3) within the context of the present paper is 
described in the following theorem. 

Theorem 4.1. Let V be a space-time satisfying conditions (1) and (2) of Definition 4.1. 
Then condition (3) holds if and only if (D) holds. 

Proof. First suppose that (3) holds. Let t /be a future inextendible null geodesic 
issuing from a point q. By sliding I/ via the isometrics we may assume that 
q~J-(So). For n>0,  let q, etv~S,, and consider the sequence {p,}CS0, where 
p,=~p_.(q,), Let p e So be a limit point of {p.}. By condition (3), there exists an 
integer N > 0 such that p ~ tvN(p). By passing to the subgroup of {~p.} generated by 
~pn we can assume without harm that N = 1. Thus, there exists a neighborhood U 
C So ofp such that U ~ ~px (U). (Here we are using the notation A ~ B to mean that 
every point in A can be joined to every point in B by a future directed timelike 
curve.) Since isometrics preserve causal relations we have 

lPm(U)~p,(U ) for all m, n e Z ,  m<n.  (4.1) 

Choose pm, p,E U with O<m<n. Then by (4.1), q,,=~pm(p,,)<~p,(p,) =q,. Thus, 
q~q,,  as required. 

Now assume (D) (<:~ (D3); see Theorem 3.1) holds. If condition (1) fails for 
some p e S, then {p,(p): n > 0} is a closed achronal subset of V. Hence, by (D 3), this 
set is compact, which is impossible. [] 

We mention the following corollary which is relevant to the work of Marsden 
and Tipler [10], but which will not be needed in the proof of Theorem 1,2. 

Corollary. I f  V is SCTP then V obeys the Marsden- 77pler avoidance of singularities 
condition. In fact, there exist Cauchy surfaces S -  and S +, with S-  CI-(S+), such 
that for any achronal set A C V there exists a set A' ( V isometric to A (under one of 
the isometrics ~p,) which is contained in J+(S-)csJ-(S+). 
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Proof. Let  K = J+(So)nJ-(S1). I t  follows f rom (D 2) tha t  there exist c o m p a c t  
Cauchy  surfaces S - ,  S +, with S -  C I -  (S +) such tha t  if A '  is an achrona l  subset  of  V 
which meets  K then A 'C J + ( S - ) n J -  (S +). The  p roo f  is comple ted  by not ing tha t  
any  achrona l  set A C V can be m o v e d  via the isometrics ~p, to ob ta in  an isometr ic  
set A'  which meets  K.  [] 

We  conclude the pape r  with the p r o o f  of  T h e o r e m  1.2. 

Proof of Theorem 1.2. I t  suffices to show that  if Vis  S C T P  then condi t ions  (A)-(D) 
hold. (A) and  (B) hold by assumpt ion.  (D) holds by T h e o r e m  4.1. Tha t  (C) holds can 
be seen as follows: Consider  the quot ient  manifo ld  ~ ' =  V/{~p,}. V is a c o m p a c t  
space- t ime which carries a Loren tz ian  metr ic  with respect  to which the na tura l  
project ion m a p  is a local isometry.  Since IT"is c o m p a c t  it conta ins  a closed t imelike 
curve ft. By repeat ing loops  we can view ~ as an inextendible curve which is future 
and  pas t  complete.  Then  by lifting ~ we obta in  a future and  pas t  comple te  t imelike 
curve in V. 
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