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Abstract. This paper reports on the first steps towards the formal verification 
of correctness proofs of real-life protocols in process algebra. We show that 
such proofs can be verified, and partly constructed, by a general purpose proof 
checker. The process algebra we use is ~tCRL, ACW augmented with data, which 
is expressive enough for the specification of real-life protocols. The proof checker 
we use is Coq, which is based on the Calculus of Constructions, an extension 
of simply typed lambda calculus. The focus is on the translation of the proof 
theory of #CRL and/~CRL-specifications to Coq. As a case study, we verified 
the Alternating Bit Protocol. 

1. Introduction 

This paper reports on the first steps towards the formal verification of correctness 
proofs of real-life protocols in process algebra. We show that such proofs can be 
verified, and partly constructed, by a general purpose proof checker. The focus 
is on the translation of process algebra (specifications and proof theory) to the 
language of the proof checker. As a case study, we verified the Alternating Bit 
Protocol (ABP) [BSW69]. We chose this protocol, not because there was any 
doubt about its correctness, but because it is small, well-known, and numerous 
correctness proofs are available in the literature [BaW90, BeK86b, BEG93, Dro94, 
Kam93]. 

The process algebra that we use is based on the Algebra of Communicating 
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Processes (ACP) of Bergstra and Klop [BeK86a]. More precisely, we use/~CRL, 
ACW augmented with data [GrP94, GrP93], which is expressive enough for the 
specification of real-life protocols. The proof checker we use is Coq [DFH93], 
which is based on the Calculus of Constructions, an extension of simply typed 
lambda calculus. 

The word 'verification' usually refers to a mathematical proof in a combination 
of natural language and formal or informal mathematical notation. Consider for 
example the correctness proof of the ABP given in Sections 4.7 and 5.7 of 
[BaW90]. It consists of a series of steps so small that the reader is convinced 
of the correctness of each step. Indeed, the proof in [BaW90] is more detailed 
than most other verifications, because the intended reader is an undergraduate 
student. 

For centuries, this form of verification was the best there was. But, as both the 
writer and the reader of the proof are human, what guarantee does it give that a 
proof is indeed correct? After all, to err is human. In some cases, especially now 
that computer programs and protocols are being incorporated in vital control 
systems, there is so much at stake that such a verification of a program is simply 
not enough. Especially in concurrent systems, where the number of situations 
can be exponential in the number of components, it is not at all unlikely that an 
unfortunate conjunction of circumstances is overseen during its design, testing, 
and verification-by-hand. 

Recently it has become possible to let a computer program take over the role 
of the reader, or even that of the writer of proofs. In the first case such a program 
is called a proof checker, in the second case a theorem prover. The Coq-system, 
on which we focus in this paper, is a proof checker equipped with very limited 
theorem proving capabilities. 

In contrast to a 'classical' verification, a formal verification is a proof formu- 
lated completely in a formal language; each step in it consists of the application of 
a formal proof rule. Theoretically, a formal verification could be done completely 
by hand, but on the basis of our experience (e.g. [Kam93]) we claim that, for 
real-life protocols, it can only be done using a computer. Such a verification is, 
by the nature of computers, a formal verification. To stress these observations, 
and also because a great deal of human input is still needed, we avoid the phrase 
'automatic verification'. 

If a proof checker is convinced of the correctness of a proof, should we be 
convinced too? One can never hope to achieve absolutely guaranteed correctness. 
But we claim that formal verification can provide a significant increase in the 
level of confidence in a protocol. In order to support this claim, we investigate 
which errors remain possible. We see the following types. 

1. Errors of the computer system (hardware, operating system, etc.). These are 
relatively rare, and moreover usually result in error messages and/or  sudden 
termination of the program, rather than in an erroneous proof being accepted 
by the proof checker. 

2. Errors in the underlying theory of the proof checker. This theory should be 
stable and well-understood. For Coq, simply typed lambda calculus [Bar92] 
is basic and the Calculus of Constructions [COH88] is well-understood. The 
theory of inductive types ([COP90, PaM93], see Section 2.4) requires more 
study. 

3. Programming errors in the proof checker. Indeed, the correctness of the proof 
checker must be checked thoroughly. As the program is much smaller (and 
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more modular) than the proofs we intend to verify, the level of confidence in 
large proofs is definitely raised, even if it is still not 100%. 

4. The system we want to verify is usually formalized in a base theory different 
from the language of the proof checker. In this paper, the base theory is 
/tCRL. This base theory might contain errors, or, less dramatically, axioms 
and proof rules that do not always apply (such as a fairness rule for a non-fair 
system). In this case the formal proof is correct, but it does not prove what 
we think it does. 

5. The formalization of the system in the base theory might be incorrect. Again, 
the formal proof is correct. This error is more likely to occur than the previous 
one, because the base theory remains fixed, whereas we formalize a different 
system each time. 

6. In order to use a proof checker, we translate the base theory and the theorem 
under consideration to the language of the proof checker. This translation can 
introduce errors. 

The probability of the first three classes of errors can be reduced by verifying 
the same protocol on various different proof checkers (and platforms). The fourth 
and fifth class are orthogonal to the use of a proof checker. In this paper we 
concentrate on the translation of #CRL itself and/~CRL-specifications to Coq. 
Special care must be taken when the translation of a specification deviates from 
its formalization 'because it is convenient in this particular proof checker'. Such 
errors can remain undiscovered much easier than the others, as the translation of 
a particular specification is used less often, and by less people, than the computer, 
the proof checker, and the translation of the base theory. 

These considerations indicate that the focus of  the sceptical reader must shift 
from proofs to axioms: a proof is the most likely place to find an error in an 
ordinary verification, but the proofs of a formal verification are most probably 
correct; for the axioms there is no such guarantee. 

We hope that we have achieved a correct translation of #CRL to Coq, but the 
translation of a/~CRL-specification into Coq is still done by hand. We choose to 
stay as close as possible to the definitions of #CRL and the ABE even when this 
makes the proof somewhat clumsy. When we deviate from the original definitions, 
we do so explicitly and with motivation. If possible, we prove formally that the 
deviation is correct. 

Formal verification is not limited to algebraic verification of protocols. In 
principle, it can be used for any formalism [Cou93], for example I/O-automata 
[LMW94, HSV94] and temporal logic [MAP82, OWL82, Hoo91]. Earlier attempts 
to automatic verification of propositions of process theory are from Cleaveland 
and Panangaden [C1P88], who gave an implementation of Milner's Calculus of 
Communicating Systems [Mil80] in the NuPrl system [CAB86] and from Eng- 
berg, Gronning and Lamport, who developed the Temporal Logic of Actions 
(TLA), which is a logic for specifying and reasoning about concurrent systems 
[EGL92]. A particularly impressive achievement is the assertional verification of 
wait-free linearization in [Hes94] and its formal elaboration [Hes95]. A recent 
approach to the ABP can be found in [Gim95], where the behaviour of processes 
is modelled by streams encoded as co-inductive types of Coq. In this stage of the 
development of the field it is very difficult to establish the relative merit of each of 
the results above, since their diversity makes comparison practically impossible. 
However, recent experience shows that the algebraic method discussed in this 
paper can handle larger protocols as well [BeG94a, KOS94, GrP96]. 
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In the next section, we give an overview of #CRL and the ABE Then we 
formalize the ABP in / tCRL and sketch roughly the proof of its correctness. An 
introduction to Coq concludes this section. Section 3 is the core of  the paper: it 
discusses how pCRL was translated to Coq, and which problems arose. Section 4 
shows how the/~CRL-specification of a protocol is translated into Coq, taking the 
ABP as an example. Section 5 describes in detail how a statement reflecting the 
correctness of the ABP can be proved from the axioms introduced in Section 3. 
The proof follows the sketch given in Section 2.3. The research on the topic of 
this paper is only just beginning; therefore we conclude the paper with a list of 
directions for future research. 

2. Preliminaries 

2.1. /~CRL 

#CRL is a specification formalism, combining the process algebra ACW [BaW90] 
with data. We give a brief and informal introduction here; for a complete 
description of its syntax and semantics we refer to [GrP94], for its proof theory 
to [GrP93]. 

2.1.1. Syntax and Semantics 

An algebra is usually a set, together with a number of operations on that set, in 
principle axiomatized by an equational theory. ACW complies with this tradition. 
The set is a set of processes and the operations are 

�9 constants (called atomic actions, the set of atomic actions Act is a parameter 
of ACW that is often left implicit) 

�9 the constants 6 (deadlock) and ~ (silent action) 
�9 the unary operators 0L (encapsulation) and ~L (abstraction or hiding), where 

L is a set of atomic actions 
�9 the binary operators +, -, I[, I, and II, being alternative and sequential compo- 

sition, merge, communication merge, and left merge. By convention, - binds 
strongest and + weakest 

We refer to [BaW90] for an explanation of these operators. The operator I is 
an extension of another parameter of ACW, the communication function 7. This 
is a partial function which, given two atomic actions, returns an atomic action: 
their communication. 7 must be associative and commutative. In this paper we 
assume handshaking, which means that no more than two processes can engage 
in a single communication. Technically, it means that 7(7(a, b), c) is undefined for 
all actions a, b, c. 

Data is specified in /~CRL by the declaration of sorts (types), functions 
(including constants) with their types and possibly rewrite rules (stating equalities 
between dataterms). The corresponding sections in a /~CRL-specification are 
marked by the keywords sort, rune and rew. The sort Bool containing the constants 
T and F is part of every/~CRL-specification. Sorts may not be empty. 

/~CRL combines ACW with data through the following mechanisms. 

�9 An atomic action is composed of an action name and (zero or more) param- 
eters; these parameters are dataterms. The section containing the declaration 
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o f  action names (marked by the keyword act) also specifies the sorts o f  their 
parameters  (overloading of  action names is allowed). 

�9 Communica t ion  is defined on action names (in a section marked eomm). Two 
actions only communica te  if their parameters  are the same (w.r.t. the rewrite 
rules); the resulting action has the same parameters.  Communica t ion  is used 
for bo th  synchronizat ion and transferring data  in this way. 

�9 The condit ional  operator  x < b ~ y takes processes x and y and a boolean b; 
it behaves as x if b = T and as y if b = F. 

�9 The sum opera tor  ~'~d:D X denotes the (possibly infinite) alternative composi-  
tion o f  the processes a(x)  for substitutions a substituting an element o f  the 
sort D for d in x. 

�9 Processes can be defined by (recursive) process specifications (keyword proc). 
Parameters are allowed in these definitions. 

The condit ional  opera tor  has a boolean as its middle argument.  This is why 
the sort Bool is par t  o f  every #CRL-specification.  The symbol ' = '  occurs in 
#CRL-specif icat ions in rewrite rules, communica t ion  declarations, and process 
specifications. It is not a polymorphic  function D ~ D ~ Book thus it cannot  
be used for forming the middle argument  o f  a condit ional  opera to r )  Moreover,  
it is not  entirely trivial to define such a function eqD : D ~ D ~ Bool  satisfying 
eqD(d, e) = T i f f  d = e. The following specification (by Jan Bergstra) does the 
trick. 

E x a m p l e  2.1. 

sort Bool  D 
rune T,  F �9 --* Bool  

eq o " D ~ D -*  Bool 
/fo " Bool --~ D --~ D ~ D 

var d, e : D 
rew eqo(d ,d )  = T 

i f o ( T , d , e )  = d  
i f o (F ,d , e )  = e 
i fo (eqD(d ,e) ,d ,e )  = e 

Claim 2.2. The equations in the previous example enforce 

1. e q o ( d , e ) =  T ~ d = e ,  

2. eqo(d,  e) = F ~ d ~ e. 

P r o o f  o f  Cla im 2.2. (Via the semantics of  pCRL.  A proof  via the formal p roof  
theory is given in the next subsection.) 

1 , ~ )  d = i fD (T ,d , e )  = i f o (eqo(d , e ) ,d , e )  = e. 

1,*--) eqD(d,e)  = eqv (d ,d )  = T .  

2,*-*) F rom I, as the intended models are boolean preserving [GrP94], that  
is, T @ F and for all booleans b: b = T V b = F, thus in particular 
eqo(d ,e )  4 = T ~ eqD(d,e)  = F.  [] 

I It is not without reason that an equation between processes cannot occur as the middle argument 
of a conditional operator: the guarded recursive process definition P = (a < P = 6 ~, 6) would lead to 
a ~ .  
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Table 1. The  a x i o m s  a n d  rules  fo r  da t a .  

R E F L  t = t reflexivity, 
F A C T  t = u if  t = u is a rewri te  rule, 

R E P L  chit/x] t=u replace  t by  u, 
4,[u/x] 

S U B  ~ subs t i tu te  t fo r  x, 
d,[t/xl 

I N D  _ i n d u c t i o n  rules  fo r  sorts,  
B1 -(T ' -- F)  
B2 b = T V b = F b is a b o o l e a n  var iable .  

M. A.  Bezem, R. N.  Bol a n d  J. E G r o o t e  

2.1.2. Proof Theory 

The proof theory of / ,CRL is given in [GrP93] in a 'natural deduction' for- 
mat. The formulae deduced ('/~CRL property formulae') are mostly equations, 
and propositional logical combinations of those. The axioms and rules can be 
divided into four parts: data, ACW, process constructs relating processes with 
data and logical connectives. Some of  these depend on the #CRL-specification 
under consideration, most notably its declarations of rewrite rules and process 
definitions. 

For data, we have the axioms and rules listed in Table 1. #CRL has no 
explicit quantification; the rule SUB enforces that each variable is implicitly 
universally quantified. Its application is only allowed when x does not occur in 
any hypothesis needed for deriving q~. For the precise definitions of substitutions 
and induction rules we refer to [GrP93]. An induction rule for a sort is based 
on a set of constructors for that sort. Which functions form a constructor set of 
a sort is not part of the/~CRL-specification (but see [GrW94]). Given a/~CRL- 
specification, one can prove that a certain set is a constructor set only on the 
metalevel, using structural induction on closed terms. The axiom B1 is another 
reason for incorporating the booleans in every/~CRL-specification: without this 
axiom one can never prove the inequality of two terms (the premiss of the rule 
CF2' in Table 3). 

For the logical connectives,/~CRL has a large number of inference rules. For 
those, we refer to [GrP93] (see also the proof below), except that we mention the 
rule RAA (reductio ad absurdum), stating that if falsum (• is derivable from 
-~q~, then q~ can be derived. As usual ~q~ abbreviates q~ --+l, thus negation and 
implication behave classically. But in proofs it turns out that we do not need 
RAA, which means that our results also hold from an intuitionistic viewpoint. 

Proof of Claim 2.2. We can now prove Claim 2.2 formally in the proof theory 
of/~CRL. For reasons of space, we do not write the names of derivation rules 
to the left of the line, but below it (above it for rules without premises). -* 1, [hi 
denotes the rule for the introduction of an implication, where n is a pointer to the 
cancelled hypothesis(-es). ~ E  denotes implication elimination, i.e., modus ponens. 
q~ V ~ is introduced in/~CRL as an abbreviation of ~b  -+ t/:. 

1 , - + )  F A C T  (1) 
i f ( e q ( d , e ) , d , e )  = e e q ( d , e )  = T F A C T  

R E P L  i f ( T , d , e )  = e ! f ( T , d , e )  = d 

R E P L  d = e 
--+I, [1] e q ( d , e )  - T ---~ d = e 
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Table 2. The axioms of ACW in #CRL. a, b ~ Act U {& ~}. 

A1 x- l -  y = y + x CM1 
A2 x + (y + z) = (x + y) + z CM2 
A3 x + x = x CM3 
A4 (x + y ) .  z = x. z + y .  z CM4 
A5 (x -y ) . z  = x . ( y . z )  CM5 
A6 x + 6 = x CM6 
A7 6 �9 x = 6 CM7 

CM8 
T1 x. z = x CM9 

D1 O L ( a ) = a  if a ~ L TI1 
D2 OL(a)=b if a E L  TI2 
D3 O L ( X q - y ) = S L ( X ) " b O L ( y )  TI3 
D4 OL(X ' y )  = OL(X) '~L(y)  TI4 

xl ly  = x[Ly-t- y[ x + x l y 
a[Lx = a .  x 
a " x[l y = a" (xlly) 
(x + y) l l z  = x t l z  + y l l z  
a . x l b = ( a l b ) . x  
a l b ' x = ( a l b ) ' x  
a. x I b. y = (a I b). (xllY) 
( x + y )  l z = x l z + Y l z  
x l ( y + z ) = x l y + x l z  

zL(a)=a i f a C L  
z L ( a ) = z  i f a c L  
Z L ( x + y ) = z L ( X ) q - z L ( y )  
Z L ( x ' y ) = Z L ( X ) ' Z L ( y )  

sc1 ( x l l y )Rz  = x l l (y  II z) DC1 
SC2 xl16 = x -6  TC1 
SC3 x I Y = Y I x Handshaking 
SC4 (x I Y) I z = x I (Y I z) 
SC5 x I (yLLz) = (x l y)~lz 

6 l x = 6  
z l x = , ~  
x l (Y l z ) = , 5  

1,+--) FACT (1) 
e q ( d , d )  = T d = e 

REPL e q ( d , e )  = T 

~I , [1 ]  d = e ~ e q ( d , e ) = T  

2 , ~ )  FACT (2) 
(1) e q ( d , d )  = T d = e 

eq (d , e )  = F REPL eq (d , e )  = T 

2,,--) 

BI 

R E P L  T = F ~ T  = F 
• 

~d~e 
eq (d , e )  = F ~ ~ d  = e 

1, ---~ 
(2) eq(d,  e) = T 
e q ( d , e )  = T --~ d = e (1) B2 

.---~E d = e  ~ d = e  b =  T V b = F  

~ E  

---~ I, [2] 
- , I ,  [1] 

--*E 2. SUB eq (d , e )  = T 

~ I ,  [2] ~ e q ( d , e )  = T V e q ( d , e )  = F 

--*E eq (d , e )  = F 

~ I ,  [1] ~d = e ~ eq (d , e )  = F 

Proofs  a re  usua l ly  n o t  g iven  in such  detai l ,  for  o b v i o u s  reasons .  F o r  the  s a m e  
reasons ,  it is p r e f e r ab l e  tha t  such  deta i l s  need  n o t  be  p r o v i d e d  to the  p r o o f  checke r  
explici t ly.  [] 

F o r  processes ,  # C R L  inhe r i t ed  the  a x i o m s  A 1 - A 7 ,  C M 1 - C M 9 ,  D 1 - D 4 ,  T1 
(cal led  B1 in [BaW90])  a n d  T I 1 - T I 4  f r o m  A C W ,  l is ted in Tab l e  2. Al l  c losed  
ins tances  w i t h o u t  p rocess  va r i ab les  o f  the  a x i o m s  S C 1 - S C S ,  D C 1 ,  TC1,  and  
H a n d s h a k i n g  are  der ivab le .  SC3 a n d  SC4  d i rec t ly  ref lect  the  p rope r t i e s  o f  the  
c o m m u n i c a t i o n  f u n c t i o n  ~ ( c o r r e s p o n d i n g  a x i o m s  for  [I a re  m e n t i o n e d  a lso  in 
[BaW90],  bu t  these  are  der ivable) .  T h e  h a n d s h a k i n g  a s s u m p t i o n  s imi la r ly  resul ts  
in the  a x i o m  H a n d s h a k i n g .  SC4,  C M 5 ,  C M 6 ,  a n d  C M 9  are  der ivab le .  

T h e  a x i o m s  for  the  c o m m u n i c a t i o n  m e r g e  are  m o r e  c o m p l i c a t e d  t h a n  those  o f  
A C W ,  because  o f  the  p resence  o f  da ta .  T h e  p r e s e n t a t i o n  here  differs s l ight ly  f r o m  
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Table 3. Axioms relating processes and data. a, b, c c Act U {6, r}. 

C F I  
C F 2  

CF2  p 

CF2"  

a(ti . . . . .  t~)  I b ( q  . . . . .  tm) = C(tl . . . . .  tin) 
a(tl . . . . .  tm) l b(t'~ . . . . .  t',) = 6 

~(ti = F i) 

a(tl . . . . .  tin) I b(t~l . . . . .  t~) = 
a(tl  . . . . .  tm) l b(g 1 . . . . .  (m') = ~ 

C O N D I  x < T ~ , y = x  
C O N D 2  x < F > y = y  

S U M 1  ~-~a:D P = P 

S U M 2  ~ d : o  P = ~']~e:l)(P[e/a']) 

S U M 3  ~-']~d:o P = (~-'~d:o p) + p 

S U M 4  ~ d : o ( p  1 +p2)=Ed:DPl  + E d : o P 2  

S U M S  Ed :D(P l  " P2) : ~ d : D  Pl " P2 

S U M 6  Ed:D(Pl  ~P2) = ~-~d:O Pl ~P2 

S U M 7  ~--]~d:D(P~ [ P2) = ~ d : o  P~ 1 P2 

SUM8 ~--~a:D OL(P) = ~?L(~d:O P) 

S U M 9  ~ d : O  zL(p) = r L ( ~ a : o  p) 

SUM11 Pl = P2 
S d : O  PI = Z d : O  P2 

if ~(a, b) = c, m > 0, 
if y(a, b) is undefined, 
in particular, if a or  b is 6 or  r, 

l < i < _ m ,  

if  a and  b have different sorts, 
in particular, if m :~ m'. 

if d not free in p, 

if e not free in p, 

if d not free in P2, 

if d not free in P2, 

if d not  free in P2, 

if d not free in the assumptions 
of  the proof of  Pl = P2. 

[GrP93], where actions without parameters are treated as a special case. See also 
Section 3. The axioms for the conditional and sum operators are mostly obvious. 
For SUM8 and SUM9, recall that encapsulation and hiding are carried out at 
the level of action n a m e s .  In [GrP93], SUM10 states that renaming distributes 
over summation; we have omitted renaming here. 

The rules REFL, REPL, and SUB also apply to processes. The counterpart 
of FACT is called REC: p = q if p -- q is a process equation. Finally, there are 
some more complicated inference rules inherited from ACW: RDP, RSP, and fair 
abstraction. These rules refer to the (recursive) specifications of processes. RDR 
the Recursive Definition Principle, states that such a specification has at least one 
solution. RSP, the Recursive Specification Principle, states that two processes are 
equal, if they are both solutions of the same guarded recursive specification. The 
Cluster Fair Abstraction Rule CFAR [BaW90] can be paraphrased informally 
as: 'Any process will eventually leave a r-cluster'. The details are discussed in 
Sections 3.5, 3.6, and 3.7. 

2.2. The Alternating Bit Protocol  

The Alternating Bit Protocol (ABP) is a communication protocol providing 
reliable transmission of data through an unreliable (two-way) channel. It consists 
of four components: a sender S, a receiver R, a channel K from S to R and a 
channel L from R to S. These components are connected according to Fig. 1. 

The numbered connection lines in Fig. 1 represent gates, through which the 
components can communicate. The sender S reads data from the input at gate 1, 
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K 

> 2 3 

1 4 >  

L 

Fig. 1. Alternating Bit Protocol. 

sends frames consisting of a bit and a datum into the channel K at gate 2 
and receives acknowledgement bits from channel L at gate 6. These actions 
are represented by, respectively, rl (d), s2(n, d) and r6(n). The receiver R receives 
frames from channel K at gate 3, writes data to the output at gate 4 and 
acknowledges receipts by sending bits into the channel L at gate 5. These actions 
are represented by r3(n, d), s4(d) and ss(n), respectively. All these r /s  actions have 
their s /r  counterpart in the component with which the gate in question is shared. 
Communication is synchronous, i.e., only occurs when complementary r /s  actions 
are executed simultaneously at the same gate. The resulting action is denoted by 
c, i.e., ~(Sj, r j) = cj for j = 2, 3, 5, 6. The channels may corrupt data, but if they do 
so they are assumed to do this explicitly by sending an error message: s3(• for 
K and sd'• for L. Moreover, the channels are assumed not to corrupt data ad 
infinitum (in that case it is obviously impossible to ensure reliable transmission). 
This fairness assumption justifies the use of the proof rule CFAR later on. 

The ABP roughly works as follows, S, K, R, and L run strictly synchronized, 
i.e., K sends a message if and only if it receives one from S, R sends a message if 
and only if it receives one from K, etc. (except that S sends the very first message 
without receiving something from L). 

S reads a datum d from the input and sends a frame (eo, d) via K to R. As 
long as K corrupts the data, R receives frames ,1, and reacts by sending bits e~ 
via L to S, so that S sends the frame again. Once R receives a frame (e0, d), it 
writes d to the output and acknowledges this receipt by sending the bit e0 via L 
to S. From then on, R sends a bit e0 via L to S, each time it receives an incoming 
frame (e0, d) or • Process S sends a frame (e0, d) each time it receives something 
from L, until that something is an acknowledging bit e0. In that case S reads 
a new datum d' from the input and starts sending frames (ebd') to R. So now 
the cycle starts all over, with e0 and el exchanged. That is, R reacts to incoming 
frames / by sending e0, and after it receives a frame (el,d'), it writes d' to the 
output and starts acknowledging the receipt of  frame (el, d') by sending bits et to 
S. It should be clear that the alternating bit is essential to distinguish new frames 
from old ones (note that it is not excluded that d' = d) and to distinguish the 
acknowledgement of a new frame from that of an old one. 

The question arises: is the ABP correct? This question can only be answered 
after having specified a correctness criterion: the ABP should behave externally 
like a buffer. This raises several other questions: what is 'the ABP', what is 'a 
buffer' and what is 'behave externally'? These questions should be answered by 
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giving formal specifications, instead of e.g. the rough description of the ABP 
above. 

2.3. Specif icat ion and Verif ication o f  the A B P  i n / ~ C R L  

We now present a formalization of the ABP in #CRL. It follows closely the 
definition of the ABP in [BaW90], except that now data is treated more for- 
mally (which also involved some renamings). We make no difference between 
a bit and a boolean. Therefore we have no separate sort bit, but use Bool 
instead. The sort bool_Err (Frame_Err)  is the disjoint sum of the sort Booi 
(D • Bool) and a singleton sort containing an error element, with an injection 
ibool :Bool---~bool_Err(iFrame :D • Bool ---~Frame_Err). We assume D to be a given, 
nonempty sort; we do not specify its elements. The correctness of  the ABP follows 
from the derivability in #CRL of A B P  = Buf fer .  

sort Bool 
bool_Err 
Frame_Err 

func T, F : --~ Bool 
neg : Bool --~ Bool 
ibool : Bool --~ bool_Err 
errorbit  : ~ bool_Err 
iFrame : D • Bool --~ Frame_Err 
error f r a m e  : --~ Frame_Err 

var bl, b2 : Bool 
dl ,d2 : D 

F e w  

act 

eqs  and / f s  for all sorts, see Example 2.1 
neg (b 1 ) "~- eq Bool(bl, F) 
eq boot_err ( ibool ( bl ), ibool ( b2 ) ) = eq Bool  ( b l , b2) 
eq bool_err ( ibool ( bl ), errorbit  ) = F 
eq Frame_Err( iFrame( d l, bl ), i Frame(  d2, b2)) = 

i fBoo l (eqBool (b l ,  b2), eq D(dl, d2), F) 
eq F . . . . . .  err ( i Frame(  d b bl), errorframe ) = F 

r l , s  4 : D 
r2, s2,  c2 : D • B o o l  

r3, s3, e3 : Frame_Err  
r5, ss, c5 : Bool 
r6 ,  s6,  c6 : bool_Err 
i 

e o m m  

proc 

r2 ] $2 ~ r 

r3 I $3 ~ c3 

r5 I $5 = r 
r6 ] $6 ~ e 6 

B u f f e r =  ~d:D(rl (d)- s4(d)) "Buffer 
A B P  = z{~2,~3,~,e~,i}(8{r2,s2,r3,s3,~5,~5,~6,s6}(Sd ]] Rc  ]J K ]J L))  

K = )-~f:D• �9 (i" s3( iFrame( f ) )  + i .  s3 (er ror f rame) ) ) .  K 
L = ~ b B o o l ( r s ( b ) "  ( i .  s6(ibool(b)) + i .  s6(errorbi t))) .  L 
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Sd = Sb (T ) .  Sb(F).  Sd 
Rc = Rb(F).  R b ( T ) .  Rc 

Sb(b : Bool) = ~d:D r l (d) '  Sf(d,b)  
S f (d  : D, b : Bool) = s2(d, b)" Tf(d, b) 
Tf(d :D,b : Bool) = 

(r6(ibool(neg(b))) q- r6(errorbit )) " S f  (d, b) + r6(ibool(b)) 

Rb(b : Bool) = 
(~d:O r3(iFrame(d, b)) + r3(errorframe))" ss(b) �9 Rb(b) + 
Y~d:D r3(iFrame(d, neg(b))) . s4(d) �9 ss(neg(b)) 

We now outline the correctness proof of the ABP as formalized in Section 5. 
For additional details we refer to Sections 4.7 and 5.7 of [BaW90]. We use H to 
abbreviate {r2, s2, r3, $3, r5, $5, r6, $6} and I to abbreviate {c2, c3, c5, c6, i}. 

In order to exploit the symmetry in the protocol, we abstract from the state 
of the alternating bit in the sender and the receiver. That is, we define 

Sd(b : Bool) --- Sb(b) . Sb(neg(b)) . Sd(b) 
Rc(b : Bool) = Rb(neg(b)). Rb(b). Rc(b) 

It is obvious, and easy to prove by RSP, that Sd = Sd(T)  and Rc = Rc(T). 
We also need the equally obvious equations Sd(b) = Sb(b) .Sd(neg(b))  and 
Rc(b) = Rb(neg(b)). Rc(neg(b)). 

We introduce some more auxiliary definitions. The aim of these is to give a 
linear description of the protocol before hiding. That is, the equations are of the 
form X0  -- ~ a0"  Y0, where ~ denotes a mixture of alternative compositions 
and summations, X and Y are process variables and a an action. If  we fill in all 
parameters of X, we obtain a state of the protocol, and the equation then gives all 
possible actions with their resulting states. This linearization is depicted in Fig. 22 
of [BaW90]; Figures 3 and 4 constitute the same figure somewhat simplified. 

In these definitions, we use the syntax ( X I E )  from [BaW90] to denote 
the process defined by the process variable X in the recursive specification E. 
The advantage of  this notation over #CRL is that we can distinguish various 
(sub)systems of equations. This is particularly useful when it comes to applying 
RSP and CFAR formally on systems of equations, as is done in Section 5.2, 
respectively 5.4. 

ABP_nohide(b)= 
First(d,b)= 

Ex i t l (d ,b )= 
Exit2(b) = 

OH(Sd(b) II Re(b)ql K II L) 
rl(d)" (Xl l El(d,b)) 
c3(iFrame(d, b)) . s4(d) - (X1 L E2(d, b)) 
c6(ibool(b)). ABP_nohide(neg (b)) 

El(d,b) A= { S l  = c2(d,b) " X2 
X2 = i. Exitl (d, b) + i. S 3 
X 3 = c3(errorframe). X4 
X4 = cs(neg(b))" X5 
X5---- i ' X 6 q - i ' X 7  
X 6 : c6(errorbi t ) .  X1 
X7 = c6(ibool(neg(b))) " X1 } 
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E2(d, b) A= { X l  m_ c5(b)" X2 
X2 = i.  Exit2(b) + i.  X3 
X3 = c6(errorbit)"X4 
X4 = c 2 ( d , b ) '  X5 
X5 = i" X6 -}- i" X 7 
X6 = c3(errorframe)" X l  
X7 = c3(iFrame(d,b)). X! 

The major task of the verification is to prove the following lemma. 

Lemma 2.3. ABP_nohide(b) = ~d:O First(d, b). 

Proof  By numerous applications of the axioms, we can infer the possible first 
actions of ABP_nohide(b) and their resulting states. It turns out that 

ABP_nohide(b) = Z ( r ~  (d)" 0H (S f  (d, b)-Sb(neg (b))" Sd(b)[1Rc(b)IlK [[ L)) 
d:D 

Unfolding the definition of First in the lemma, and stripping the first action on 
both sides, we arrive at the proof obligation 

~H(Sf(d,b) " Sb(neg(b)) . Sd(b) II Re(b)II K I1 L) = (Xl I El(d,b)) 

The lefthandside of this equation describes the next state of the protocol. We 
continue by determining the possible first actions of this next state, and the state 
after that, and so on. After lots of steps, we derive 

~u(S f  (d, b) . Sb(neg(b)) . Sd(b) II Re(b) II g 14 L) = 
c2(d, b) . ( i . SomeSmte + 

i-c3(errorframe). . . ."  
OH(Sf (d,b) " Sb(neg(b)) . Sd(b) II Rc(b) II g II Z)) 

where SomeState is of the form Ol4(SenderStatelIReceiverStatellKStatellLState). 
The righthandside of this equation corresponds to the structure of El, therefore 
we can conclude by RSP that the aforementioned proof obligation follows from 
SomeState = Exi t l  (d, b). Extracting first actions twice more, and unfolding the 
definition of Exit1,  we arrive at the proof obligation SomeState' = IXl I E2(d, b)). 
This one is tackled again by RSP, and results in SomeState" = Exit2 (b). Finally, 
we extract the first action c6(ibool(b)) of SomeState' ,  and arrive at 

3H(Sb(neg(b)).  Sd(b)llRb(b)" Rc(b)llg IlL) = ABP_nohide(neg(b)) 

This equation follows immediately from our observations upon the introduction 
of Sd(b) and Rc(b). [] 

Theorem 2.4. A B P  = Buffer. 

Proof  By unfolding First, axiom TI4, applying CFAR on the clusters El and E2, 
and axiom T1, we derive 

rx(First(d, b)) = rl(d) " s4(d) " Zl(ABP_nohide(neg(b))). 

Combined with Lemma 2,3, we conclude 

zs (ABP_nohide(b)) = ( Z  rl (d) . sn(d)) " zl (ABP_nohide(neg (b))). 
d:D 
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It is now straightforward to show that ABP, being r1(ABP_nohide(T)), and Buffer 
both satisfy the equation 

X = ( y ~  rl(d) 's4(d)) '(~- '~ rl (e)'sa(e))" X.  
d:D e:D 

So, a final application of RSP concludes the proof. [] 

2.4. The Coq Proof Checker 

For a complete overview of the Coq proof checker, we refer to [DFH93]. It is based 
on the Calculus of Constructions, an extension of simply typed lambda calculus, 
but a deep understanding of that formalism, in particular of the identification 
of propositions and types, is not necessary for understanding the use we make 
of Coq (propositions are of type Prop and types of type Set). One can declare 
types, and state the existence of (constructor) functions with their types, including 
constants. One can express quantification and higher order logic. The implication 
and negation behave constructively. 

Coq extends the Calculus of Constructions by inductive definitions of sorts and 
propositions. A sort is defined inductively by listing its constructors. Such a defi- 
nition of an I n d u c t i v e  Set yields an induction principle and a Match-function, 
which enables the definition of (primitive recursive) functions by induction on 
the constructors. Together, they imply that every term of that sort is equal to a 
constructor term, and that all constructor terms are different. For example, the 
sort Bool can be translated to Coq as 

Inductive Set bool = true : bool I false : bool. 

Equality in Coq is a ternary polymorphic function <_>_=_ (see below). It has 
a so-called dependent type: (D:Set)D->D->Prop. That is, for each D, <D>_--_ is 
a function of type D->D->Prop. A simpler example of a dependent type is the 
type of the function [D:Set] [d:D]d, the polymorphic identity function (square 
brackets denote lambda-abstraction in Coq). Its type is (D:Set)D->D. In fact, the 
notation P->Q is an abbreviation of (x:P)Q when x does not occur in Q. 

From the inductive definition of bool, one can prove - (<bool> t rue- - fa l se )  
(true and false are not equal) and (b:bool)<bool>b=trueV<bool>b--false 
(for all b of type bool, b is either true or false). These statements correspond to 
the axioms B1 and B2 in pCRL. One must realize that inductive definitions come 
with a powerful elimination principle (see below). Otherwise, one easily writes a 
seemingly reasonable specification which is nevertheless incorrect, perhaps even 
inconsistent. For this reason and others, explained later, we shall not use this 
translation. It would certainly not be a good idea to define processes inductively, 
as there is no assumption in the semantics of #CRL that all processes can be 
built from the given actions and operators. 

By the propositions-as-types paradigm, propositions can also be defined in- 
ductively. An inductively defined type is the least set that is closed under the 
constructors (such that all constructor terms differ); an inductively defined propo- 
sition is the least proposition that is closed under the rules given for it. Rather 
than giving a formal definition, we give an example. 

Example 2.5. We consider the transitive closure function, which, given a relation 
R on D • D, returns the transitive closure of R. The relation R is represented 
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in Coq by its characteristic function of type D->D->Prop. ([R:D->D->Prop]x 
denotes 2R.x) 

Inductive Definition TC [R:D->D->Prop] : D->D->Prop = 
Base : (x,y :D) (R x y) -> (TC R x y) l 
Trans: (x,y,z:D) (R x y) -> (TC R y z) -> (TC R x z) 

This definition says that TC(R) is the least relation closed under the above 
rules; therefore an elimination principle comes with this definition: in order to 
prove a proposition P(x,y) under the assumption TC(R)(x,y), it is sufficient to 
prove 

R(x,y) ~ P(x,y) and R(x, y) A TC(R)(y,z) A P(y,z) --* P(x,z)  

This seems somewhat stronger than the usual induction scheme without the 
conjunct TC(R)(y, z), but it is actually equivalent. 

Also basic notions in Coq, such as truth, falsity, and equality, are inductively 
defined. 

Inductive Definition True : Prop = I: True 
Inductive Definition False : Prop = 
Syntax eq "< >_=_". 
Inductive Definition eq [k:Set;x:A] : A->Prop = refl_equal: <A>x=x 

I is by definition the proof of the nullary relation True;  the elimination 
principle for True is a tautology. Fa l se  is the empty nullary relation; with this 
definition comes the axiom False_ind:  (P :Prop)Fa l se ->P ,  the ex-falso rule, 
which reflects the minimality property (or the elimination principle) for False .  
Finally, equality on a set A is defined through the statement 'for x:A, the unary 
relation "being equal to x" contains only x'. This definition gives the induction 
principle ( A : S e t )  ( x : A )  ( P : A - > P r o p )  (P  x ) - > ( a : A )  ( < A > x = a ) - > ( P  a ) .  Thus the 
effect of eliminating z <A>b=a is that (usually all) occurrences of a are replaced 
by b. Equations can be used as term rewrite rules from right to left in this 
way. 3 Conjunction and disjunction are also inductively defined. Eliminating a 
conjunctive hypothesis A/\B yields two hypotheses A and B; eliminating AX/B 
yields two new proof obligations, one with hypothesis A and one with 13. 

A proof in Coq starts from the statement that one wants to prove, which is 
then transformed by applying tactics. A tactic replaces a proof obligation by zero 
or more new ones. A proof obligation consists of two parts: the goal (initially 
the statement that one wants to prove) and the context, a set of declarations of 
variables and premisses that can be used in the proof 4. A proof is completed if 
there are no more proof obligations. Some typical tactics are: 

Intro moves a universal quantifier or the premiss of an implication 
from the goal to the context. 

Apply H applies resolution on the goal and H, a hypothesis from the 
context, global axiom, or theorem. If tt is an implication, each 
premiss yields a new proof obligation. 

2 By eliminating tt, we mean applying the induction principle for the main constructor of  tt. 
3 The fact that some of our axioms are written 'backwards" is a relic of  a Coq version that could 
only rewrite in this direction. Version 5.8 has also a tactic Rewr i te  for rewriting from left to right. 
4 According to the propositions-as-types paradigm, there is no fundamental  distinction between a 
declaration d:D with D:Set  and a hypothesis H:P with P:Prop. 
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Elim H For a declaration H:D, where D is an inductive set, this amounts 
to structural induction. For a hypothesis H:P, where the main 
predicate of P is inductively defined, it applies the elimination 
principle. 

Contradiction looks for a hypothesis False. 
Assumption looks for a hypothesis equal to the current goal. 
Exact H succeeds if the goal is exactly the hypothesis, axiom, or theorem 

H. 

Unfold name unfolds the definition of name. 
P a t t e r n  position allows the selection of redexes for term rewriting. 
Auto tries to complete the proof by applying hypotheses and desig- 

nated theorems. 
Idtac does not change the proof obligation (sometimes useful in 

complicated tactics). 

Complicated tactics can be constructed from the basic ones. They can succeed, 
fail, or run out of space. A basic tactic fails if it is not applicable. 

tactic1 ; tactic2 

tactico; [tacticxl... ]tacticn] 

tac t ic10re lse  tactic2 

Try tactic1 

Repeat tactic~ 

applies tacticl and then tactic2 on all proof 
obligations generated by tactic1. 

applies tactico and then tactic, ..... tactic, 
to the n proof obligations generated by tactico. 

tries to apply tactic1, if it fails tactic2 is applied. 

tries to apply tacticb but it does not fail even 
if tacticl does. 

repeats tactic1 until it fails. This tactic never fails. 

Auto never fails: if it cannot complete the proof, it leaves the goal unchanged. 
Auto ; Exact I gives a version of Auto that can fail. (Exact I cannot be applicable 
after Auto, because Auto tries it.) 

3. The Translation of #CRL into Coq 

3.1. /~CRL versus Coq 

/~CRL and its proof theory share a significant number of concepts with Coq; we 
name (data)types, equality, implication, axioms, and derivability. The most formal 
way to proceed is to ignore these similarities, and to encode each/~CRL-concept in 
Coq. That is, to define a sort muCRL_Prop of #CRL property formulae and to en- 
code #CRL-derivability inductively as the least relation Dv : muCRL_Prop->Prop 
that contains all axioms and is closed under all inference rules of #CRL: 

Inductive Definition Dv:muCRL_Prop->Prop = 

REFL: (D:sorts) (has_sort t D) -> (Dv (equal D t t)) I 

REPL: (Phi:muCRL_Prop)(D:sorts) 
(Dv (subst D t x Phi)) 
(Dv (equal D t u)) 

-> 
-> (Dv (subst D u x Phi)) [ 
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AI: (p,q:proc) (Dv (equal proc (alt p q) (alt q p))) I 

ArrowI : (Phi,Psi :muCRL Prop) 
((Dv Phi)->(Dv Psi)) -> (Dv (implies Phi Psi)) I 

In this example, equal encodes the equality predicate of #CRL, subst encodes 
substitution, s o r t s  the declaration of sorts, has_sor t  the declaration of variables, 
a l t  the + on processes, imp l i e s  implication between/~CRL property formulae, 
and so on. 

Translating/~CRL to Coq in this way might be possible (the above formulation 
of ArrowI is problematic), but it is cumbersome: it gives rise to unreadable Coq 
texts and makes it impossible to automate the bulk of the proof (in the version 
5.8.3 of Coq we used). Namely, proofs in process algebra typically use a subset 
of the axioms (and derived equations) as a term rewriting system, computing 
normal forms for process terms (modulo associativity and commutativity of +). 
Hand-written, such a part of the proof appears as t e r m  = t e r m  = . . .  = t e r m ;  

formally each step is an application of REPL. In the above translation, the 
intermediate terms cannot be found by Coq; the user must provide them. This 
makes it effectively impossible to find even the most trivial proof automatically. 
In other words, with this translation we cannot hope to achieve a granularity 
of Coq proofs that comes anywhere near the granularity of hand-written proofs. 
Consequently, this approach is not (yet) scalable to real-life protocols. 

Therefore we take another approach: rather than encoding/~CRL in Coq, we 
embed/~CRL in Coq, that is, we map/~CRL-concepts to the 'same' concepts in 
Coq as much as possible. Such a translation renders Coq texts that are relatively 
easy to read, and intuitive proofs. The obvious problem with this approach is of 
course its soundness (and completeness). However, the soundness of the encoding 
approach is also not immediate, as it is not even proved yet that Coq is consistent 
[COP90, PaM93], i.e., Fa l se  might be derivable. In fact, the problem lies in the 
inductive sets and definitions, on which the encoding relies much more than our 
embedding approach. Clearly, any such soundness result cannot be obtained as 
long as this consistency of Coq is not proved. 5 

So the axioms o f / tCRL are translated to axioms in Coq; inference rules (e.g. 
S U M l l )  become implications (see Section 3.4 for the details). Also the rewrite 
rules of a/~CRL-specification are translated to axioms, which is justified by FACT. 
Is the consistency of Coq in the empty state already unproven, adding axioms 
makes it even harder to prove consistency. One might therefore argue that a better 
way to proceed would be to define the proposition muCRL as the conjunction of 
its axioms and rules (which can be done conveniently by an inductive definition), 
and to use that as a premise to all lemmas and theorems. We feel that this 
approach does not add any confidence in the results: the question remains if 
this proposition muCRL entails Fa l se  in Coq. From a practical point of view, the 
approach makes proofs much harder to read because the names of the axioms 
are lost. 

There are some obvious mismatches between Coq and/~CRL to take care of. 
The most obvious mismatch occurs between the classical implication of MCRL 
and the constructive implication of Coq. In this case the rules o f /~CRL are 

5 We have been informed recently that the required result was obtained in [Wer94] for a subset of 
Coq that includes the techniques used in this paper. 
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s t ronger  than those of Coq, so soundness is not at stake. We could have added 
the axiom ( P : P r o p ) - - P - > P ,  but it turned out that we did not need it. 

Another potential source of problems is equality. The equality < > -- of  
Coq has the Leibniz property, i.e., two terms are equal if and only if they can 
be substituted for each other in every context of  type Prop. This is a strong 
requirement, as these contexts are built from the expressive language of Coq. 
Whether = in/~CRL can be interpreted conservatively as Leibniz equality in Coq 
is a subject for specialized study, see [Se196] for a partial answer. 

Finally,/~CRL has no explicit quantification, but instead the substitution rule. 
This rule entails that all variables are implicitly universally quantified. These 
quantifiers are made explicit in our translation. Yet not all variables in/~CRL are 
bound in this way: the sum operator ~d:o(x)  binds the variable d of  datatype 
D in x. We translate this binding to lambda abstraction, see Section 3.4 for the 
details. 

3.2. Data 

A significant part  of  the proof  theory of #CRL can be translated to Coq in- 
dependently of  a particular MCRL-specification. Only the set of  action names, 
the communication function ?, and the set of  sorts parameterize this translation. 
The two sets are finite; therefore we define them as I n d u c t i v e  Sets  6, simply 
enumerating the members. These are the only I n d u c t i v e  Sets  we use. From 
these definitions it is easy to prove that all actions, respectively sorts, are different 
(we need inequality of  sorts to verify the side-condition of axiom CF2"). 

For simplicity, we allow actions to have precisely one data argument. For 
actions that have more than one parameter  in the specification, pairing can be 
used. Actions without parameter  get the dummy argument • which is the only 
element of  the trivial sort one. Thus a translation of  a pCRL-specification begins 
with the following definition, where the . . .  must be replaced by sorts specific 
for the specification. Why the sort na t  of naturals is needed is explained in 
Section 3.7. 

Inductive Set types = onetype:types I booltype:types I nattype:types I ... 

In fact, this declaration gives us sort names .  The sorts themselves are created 
through the declaration of a function t y p e  : t y p e s - > S e t .  

Parameter type : types->Set. 

Definition one = (type onetype). 
Definition bool= (type booltype). 
Definition nat = (type nattype). 

A consequence of this approach is that we cannot define these sorts inductively. 
Thus we must declare the constructors and induction principles for these sorts 
explicitly. We can also not use the Match-function, therefore we must axiomatize 
the functions ze ro  and pred,  which allow us to prove that naturals of  the form 
S"(0) differ for different n.  7 

6 In Section 3.4 we explain why we cannot identify sorts from pCRL with sorts in Coq. 
7 Alternatively, we could postulate a bijection between the sort nat as defined here and inductively 
defined naturals. Section 5.4 might be simplified by the resulting ability to use the Match-function. 
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Parameter i : one. 
Parameter true,false : bool. 
Parameter 0 : nat. 
Parameter S : nat->nat. 

Axiom Ii : (j:one) <one> j=i. 
Axiom B1 : ~<bool>true=false. 
Axiom B2 : (b:bool) <bool>b=true \/ <bool>b=false. 
Axiom nat_ind: (P:nat->Prop)(n:nat) (P O)->((y:nat)(P y)->(P (S y)))->(P n). 

Parameter zero : nat->bool. 
Parameter pred : hat->nat. 

Axiom zeroO: <bool>(zero O )=true. 
Axiom zeroS: (n:nat) <bool>(zero (S n))=false. 
Axiom predO: <nat> (pred 0 )=0. 
Axiom predS: (n:nat) <nat> (pred (S n))=n. 

As we noted, #CRL has two equalities: the 'built-in' -- for both data (rew) 
and processes (proc), and the user-defined e q D  : D --* D --* Bool for each sort D. 
We chose not to translate e q D  into Coq by literally translating the rewrite rules 
of  Example 2.1, but by defining it by its intended meaning, namely part  1 of  
Claim 2.2. 

Parameter eql: (T:types)(type T)->(type T)->bool. 
Axiom def eql: (T:types)(d,e:(type T)) <bool>(eql T d e)=true<-><(type T)>d=e. 

3.3. Actions and Communication 

Actions in /~CRL are declared with their respective sorts, but overloading of 
action names is allowed: one may declare an action r with sort D and another 
action r with a different sort E. In the translation into Coq, actions are declared 
without their sorts (in other words: action n a m e s  are declared). Thus there can 
be actions in the translation that are not present in the original specification. As 
these actions will not occur in the processes, this mismatch is harmless. 

The comm section of a /~CRL specification, defining the communication 
function 7 of  ACW, is translated to the function gamma in Coq. Recall that 
communication in #CRL is defined on action names only, that is, if two actions 
(of different sort) have the same name, then they must communicate in the same 
way. This facilitates a correct translation into Coq: gamma is specified only for the 
action name r, not for ' r :D '  and ' r :E '  separately. It is not easy to specify partial 
functions in Coq, therefore when ?(a, b) is undefined, its translation (gamma a b) 
returns the special action name d e l t a .  The process T in/~CRL behaves similarly 
to an atomic action, so a second special action name t a u  is introduced. 

Thus, we expect the translation of a/~CRL-specification to provide definitions 

Inductive Set act = , . .  I delta:act tau:act. 

Definition gamma: act->act->act = .. 

gamma must have certain properties, which are stated as five proof  obligations 
(goals) in Coq. We must prove these goals in order to show that gamma satisfies 
the desired properties. These properties can be used as lemmas in the correctness 
proof  of  the protocol as well. The first two properties are that d e l t a  and t a u  do 
not communicate. The third is that the communication of two actions is not r 
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(allowing this would complicate defining guardedness, see Section 3.6). The fourth 
is that gamma is commutative, as is required in [BaW90]. It is also required there 
that gamma is associative, but we assumed handshaking, the fifth property, which 
is stronger. 

Goal (a :act) <act>(gamma delta a )=delta. 
Goal (a :act) <act>(gamma tan a )=delta. 
Goal (a,b :act)~<act>(gamma a b )=tan. 
Goal (a,b :act) <act>(gamma a b )=(gamma b a). 
Goal (a,b,c:act) <act>(gamma a (gamma b c))=delta. 

In general, the proof  of  these goals depends on the definition of  gnmma. 
However, thanks to the fact that actions are defined inductively, we can use the 
Match-function for this definition (see Section 4 for an example). With such a 
definition, proving these goals becomes automatic: the literal text of  the proofs 
need not depend on g~mma; it is always a straightforward case analysis. 

3.4. Processes and Axioms 

The distinction between the action a and the process a is not always obvious in 
process algebra. In the current setting, it is obvious that a process is formed from 
an action name, its sort, and an element of  that sort. However, there is only one 
process ~5 and one process z. Thus we declare 

Parameter proc Set. 
Parameter ia (T:types) act->(type T)->proc. 

Definition Delta = (ia onetype delta i). 
Definition Tan = (ia onetype tan i). 

Axiom Delta_Data (T:types)(t:(type T)) <proc>Delta=(ia T delta t). 
Axiom Tan_Data (T:types)(t:(type T)) <proc>Tau =(ia T tan t). 

It remains to model sets of  actions (for hiding and encapsulation), before we 
declare the operators on processes. Similar to the relation R in Example 2.5, we 
model such sets by their characteristic function a c t - > P r o p  8. A small complication 
is that we have added d e l t a  and t a u  to the set of actions, and that these cannot 
be encapsulated, nor hidden. Thus we define the function goodse t ,  which, given 
a set of  actions, returns the same set without d e l t a  and tan.  

Definition ehset = act->Prop. 
Definition goodset : ehset->ehset = [L:ehset] 

[a:act] (~(<act>a=delta))/\(~(<act>a=tau))/\(L a). 

Parameter alt,seq,mer,imer,comm 
Parameter cond 
Parameter sum 
Parameter enc,hide 

(T:types) 

proc->proc->proc. 
proc->bool->proc->proc. 
((type T)->proc)->proc. 

ehset->proc->proc. 

8 Sellink [Se193] suggests to represent the sets for hiding and encapsulation as lists. This turns out to 
be unnecessary cumbersome, but  raises an interesting question. Suppose that we have sets as a sort in 
the specification of  the protocol. Then the #CRL-specification contains an algebraic specification of 
sets based on lists, such as the one given by Groote and Van Wamel [GrW94] (a function D ~ Bool 
can be declared in pCRL,  but not used as a sort). Is it allowed in this case to use the characteristic 
function representation, or should we translate the algebraic list-based specification dutifully into 
Coq ? The latter is more formal, but  further away from the informal specification, which requires sets. 
Notice that this problem does not  occur for the sets of  actions for encapsulation and hiding, as these 
sets are not sorts, but  built-in syntactic objects in #CRL. 
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Now it is clear why we cannot identify #CRL-sorts with sorts in Coq: proc  
could then be used as a #CRL-sort. This would again allow the process definition 
P = (a < P = 6 > 6), which implies a = 6, and also ~-~x:proc x, the sum of all 
processes. 

The #CRL t e r m  ~d:T(X) is translated to (sum T [d: ( type  T) ]x) .  This 
means that sum has type ( T : t y p e s )  ( ( t y p e  T) ->proc ) ->proc .  The axiom SUM2 
of pCRL is now recognised as a-conversion, and can therefore be omitted in the 
translation. The freeness requirements of the variables in the other SUM-axioms 
are verified automatically: if they are not satisfied, then an unbound variable 
would occur. The premiss of SUM11 refers to the equality of two processes with 
a free variable d : D; it is translated to Vd 6 D : pl(d)  = p2(d). 

Most of the axioms of  #CRL translate directly into Coq, as they are simply 
equations between processes; variables are universally quantified. For example, 
A1 translates to 

Axiom Al:(x,y:proc)<proc>(alt x y)=(alt y x). 

The derivable axioms SC4, CM5, CM6, and CM9 are not translated to axioms, 
but to lemmas. Some axioms have side-conditions, most notably the CF-axioms, 
D1, D2, TI1 and TI2. The CF-axioms have been simplified in comparison with 
Table 3. 

Axiom CFI : <proc> (cond (ia T (gamma a b) t) (eql T t t') Delta)= 
(comm (ia T a t )  (ia T b t')). 

Axiom CF2 : -<types>T=U -> <proc> Delta=(comm (ia T a t) (ia U b u )). 

CFI covers not only the case of actual communication (CF1 in Table 3), but 
also the case where communication fails because the actions do not communicate 
or the data is not the same (CF2 and CF2'). Claim 2.2 or the axiom def_eql  
justifies this formulation, which effectively replaces the premiss ~(ti = tl) of CF2' 
by eqr( t i ,  t' i) = F. The only remaining case is that of CF2": actions with different 
sorts (and hence incomparable data), which is covered by CF2. 

Apart from the axioms listed, there are many 'derived axioms' or lemmas. 
These are discussed in Section 3.8. 

3.5. Recursive Specifications and RDP 

Informally, RDP states that a recursive specification has at least one solution. 
Thus we need to translate what is a recursive specification, and what is a solution 
of it. First, we consider the case of a single recursive equation. Such an equation, 
written as X ( d )  = G ( X , d ) ,  can be seen as the definition of the process operator 
G of type (D->proc)->D->proc.  (This is a generalization of the l inear process 
operators of [BeG94b], where G must be in a particular normal form.) A solution 
of the recursive equation is then a fixed point of G, and has type O->proc. 

In the general case, we have a set of process variables ProcVar and a 
function Typ from ProcVar to t ypes  giving their associated sorts (similar to 
actions, we let process variables have exactly one data parameter). A solution of 
a system of recursive equations is now a function that interprets each process 
variable as a function from its data parameter to a process, thus the type of a 
solution (in fact, of  any such interpretation) is I n t t y p e  : (X:ProeVar ) ( type  
(Typ X) ) ->proc.  The system of recursive equations DefEq itself is then a process 
operator I n t t y p e - > I n t t y p e  (similar to G above). The solution is its fixed point. 
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For example, the system {X = a .  Y(T), Y(b  : Bool) = X + a .  Y(not(b))} 
is defined as follows (note that DefEq needs the old interpretation of  process 
variables iPV to interpret the occurrence of a process variable in the body of  an 
equation as a process). 

Inductive Definition ProcVar = X:ProcVar t Y:ProcVar. 
Definition Typ = [P:ProcVar] (<types>Match P with (* X *) onetype 

(* Y *) booltype). 
Definition Inttype = (P:ProcVar)(type (Typ P))->proc. 
Definition DefEq = [iPV:Inttype] [P:ProcVar] 

(<[P:ProcVar](type (Typ P))->proc>Match P with 
(* X *) [j:one ](seq (ia onetype a i) 

(iPV Y true) ) 
(* Y *) [b:bool](alt (iPV X i) 

(seq (ia onetype a i) 
(iPV Y (neg b)) ))). 

RDP states that a system of recursive equations has a solution, i.e., that 
a process operator has a fixed point. Thus we declare the solution function 
Sol :  ( I n g t y p e - > I n t g y p e ) - > I n t g y p e  giving a solution for each system of equa- 
tions (think of  it as the #-operator). That (Sol DefEq) is indeed a solution for 
DefEq is stated in axiom P~DP. (A V a r i a b l e  declaration is local within a S ec t i o n ;  
it is translated to a universal quantification outside.) 

Section RDP. 
Variable ProcVar : Set. 
Variable Typ : ProcVar->types. 
Local Inttype = (X:ProcVar)(type (Typ X))->proc. 
Variable DefEq : Inttype->Inttype. 

Parameter Sol : (Inttype->Inttype)->Inttype. 
Axiom RDP : <Inttype>(Sol DefEq)=(DefEq (Sol DefEq)). 
End RDP. 

3.6. RSP 

RSP states that guarded systems of equations have unique solutions. So we 
must define guardedness in Coq. A single recursive equation is guarded if we can 
determine for all n the first n visible actions of its solution by repeatedly unfolding 
the equation. For example, if we have X ( b  : Bool) = (z< b ~, a ) .  X(not(b)) ,  then 
X ( T )  = r �9 X ( F )  = z .  a .  X ( T ) ,  so we can determine the first visible action (a) of 
X ( T )  by unfolding the equation twice. Further applications of the equation give 
us further visible actions: the equation is guarded. 

In contrast, if we have Y = a'z{a}(Y), then this equation gives us the first visible 
action, but a second unfolding yields Y = a. 17{a } (a" "C{a } ( Y ) )  = a" z" Z{a} (%'{a} ( Y )) = 
a ' r { a ) ( Y ) .  Clearly, further unfoldings do not yield further visible actions for Y, 
so this equation is unguarded. Indeed, both a and a .  6 are solutions for this 
equation, thus RSP should not be applicable. In view of this second example, we 
will simply consider every recursive equation in which the hiding operator 9 occurs 
as unguarded (unless of course we can remove the hiding operator by rewriting 
the system using the axioms). 

Now we return to the first example. We note that when we unfold X ( T ) ,  we 

9 Allowing ~,(a,b) = z would give similar problems for II, I and [~, consider e.g. Z = a.(b I Z). 
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obtain X(F) without a visible action (guard) in front. We say that X(T) depends 
unguarded on X(F). On the other hand, unfolding X(F) yields X(T) only behind 
a guard, so X(F) does not depend unguarded on X(T). We can have the same 
notion in a system of  equations: if we replace X(T) by Y and X(F) by Z then 
we obtain the system {Z = T- Y, Y = a .  Z}  in which Z depends unguarded on 
Y, but Y does not depend unguarded on Z. 

We conclude that 'depends unguarded on' is a binary relation R on pairs of  
the form (X, e), where X is a process variable and e is data of  the correct type for 
X. R must be well-founded for the system to be guarded} ~ Rather than writing 
an axiomatization that tries to compute R, we let the user provide R. Then we 
check that R is well-founded (see also [BeG94c]) and that for all process variables 
X and data e of  the type for X, the body of  the equation for X(e) is safe w.r.t. X, 
e, and _R, that is, if Y (f)  occurs in this body, either it occurs behind a guard, or 
R(X, e, Y, f) holds. What follows is the translation of  this into Coq; the details 
are explained thereafter. 

Parameter Safe : (ProcVar:Set) 
(Typ : ProcVar->types) 
(iPV : (X : ProcVar) (type (Typ X) ) ->proc) 
(X : ProcVar) 
(e:(type (Typ X)))-> 
( (X: ProcVar) (type (Typ X) ) -> 
(Y : ProcVar) (type (Typ Y) ) ->Prop)->proc->Prop. 

Section RSP. 
Variable ProcVar : Set. 
Variable Typ : ProcVar -> types. 
Local typ = [X:ProcVar](typs (Typ X)). 
Local Inttype = (X:ProcVar)(typ X)->proc. 
Local RT = (X:ProcVar)(typ X) -> (Y:ProcVar)(typ Y) -> Prop. 
Variable iPV Inttype. 
Variable DefEq Inttype->Inttype. 
Variable X ProcVar. 
Variable e (typ X). 
Variable R RT. 

Local RSafe : proc->Prop = (Safe ProcVar Typ iPV X e R). 
Local TSafe : proc->Prop = (Safe ProcVar Typ iPV X e 

[X:ProcVar] [e:(typ X)] 
[Y:ProcVar] [f:(typ Y)]True). 

Variable 
Variable 

x,y : proc. 
T : types. 

Axiom SO:(Y:ProcVar)(f:(typ Y)) (R X e Y f) -> (RSafe (iPV Y f) ). 
Axiom Sl:(a:act)(t:(type T)) (KSafe (ia T a t)). 
Axiom S2:(a:act)(t:(type T)) 

-(<act>a=tau) -> (TSafe y) -> 
(RSafe x) -> (RSafe y) -> 
(RSafe x) -> (RSafe y) -> 
(RSafe x) -> (RSafe y) -> 
(RSafe x) -> (RSafe y) -> 
(RSafe x) -> (RSafe y) -> 

(p:(type T)->proc)((d:(type T)) (RSafe (p 
-> 

(L:ehset) (RSafe x) -> 

Axiom $3: 
Axiom $4: 
Axiom S5: 
Axiom S6: 
Axiom S7: 
Axiom S8: 

Axiom $9: 

(RSafe ( s eq  ( i a  T a 
(RSafe ( s eq  x y ) ) .  
(RSafe ( a l t  x y ) ) .  
(RSafe (mer x y ) ) .  
(RSafe (Lmer x y ) ) .  
(RSafe (comm x y ) ) .  
d ) ) )  
(RSafe (sum T p ) ) .  
(RSafe (enc L x ) ) .  

t )  y ) .  

10 Apart  from cyclic ones, this also excludes unfounded specifications like X(n : n a t )  = X ( S ( n ) ) .  
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Variable ProcVar' : Set. 
Variable Typ' : ProcVar' -> types. 
Local typ' = [X':ProeVar'](type (Typ' X')). 
Local Inttype' = (X':ProeVar')(typ' X')->proc. 

Local TSafe' = [iPV':Inttype'] 
(Safe ProcVar' Typ' iPV' X' e' 

[X':ProcVar'] [e':(typ' X')] 
[Y':ProeVar'] [f':(typ' Y')]True) 

Axiom Sl0:(DefEq':Inttype'->Inttype')(X':ProcVar')(e':(typ' X')) 
( (iPV':Inttype')(X':ProcVar')(d':(typ' X')) 

(TSafe' iPV' (DefEq' iPV' X' d')) )-> 
(RSafe (Sol ProcVar' Typ' DefEq' X' e')). 

SO states that Y(f) can occur unguarded in the defining equation of X(e), 
provided R(X,e, Y,f) holds. 82 states that all process variables may occur after 
a guard; the effect is obtained by replacing g by the relation that is always true. 
The premiss (YSafe y) serves to check that no hiding operator occurs in y. 

S l0 states that the system may refer to another system of equations. This other 
system must be proved safe la w.r.t, the relation that is always true, i.e. it must not 
contain hiding and, more importantly, it must not contain variables of the current 
system (technically: the defining equations Defgq'  of this new system must not 
depend on the iPV of the current one). For example, following the notation of 
[BW90], we could have E = {X = a .  (X' [ E~c)}, with E~c = {X' = X + b.  X'}. 
Notice that in #CRL we cannot distinguish this combination from the flattened 
system {X -- a .  X', X' -- X + b .  X'}, but that we need the distinction to 
modularize proofs. 

One can observe that the above combination of E and E~c is in fact safe, 
because the flattened system is. Indeed, we can allow the stronger variant of 
axiom Sl0 below, which allows the occurrence of those variables Y(f) that 
were allowed to occur unguarded anyway in the equation for X(e), because 
R(X,e, Y, f) holds. It does however not change R to the relation that is always 
true after encountering a guard. Anyway, we do not need this stronger version of 
Sl0 if we only build one system on top of the other, instead of mutually recursive 
ones. 

Axiom S10:(DefEq':Inttype'->Inttype')(X':ProcVar')(e':(typ' X')) 
( (iPV':Inttype')(X':ProcVar')(d':(typ' X')) 

( (Y:ProcVar)(f:(typ Y)) (R X e Y f)->(TSafe' iPV' (iPV Y f)) )-> 
(TSafe' iPV' (DefEq' iPV' X' d')) )-> 

(RSafe (Sol ProcVar' Typ' DefEq' X' e')). 

Finally, we can state the axiom RSP. Given are an interpretation of process 
variables iPV, the system of equations DefEq and the relation R. The system is 
guarded if R is well-founded and all bodies are safe (for no X and d, there is an 
infinite descending chain from X and d, and the body of the equation for X and d 

1I We need not prove that this other system is guarded! If it is not, then it will not have a unique 
solution, but the unique solution of  the current system will contain the (not uniquely determined) 
term (Sol ProcVar' Typ' DefEq' X' e'). 
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is safe). I f  the system is guarded and iPV is indeed a solution 12, then • equals 
the canonical solution (Sol ProcVar Typ DefEq) of  the system. 

Inductive Definition WF : (X:ProeVar)(typ X)->Prop = 
WFI: (X:ProcVar)(d:(typ X)) 

((Y:ProcVar)(e:(typ Y))(R X d Y e)->(WF Y e)) 
-> (WF X d). 

Definition Guarded = (X:ProcVar)(d:(typ X))(iPV:Inttype) 
(WF X d) /\ (Safe ProcVar Typ iPV X d R (DefEq iPV X d)). 

Axiom RSP: 
Guarded -> 
((X:ProeVar)(d:(typ X))<proc> (iPV X d) = (DefEq iPV X d)) -> 
<Inttype> iPV = (Sol ProcVar Typ DefEq). 

End RSP. 

3.7. Fair Abstraction 

As we noted before, the ABP can function correctly only if the channels do not 
corrupt data ad infinitum. This assumption was translated into process algebra 
in various ways, most notably in the form of fair abstraction rules. For an 
overview we refer to Section 5.6 of  [BaW90]. We chose to translate CFAR b 
into Coq (Cluster Fair Abstraction Rule for branching bisimulation, we omit the 
superscript b further on). Informally, a cluster is a (maximal) set of  states of  a 
process such that each state in it can reach each other in it by taking only hidden 
steps. CFAR deals with all possible clusters, as opposed to KFAR, ,  which only 
deals with cycles of n states 13. 

We have adapted CFAR to the presence of data as follows. Instead of a single 
cluster, we like to collaps a number  of  clusters at the same time. For example, if 
we have a process definition 

X ( n  : nat)  = b(n)  + i .  ( X ( n  + 9) < (n mod 10) = 0 > X ( n  - 1)), 

then we want to infer 

Vn : nat  r .  z{ i } (X(n) )  = z- (b(10 (ndiv 10)) + . . .  + b(10 (n div 10) + 9)). 

There are infinitely many clusters, therefore we cannot collaps each cluster 
separately. One way to proceed would be to fix a k : nat  and to define 

Yk(m : [0..91) = b(10k + m) + i. (Yk(9) < m = 0 t> Y k ( m  --  1)). 

Then we prove by CFAR 

for all m : [0..9]: z.  z l i I (Yk(m))  = z " (b(k)  + . . .  + b(k  + 9)). 

12 We must put this premiss as ((X:ProcVar)(d: (typ X))<proc>(iPV X d)=(DefEq iPV X d)), 
rather than <Inttype>iPV=(DefEq iPV), because the latter equality does not follow from the former 
in Coq. 
13 As the structure of c and i actions in the ABP turns out not to be a cycle, we need CFAR in our 
proof. Alternatively, we could hide the c actions first. Then applying T1 yields a cycle of i actions of 
length 2. Hiding the i actions and applying KFAR2, yields the desired result, provided that we add 
the axiom r l ( 'Cj (x) )  = r l o j ( x ) .  
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tb(0) tb(1) tb(2) tb(3) t b(4) 

;b(9) ~b(8) ~b(7) ~b(6) ~b(5) 

lb(10) Ib(11) Ib(12) I b(13) lb(14) 

~b(19) ~b(18) ~b(17) ~b(16) ~b(15) 

( 1( 
~b(19)~b(18)~b(17)~b(16)~b(15) 

lb(O) lb(1) lb(2)lb(3)Ib(4) 

) 
~b(9)~b(8)~b(7)~b(6)~b(5) 

Fig. 2. Collapsing two clusters. 

Finally we prove by RSP X(n) = Yndivlo(nmod 10). We cannot formalize this 
approach in ttCRL, because there k should be a formal parameter of Y, leaving 
us with many clusters again. However, our translation of recursive specifications 
into Coq does not prevent parameterized specifications such as the one of Yk : we 
can encode this approach in Coq, albeit clumsily (we must add a new datatype 
with ten elements and a function interpreting them as 0..9). 

Therefore we chose a formulation of CFAR that collapses multiple clusters 
explicitly. First we number the different clusters. Then we number the different 
pairs (X,d) within each cluster, where X is a process variable and d a data 
parameter of the type of X. That is, we assume having the following functions. 

�9 cluster(X,d) gives the number of the cluster to which the pair (X,d) belongs. 
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�9 element (X, d) gives the order number  o f  (X, d) within its cluster. 

�9 process(n,m) (n,m c nat) returns X(d) such that cluster(X,d) = n and 
element(X,d) = m. It returns 3 if n > the number  o f  clusters or m > the 
number  o f  processes in the cluster. 

�9 Exit(n,m) (n,m E nat) returns the exit process o f  the ruth item in the nth 
cluster. Again  it is 6 if n or m are too large. 

�9 a(X, d, m) is the action (including data) that  leads from X(d) to the ruth item 
in the cluster of  X(d). It is 3 if there is no such action. 

In our  translation into Coq, the user must  provide these functions for each 
application o f  CFAR,  and show that  they have the following properties (let L be 
the set o f  actions going to be hidden). 

1. For  all X and d: X(d) = process(cluster(X, d), element(X, d)). 
2. For  all n and m: if for no X and d: (n,m) = (cluster(X,d),element(X,d)), 

then Exit(n, m) = process(n, m) = 3. 

3. The system of  equations can be written in the form 14 

X(d) = Y'~m:nat a(X, d, m) " process(cluster(X,d), m)+ 
Exit (cluster (X, d), element (X, d)). 

4. Each a(X, d, m) is either 6, z, or its action name is in L. 

5. All clusters are connected:  we can step from X(d) to Y(e) exactly if the action 
a(X,d, element(Y,e)) :p 6; a cluster is connected if for all X(d) and Y(e) in it, 
we can go from X(d) to Y(e) in one or more steps. 

6. The system is guarded. 

Given definitions satisfying these properties, C F A R  concludes for all X and d: 

Z" ZL(X(d)) = Z "  TL( Z Exit(cluster(X, d), m)). 
191 :nat 

In our  example, we could use the following functions. 

cluster(X,n) = ndiv 10 
element(X,n) = n mod 10 
process(k, m) = X(10 k + m) if m < 9, 6 otherwise 
Exit(k,m) = b(10k  + m )  i f m  < 9, 6 otherwise 
a(X, n, m) = i if m = (n - 1) rood 10, 3 otherwise. 

We now provide the representation o f  C F A R  in Coq. Notice that p r o c e s s  
needs an interpretation o f  process variables, and that the definition o f  a(X, d, m) 
is split in three parts:  sort, action name, and data. 

Section CFAR. 
Variable ProcVar : Set. 
Variable Typ : ProcVar -> types. 
Local typ = [X:ProcVar](type (Typ X)). 
Local Inttype = (X:ProcVar) (typ X)->proc. 
Variable DefEq : Inttype->Inttype. 
Variable R : (X:ProcVar)(typ X)->(Y:ProcVar)(typ Y)->Prop. 
Variable L : ehset. 

14 Here we see a summation over the natural numbers. Since we have only summation over sorts, we 
need nat as a built-in sort. 



Formalizing Process Algebraic Verifications 27 

Variable cluster : (X:ProcVar)(typ X) -> nat. 
Variable element : (X:ProcVar)(typ X) -> nat. 
Variable process : Inttype -> nat -> nat -> proc. 
Variable Exit : nat -> nat -> proc. 
Variable D' : (X:ProcVar)(typ X) -> nat -> types. 
Variable a : (X:ProcVar)(typ X) -> nat -> act. 
Variable d' : (X:ProcVar)(d:(typ X))(n:nat) (type (D' X d n)). 

Definition CheckInside = (X:ProcVar)(d:(typ X))(iPV:Inttype) 
(.1.) <proc>(process iPV (cluster X d) (element X d)) = (iPV X d). 

Definition CheckOutside = (n,m:nat)(iPV:Inttype) 
(*2*) ((X:ProcVar)(d:(typ X)) ~(<nat>n=(cluster X d) /\ 

<nat>m=(element X d) )) -> 
<proc>(process iPV n m)=Delta /\ <proc>(Exit n m)=Delta. 

Definition CheckDef = (X:ProcVar)(d:(typ X))(iPV:Inttype) 
(.3.) <proc>(DefEq iPV X d)= 

(alt (sum nattype [n:nat](seq (ia (D' X d n) (a X d n) (d' X d n)) 
(process iPV (cluster X d) n))) 

(Exit (cluster X d) (element X d))). 

Definition Checka = (X:ProcVar)(d:(typ X))(n:nat) 
(*4*) <act>(a X d n)=delta \/ <act>(a X d n)=tau \/ (goodset L (a X d n)). 

Inductive Definition Conn: (X,Y:ProcVar)(typ X)->(typ Y)->Prop 
= connl: (X,Y:ProcVar)(d:(typ X))(e:(typ Y)) 

~<act>(a X d (element Y e))=delta -> (Conn X Y d e) 
I connt: (Z:ProcVar)(f:(typ Z)) 

(X,Y:ProcVar)(d:(typ X))(e:(typ Y)) 
(Conn X Z d f) -> (Coma Z Y f e) -> (Corm X Y d e). 

Definition CheckConn = (X,Y:ProcVar)(d:(typ X))(e:(typ Y)) 
(*5*) <nat>(cluster X d)=(cluster Y e) -> (Conn X Y d e). 

Axiom CFAR: (X:ProcVar)(d:(typ X)) 
Checklnside -> CheckOutside -> CheckDef -> Checka -> CheckConn -> 

(*6*) (Guarded ProcVar Typ DefEq R) -> 
<proc>(seq Tau (hide L (Sol ProcVar Typ DefEq X d))) = 

(seq Tau (hide L (sum nattype [n:nat] (Exit (cluster X d) n)))). 
End CFAR. 

How we use this formulation of CFAR in proving the correctness of the ABP 
is outlined in Section 5.4. 

3.8. A Library of  Lemmas  

Although the axioms and rules are the most important part of the translation 
of/~CRL into Coq, it would be incomplete without a library of lemmas that are 
useful regardless of the protocol being verified. The current library is listed in 
Tables 4, 5, and 6; this library will grow further when more protocols are verified. 
We distinguish the following parts of our library. 

�9 Lemmas about standard data: the sorts n a t  and Bool, and equality. These 
lemmas are typically trivial, requiring only a few lines of proof. Nevertheless 
they are necessary to automate parts of the further proof. See Table 4. 

�9 A few short lemmas about actions. See Table 4. 
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Table 4. Booleans, equality, naturals and actions. 

M. A. Bezem, R. N. Bol and J. E Groote  

negfalse neg(F) = T refl_eql eqo(t,t)  = T 
negtrue neg ( T)  = F sym_eql eqo (t, u) = eqo(u, t) 
negneg neg(neg(b)) = b make_equal t = u ~ eqo(t,u) = T 
not_eqLtrue_false eqBaol(F, T)  = F make_eql t 5 ~ u ~ eqo(t, u) = F 
not_eql_b_negb eqBool(b, neg(b)) = F make_uneql eqo(t, u) = F ~ t =/: u 

O_S S(n) ~ 0 not_goodset a ~ L ~ a ~ goodset(L) 
unequaLS n 5 ~ m ~ S(n) ~ S(m) comm_action ~c : a(t) [ a'(u) = c(t) 

b ~ Bool, D a sort, t ,u E D, m,n E nat, a,a' ,c E A c t U  {6, r} 

Table 5. Derived axioms. 

A6' 6 + x = x 
Dl_Del ta  OL(~) = 
TIl_Delta  "CL(~ ) = 
CM2'  6[[x = 6 

SC6 xlly = yl[x 
SC7 (xlly)llz) = xll(yllz) 
DC2 x ] 6 = 6 
Handshaking '  (x I Y) ] z = 

SUM7'  

SUM7"  

DLCSS 

S U M m a n d  

EXP_bool 

~ e : E ( X  ] y) = X I E e : E  Y 

Ed:D E e ' E  ~L((x I y)ll Z) 
='~3L((~'-~.t:D X I~-~e:Ey)[~Z) 

E d : D  X = x[d'/d] + Ed:D(6  <1 eqD(d, d')t> x) 

x[b/c] + x[neg(b)/c] = ~ c : B o o l  x 

if e not  free in x 

if e not  free in x 

and d not  free in y 
if e not  free in x and z 

and d not  free in y and z 

EXP3 

EXP4 

xll(yllz) = xU. (yllz) + yll (xllz) + z[[(xlly) + (y I z)L x + (x [ y)ll z + (x I z)L y 

xlJ(yll(zllu)) = x[~ (yH(zllu)) + y~_ (xll(zllu)) + z~. (xll(yllu)) + u[~ (xll(yllz)) 
+(z I u)~(xlly) + (y I z)~(xllu) + (y I u)[[ (xljz) 
+(x I y)U(zllu) + (x I z)l~(yllu) + (x I u)L(yllz) 

C O N D 3  
C O N D 4  
C O N D 5  
C O N D 5 '  
C O N D 6  
C O N D 6 '  
C O N D 7  
C O N D 7  / 
C O N D 8  
C O N D 8 '  
C O N D 9  

C O N D 9 '  

C O N D 9 "  

C O N D 1 0  
COND11 

x = x'~bE> x 
x,~b~, y = y ~neg(b)~. x 
(x | z ) ,ab~  (y | z) = (x ,~b~  y) | z 
(x | y ) ,ab~, (x  | z) = x | (y ,~b~. z) 
( x '~b~  z) + (y ~b~. z) = (x + y) ~ b ~  z 
( z '~b~  x) + ( z '~b~  y) = z ~b~ , (x  + y) 
b = c --~ x , ~ b ~ z  = x ' ~ b ~ ( y ' ~ c ~ z )  
b = c --~ y ~ b > x  = (y '~c~  z) ,~bt~x 
b = neg(c) ~ x . ~ b ~ y  = x , ~ b ~ ( y , ~ c ~ z )  
b = neg(c) ~ z ~ b u x  = ( y , ~ c t ~ z ) , ~ b ~ x  

~d:D(X,abr ,  y) = (Ed:D X) '~b~ y 

Ed:D(X<~bt> y) = x<~bt>(Ed:DY ) 

~--~d:D(X "~ b ~ y) = (~d :D  X) "~ b ~ (~'~d:D Y) 

C~L(X) ,a b ~. 8L(y) = 8L(X ,a b ~ y) 
ZL(X) ,a b ~ "eL(y) = ZL(X .,a b I> y) 

if d not free in y 

if d not  free in x 

b,c ~ Book D and E sorts, d,d / E D, e E E, | any binary process operator.  

�9 Derived axioms. For example symmetric versions of  axioms, like Aft: 6 + x  = x .  

A large number of  lemmas about the conditional operator can also be derived 
by a case analysis on the condition being true or false. See Table 5. Proofs are 
still only a few lines. SUMmand occurs as Lemma 4.3.2 in [GrP93]. EXP_bool is 
an instance of  the final remark of  the same lemma. 



Formalizing Process Algebraic Verifications 

Table 6. Rules. 
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Split_alt z = x ---* 
RuleA3 z = x 
RuleA6 6 = x --* 
RuleA6' 6 = x ---+ 
RuleA7 
ID_enc 
RuleD l_delta 
RuleTI 1 _delta 
RuleCM2' 
RuleSU M 1 

RuleSUMrep 

RuleCOND1 
RuleCOND2 
Split_COND (eqD(d,d') 

w = y . - - ~  z + w = x + + y  
z = y . - - +  z = y + x  
z = y . - - *  z : y + x  
z = y . - - - ~  z = x + y  
6 =x - -*  6 : x ' y  
x = y ---+ OLtX) = OLfy) 
6 = x -o 6 • OL(x) 
6 = x ~ 6 = ~L(x) 
6 = x ~  6 =xliY 
X = y ~ X = z...a~'d:D y 
x < e q o ( d , d ' ) t > 6  = y 

X = E d : D  Y 

T=b. - -*  x = x < b > y  
F = b - ~  y : x < b > y  

=T--*  x = y ) - *  
2 = W - " ~  

if d not free in x 

if d not free in x and the 
assumptions of the premiss 

x < eqD(d ,d ' )  t> z = y .0 e q o ( d , d ' )  t> w 

b e Bool, D a sort, d, d' e D. 

�9 Expans ions  o f  the merge, which are  a special  k ind  o f  der ived axioms.  They  
are used to de te rmine  the first act ions  o f  a process  defined as the para l le l  
compos i t i on  o f  several  components .  F o r  all n, EXPn is an ins tance o f  the 
e x p a n s i o n  t h e o r e m  ([BaW90],  Theo rem 4.3.5) 

xl II... IIx. = 
E i = l . . . n  xil]( X111.-. Ilxi-1UXi+l I[... IIx.) + 
~i=1.... f~j=i+L..(xilxj)ll(xl II... Ilxi-111x/+l II... IIxj-1 [IXj+l II..-IIx.). 

Note  tha t  the summat ions  are ac tual ly  sho r thand  for a sequence o f  a l ternat ive  
compos i t ions .  The  expans ion  theorem canno t  convenient ly  be t rans la ted  in its 
full general i ty,  i.e., with the n u m b e r  o f  co mpone n t s  n as a parameter .  Thus  
each vers ion mus t  be proved separately,  with larger  proofs  for larger  values 
o f  n. A n o t h e r  d i sadvan tage  is tha t  an expans ion  makes  m a n y  copies o f  the 
const i tu ing componen t s  x l . . . x , .  A different p r o o f  technique avoid ing  bo th  
d i sadvan tages  is being deve loped  by Van de Pol [POS93]. 

�9 Ax ioms  res ta ted  as rules. The  axioms as they are suppor t  s implif icat ion ' inside 
out ' :  for proving y . x  = 6, we first rewrite y to 6 and then app ly  A7:  
6 . x  = 6. Often (see Sect ion 5.3) we would  like the oppos i te :  first app ly  
RuleAT: y = 6 ~ y ' x  = 6 and  then proceed proving the premiss  y = 6. 
Proving these rules is o f  course trivial. See Table 6. 

4. The Translation of the ABP 

�9 s o r t  

A p a r t  f rom D, b o o l _ E r r ,  and F r a m e _ E r r ,  we mus t  also declare  a sort  for D x Bool, 
which we obvious ly  name F ram e .  Together  with the bui l t - in  sorts, we get the 
fol lowing definit ions.  

Inductive Set types = onetype:types ] booltype:types [ nattype:types ] 
Dtype:types [ Frametype:types ] bool_Errtype:types I Frame_Errtype:types. 

Definition D = (type Dtype). 
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Definition Frame = (type Frametype). 
Definition bool_Err = (type bool_Errtype). 
Definition Frame_Err = (type Frame_Errtype). 

�9 func and rew 
It remains to translate the ABP-specific function declarations and rewrite rules, 
including those needed because of  the introduction of  type Frame (which also 
allows a more intuitive formulation of  the axiom same_err_frame). Note  that 
the defining equation of  n e g  in the specification is simple enough to translate 
it to a D e f i n i t i o n  in Coq, whereas the remaining functions are declared and 
their defining equations turned into axioms. For constructors (here pair ,  iFrame, 
error frame ,  i b o o l ,  and e r r o r b i t )  and projections (data_of  and b i t _ o f )  this 
appears to be the only way. 

Section ABP_DATA. 
Variable b,c:bool. 
Variable d :D. 
Variable f ,g:Frame. 

Parameter pair :D->bool ->Frame. 
Parameter data_of : Frame->D. 
Parameter bit_of : Frame->bool. 

Axiom pair_inj: <bool>(eql Frametype f (pair (data_of f) (bit of f)))=true. 
Axiom bit_inj : <bool>(eql booltype b (bit of (pair d b))) =true. 
Axiom data_inj: <bool>(eql Dtype d (data_of (pair d b))) =true. 

Definition neg = [b:bool] (sql booltype b false). 

Parameter iFrame Frame->Frame_Err. 
Parameter errorframe Frame_Err. 
Parameter ibool bool ->bool_Err. 
Parameter errorbit bool_Err. 

Axiom same_err bit <bool>(eql booltype b c )= 
(eql bool_Errtype (ibool b) (ibool c)). 

Axiom find_errorbit <bool>(eql bool_Errtype (ibool b) errorbit )=false. 
Axiom same_err frame <bool>(eql Frametype f g )= 

(eql Frame_Errtype (iFrame f) (iFrame g)). 
Axiom find_errorframe: <bool>(eql Frame_Errtype (iFrame f) errorframe)=false. 
End ABP_DATA. 

�9 act 
When we consider the actions of  the ABE the actions rl and s4 stand out, as 
there are no communicating sl and r4 actions. Therefore we renamed them to 
a i n  (input action) and aout  (output action). We can now drop the indices of  the 
remaining r, s, and c actions, as their sorts differ. The only communicat ion is now 
7(r ,  s) = 7(s ,  r)  = c. Finally we renamed i to in t ,  because i is already used as the 
inhabitant of  one. Thus we have the following definitions. 

Inductive Set act = 
ain:act [ aout:act I int:act I r:act [ s:act 1 c:act I delta:act I tau:act. 

Definition gamma = [e,f:act] (<act>Match e with 
delta delta delta 
(<act>Match f with delta delta delta delta c delta delta delta) 
(<act>Match f with delta delta delta c delta delta delta delta) 
delta delta delta). 

This definition of  gamma is by case analysis. First, if e is a in,  aout ,  in t ,  c, 
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de l ta ,  or tau, then (gamma e f )  is de l ta .  Second, if e is r or s, then (gamma e 
f )  is d e l t a  unless f is s respectively r. 

�9 proe 
As we did earlier in Section 2.3, we add structure to the pCRL-specification by 
distinguishing four (sub)systems of equations. 

1. The buffer, containing only the equation for Buffer, 
2. the sender, containing the equations for Sb, Sf, and Tf, 
3. the receiver, containing only the equation for Rb, and 
4. the equations for Sd, Re, K, and L. 

The equations for ABP_nohide and ABP are not recursive. Therefore we translated 
them to Definitions. 

(* Buffer *) 
Inductive Set PVBuf = Bur : PVBuf. 
Definition TypBuf = [X : PVBuf] onetype. 
Definition BufEq = [iPV:PVBuf->one->proc] [X:PVBuf] [j :one] 

(sum Dtype [d:D] (seq (ia Dtype ain d) 
(seq (ia Dtype aout d) 

(iPV Bur i) ))). 
Definition Buffer = (Sol PVBuf TypBuf BufEq Bur i). 

Section ABPdef. 

(* The Sender *) 
Inductive Set SendSubState = Sb:SendSubState [ Sf:SendSubState [ Tf:SendSubState. 

Definition SSSTyp = [X:SendSubState](<types>Match X with booltype 
Frametype 
Frametype). 

Definition SSSDef = [iPV:(X:SendSubState)(type (SSSTyp X))->proc] 
[X:SendSubState] 

(<[X:SendSubState](type (SSSTyp X))->proc>Match X with 
(*Sb *)[b:bool] (sum Dtype [d:D](seq (ia Dtype ain d) (iPV Sf (pair d b)))) 
(*Sf *) [f:Frame] (seq (ia Frametype s f) (iPV Tf f)) 

(*Tf *)[f:Frame] (alt (seq (alt (ia bool_Errtype r errorbit) 
(ia bool_Errtype r (ibool (neg (bit_of f))))) 

(iPV Sf f)) 
(ia bool_Errtype r (ibool (bit of f))))). 

(* The Receiver *) 
Inductive Set RecSubState = Kb:RecSubState. 
Definition RSSTyp = [X:RecSubState]booltype. 

Definition RSSDef = [iPV:RecSubState->bool->proc] [X:RecSubState] 
(*Rb *)[b:bool] (alt (seq (alt (ia Frame_Errtype r errorframe) 

(sum Dtype [d:D] 
(ia Frame_Errtype r (iFrame (pair d b))))) 

(seq (ia booltype s b) (iPV Rb b))) 
(sum Dtype [d:D] 

(seq (ia Frume_Errtype r (iFrame (pair d (neg b)))) 
(seq (ia Dtype aout d) (ia booltype s (neg b)))))). 

(* The ABP *) 
I n d u c t i v e  Se t  Components  = Sd : Components  [ R c  : Components  ] 

CK : Components  [ CL : Components .  
D e f i n i t i o n  CompTyp = [X :Componen t s ]one type .  
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Variable phase : bool. 

Definition CompDef = [iPV:Components->one->proc] [X:Components] 
(<one->proe>Match X with 
(*Sd *)[j:one] (seq (Sol SendSubState SSSTyp SSSDef Sb phase) 

(seq (Sol SendSubState SSSTyp SSSDef Sb (neg phase)) 
(iPV Sd i))) 

(*Rc *)[j:one] (seq (Sol ReeSubState RSSTyp RSSDef Rb (neg phase)) 
(seq (Sol RecSubState RSSTyp RSSDef Rb phase) 

(iPV Rc i))) 
(*CK *)[j:one] (sum Frumetype [f:Frame] 

(seq (ia Frametype r f) 
(alt (seq (ia onetype int i) 

(seq (ia Frame_Errtype s (iFrame f)) 
(iPV CM i))) 

(seq (ia onetype int i) 
(seq (ia Frame_Errtype s errorframe) 

(iPV CK i)))))) 
(*CL *)[j:one] (sum booltype [b:bool] 

(seq (ia booltype r b) 
(alt (seq (ia onetype int i) 

(seq (ia bool Errtype s (ibool b)) 
(iPV CL i))) 

(seq (ia onetype int i) 
(seq (ia bool_Errtype s errorbit) 

(iPV CL i)))))) ). 

Definition Encaps = [a:act] (<Prop>Match a with False False False True 
True False False False). 

Definition ABP nehide =(enc Encaps 
(mer (Sol Components CompTyp CompDef Sd i) 
(mer (Sol Components CompTyp CompDef Rc i) 
(mer (Sol Components CompTyp CompDef CK i) 

(Sol Components CompTyp CompDef CL i) ))) ). 

Definition Hiding = [a:act](<Prop>Match a with False False True False 
False True False False). 

Definition ABP = (hide Hiding ABP_nohide). 
End ABPdef. 

The role of the boolean phase in the equations for Sd and Rc deserves some 
explanation. Clearly, these equations resemble the equations for Sd(b : Bool) and 
Rc(b : Bool), with phase in the role of b, more than the parameterless equations 
for Sd and Rc. However, the type of Sd and Rc is not boo1, but one. Thus phase 
is not the formal translation of the formal parameter b. In fact, we have here 
the translation of the equation Sdb = Sb(b) �9 Sb(neg(b)). Sdb. In this equation, 
b is an informal parameter in the process algebraic sense; the equation can be 
seen as shorthand for the two equations Sdr = S b ( T ) . S b ( n e g ( T ) ) .  Sdr and 
Sdv = Sb(F). Sb(neg(F)). Sd1:. ABP_nohide and ABP inherit the parameter phase. 

5. P r o v i n g  the  C o r r e c t n e s s  o f  the  A B P  in C o q  

This section discusses in detail the correctness proof of the ABP in Coq. Signifi- 
cant parts of it become more clear by running Coq (version 5.8.3, which can be 
obtained by ftp from n u r i .  i n r i a ,  f r  -= 1 2 8 . 9 3 . 1 . 2 6 )  on the complete verifica- 
tion, which can be obtained from the authors. The structure of  this section is as 
follows. Section 5.1 gives a few basic lemmas about data and actions in the ABP. 
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( 
int 

) 

Loop 

Fig. 3. The generic inner loop. 

Section 5.2 corresponds to the definitions preceding Lemma 2.3, and contains 
preparations for the applications of RSP in its proof. Section 5.3 discusses how 
we extract the first possible action(s) from a state of the protocol, as is done 
repeatedly in the proof of Lemma 2.3. Section 5.4 discusses the application of 
CFAR, which corresponds to the first line of the proof of Theorem 2.4. Finally, 
Section 5.5 corresponds to the remainder of the proof of Theorem 2.4. 

5.1. Data and Actions in the ABP 

We proved the following lemmas about the data in the ABE 

Section ABP_data. 
Variable b,c:bool. 
Variable d,e:D. 
Variable f :Frame. 

Lemma pair_inj_equal: <Frame>f=(pair (data_of f) (bit_of f)). 
Lemma bit_inj_equal: <bool>b=(bit_of (pair d b)). 
Lemma data_inj_equal: <D>d=(data_of (pair d b)). 

Lemma differ_frame: <bool>(eql Dtype d e)=false \/ 
<bool>(eql booltype b c)=false -> 
<bool>(eql Frametype (pair d b) (pair e c))=false. 

Lemma same_bool: <bool>(eql Frametype (pair d b) (pair e b))=(eql Dtype d e). 
Lemma hack: <bool>(eql Frametype f (pair d (neg (bit_of f))))=false. 
Lemma ack: <bool>(eql Frametype f (pair d (bit_of f))) 

=(eql Dtype (data_of f) d). 
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ABP_nohide (b) 

l 
a 2 n ( d )  

< 

< 
Loopl (d,b) 

f 

Exitl(d,b) 

c (<d, b>) 

<> aout(d 

Loop2(e,neg(b)) 

Loopl(e,neg(b)) 

> b >(~ 

erz 

? 

ain (e)I 

ABP_noh ide  (neg  (b) )  

Loop2(d,b) 

Fig. 4. Putting the loop definitions in place. 

End ABP_data. 

Definition Differtypes = [T,U:types](<Prop>Match T with 
(<Prop>Match U with False True True True True True True) 
(<Prop>Match U with True False True True True True True) 
(<Prop>Match U with True True False True True True True) 
(<Prop>Match U with True True True False True True True) 
(<Prop>Match U with True True True True False True True) 
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(<Prop>Match U with True True True True True False True) 
(<Prop>Match U with True True True True True True False)). 

Lemma differtypes : (T,U: types) (Differtypes T U)->'<types>T=U. 

The aim of these lemmas is the following. After applying EXP4, we obtain 
terms containing the communication merge. After some more rewriting (see 
Section 5.3), we can rewrite with CF1 or CF2. The result of CF1 is a conditional, 
the condition being (eq l  Y t t '  ). With the above lemmas, we built a tactical 
that rewrites this condition to true (by same_bool and ack) or false (by 
d i f f e r _ f r a m e  and nack). The first three lemmas are used to put the data in 
a form matching the left sides of the other four. For rewriting with CF2, the 
premiss ~<types>T=U must be proved. As we have enumerated the datatypes by 
an I n d u c t i v e  Set,  this can be done automatically by applying d i f f e r t y p e s :  
when T and U are filled in, ( O i f f e r t y p e s  T U) beta-reduces to True (or to 
False ,  but then CF1 should be applied instead). 

Apart from the lemmas mentioned in Section 3.3, which establish the necessary 
properties of g~,nma, we proved the following lemmas about actions. The aim of 
the first three lemmas is to prove that certain actions are not t au  (for guardedness, 
see S2) and not d e l t a  (for connectedness of a cluster, see connl). The last two 
lemmas state that the encapsulation and hiding sets are 'good' in the sense that 
they do not contain t au  and de l t a .  

Section ABP_actions. 
Variable a,b:act. 

Lemma not_tau_action: 
(<Prop>Match a with True True True True True True True False)->-(<act>tau=a). 

Lemma notdelta_action: 
(<Prop>Match a with True True True True True True False True)->~(<act>delta=a). 

Lemma not_action_action: ~(<act>b=a)->~(<act>a=b). 

Lemma goodHiding: (Hiding a)->(goodset Hiding a). 
Lemma goodEncaps: (Encaps a)->(goodset Encaps a). 
End ABP_actions. 

5.2. Auxiliary Definitions and RSP 

In this section, we translate the definitions preceding Lemma 2.3 into Coq. Then 
we add two more definitions necessary for the application of RSP. Finally, we 
show how RSP is applied by a typical example. 

In Section 2.3, we defined the 'inner loops' Et and E2 of  the ABP: the loops 
that occur when a message is corrupted in a channel. The following definitions 
represent the common structure of Et and E2, depicted in Fig. 3. They are 
parameterized by the data sent (dl ..... dS), the types of this data, and the exit 
process P. In this way, we need to apply CFAR only once, on this common 
structure, instead of twice. 

Section CFARLoop. 
Variable T1,T2,T3,T4 : types. 
Variable dl : (type T1). 
Variable d2 : (type T2). 
Variable d3 : (type T3). 
Variable d4,d5 : (type T4). 
Variable P : proc. 
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Inductive Set PVLoop = X1 : PVLoop I X2 : PVLoop I X3 : PVLoop I X4 : PVLoop 
I X5 : PVLoop I X6 : PVLoop I X7 : PVLoop. 

Definition TypLoop = [X:PVLoop]onetype. 
Definition RLoop = [X:PVLoop] [d:one][Y:PVLoop][e:one]False. 
Definition DefEqLoop = [iPV:PVLoop->one->proc] [X:PVLoop] [d:one] 
(<proc>Match X with 

(*Xl*) 
(*X2*) (alt 

(*XS*) 
(*X4*) 
(*X5*) (a l t  

(*X6*) 
(*X7*) 

End CFARLoop. 

(seq (ia T1 c dl) (iPV X2 i)) 
(seq (ia onetype int i ) P) 
(seq (ia onetype int i ) (iPV X3 i))) 
(seq (ia T2 c d2) (iPV X4 i)) 
(seq (ia T3 c d3) (iPV X5 i)) 
(seq (ia onetype int i ) (iPV X6 i)) 
(seq (ia onetype int i ) (iPV X7 i))) 
(seq (ia T4 c d4) (iPV Xl i)) 
(seq (ia T4 c d5) (iPV Xl i)) ). 

Next, we use the above definition to define the first half of the main loop 
of the ABP, exactly as in Section 2.3, see Fig. 4; the second half is treated by 
symmetry. 

Section StepDefs. 
Variable b:bool. 
Variable d:D. 

Definition Exit2 = (seq (ia bool_Errtype c (ibool b)) (ABP_nohide (neg b))). 

Definition DefEqLoop2 = 
(DefEqLoop booltype bool_Errtype Frametype Frame_Errtype 

b errorbit (pair d b) errorframe (iFrame (pair d b)) 
Exit2). 

Definition Exitl = 
(seq (ia Frame_Errtype c (iFrame (pair d b))) 

(seq (ia Dtype aout d) 
(Sol PVLoop TypLoop DefEqLoop2 Xl i))). 

Definition DefEqLoopl = 
(DefEqLoop Frametype Frame_Errtype booltype bool_Errtype 

(pair d b) errorframe (neg b) errorbit (ibool (neg b)) 
Exitl). 

Definition First = (seq (ia Dtype ain d) (Sol PVLoop TypLoop DefEqLoopl Xl i)). 

According to the proof sketch of Lemma 2.3, we must apply RSP to show 
that (Sol PVLoop TypLoop DefEqLoopl Xl i) (that is, <XI ]E1)(d,b))is equal 
to the encapsulated merge of the four components in certain states. But our 
formulation of RSP does not conclude the equality of two processes, but of two 
solution functions for a system of equations. Thus we need a function which 
returns this encapsulated merge for Xl, and (So l  PVLoop TypLoop DefEqLoopl 
Xk i) for Xk, 2 < k < 7. Similarly for DefEqLoop2. 

Def in i t ion  DefEqLoopl' = [iPV :PVLoop->one->proc] [X :PVLoop] [j : one] 
(<proc>Match X with 
(*Xl*) (enc Encaps 

(mer (seq (Sol SendSubState SSSTyp SSSDef Sf (pair d b)) 
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b)) 

(Sol Components CompTyp (CompDef b) Sd i))) 
(mer (Sol Components CompTyp (CompDef b) Rc i) 
(mer (Sol Components CompTyp (CompDef b) CK i) 
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(*X2*) 

(*XT*) 
End StepDefs. 

(Sol Components CompTyp (CompDef b) CL i) ))) ) 
(*X2*) (DefEqLoopl iPV X2 i) 

(*XT*) (DefEqLoopl iPV X7 i) ). 

Definition DefEqLoop2' = [iPV:PVLoop->one->proc] [X:PVLoop] [j:one] 
(<proc>Match X with 
(*Xl*) (enc Encaps 

(mer (seq (Sol SendSubState SSSTyp SSSDef Tf (pair d b)) 
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b)) 

(Sol Components CompTyp (CompDef b) Sd i))) 
(mer (seq (• booltype s b) 

(seq (Sol RecSubState RSSTyp RSSDef Rb b) 
(Sol Components eompTyp (CompDef b) Rc i))) 

(mer (Sol Components CompTyp (CompDef b) CK i) 
(Sol Components CompTyp (eompDef b) CL i) ))) ) 

(DefEqLoop2 iPV X2 i) 

(DefEqLoop2 iPV X7 i) ). 

As an example, we consider the application of RSP in the first inner loop, starting 
from 

<proc>(Sol PVLoop TypLoop (DefEqLoopl b d) Xl i) 
=(enc Encaps (mer (seq (Sol SendSubState SSSTyp SSSDef Sf (pair d b)) 

(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b)) 
(Sol Components CompTyp (CompDef' b) Sd i))) 

(mer (Sol Components eompTyp (CompDef' b) Rc i) 
(mer (Sol Components CompTyp (CompDef' b) CK i) 

(Sol Components CompTyp (CompDef' b) eL i))))) 
= = = = = = = = = = = = = = = = = = = = = = = = = = = =  

b : bool 
d : D 

Our first step is to execute the command 

Elim (RSP PVLoop TypLoop (Sol PVLoop TypLoop 
(DefEqLoopl' b d)) (DefEqLoopl b d) RLoop). 

This instance of RSP says: 

(b:bool) (d:D) (X:PVLoop) (dO:(typa (TypLoop X))) 
(Guarded PVLoop TypLoop (DefEqLoopl b d) RLoop)-> 
( (XO:PVLoop) (dl:(type (TypLoop XO))) 

(<proc>(Sol PVLoop TypLoop (DefEqLoopl' b d) XO dl) 
=(DefEqLoopl b d (Sol PVLoop TypLoop (DefEqLoopl' b d)) XO dl))) -> 

(<proc>(Sol PVLoop TypLoop (DefEqLoopl' b d) X dO) 
=(Sol PVLoop TypLoop (DefEqLoopl b d) X dO)) 

Thus the effect is that two subgoals are added, and DefEqLoopl is replaced 
by DefEqLoopl' in the first subgoal. This goal is now solved by Rewrite (RDP 
PVLoop); Unfold DefEqLoopl';  Apply r e f l _ e q u a l .  That is, we prove that 
the definition of  the process variable Xl in the loop DefEqLoopl' is exactly the 
desired encapsulated merge. 

The second subgoal is that the loop is guarded. This is proved by 

Unfold Guarded; 
Induction X; 
Split ; [ Apply WFI; Intros; Contradiction 

I Unfold DefEqLoopl; Unfold DefEqLoop; Unfold Exitl; Auto i0]. 
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That is, we unfold the definition of guarded, and then continue by a case 
distinction on X:PgLoop. Thus we perform the remaining tactic seven times: 
for Xl to X7. Guardedness is defined as the conjunction of well-foundedness and 
safeness. As the relation RLoop is always False ,  well-foundedness is easily proved. 
Safeness is proved automatically after unfolding some definitions. Typically, Coq 
finds the tactical 

Intros; Apply S2; 
[Apply not_action_action; Apply not_tau_action; Exact I [ Apply SO; Exact I], 

but the cases for X2 and X5 are a little harder because they have two exits. 
For X2, Coq finds 

Apply $4; [Apply S3; [Apply Sl l 
Apply $3; [Apply S1 [ 

Apply $2; [Apply not_action_action; 
Apply not_tau_action; Exact I ] 

Apply SlO; Intros; 
Apply SafeLoop2]] ] ] 

Apply $2; [Apply not_action_action; Apply not_tau_action; Exact I I 
Apply SO; Exact I]] 

SafeLoop2 is one of a series of lemmas that the recursive specifications of the 
sender and receiver, the components, Loop2, and finally Loop1 are Safe  w.r.t, the 
relation that is always True. In other words, these lemmas prove that we have a 
sequence of recursive systems, one depending on the other (in the above order), 
but without mutual dependencies. These proofs are straightforward. 

After rewriting by RDP once, the third subgoal is 

(X:PVLoop) (j : (type (TypLoop X))) 
(<proc>(DefEqLoopl' b d (Sol PVLoop TypLoop (DefEqLoopl' b d)) X j) 

=(DefEqLoopl b d (Sol PVLoop TypLoop (DefEqLoopl' b d)) X j)) 

This is proved again by case distinction. For X2 to X7 it is trivial, because 
DefEqLoopl and DefEqLoopl '  coincide. For Xl, we unfold some definitions and 
obtain 

<proc>(seq (ia Frametype c (pair d b)) 
(Sol PVLoop TypLoop (DefEqLoopl' b d) X2 i)) 

=(enc Encaps (mer (seq (Sol SendSubState SSSTyp SSSDef Sf (pair d b)) 
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b)) 

(Sol Components CompTyp (CompDef b) Sd i))) 
(mer (Sol Components CompTyp (CompDef b) Rc i) 

(mer (Sol Components CompTyp (CompDef b) CK i) 
(Sol Components CompTyp (CompDef b) CL i))))) 

This goal is almost the same as our starting point. The fact that in the 
lefthandside Xl is unfolded to c.X2 is not important. The important change is 
that we have DefEqLoopl '  on the lefthandside: after unfolding X2 to i.Exitl+i.X3, 
X3 to c.X4, and so on, we do not return to Xl but to the encapsulated merge 
that is currently the righthandside. This means that we can prove the goal by 
linearizing the righthandside several times. This is the topic of the next section. 

5.3. Linear izat ion  

This section corresponds to Lemma 2.3. We outline how we prove in Coq 

(b :bool) <proc> (ABP_nohide b) = (sum Dtype (First b) ) . 
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As we noted in the proof of Lemma 2.3, the bulk of the verification consists 
of proving this lemma. We must linearize (determine the possible first actions of) 
a process of the form OH(SenderState II ReceiverState tl KState II LState) for all 
18 states in the first half of the ABP. This is by far the most time and space 
consuming part of the proof. In this section, we discuss in detail the tactical that 
performs this task without any user guidance. The tactical is specialized for the 
ABP, and will have to be adapted for other protocols. 

It is clear that future research must concentrate on improving the linearization 
technique, in order to verify larger protocols. It must become much more efficient, 
and (almost) completely independent of the protocol. This seems ambitious at 
first, but for effective/~CRL-specifications [GrP94], all that is needed is an efficient 
encoding of term-rewriting in Coq. On the other hand, it must be investigated 
whether proof checkers based on term-rewriting are capable of also handling the 
other parts of the verification. If  so, they might be better candidates than Coq for 
formal protocol verification. We now return to our current linearization tactical. 

The possible first actions of a state of the ABP are determined by the 
possible first actions of the substates of the four constituing components. It 
turns out that the term describing such a substate can have four syntacti- 
cal forms: (Sol Components . . . ) ,  (seq (Sol SendSubState . . . )  x), (seq 
(Sol RecSubState ...) x) and (seq action x). 

Expanding the merge yields the alternative composition of four terms (Lmer 
Substate l Substates ) and six terms (Liner (comm Substate l Substate2 ) Substates ). 
Our first step is to apply RDP on Substatel and Substate2 unless they are in 
the fourth syntactical form. That is, we replace a process variable (Sol . . . )  by 
its definition (DefEq (Sol . . . ) )  only if it plays a role in determining the first 
possible actions. Then we unfold DefEq. DefEq occurs also as an argument of 
Sol, and that occurrence should not be unfolded. Therefore we replace it by a 
renamed copy DefEq' before (respectively during) this tactical. 

For example, Unfold_Lmer_comm_Soll is the lemma 

(ProcVar : Set) (Typ : ProcVar->types) 
(DefEq,DefEq' : ((X:ProcVar) (type (Typ X))->proc)-> 

(X:ProcVar)(type (Typ X))->proc) 
(X:ProcVar) (d:(type (Typ X))) (x,z:proc) 

(< ( ( (XO : ProcVar) (type (Typ XO) ) ->proc) -> 
(XO:ProcVar)(type (Typ XO))->proc) >DefEq=DefEq ') -> 

(<proc>(Lmer (comm (Sol ProcVar Typ DefEq' X d) z) x) 
=(Lmer (comm (DefEq (Sol ProcVar Typ DefEq') X d) z) x)) 

The first part of the linearization tactical is the following. 

Elim EXP4; 
Repeat 

(Rewrite (Unfold_Lmer_Sol Components CompTyp (CompDef b) (CompDef' b)); 
[IdtaclApply refl_equal]); 

Repeat 
(Rewrite (Unfold_Lmer_comm_Soll Components CompTyp (CompDef b) (CompDef' b)); 
[IdtaclApply refl_equal]); 

Repeat 
(Rewrite (Unfold_Lmer_comm_Sol2 Components CompTyp (CompDef b) (CompDef' b)); 
[IdtaclApply refl_equal]); 

Unfold CompDef; 
Try (Replace SSSDef with SSSDef~;[IdtacLApply refl_equal]); 
Try (Replace RSSDef with RSSDef';[IdtaclApply refl_equal]); 
Repeat (Rewrite (Unfold_Lmer_seq_Sol SendSubState SSSTyp SSSDef SSSDef'); 

[IdtacIApply refl_equal]); 
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Repeat (Rewrite (Unfold_Lmer_seq_Sol RecSubState RSSTyp RSSDef RSSDef'); 
[Idtac I Apply refl_equal] ) ; 

Repeat (Rewrite (Unfold_Lmer_comm_seq_Soll SendSubState SSSTyp SSSDef SSSDef') ; 
[Idtac I Apply refl_equal] ) ; 

Repeat (Rewrite (Unfold_Lmer_comm_seq_Soll RecSubState RSSTyp RSSDef RSSDef'I ; 
[Idtac I Apply refl_equal] ) ; 

Repeat (Rewrite (Unfold_Lmer_comm_seq_Sol2 SendSubState SSSTyp SSSDef SSSDef'); 
[Idtac I Apply refl_equal] ) ; 

Repeat (Rewrite (Unfold_Lmer_comm_seq_Sol2 RecSubState RSSTyp RSSDef RSSDef'I; 
[Idtac I Apply refl_equal] ) ; 

Unfold SSSDef RSSDef; 

We are now faced with terms having the following structure (in the worst 
case). 

(enc H (alt (Lmer (comm (alt (seq (alt (action) 
(sum T [t:(type T)]action)) 

(... unimportant ...)) 
(sum T [t:(type T)](seq action x))) 

(... similar ...)1 
(... unimportant ...)) 

(... similar ...))) 

We continue by bringing out the alts, and then by bringing out the sums. 
We use several distributivity axioms, and need only the special lemma DLCSS 

(see Table 5). We need this lemma because we cannot rewrite terms that occur 
inside a sum, for these terms do not denote processes, but functions of  type ( type  
T)->proc .  We cannot conclude in Coq that two such functions f and g are equal, 
even if ( t :  ( type  T ) )<p roc>( f  t ) = ( g  t ) .  

Repeat Elim A4; (* over seq *) 
Repeat Elim CM8; (* left over comm "1 
Repeat Elim CM9; (* right over eomm "1 
Repeat Elim CM4; (* over Lmer "1 
Repeat Elim D3; (* over enc "1 
Repeat Elim A2; (* over alt *) 

Repeat Rewrite SUM5; (* over seq *) 
Repeat Elim DLCSS; (* two over comm, Lmer, and enc *) 
Repeat Rewrite SUMT; (* left over comm "1 
Repeat Elim SUMT~; (* right over comm *) 
Repeat Rewrite SUM6; (* one over Lmer "1 
Repeat Rewrite SUM9; (* one over enc *) 

N o w  we have a long list o f  alternatives. Most of  these will turn out to be 
equal to Del ta .  Therefore we continue by trying to rewrite each alternative to 
Del ta .  We cannot rewrite the term as a whole, because we cannot rewrite inside 
sums. This is the main reason for using 'axioms restated as rules'. The tactical 
has the following structure. 

Repeat  ( 
Repeat  ( (Apply RuleA6'  0 r e l s e  Apply T r u e _ i n d ) ;  

[ t a c t i c a l  f o r  r e w r i t i n g  one a l t e r n a t i v e  t o  D e l t a  I Try Exact  I ] ) ;  
Apply Split_alt 0relse Apply RuleA6); 

tactical for an alternative that is not Delta 

This tactical is applied on a goal of the form <proc>target=alternatives. 
target is the linearized form (which we do not compute, but is defined before- 
hand, as in Lemma 2.3), which consists o f  one or two alternatives, a l t e r n a t i v e s  
is the long list. We can pick the first alternative off the list by applying 
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RuleA6' :" (<proc>Delta=x) -> (<proc>z=y) -> (<proc>z=(alt x y)). 

The first subgoal is now attempted; the second one is treated in the next iter- 
ation. The application o f  RuleA6' fails when we have only one alternative left. In 
that case, we do not need to do anything, except that the remaining tactical expects 
two subgoals. Thus in that case we apply True_• (P:Prop)P->True->P.  In 
this case the second subgoal True is solved by Try Exact  I, which has otherwise 
no effect. 

If the tactical for rewriting one alternative to D e l t a  fails, then the inner loop 
terminates: this alternative is not De l ta ,  but (one of) the alternative(s) in t a r g e t .  
If the target contains more than one alternative, then we apply 
Split_alt : ~ (<proc>z=x) -> (<proc>w=y) -> (<proc>(alt z w)=(alt x y))}. 

We must ensure before starting the linearization that we encounter the al- 
ternatives from the list in the correct order. If the target is (reduced to) one 
alternative, then we apply 
RuleA6 : - (<proc>Delta=x) -> (<proc>z=y) -> (<proc>z =(alt y x))}. 

Next we consider the tactical for rewriting an alternative to Del ta .  First, 
we remove the sums, which are already on top. Then we take the first actions 
of  both sides (which are by now sequences of  actions) and make them into a 
communicat ion (comm a c t i o n  a c t i o n ) ,  which we try to prove equal to De l ta .  
(Recall that the tacticals Try . . .  and Repeat . . .  never fail: if we have an 
alternative without communication,  nothing happens.) It can be D e l t a  for three 
reasons: the actions have different types, the actions do not communicate (their 
gnmma is de l ta ) ,  or the data are incompatible. Finally, we push the D e l t a  
outward. Recall that Auto;Exact  I serves as the version of  Auto that can fail. 

Repeat (Apply RuleSUMl;Intro); (* remove sums *) 

Repeat Elim A5; (* over seq *) 
Repeat Elim CMT; (* two over comm *) 
Repeat Elim CM6; (* right over comm *) 
Repeat Elim CM5; (* left over comm *) 

Try (Replace (bit of (pair d b)) with b; 
[IdtaclApply (make_eql booltype) ;Apply bit_inj] ) ; 

(Elim CF2;[IdtaclAuto;Exact I]) (* types *) 
0relse Try (Elim CFl;Unfold gamma; 

(Elim Delta_Data;Elim COND3) (* actions *) 
Orelse (* data *) 
(tactical for incompatible data 0relse 

(Elim sym_eql; tactical for incompatible data));Elim COND2); 

Try Elim AT; 
Try Elim CM2'; 
Try Elim CM2; 
Try Elim CM3; 
Try Elim D4; 
Try Rewrite D2; 
Auto;Exact I 

In this, the tactical for incompatible data reads 

( Try Elim same_err_frame; 
Rewrite differ_frame ; 
[Idtac I Right ; Apply not_eql_b_negb] ) 



42 M . A .  Bezem, R. N. Bol and J. F. Groote 

Orelse Rewrite find_errorframe 
Orelse (Try Elim same_err_bit;Rewrite not_eql_b_negb) 
Orelse Rewrite find_errorbit 
Orelse Rewrite not_eql_b_negb 

This concludes the tactical for rewriting an alternative to Delta. We continue 
by linearizing further the remaining alternatives. First, we remove the summation, 
if any. If the target is a summation too, then it is of the same type, and we must 
apply S U M l l .  Otherwise, we have a goal of the form c(t) �9 P = ~d:O 3n((s(t)  I 
(r(d).Q(d)))  [[...) (omitting other components and actions). That is, one component 
sends data t of type D, while another component is willing to receive any item of 
type D. In this case, we must apply RuleSUMrep, except if D is Bool, in which case 
we apply EXP_bool. 

(Apply (SUM11 Dtype); Intro d ) Orelse 
(Apply (RuleSUMrep Frametype (pair d b));Intro NewVar ) Orelse 
(Apply (RuleSUMrep Dtype d); Intro NewVar ) Orelse 
Try Elim (EXP_bool b); 

What follows is similar to the tactical rewriting a communication to Delta, ex- 
cept that we now expect matching types, communicating actions, and compatible 
data (except for booleans: due to the use of EXP_bool). 

Try (Replace (bit_of (pair d b)) with b; 
[IdtaclApply (make_eql booltype) ;Apply bit_inj]) ; 

Repeat Elim A5; 
Repeat Elim CMT; 
Try ( 
Elim CFl;Unfold gamma; 
( (* If EXP_bool is used, we have two communications; one succeeds, *) 

Elim CFI ;Unfold gamma;Rewrite refl_eql;Elim CONDI ; 
(* and one is Delta. *) 

(Rewrite not_eql_b_negb Orslse (Rewrite sym_eql;Rewrite not_eql_b_negb)); 
Elim COND2;Elim AT;Elim CM2';Elim Dl_Delta; 

(* The Delta goes. *) 
(Elim A6 Orelse Elim A6')) 

Orelse 
(Rewrite refl_eql;Elim CONDI) 

Orelse . . . 

If RuleSUMrep is used as mentioned above, it changes the proof obligation to 
(C(t) 'P)<eqD(t ,  d)>6 = 3n((S(t) I (r(d). Q(d))) II...). CF1 replaces the communication 
by a second conditional, with the same condition (after simplification and modulo 
symmetry). This second conditional is taken outside, and then cancelled against 
the one on the lefthandside by the rule Split_COND. This rule gives two subgoals. 
One is c ( t ) .  P = ~ n ( ( c ( t ) ' Q ( d ) ) l l . . . )  given the hypothesis eqo(d , t ) ,  the other is 
6 = ~i~((5 - Q(d))~. . . ) .  The hypothesis in the first is necessary for replacing Q(d) 
by Q(t). (The tactic Clear removes the hypothesis and the new variable d from 
the context, in order to avoid name clashes when the tactical is applied again.) 

Orelse . . . 
(Unfold Delta; 
Elim (COND5 seq); Elim (COND5 Lmer); Elim CONDIO; 
Try Elim same_err_frame; 
Try Elim same_err_bit; 
Try Rewrite negneg; 
Try Rewrite same_bool; 
Apply SpIit_COND Orelse (Elim sym_eql;Apply SpIit_CDND); 
[Intro H; 
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(Replace NewVar with (pair d b); [IdtacIApply (make_eql Frametype);Auto]) 
Orelse (Replace NewVar with d; [IdtaclApply (make_eql Dtype);Auto]); 
Clear H NewVar 
I Elim AT;Elim CM2';Elim Dl_Delta;Apply refl_equal])); 

Finally, we can get the first action on top by taking it outside the left-merge 
(which returns to a merge) and the encapsulation. We remove the first actions on 
both  sides by an instance o f  the trivial rule f - e q u a L  namely 

(f:proc->proc)(x,y:proc)(<proc>x=y)->(<proc>(f x)=(f y)), 

where f is ( s e q  action). SC7 restores the expected association o f  the merges. 

Try Elim CM3; 
Try Elim D4; 
Try (Rewrite Dl;[IdtaclAuto]); 
Repeat Apply (f_equal proc proc); 
Repeat Elim SCT. 

5.4. Applying CFAR 

We apply C F A R  on the general loop depicted in Fig. 3, and assume declarations 
o f  T1 . . . . .  T4 and d l , . . . , d5  accordingly. This loop consists o f  one cluster o f  seven 
elements, Xl . . . . .  XT, all o f  type one. Thus we must  define the following functions. 

cluster(Xn, i )  = 0 
element(Xn, i )  = n - -  1 
process(k,m) = X(m + 1) if k = 0 
Exit  (k, m) = i . P if k = 0 
a(Xl, i ,m)  = c(dl) i f m  = 1, 
a(X2, i,  m) = i if m = 2, 
a(X3, i,  m) = c(d2) if m = 3, 
a(X4, i,  m) = c(d3) if m = 4, 
a(X5, • m) = i if m = 5 or m = 6, 
a(X6, i,  m) = c(d4) if m = O, 
a(X7, i,  m) = c(ds) if m = O, 

In Coq,  we 

and m < 7, 6 otherwise 
and m = 1, ~ otherwise 

6 otherwise 
6 otherwise 
6 otherwise 
6 otherwise 
6 otherwise 
6 otherwise 
6 otherwise. 

define element through the Match-function. We cannot  do that  
for process and Exit ,  because n a t  is not  inductively defined. The problem is 
circumvented by making  extensive use of  the condit ional  construct. For  example, 
Exit  is defined as 

2 k , m  : nat (i .  P < eqnat(n, 1) ~ 6) < eqnat(k,O) t> 3. 

The definition o f  process contains eight conditionals! 
As we noted in Section 3.7, the function a must  be split in three parts in Coq:  

sort, action name, and data. Because <proc> (•  D d e l t a  d ) = D e l g a  for all sorts 
D and data  d, we can define sort and data  independent  o f  m: 

Definition D' = [X:PVLoop] [j:one] [m:nat] 
(<types>Match X with T1 onetype T2 T3 onetype T4 T4). 

Definition d' = [X:PVLoop] [j:one] [m:nat] 
(<[X:PVLoop](type (D' X j m))>Match X with dl i d2 d3 i d4 d5). 

In contrast,  the function a giving the action name depends on both  the process 
variable and m. Here it is really a problem that  n a t  is not  inductively defined. I f  
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it were, we could define a by two nested Matches. As it is, we found no other way 
than writing an axiom am for each m (0 < m < 7) and one axiom a7 for m > 7. 

Parameter a : PVLoop->one->nat->act. 

Axiom aO: (X:PVLoop) 
<act>(<act>Match X with delta delta delta delta delta c c)=(a X i 0). 
Axiom al: (X:PVLoop) 
<act>(<act>Match X with c delta delta delta delta delta delta)=(a X i (S 0)). 

Axiom a7: (n:nat)(X:PVLoop) <act>delta=(a X i (S (S (S (S (S (S (S n)))))))). 

Our aim is to prove the following goal. 

((iPV:PVLoop->one->proc) (X:PVLoop) (d: one) 
(Safe PVLoop TypLoop iPV X d [X:PVLoop] [e : one] [Y:PVLoop] [f : one] True P))-> 

<proc>(seq Tau (hide Hiding 
(Sol PVLoop TypLoop 

(DefEqLoop T1 T2 T3 T4 dl d2 d3 d4 d5 P) X1 i ) ) )  
=(seq Tau (hide Hiding P)). 

The assumption that P is safe is necessary for proving that the cluster is 
guarded�9 It will be trivial to verify it for Exit1 and Exit2 later. 

Before we can apply CFAR, we must bring the exit process in the correct 
form, that is, we must prove z. zr(P) = z" Tl(~-~,:,~t Exit(O, n)). This is rather easy: 
because there is only one exit i. P for n = 1, we can apply SUMmand with d' = 1 
and manipulate the conditionals to prove that the remaining sum is 6. Then we 
take the hiding inside to hide the action i. 

We can now apply CFAR: 

Apply (CFAR PVLoop TypLoop (DefEqLoop T1 T2 T3 T4 dl d2 d3 d4 d5 P) RLoop 
Hiding cluster element process Exit D' a d' Xl i). 

The prerequisites CheckIns ide  and Check0u t s ide  are relatively easy to verify, 
although the large number of  conditionals in p r o c e s s  makes the proofs somewhat 
cumbersome�9 Verifying CheckDef is even more cumbersome: for each i, we must 
simplify ~,:nat a(Xi, i, n).process(O, n). For most values of  n, a(Xi, i, n) is 6. We use 
SUMmand to isolate the useful value(s) of  n, and rewrite the remaining sum to 6. 
Instead of  induction on n, we apply the lemma 

(n:nat) <nat>n=O \/ 
<nat>n=(S O) \/ 
... \/ 

<nat>n=(S (S (S (S (S (S 0)))))) \/ 
<nat>Ex([m:nat] <nat>n=(S (S (S (S (S (S (S m)))))))). 

The same lemma is used to prove Checka, which is otherwise trivial�9 CheckConn 
states that each state must be reachable from each other state within the cluster. 
In order to avoid double induction, we apply transitivity first, and prove that each 
state is reachable from Xl, and vice versa. This part  of  the proof  is implemented 
by 'walking forward' through the loop. Finally, proving guardedness was already 
discussed in Section 5.2. 

In the ABE we need CFAR only once, and on a loop of only seven states. 
We conclude that the current definitions are good enough in this situation. But it 
is clear that for larger loops, and for protocols that require multiple applications 
of  CFAR, more sophisticated proof  techniques are necessary, in particular for 
CheckDef and CheckConn. Improved techniques for linearization will probably 
apply to CheckDef also. For CheckConn, an existing efficient algorithm for check- 
ing that a graph is strongly connected must be translated to Coq. Here we see 
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a reversal of the programs-as-proofs paradigm: instead of extracting a program 
from a proof, we want to translate an existing program (and its verification) to a 
proof generator. 

5.5. Completing the Proof 

We define the process BufferTwice as the process that satisfies the final equation 
in the proof of Theorem 2.4, namely the defining equation of a buffer unfolded 
twice. 

Definition Buff erTwice = 
(Sol PVBuf TypBuf [V:PVBuf->one->proc] (BufEq (BufEq V)) Buf i). 

We prove that this equation is guarded (trivial) and then by RSP that 
<proc>BufferTwice = Buffer. And, we prove <proc>Buffer=(ABP true) by 
replacing Buffer by BufferTwice, (ABP true) by (hide Hiding (sum Dtype 
(First  t rue ) ) )  and applying RSP again. The goal is now 

<proc> (hide Hiding 
(sum Dtype [d:D] (seq (in Dtype ain d) 

(Sol PVLoop TypLoop (DefEqLoopl true d) Xl i)))) 
=(sum Dtype [d:D] (seq (in Dtype ain d) 

(seq (in Dtype aout d) 
(sum Dtype [d0:D] (seq (in Dtype ain dO) 

(seq (ia Dtype aout dO) 
(hide Hiding 

(sum Dtype (First true))))))))) 

We continue by moving the hiding inside the sum and removing the summation 
on both sides. Then we add a tau-action after the ain-action (using TAU1). Then 
we move the hiding further, inside these actions. Now we can apply the instance 
of CFAR discussed in the previous section on the first loop. Again we add a 
tau-action, this time after the aout-action, move the hiding further, and apply 
CFAR on the second loop. Stripping the ain- and aout-actions on both sides, 
we arrive at the goal 

<proc>(hide Hiding (ABP_nohide (net true))) 
=(sum Dtype [d:D] (seq (in Dtype ain d) 

(seq (ia Dtype aout d) 
(hide Hiding (sum Dtype (First true)))))) 

NOW we replace (ABP_nohide (neg true)) by (sum Dtype (First (neg 
t r u e ) ) ) ,  and repeat the proof steps of the previous paragraph. The resulting 
goal is 

<proc>(hide Hiding (ABP_nohide (neg (neg true)))) 
=(hide Hiding (sum Dtype (First true))) 

Replacing (neg (neg true)) by true and then (ABP_nohide true) by (sum 
Dtype (First true)) concludes the proof. 

6. Future Work 

A number of directions for future research is immediately obvious: 

�9 Improving the proof theory of ~CRL, see e.g. [BeG94b]. 
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�9 Improving the proof techniques of this paper, in particular linearization and 
the verification of the premisses of CFAR. 

�9 Proving the soundness of the translation w.r.t. #CRL. This is a moving target, 
as changes to Coq are still made, and changes to #CRL are proposed, e.g. in 
[GrW94]. 

�9 Verification of other protocols, probably developing new proof techniques at 
the same time, see e.g. [BeG94a, KOS94, GrP96]. 

�9 Extending/~CRL with (discrete) real time [BaB92] and translating the resulting 
formalism to Coq in order to verify timed protocols [KaP93, Klu91]. 

�9 Investigate if other proof checkers, or perhaps even theorem provers, are more 
suitable than Coq for the verification of protocols. It appears that the proofs 
consist for a significant part of term rewriting, which is not easy to do in Coq. 
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