
Formal Aspects of Computing (1997) 9:1-48
@ 1997 BCS Formal Aspects

of Computing

Formalizing Process Algebraic Verifications in
the Calculus of Constructions

Marc Bezem l, R o l a n d Bol 2 and Jan Friso Groote 3
1Dept. of Philosophy, Utrecht University, The Netherlands
2Dept. of Computing Science, Uppsala University, Uppsala, Sweden
3Dept. of Software Technology, CWI, Amsterdam, The Netherlands

Keywords: Formal verification; Process algebra; ACP; #CRL; Coq; Calculus of
Constructions; Alternating Bit Protocol

Abstract. This paper reports on the first steps towards the formal verification
of correctness proofs of real-life protocols in process algebra. We show that
such proofs can be verified, and partly constructed, by a general purpose proof
checker. The process algebra we use is ~tCRL, ACW augmented with data, which
is expressive enough for the specification of real-life protocols. The proof checker
we use is Coq, which is based on the Calculus of Constructions, an extension
of simply typed lambda calculus. The focus is on the translation of the proof
theory of #CRL and/~CRL-specifications to Coq. As a case study, we verified
the Alternating Bit Protocol.

1. Introduction

This paper reports on the first steps towards the formal verification of correctness
proofs of real-life protocols in process algebra. We show that such proofs can be
verified, and partly constructed, by a general purpose proof checker. The focus
is on the translation of process algebra (specifications and proof theory) to the
language of the proof checker. As a case study, we verified the Alternating Bit
Protocol (ABP) [BSW69]. We chose this protocol, not because there was any
doubt about its correctness, but because it is small, well-known, and numerous
correctness proofs are available in the literature [BaW90, BeK86b, BEG93, Dro94,
Kam93].

The process algebra that we use is based on the Algebra of Communicating

Correspondence and offprint requests to : Marc Bezem, Department of Philosophy, Utrecht University,
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands. E-mail: bezem�9

2 M . A . Bezem, R. N. Bol and J. F. Groote

Processes (ACP) of Bergstra and Klop [BeK86a]. More precisely, we use/~CRL,
ACW augmented with data [GrP94, GrP93], which is expressive enough for the
specification of real-life protocols. The proof checker we use is Coq [DFH93],
which is based on the Calculus of Constructions, an extension of simply typed
lambda calculus.

The word 'verification' usually refers to a mathematical proof in a combination
of natural language and formal or informal mathematical notation. Consider for
example the correctness proof of the ABP given in Sections 4.7 and 5.7 of
[BaW90]. It consists of a series of steps so small that the reader is convinced
of the correctness of each step. Indeed, the proof in [BaW90] is more detailed
than most other verifications, because the intended reader is an undergraduate
student.

For centuries, this form of verification was the best there was. But, as both the
writer and the reader of the proof are human, what guarantee does it give that a
proof is indeed correct? After all, to err is human. In some cases, especially now
that computer programs and protocols are being incorporated in vital control
systems, there is so much at stake that such a verification of a program is simply
not enough. Especially in concurrent systems, where the number of situations
can be exponential in the number of components, it is not at all unlikely that an
unfortunate conjunction of circumstances is overseen during its design, testing,
and verification-by-hand.

Recently it has become possible to let a computer program take over the role
of the reader, or even that of the writer of proofs. In the first case such a program
is called a proof checker, in the second case a theorem prover. The Coq-system,
on which we focus in this paper, is a proof checker equipped with very limited
theorem proving capabilities.

In contrast to a 'classical' verification, a formal verification is a proof formu-
lated completely in a formal language; each step in it consists of the application of
a formal proof rule. Theoretically, a formal verification could be done completely
by hand, but on the basis of our experience (e.g. [Kam93]) we claim that, for
real-life protocols, it can only be done using a computer. Such a verification is,
by the nature of computers, a formal verification. To stress these observations,
and also because a great deal of human input is still needed, we avoid the phrase
'automatic verification'.

If a proof checker is convinced of the correctness of a proof, should we be
convinced too? One can never hope to achieve absolutely guaranteed correctness.
But we claim that formal verification can provide a significant increase in the
level of confidence in a protocol. In order to support this claim, we investigate
which errors remain possible. We see the following types.

1. Errors of the computer system (hardware, operating system, etc.). These are
relatively rare, and moreover usually result in error messages and/or sudden
termination of the program, rather than in an erroneous proof being accepted
by the proof checker.

2. Errors in the underlying theory of the proof checker. This theory should be
stable and well-understood. For Coq, simply typed lambda calculus [Bar92]
is basic and the Calculus of Constructions [COH88] is well-understood. The
theory of inductive types ([COP90, PaM93], see Section 2.4) requires more
study.

3. Programming errors in the proof checker. Indeed, the correctness of the proof
checker must be checked thoroughly. As the program is much smaller (and

Formalizing Process Algebraic Verifications 3

more modular) than the proofs we intend to verify, the level of confidence in
large proofs is definitely raised, even if it is still not 100%.

4. The system we want to verify is usually formalized in a base theory different
from the language of the proof checker. In this paper, the base theory is
/tCRL. This base theory might contain errors, or, less dramatically, axioms
and proof rules that do not always apply (such as a fairness rule for a non-fair
system). In this case the formal proof is correct, but it does not prove what
we think it does.

5. The formalization of the system in the base theory might be incorrect. Again,
the formal proof is correct. This error is more likely to occur than the previous
one, because the base theory remains fixed, whereas we formalize a different
system each time.

6. In order to use a proof checker, we translate the base theory and the theorem
under consideration to the language of the proof checker. This translation can
introduce errors.

The probability of the first three classes of errors can be reduced by verifying
the same protocol on various different proof checkers (and platforms). The fourth
and fifth class are orthogonal to the use of a proof checker. In this paper we
concentrate on the translation of #CRL itself and/~CRL-specifications to Coq.
Special care must be taken when the translation of a specification deviates from
its formalization 'because it is convenient in this particular proof checker'. Such
errors can remain undiscovered much easier than the others, as the translation of
a particular specification is used less often, and by less people, than the computer,
the proof checker, and the translation of the base theory.

These considerations indicate that the focus of the sceptical reader must shift
from proofs to axioms: a proof is the most likely place to find an error in an
ordinary verification, but the proofs of a formal verification are most probably
correct; for the axioms there is no such guarantee.

We hope that we have achieved a correct translation of #CRL to Coq, but the
translation of a/~CRL-specification into Coq is still done by hand. We choose to
stay as close as possible to the definitions of #CRL and the ABE even when this
makes the proof somewhat clumsy. When we deviate from the original definitions,
we do so explicitly and with motivation. If possible, we prove formally that the
deviation is correct.

Formal verification is not limited to algebraic verification of protocols. In
principle, it can be used for any formalism [Cou93], for example I/O-automata
[LMW94, HSV94] and temporal logic [MAP82, OWL82, Hoo91]. Earlier attempts
to automatic verification of propositions of process theory are from Cleaveland
and Panangaden [C1P88], who gave an implementation of Milner's Calculus of
Communicating Systems [Mil80] in the NuPrl system [CAB86] and from Eng-
berg, Gronning and Lamport, who developed the Temporal Logic of Actions
(TLA), which is a logic for specifying and reasoning about concurrent systems
[EGL92]. A particularly impressive achievement is the assertional verification of
wait-free linearization in [Hes94] and its formal elaboration [Hes95]. A recent
approach to the ABP can be found in [Gim95], where the behaviour of processes
is modelled by streams encoded as co-inductive types of Coq. In this stage of the
development of the field it is very difficult to establish the relative merit of each of
the results above, since their diversity makes comparison practically impossible.
However, recent experience shows that the algebraic method discussed in this
paper can handle larger protocols as well [BeG94a, KOS94, GrP96].

4 M.A. Bezem, R. N. Bol and J. E Groote

In the next section, we give an overview of #CRL and the ABE Then we
formalize the ABP in / tCRL and sketch roughly the proof of its correctness. An
introduction to Coq concludes this section. Section 3 is the core of the paper: it
discusses how pCRL was translated to Coq, and which problems arose. Section 4
shows how the/~CRL-specification of a protocol is translated into Coq, taking the
ABP as an example. Section 5 describes in detail how a statement reflecting the
correctness of the ABP can be proved from the axioms introduced in Section 3.
The proof follows the sketch given in Section 2.3. The research on the topic of
this paper is only just beginning; therefore we conclude the paper with a list of
directions for future research.

2. Preliminaries

2.1. /~CRL

#CRL is a specification formalism, combining the process algebra ACW [BaW90]
with data. We give a brief and informal introduction here; for a complete
description of its syntax and semantics we refer to [GrP94], for its proof theory
to [GrP93].

2.1.1. Syntax and Semantics

An algebra is usually a set, together with a number of operations on that set, in
principle axiomatized by an equational theory. ACW complies with this tradition.
The set is a set of processes and the operations are

�9 constants (called atomic actions, the set of atomic actions Act is a parameter
of ACW that is often left implicit)

�9 the constants 6 (deadlock) and ~ (silent action)
�9 the unary operators 0L (encapsulation) and ~L (abstraction or hiding), where

L is a set of atomic actions
�9 the binary operators +, -, I[, I, and II, being alternative and sequential compo-

sition, merge, communication merge, and left merge. By convention, - binds
strongest and + weakest

We refer to [BaW90] for an explanation of these operators. The operator I is
an extension of another parameter of ACW, the communication function 7. This
is a partial function which, given two atomic actions, returns an atomic action:
their communication. 7 must be associative and commutative. In this paper we
assume handshaking, which means that no more than two processes can engage
in a single communication. Technically, it means that 7(7(a, b), c) is undefined for
all actions a, b, c.

Data is specified in /~CRL by the declaration of sorts (types), functions
(including constants) with their types and possibly rewrite rules (stating equalities
between dataterms). The corresponding sections in a /~CRL-specification are
marked by the keywords sort, rune and rew. The sort Bool containing the constants
T and F is part of every/~CRL-specification. Sorts may not be empty.

/~CRL combines ACW with data through the following mechanisms.

�9 An atomic action is composed of an action name and (zero or more) param-
eters; these parameters are dataterms. The section containing the declaration

Formalizing Process Algebraic Verifications 5

o f action names (marked by the keyword act) also specifies the sorts o f their
parameters (overloading of action names is allowed).

�9 Communica t ion is defined on action names (in a section marked eomm). Two
actions only communica te if their parameters are the same (w.r.t. the rewrite
rules); the resulting action has the same parameters. Communica t ion is used
for bo th synchronizat ion and transferring data in this way.

�9 The condit ional operator x < b ~ y takes processes x and y and a boolean b;
it behaves as x if b = T and as y if b = F.

�9 The sum opera tor ~'~d:D X denotes the (possibly infinite) alternative composi-
tion o f the processes a(x) for substitutions a substituting an element o f the
sort D for d in x.

�9 Processes can be defined by (recursive) process specifications (keyword proc).
Parameters are allowed in these definitions.

The condit ional opera tor has a boolean as its middle argument. This is why
the sort Bool is par t o f every #CRL-specification. The symbol ' = ' occurs in
#CRL-specif icat ions in rewrite rules, communica t ion declarations, and process
specifications. It is not a polymorphic function D ~ D ~ Book thus it cannot
be used for forming the middle argument o f a condit ional opera to r) Moreover,
it is not entirely trivial to define such a function eqD : D ~ D ~ Bool satisfying
eqD(d, e) = T i f f d = e. The following specification (by Jan Bergstra) does the
trick.

E x a m p l e 2.1.

sort Bool D
rune T, F �9 --* Bool

eq o " D ~ D -* Bool
/fo " Bool --~ D --~ D ~ D

var d, e : D
rew eqo(d ,d) = T

i f o (T , d , e) = d
i f o (F ,d , e) = e
i fo (eqD(d ,e) ,d ,e) = e

Claim 2.2. The equations in the previous example enforce

1. e q o (d , e) = T ~ d = e ,

2. eqo(d, e) = F ~ d ~ e.

P r o o f o f Cla im 2.2. (Via the semantics of pCRL. A proof via the formal p roof
theory is given in the next subsection.)

1 , ~) d = i fD (T ,d , e) = i f o (eqo(d , e) ,d , e) = e.

1,*--) eqD(d,e) = eqv (d ,d) = T .

2,*-*) F rom I, as the intended models are boolean preserving [GrP94], that
is, T @ F and for all booleans b: b = T V b = F, thus in particular
eqo(d ,e) 4 = T ~ eqD(d,e) = F. []

I It is not without reason that an equation between processes cannot occur as the middle argument
of a conditional operator: the guarded recursive process definition P = (a < P = 6 ~, 6) would lead to
a ~ .

6

Table 1. The a x i o m s a n d rules fo r da t a .

R E F L t = t reflexivity,
F A C T t = u if t = u is a rewri te rule,

R E P L chit/x] t=u replace t by u,
4,[u/x]

S U B ~ subs t i tu te t fo r x,
d,[t/xl

I N D _ i n d u c t i o n rules fo r sorts,
B1 -(T ' -- F)
B2 b = T V b = F b is a b o o l e a n var iable .

M. A. Bezem, R. N. Bol a n d J. E G r o o t e

2.1.2. Proof Theory

The proof theory of / ,CRL is given in [GrP93] in a 'natural deduction' for-
mat. The formulae deduced ('/~CRL property formulae') are mostly equations,
and propositional logical combinations of those. The axioms and rules can be
divided into four parts: data, ACW, process constructs relating processes with
data and logical connectives. Some of these depend on the #CRL-specification
under consideration, most notably its declarations of rewrite rules and process
definitions.

For data, we have the axioms and rules listed in Table 1. #CRL has no
explicit quantification; the rule SUB enforces that each variable is implicitly
universally quantified. Its application is only allowed when x does not occur in
any hypothesis needed for deriving q~. For the precise definitions of substitutions
and induction rules we refer to [GrP93]. An induction rule for a sort is based
on a set of constructors for that sort. Which functions form a constructor set of
a sort is not part of the/~CRL-specification (but see [GrW94]). Given a/~CRL-
specification, one can prove that a certain set is a constructor set only on the
metalevel, using structural induction on closed terms. The axiom B1 is another
reason for incorporating the booleans in every/~CRL-specification: without this
axiom one can never prove the inequality of two terms (the premiss of the rule
CF2' in Table 3).

For the logical connectives,/~CRL has a large number of inference rules. For
those, we refer to [GrP93] (see also the proof below), except that we mention the
rule RAA (reductio ad absurdum), stating that if falsum (• is derivable from
-~q~, then q~ can be derived. As usual ~q~ abbreviates q~ --+l, thus negation and
implication behave classically. But in proofs it turns out that we do not need
RAA, which means that our results also hold from an intuitionistic viewpoint.

Proof of Claim 2.2. We can now prove Claim 2.2 formally in the proof theory
of/~CRL. For reasons of space, we do not write the names of derivation rules
to the left of the line, but below it (above it for rules without premises). -* 1, [hi
denotes the rule for the introduction of an implication, where n is a pointer to the
cancelled hypothesis(-es). ~ E denotes implication elimination, i.e., modus ponens.
q~ V ~ is introduced in/~CRL as an abbreviation of ~b -+ t/:.

1 , - +) F A C T (1)
i f (e q (d , e) , d , e) = e e q (d , e) = T F A C T

R E P L i f (T , d , e) = e ! f (T , d , e) = d

R E P L d = e
--+I, [1] e q (d , e) - T ---~ d = e

Formalizing Process Algebraic Verifications

Table 2. The axioms of ACW in #CRL. a, b ~ Act U {& ~}.

A1 x- l - y = y + x CM1
A2 x + (y + z) = (x + y) + z CM2
A3 x + x = x CM3
A4 (x + y) . z = x. z + y . z CM4
A5 (x -y) . z = x . (y . z) CM5
A6 x + 6 = x CM6
A7 6 �9 x = 6 CM7

CM8
T1 x. z = x CM9

D1 O L (a) = a if a ~ L TI1
D2 OL(a)=b if a E L TI2
D3 O L (X q - y) = S L (X) " b O L (y) TI3
D4 OL(X ' y) = OL(X) '~L(y) TI4

xl ly = x[Ly-t- y[x + x l y
a[Lx = a . x
a " x[l y = a" (xlly)
(x + y) l l z = x t l z + y l l z
a . x l b = (a l b) . x
a l b ' x = (a l b) ' x
a. x I b. y = (a I b). (xllY)
(x + y) l z = x l z + Y l z
x l (y + z) = x l y + x l z

zL(a)=a i f a C L
z L (a) = z i f a c L
Z L (x + y) = z L (X) q - z L (y)
Z L (x ' y) = Z L (X) ' Z L (y)

sc1 (x l l y)Rz = x l l (y II z) DC1
SC2 xl16 = x -6 TC1
SC3 x I Y = Y I x Handshaking
SC4 (x I Y) I z = x I (Y I z)
SC5 x I (yLLz) = (x l y)~lz

6 l x = 6
z l x = , ~
x l (Y l z) = , 5

1,+--) FACT (1)
e q (d , d) = T d = e

REPL e q (d , e) = T

~I , [1] d = e ~ e q (d , e) = T

2 , ~) FACT (2)
(1) e q (d , d) = T d = e

eq (d , e) = F REPL eq (d , e) = T

2,,--)

BI

R E P L T = F ~ T = F
•

~d~e
eq (d , e) = F ~ ~ d = e

1, ---~
(2) eq(d, e) = T
e q (d , e) = T --~ d = e (1) B2

.---~E d = e ~ d = e b = T V b = F

~ E

---~ I, [2]
- , I , [1]

--*E 2. SUB eq (d , e) = T

~ I , [2] ~ e q (d , e) = T V e q (d , e) = F

--*E eq (d , e) = F

~ I , [1] ~d = e ~ eq (d , e) = F

Proofs a re usua l ly n o t g iven in such detai l , for o b v i o u s reasons . F o r the s a m e
reasons , it is p r e f e r ab l e tha t such deta i l s need n o t be p r o v i d e d to the p r o o f checke r
explici t ly. []

F o r processes , # C R L inhe r i t ed the a x i o m s A 1 - A 7 , C M 1 - C M 9 , D 1 - D 4 , T1
(cal led B1 in [BaW90]) a n d T I 1 - T I 4 f r o m A C W , l is ted in Tab l e 2. Al l c losed
ins tances w i t h o u t p rocess va r i ab les o f the a x i o m s S C 1 - S C S , D C 1 , TC1, and
H a n d s h a k i n g are der ivab le . SC3 a n d SC4 d i rec t ly ref lect the p rope r t i e s o f the
c o m m u n i c a t i o n f u n c t i o n ~ (c o r r e s p o n d i n g a x i o m s for [I a re m e n t i o n e d a lso in
[BaW90], bu t these are der ivable) . T h e h a n d s h a k i n g a s s u m p t i o n s imi la r ly resul ts
in the a x i o m H a n d s h a k i n g . SC4, C M 5 , C M 6 , a n d C M 9 are der ivab le .

T h e a x i o m s for the c o m m u n i c a t i o n m e r g e are m o r e c o m p l i c a t e d t h a n those o f
A C W , because o f the p resence o f da ta . T h e p r e s e n t a t i o n here differs s l ight ly f r o m

8 M . A . Bezem, R. N. Bol and J. E Groote

Table 3. Axioms relating processes and data. a, b, c c Act U {6, r}.

C F I
C F 2

CF2 p

CF2"

a(ti t~) I b (q tm) = C(tl tin)
a(tl tm) l b(t'~ t',) = 6

~(ti = F i)

a(tl tin) I b(t~l t~) =
a(tl tm) l b(g 1 (m') = ~

C O N D I x < T ~ , y = x
C O N D 2 x < F > y = y

S U M 1 ~-~a:D P = P

S U M 2 ~ d : o P = ~']~e:l)(P[e/a'])

S U M 3 ~-']~d:o P = (~-'~d:o p) + p

S U M 4 ~ d : o (p 1 +p2)=Ed:DPl + E d : o P 2

S U M S Ed :D(P l " P2) : ~ d : D Pl " P2

S U M 6 Ed:D(Pl ~P2) = ~-~d:O Pl ~P2

S U M 7 ~--]~d:D(P~ [P2) = ~ d : o P~ 1 P2

SUM8 ~--~a:D OL(P) = ~?L(~d:O P)

S U M 9 ~ d : O zL(p) = r L (~ a : o p)

SUM11 Pl = P2
S d : O PI = Z d : O P2

if ~(a, b) = c, m > 0,
if y(a, b) is undefined,
in particular, if a or b is 6 or r,

l < i < _ m ,

if a and b have different sorts,
in particular, if m :~ m'.

if d not free in p,

if e not free in p,

if d not free in P2,

if d not free in P2,

if d not free in P2,

if d not free in the assumptions
of the proof of Pl = P2.

[GrP93], where actions without parameters are treated as a special case. See also
Section 3. The axioms for the conditional and sum operators are mostly obvious.
For SUM8 and SUM9, recall that encapsulation and hiding are carried out at
the level of action n a m e s . In [GrP93], SUM10 states that renaming distributes
over summation; we have omitted renaming here.

The rules REFL, REPL, and SUB also apply to processes. The counterpart
of FACT is called REC: p = q if p -- q is a process equation. Finally, there are
some more complicated inference rules inherited from ACW: RDP, RSP, and fair
abstraction. These rules refer to the (recursive) specifications of processes. RDR
the Recursive Definition Principle, states that such a specification has at least one
solution. RSP, the Recursive Specification Principle, states that two processes are
equal, if they are both solutions of the same guarded recursive specification. The
Cluster Fair Abstraction Rule CFAR [BaW90] can be paraphrased informally
as: 'Any process will eventually leave a r-cluster'. The details are discussed in
Sections 3.5, 3.6, and 3.7.

2.2. The Alternating Bit Protocol

The Alternating Bit Protocol (ABP) is a communication protocol providing
reliable transmission of data through an unreliable (two-way) channel. It consists
of four components: a sender S, a receiver R, a channel K from S to R and a
channel L from R to S. These components are connected according to Fig. 1.

The numbered connection lines in Fig. 1 represent gates, through which the
components can communicate. The sender S reads data from the input at gate 1,

Formalizing Process Algebraic Verifications 9

K

> 2 3

1 4 >

L

Fig. 1. Alternating Bit Protocol.

sends frames consisting of a bit and a datum into the channel K at gate 2
and receives acknowledgement bits from channel L at gate 6. These actions
are represented by, respectively, rl (d), s2(n, d) and r6(n). The receiver R receives
frames from channel K at gate 3, writes data to the output at gate 4 and
acknowledges receipts by sending bits into the channel L at gate 5. These actions
are represented by r3(n, d), s4(d) and ss(n), respectively. All these r /s actions have
their s /r counterpart in the component with which the gate in question is shared.
Communication is synchronous, i.e., only occurs when complementary r /s actions
are executed simultaneously at the same gate. The resulting action is denoted by
c, i.e., ~(Sj, r j) = cj for j = 2, 3, 5, 6. The channels may corrupt data, but if they do
so they are assumed to do this explicitly by sending an error message: s3(• for
K and sd'• for L. Moreover, the channels are assumed not to corrupt data ad
infinitum (in that case it is obviously impossible to ensure reliable transmission).
This fairness assumption justifies the use of the proof rule CFAR later on.

The ABP roughly works as follows, S, K, R, and L run strictly synchronized,
i.e., K sends a message if and only if it receives one from S, R sends a message if
and only if it receives one from K, etc. (except that S sends the very first message
without receiving something from L).

S reads a datum d from the input and sends a frame (eo, d) via K to R. As
long as K corrupts the data, R receives frames ,1, and reacts by sending bits e~
via L to S, so that S sends the frame again. Once R receives a frame (e0, d), it
writes d to the output and acknowledges this receipt by sending the bit e0 via L
to S. From then on, R sends a bit e0 via L to S, each time it receives an incoming
frame (e0, d) or • Process S sends a frame (e0, d) each time it receives something
from L, until that something is an acknowledging bit e0. In that case S reads
a new datum d' from the input and starts sending frames (ebd') to R. So now
the cycle starts all over, with e0 and el exchanged. That is, R reacts to incoming
frames / by sending e0, and after it receives a frame (el,d'), it writes d' to the
output and starts acknowledging the receipt of frame (el, d') by sending bits et to
S. It should be clear that the alternating bit is essential to distinguish new frames
from old ones (note that it is not excluded that d' = d) and to distinguish the
acknowledgement of a new frame from that of an old one.

The question arises: is the ABP correct? This question can only be answered
after having specified a correctness criterion: the ABP should behave externally
like a buffer. This raises several other questions: what is 'the ABP', what is 'a
buffer' and what is 'behave externally'? These questions should be answered by

10 M . A . Bezem, R. N. Bol and J. F. Groote

giving formal specifications, instead of e.g. the rough description of the ABP
above.

2.3. Specif icat ion and Verif ication o f the A B P i n / ~ C R L

We now present a formalization of the ABP in #CRL. It follows closely the
definition of the ABP in [BaW90], except that now data is treated more for-
mally (which also involved some renamings). We make no difference between
a bit and a boolean. Therefore we have no separate sort bit, but use Bool
instead. The sort bool_Err (Frame_Err) is the disjoint sum of the sort Booi
(D • Bool) and a singleton sort containing an error element, with an injection
ibool :Bool---~bool_Err(iFrame :D • Bool ---~Frame_Err). We assume D to be a given,
nonempty sort; we do not specify its elements. The correctness of the ABP follows
from the derivability in #CRL of A B P = Buf fer .

sort Bool
bool_Err
Frame_Err

func T, F : --~ Bool
neg : Bool --~ Bool
ibool : Bool --~ bool_Err
errorbit : ~ bool_Err
iFrame : D • Bool --~ Frame_Err
error f r a m e : --~ Frame_Err

var bl, b2 : Bool
dl ,d2 : D

F e w

act

eqs and / f s for all sorts, see Example 2.1
neg (b 1) "~- eq Bool(bl, F)
eq boot_err (ibool (bl), ibool (b2)) = eq Bool (b l , b2)
eq bool_err (ibool (bl), errorbit) = F
eq Frame_Err(iFrame(d l, bl), i Frame(d2, b2)) =

i fBoo l (eqBool (b l , b2), eq D(dl, d2), F)
eq F err (i Frame(d b bl), errorframe) = F

r l , s 4 : D
r2, s2, c2 : D • B o o l

r3, s3, e3 : Frame_Err
r5, ss, c5 : Bool
r6 , s6, c6 : bool_Err
i

e o m m

proc

r2] $2 ~ r

r3 I $3 ~ c3

r5 I $5 = r
r6] $6 ~ e 6

B u f f e r = ~d:D(rl (d)- s4(d)) "Buffer
A B P = z{~2,~3,~,e~,i}(8{r2,s2,r3,s3,~5,~5,~6,s6}(Sd]] Rc]J K]J L))

K =)-~f:D• �9 (i" s3(iFrame(f)) + i . s3 (er ror f rame))) . K
L = ~ b B o o l (r s (b) " (i . s6(ibool(b)) + i . s6(errorbi t))) . L

Formalizing Process Algebraic Verifications 11

Sd = Sb (T) . Sb(F). Sd
Rc = Rb(F). R b (T) . Rc

Sb(b : Bool) = ~d:D r l (d) ' Sf(d,b)
S f (d : D, b : Bool) = s2(d, b)" Tf(d, b)
Tf(d :D,b : Bool) =

(r6(ibool(neg(b))) q- r6(errorbit)) " S f (d, b) + r6(ibool(b))

Rb(b : Bool) =
(~d:O r3(iFrame(d, b)) + r3(errorframe))" ss(b) �9 Rb(b) +
Y~d:D r3(iFrame(d, neg(b))) . s4(d) �9 ss(neg(b))

We now outline the correctness proof of the ABP as formalized in Section 5.
For additional details we refer to Sections 4.7 and 5.7 of [BaW90]. We use H to
abbreviate {r2, s2, r3, $3, r5, $5, r6, $6} and I to abbreviate {c2, c3, c5, c6, i}.

In order to exploit the symmetry in the protocol, we abstract from the state
of the alternating bit in the sender and the receiver. That is, we define

Sd(b : Bool) --- Sb(b) . Sb(neg(b)) . Sd(b)
Rc(b : Bool) = Rb(neg(b)). Rb(b). Rc(b)

It is obvious, and easy to prove by RSP, that Sd = Sd(T) and Rc = Rc(T).
We also need the equally obvious equations Sd(b) = Sb(b) .Sd(neg(b)) and
Rc(b) = Rb(neg(b)). Rc(neg(b)).

We introduce some more auxiliary definitions. The aim of these is to give a
linear description of the protocol before hiding. That is, the equations are of the
form X0 -- ~ a0" Y0, where ~ denotes a mixture of alternative compositions
and summations, X and Y are process variables and a an action. If we fill in all
parameters of X, we obtain a state of the protocol, and the equation then gives all
possible actions with their resulting states. This linearization is depicted in Fig. 22
of [BaW90]; Figures 3 and 4 constitute the same figure somewhat simplified.

In these definitions, we use the syntax (X I E) from [BaW90] to denote
the process defined by the process variable X in the recursive specification E.
The advantage of this notation over #CRL is that we can distinguish various
(sub)systems of equations. This is particularly useful when it comes to applying
RSP and CFAR formally on systems of equations, as is done in Section 5.2,
respectively 5.4.

ABP_nohide(b)=
First(d,b)=

Ex i t l (d ,b)=
Exit2(b) =

OH(Sd(b) II Re(b)ql K II L)
rl(d)" (Xl l El(d,b))
c3(iFrame(d, b)) . s4(d) - (X1 L E2(d, b))
c6(ibool(b)). ABP_nohide(neg (b))

El(d,b) A= { S l = c2(d,b) " X2
X2 = i. Exitl (d, b) + i. S 3
X 3 = c3(errorframe). X4
X4 = cs(neg(b))" X5
X5---- i ' X 6 q - i ' X 7
X 6 : c6(errorbi t) . X1
X7 = c6(ibool(neg(b))) " X1 }

12 M.A. Bezem, R. N. Bol and J. F. Groote

E2(d, b) A= { X l m_ c5(b)" X2
X2 = i. Exit2(b) + i. X3
X3 = c6(errorbit)"X4
X4 = c 2 (d , b) ' X5
X5 = i" X6 -}- i" X 7
X6 = c3(errorframe)" X l
X7 = c3(iFrame(d,b)). X!

The major task of the verification is to prove the following lemma.

Lemma 2.3. ABP_nohide(b) = ~d:O First(d, b).

Proof By numerous applications of the axioms, we can infer the possible first
actions of ABP_nohide(b) and their resulting states. It turns out that

ABP_nohide(b) = Z (r ~ (d)" 0H (S f (d, b)-Sb(neg (b))" Sd(b)[1Rc(b)IlK [[L))
d:D

Unfolding the definition of First in the lemma, and stripping the first action on
both sides, we arrive at the proof obligation

~H(Sf(d,b) " Sb(neg(b)) . Sd(b) II Re(b)II K I1 L) = (Xl I El(d,b))

The lefthandside of this equation describes the next state of the protocol. We
continue by determining the possible first actions of this next state, and the state
after that, and so on. After lots of steps, we derive

~u(S f (d, b) . Sb(neg(b)) . Sd(b) II Re(b) II g 14 L) =
c2(d, b) . (i . SomeSmte +

i-c3(errorframe). . . ."
OH(Sf (d,b) " Sb(neg(b)) . Sd(b) II Rc(b) II g II Z))

where SomeState is of the form Ol4(SenderStatelIReceiverStatellKStatellLState).
The righthandside of this equation corresponds to the structure of El, therefore
we can conclude by RSP that the aforementioned proof obligation follows from
SomeState = Exi t l (d, b). Extracting first actions twice more, and unfolding the
definition of Exit1, we arrive at the proof obligation SomeState' = IXl I E2(d, b)).
This one is tackled again by RSP, and results in SomeState" = Exit2 (b). Finally,
we extract the first action c6(ibool(b)) of SomeState' , and arrive at

3H(Sb(neg(b)). Sd(b)llRb(b)" Rc(b)llg IlL) = ABP_nohide(neg(b))

This equation follows immediately from our observations upon the introduction
of Sd(b) and Rc(b). []

Theorem 2.4. A B P = Buffer.

Proof By unfolding First, axiom TI4, applying CFAR on the clusters El and E2,
and axiom T1, we derive

rx(First(d, b)) = rl(d) " s4(d) " Zl(ABP_nohide(neg(b))).

Combined with Lemma 2,3, we conclude

zs (ABP_nohide(b)) = (Z rl (d) . sn(d)) " zl (ABP_nohide(neg (b))).
d:D

Formalizing Process Algebraic Verifications 13

It is now straightforward to show that ABP, being r1(ABP_nohide(T)), and Buffer
both satisfy the equation

X = (y ~ rl(d) 's4(d)) '(~- '~ rl (e)'sa(e))" X.
d:D e:D

So, a final application of RSP concludes the proof. []

2.4. The Coq Proof Checker

For a complete overview of the Coq proof checker, we refer to [DFH93]. It is based
on the Calculus of Constructions, an extension of simply typed lambda calculus,
but a deep understanding of that formalism, in particular of the identification
of propositions and types, is not necessary for understanding the use we make
of Coq (propositions are of type Prop and types of type Set). One can declare
types, and state the existence of (constructor) functions with their types, including
constants. One can express quantification and higher order logic. The implication
and negation behave constructively.

Coq extends the Calculus of Constructions by inductive definitions of sorts and
propositions. A sort is defined inductively by listing its constructors. Such a defi-
nition of an I n d u c t i v e Set yields an induction principle and a Match-function,
which enables the definition of (primitive recursive) functions by induction on
the constructors. Together, they imply that every term of that sort is equal to a
constructor term, and that all constructor terms are different. For example, the
sort Bool can be translated to Coq as

Inductive Set bool = true : bool I false : bool.

Equality in Coq is a ternary polymorphic function <_>_=_ (see below). It has
a so-called dependent type: (D:Set)D->D->Prop. That is, for each D, <D>_--_ is
a function of type D->D->Prop. A simpler example of a dependent type is the
type of the function [D:Set] [d:D]d, the polymorphic identity function (square
brackets denote lambda-abstraction in Coq). Its type is (D:Set)D->D. In fact, the
notation P->Q is an abbreviation of (x:P)Q when x does not occur in Q.

From the inductive definition of bool, one can prove - (<bool> t rue- - fa l se)
(true and false are not equal) and (b:bool)<bool>b=trueV<bool>b--false
(for all b of type bool, b is either true or false). These statements correspond to
the axioms B1 and B2 in pCRL. One must realize that inductive definitions come
with a powerful elimination principle (see below). Otherwise, one easily writes a
seemingly reasonable specification which is nevertheless incorrect, perhaps even
inconsistent. For this reason and others, explained later, we shall not use this
translation. It would certainly not be a good idea to define processes inductively,
as there is no assumption in the semantics of #CRL that all processes can be
built from the given actions and operators.

By the propositions-as-types paradigm, propositions can also be defined in-
ductively. An inductively defined type is the least set that is closed under the
constructors (such that all constructor terms differ); an inductively defined propo-
sition is the least proposition that is closed under the rules given for it. Rather
than giving a formal definition, we give an example.

Example 2.5. We consider the transitive closure function, which, given a relation
R on D • D, returns the transitive closure of R. The relation R is represented

14 M . A . Bezem, R. N. Bol and J. E Groote

in Coq by its characteristic function of type D->D->Prop. ([R:D->D->Prop]x
denotes 2R.x)

Inductive Definition TC [R:D->D->Prop] : D->D->Prop =
Base : (x,y :D) (R x y) -> (TC R x y) l
Trans: (x,y,z:D) (R x y) -> (TC R y z) -> (TC R x z)

This definition says that TC(R) is the least relation closed under the above
rules; therefore an elimination principle comes with this definition: in order to
prove a proposition P(x,y) under the assumption TC(R)(x,y), it is sufficient to
prove

R(x,y) ~ P(x,y) and R(x, y) A TC(R)(y,z) A P(y,z) --* P(x,z)

This seems somewhat stronger than the usual induction scheme without the
conjunct TC(R)(y, z), but it is actually equivalent.

Also basic notions in Coq, such as truth, falsity, and equality, are inductively
defined.

Inductive Definition True : Prop = I: True
Inductive Definition False : Prop =
Syntax eq "< >_=_".
Inductive Definition eq [k:Set;x:A] : A->Prop = refl_equal: <A>x=x

I is by definition the proof of the nullary relation True; the elimination
principle for True is a tautology. Fa l se is the empty nullary relation; with this
definition comes the axiom False_ind: (P :Prop)Fa l se ->P , the ex-falso rule,
which reflects the minimality property (or the elimination principle) for False .
Finally, equality on a set A is defined through the statement 'for x:A, the unary
relation "being equal to x" contains only x'. This definition gives the induction
principle (A : S e t) (x : A) (P : A - > P r o p) (P x) - > (a : A) (< A > x = a) - > (P a) . Thus the
effect of eliminating z <A>b=a is that (usually all) occurrences of a are replaced
by b. Equations can be used as term rewrite rules from right to left in this
way. 3 Conjunction and disjunction are also inductively defined. Eliminating a
conjunctive hypothesis A/\B yields two hypotheses A and B; eliminating AX/B
yields two new proof obligations, one with hypothesis A and one with 13.

A proof in Coq starts from the statement that one wants to prove, which is
then transformed by applying tactics. A tactic replaces a proof obligation by zero
or more new ones. A proof obligation consists of two parts: the goal (initially
the statement that one wants to prove) and the context, a set of declarations of
variables and premisses that can be used in the proof 4. A proof is completed if
there are no more proof obligations. Some typical tactics are:

Intro moves a universal quantifier or the premiss of an implication
from the goal to the context.

Apply H applies resolution on the goal and H, a hypothesis from the
context, global axiom, or theorem. If tt is an implication, each
premiss yields a new proof obligation.

2 By eliminating tt, we mean applying the induction principle for the main constructor of tt.
3 The fact that some of our axioms are written 'backwards" is a relic of a Coq version that could
only rewrite in this direction. Version 5.8 has also a tactic Rewr i te for rewriting from left to right.
4 According to the propositions-as-types paradigm, there is no fundamental distinction between a
declaration d:D with D:Set and a hypothesis H:P with P:Prop.

Formalizing Process Algebraic Verifications 15

Elim H For a declaration H:D, where D is an inductive set, this amounts
to structural induction. For a hypothesis H:P, where the main
predicate of P is inductively defined, it applies the elimination
principle.

Contradiction looks for a hypothesis False.
Assumption looks for a hypothesis equal to the current goal.
Exact H succeeds if the goal is exactly the hypothesis, axiom, or theorem

H.

Unfold name unfolds the definition of name.
P a t t e r n position allows the selection of redexes for term rewriting.
Auto tries to complete the proof by applying hypotheses and desig-

nated theorems.
Idtac does not change the proof obligation (sometimes useful in

complicated tactics).

Complicated tactics can be constructed from the basic ones. They can succeed,
fail, or run out of space. A basic tactic fails if it is not applicable.

tactic1 ; tactic2

tactico; [tacticxl...]tacticn]

tac t ic10re lse tactic2

Try tactic1

Repeat tactic~

applies tacticl and then tactic2 on all proof
obligations generated by tactic1.

applies tactico and then tactic, tactic,
to the n proof obligations generated by tactico.

tries to apply tactic1, if it fails tactic2 is applied.

tries to apply tacticb but it does not fail even
if tacticl does.

repeats tactic1 until it fails. This tactic never fails.

Auto never fails: if it cannot complete the proof, it leaves the goal unchanged.
Auto ; Exact I gives a version of Auto that can fail. (Exact I cannot be applicable
after Auto, because Auto tries it.)

3. The Translation of #CRL into Coq

3.1. /~CRL versus Coq

/~CRL and its proof theory share a significant number of concepts with Coq; we
name (data)types, equality, implication, axioms, and derivability. The most formal
way to proceed is to ignore these similarities, and to encode each/~CRL-concept in
Coq. That is, to define a sort muCRL_Prop of #CRL property formulae and to en-
code #CRL-derivability inductively as the least relation Dv : muCRL_Prop->Prop
that contains all axioms and is closed under all inference rules of #CRL:

Inductive Definition Dv:muCRL_Prop->Prop =

REFL: (D:sorts) (has_sort t D) -> (Dv (equal D t t)) I

REPL: (Phi:muCRL_Prop)(D:sorts)
(Dv (subst D t x Phi))
(Dv (equal D t u))

->
-> (Dv (subst D u x Phi)) [

16 M.A. Bezem, R. N. Bol and J. F. Groote

AI: (p,q:proc) (Dv (equal proc (alt p q) (alt q p))) I

ArrowI : (Phi,Psi :muCRL Prop)
((Dv Phi)->(Dv Psi)) -> (Dv (implies Phi Psi)) I

In this example, equal encodes the equality predicate of #CRL, subst encodes
substitution, s o r t s the declaration of sorts, has_sor t the declaration of variables,
a l t the + on processes, imp l i e s implication between/~CRL property formulae,
and so on.

Translating/~CRL to Coq in this way might be possible (the above formulation
of ArrowI is problematic), but it is cumbersome: it gives rise to unreadable Coq
texts and makes it impossible to automate the bulk of the proof (in the version
5.8.3 of Coq we used). Namely, proofs in process algebra typically use a subset
of the axioms (and derived equations) as a term rewriting system, computing
normal forms for process terms (modulo associativity and commutativity of +).
Hand-written, such a part of the proof appears as t e r m = t e r m = . . . = t e r m ;

formally each step is an application of REPL. In the above translation, the
intermediate terms cannot be found by Coq; the user must provide them. This
makes it effectively impossible to find even the most trivial proof automatically.
In other words, with this translation we cannot hope to achieve a granularity
of Coq proofs that comes anywhere near the granularity of hand-written proofs.
Consequently, this approach is not (yet) scalable to real-life protocols.

Therefore we take another approach: rather than encoding/~CRL in Coq, we
embed/~CRL in Coq, that is, we map/~CRL-concepts to the 'same' concepts in
Coq as much as possible. Such a translation renders Coq texts that are relatively
easy to read, and intuitive proofs. The obvious problem with this approach is of
course its soundness (and completeness). However, the soundness of the encoding
approach is also not immediate, as it is not even proved yet that Coq is consistent
[COP90, PaM93], i.e., Fa l se might be derivable. In fact, the problem lies in the
inductive sets and definitions, on which the encoding relies much more than our
embedding approach. Clearly, any such soundness result cannot be obtained as
long as this consistency of Coq is not proved. 5

So the axioms o f / tCRL are translated to axioms in Coq; inference rules (e.g.
S U M l l) become implications (see Section 3.4 for the details). Also the rewrite
rules of a/~CRL-specification are translated to axioms, which is justified by FACT.
Is the consistency of Coq in the empty state already unproven, adding axioms
makes it even harder to prove consistency. One might therefore argue that a better
way to proceed would be to define the proposition muCRL as the conjunction of
its axioms and rules (which can be done conveniently by an inductive definition),
and to use that as a premise to all lemmas and theorems. We feel that this
approach does not add any confidence in the results: the question remains if
this proposition muCRL entails Fa l se in Coq. From a practical point of view, the
approach makes proofs much harder to read because the names of the axioms
are lost.

There are some obvious mismatches between Coq and/~CRL to take care of.
The most obvious mismatch occurs between the classical implication of MCRL
and the constructive implication of Coq. In this case the rules o f /~CRL are

5 We have been informed recently that the required result was obtained in [Wer94] for a subset of
Coq that includes the techniques used in this paper.

Formalizing Process Algebraic Verifications 17

s t ronger than those of Coq, so soundness is not at stake. We could have added
the axiom (P : P r o p) - - P - > P , but it turned out that we did not need it.

Another potential source of problems is equality. The equality < > -- of
Coq has the Leibniz property, i.e., two terms are equal if and only if they can
be substituted for each other in every context of type Prop. This is a strong
requirement, as these contexts are built from the expressive language of Coq.
Whether = in/~CRL can be interpreted conservatively as Leibniz equality in Coq
is a subject for specialized study, see [Se196] for a partial answer.

Finally,/~CRL has no explicit quantification, but instead the substitution rule.
This rule entails that all variables are implicitly universally quantified. These
quantifiers are made explicit in our translation. Yet not all variables in/~CRL are
bound in this way: the sum operator ~d:o(x) binds the variable d of datatype
D in x. We translate this binding to lambda abstraction, see Section 3.4 for the
details.

3.2. Data

A significant part of the proof theory of #CRL can be translated to Coq in-
dependently of a particular MCRL-specification. Only the set of action names,
the communication function ?, and the set of sorts parameterize this translation.
The two sets are finite; therefore we define them as I n d u c t i v e Sets 6, simply
enumerating the members. These are the only I n d u c t i v e Sets we use. From
these definitions it is easy to prove that all actions, respectively sorts, are different
(we need inequality of sorts to verify the side-condition of axiom CF2").

For simplicity, we allow actions to have precisely one data argument. For
actions that have more than one parameter in the specification, pairing can be
used. Actions without parameter get the dummy argument • which is the only
element of the trivial sort one. Thus a translation of a pCRL-specification begins
with the following definition, where the . . . must be replaced by sorts specific
for the specification. Why the sort na t of naturals is needed is explained in
Section 3.7.

Inductive Set types = onetype:types I booltype:types I nattype:types I ...

In fact, this declaration gives us sort names . The sorts themselves are created
through the declaration of a function t y p e : t y p e s - > S e t .

Parameter type : types->Set.

Definition one = (type onetype).
Definition bool= (type booltype).
Definition nat = (type nattype).

A consequence of this approach is that we cannot define these sorts inductively.
Thus we must declare the constructors and induction principles for these sorts
explicitly. We can also not use the Match-function, therefore we must axiomatize
the functions ze ro and pred, which allow us to prove that naturals of the form
S"(0) differ for different n. 7

6 In Section 3.4 we explain why we cannot identify sorts from pCRL with sorts in Coq.
7 Alternatively, we could postulate a bijection between the sort nat as defined here and inductively
defined naturals. Section 5.4 might be simplified by the resulting ability to use the Match-function.

18 M . A . Bezem, R. N. Bol and J. F. Groo te

Parameter i : one.
Parameter true,false : bool.
Parameter 0 : nat.
Parameter S : nat->nat.

Axiom Ii : (j:one) <one> j=i.
Axiom B1 : ~<bool>true=false.
Axiom B2 : (b:bool) <bool>b=true \/ <bool>b=false.
Axiom nat_ind: (P:nat->Prop)(n:nat) (P O)->((y:nat)(P y)->(P (S y)))->(P n).

Parameter zero : nat->bool.
Parameter pred : hat->nat.

Axiom zeroO: <bool>(zero O)=true.
Axiom zeroS: (n:nat) <bool>(zero (S n))=false.
Axiom predO: <nat> (pred 0)=0.
Axiom predS: (n:nat) <nat> (pred (S n))=n.

As we noted, #CRL has two equalities: the 'built-in' -- for both data (rew)
and processes (proc), and the user-defined e q D : D --* D --* Bool for each sort D.
We chose not to translate e q D into Coq by literally translating the rewrite rules
of Example 2.1, but by defining it by its intended meaning, namely part 1 of
Claim 2.2.

Parameter eql: (T:types)(type T)->(type T)->bool.
Axiom def eql: (T:types)(d,e:(type T)) <bool>(eql T d e)=true<-><(type T)>d=e.

3.3. Actions and Communication

Actions in /~CRL are declared with their respective sorts, but overloading of
action names is allowed: one may declare an action r with sort D and another
action r with a different sort E. In the translation into Coq, actions are declared
without their sorts (in other words: action n a m e s are declared). Thus there can
be actions in the translation that are not present in the original specification. As
these actions will not occur in the processes, this mismatch is harmless.

The comm section of a /~CRL specification, defining the communication
function 7 of ACW, is translated to the function gamma in Coq. Recall that
communication in #CRL is defined on action names only, that is, if two actions
(of different sort) have the same name, then they must communicate in the same
way. This facilitates a correct translation into Coq: gamma is specified only for the
action name r, not for ' r :D ' and ' r :E ' separately. It is not easy to specify partial
functions in Coq, therefore when ?(a, b) is undefined, its translation (gamma a b)
returns the special action name d e l t a . The process T in/~CRL behaves similarly
to an atomic action, so a second special action name t a u is introduced.

Thus, we expect the translation of a/~CRL-specification to provide definitions

Inductive Set act = , . . I delta:act tau:act.

Definition gamma: act->act->act = ..

gamma must have certain properties, which are stated as five proof obligations
(goals) in Coq. We must prove these goals in order to show that gamma satisfies
the desired properties. These properties can be used as lemmas in the correctness
proof of the protocol as well. The first two properties are that d e l t a and t a u do
not communicate. The third is that the communication of two actions is not r

Formalizing Process Algebraic Verifications 19

(allowing this would complicate defining guardedness, see Section 3.6). The fourth
is that gamma is commutative, as is required in [BaW90]. It is also required there
that gamma is associative, but we assumed handshaking, the fifth property, which
is stronger.

Goal (a :act) <act>(gamma delta a)=delta.
Goal (a :act) <act>(gamma tan a)=delta.
Goal (a,b :act)~<act>(gamma a b)=tan.
Goal (a,b :act) <act>(gamma a b)=(gamma b a).
Goal (a,b,c:act) <act>(gamma a (gamma b c))=delta.

In general, the proof of these goals depends on the definition of gnmma.
However, thanks to the fact that actions are defined inductively, we can use the
Match-function for this definition (see Section 4 for an example). With such a
definition, proving these goals becomes automatic: the literal text of the proofs
need not depend on g~mma; it is always a straightforward case analysis.

3.4. Processes and Axioms

The distinction between the action a and the process a is not always obvious in
process algebra. In the current setting, it is obvious that a process is formed from
an action name, its sort, and an element of that sort. However, there is only one
process ~5 and one process z. Thus we declare

Parameter proc Set.
Parameter ia (T:types) act->(type T)->proc.

Definition Delta = (ia onetype delta i).
Definition Tan = (ia onetype tan i).

Axiom Delta_Data (T:types)(t:(type T)) <proc>Delta=(ia T delta t).
Axiom Tan_Data (T:types)(t:(type T)) <proc>Tau =(ia T tan t).

It remains to model sets of actions (for hiding and encapsulation), before we
declare the operators on processes. Similar to the relation R in Example 2.5, we
model such sets by their characteristic function a c t - > P r o p 8. A small complication
is that we have added d e l t a and t a u to the set of actions, and that these cannot
be encapsulated, nor hidden. Thus we define the function goodse t , which, given
a set of actions, returns the same set without d e l t a and tan.

Definition ehset = act->Prop.
Definition goodset : ehset->ehset = [L:ehset]

[a:act] (~(<act>a=delta))/\(~(<act>a=tau))/\(L a).

Parameter alt,seq,mer,imer,comm
Parameter cond
Parameter sum
Parameter enc,hide

(T:types)

proc->proc->proc.
proc->bool->proc->proc.
((type T)->proc)->proc.

ehset->proc->proc.

8 Sellink [Se193] suggests to represent the sets for hiding and encapsulation as lists. This turns out to
be unnecessary cumbersome, but raises an interesting question. Suppose that we have sets as a sort in
the specification of the protocol. Then the #CRL-specification contains an algebraic specification of
sets based on lists, such as the one given by Groote and Van Wamel [GrW94] (a function D ~ Bool
can be declared in pCRL, but not used as a sort). Is it allowed in this case to use the characteristic
function representation, or should we translate the algebraic list-based specification dutifully into
Coq ? The latter is more formal, but further away from the informal specification, which requires sets.
Notice that this problem does not occur for the sets of actions for encapsulation and hiding, as these
sets are not sorts, but built-in syntactic objects in #CRL.

20 M A. Bezem, R. N. Bol and J. E Groote

Now it is clear why we cannot identify #CRL-sorts with sorts in Coq: proc
could then be used as a #CRL-sort. This would again allow the process definition
P = (a < P = 6 > 6), which implies a = 6, and also ~-~x:proc x, the sum of all
processes.

The #CRL t e r m ~d:T(X) is translated to (sum T [d: (type T)]x) . This
means that sum has type (T : t y p e s) ((t y p e T) ->proc) ->proc . The axiom SUM2
of pCRL is now recognised as a-conversion, and can therefore be omitted in the
translation. The freeness requirements of the variables in the other SUM-axioms
are verified automatically: if they are not satisfied, then an unbound variable
would occur. The premiss of SUM11 refers to the equality of two processes with
a free variable d : D; it is translated to Vd 6 D : pl(d) = p2(d).

Most of the axioms of #CRL translate directly into Coq, as they are simply
equations between processes; variables are universally quantified. For example,
A1 translates to

Axiom Al:(x,y:proc)<proc>(alt x y)=(alt y x).

The derivable axioms SC4, CM5, CM6, and CM9 are not translated to axioms,
but to lemmas. Some axioms have side-conditions, most notably the CF-axioms,
D1, D2, TI1 and TI2. The CF-axioms have been simplified in comparison with
Table 3.

Axiom CFI : <proc> (cond (ia T (gamma a b) t) (eql T t t') Delta)=
(comm (ia T a t) (ia T b t')).

Axiom CF2 : -<types>T=U -> <proc> Delta=(comm (ia T a t) (ia U b u)).

CFI covers not only the case of actual communication (CF1 in Table 3), but
also the case where communication fails because the actions do not communicate
or the data is not the same (CF2 and CF2'). Claim 2.2 or the axiom def_eql
justifies this formulation, which effectively replaces the premiss ~(ti = tl) of CF2'
by eqr(t i , t' i) = F. The only remaining case is that of CF2": actions with different
sorts (and hence incomparable data), which is covered by CF2.

Apart from the axioms listed, there are many 'derived axioms' or lemmas.
These are discussed in Section 3.8.

3.5. Recursive Specifications and RDP

Informally, RDP states that a recursive specification has at least one solution.
Thus we need to translate what is a recursive specification, and what is a solution
of it. First, we consider the case of a single recursive equation. Such an equation,
written as X (d) = G (X , d) , can be seen as the definition of the process operator
G of type (D->proc)->D->proc. (This is a generalization of the l inear process
operators of [BeG94b], where G must be in a particular normal form.) A solution
of the recursive equation is then a fixed point of G, and has type O->proc.

In the general case, we have a set of process variables ProcVar and a
function Typ from ProcVar to t ypes giving their associated sorts (similar to
actions, we let process variables have exactly one data parameter). A solution of
a system of recursive equations is now a function that interprets each process
variable as a function from its data parameter to a process, thus the type of a
solution (in fact, of any such interpretation) is I n t t y p e : (X:ProeVar) (type
(Typ X)) ->proc. The system of recursive equations DefEq itself is then a process
operator I n t t y p e - > I n t t y p e (similar to G above). The solution is its fixed point.

Formalizing Process Algebraic Verifications 21

For example, the system {X = a . Y(T), Y(b : Bool) = X + a . Y(not(b))}
is defined as follows (note that DefEq needs the old interpretation of process
variables iPV to interpret the occurrence of a process variable in the body of an
equation as a process).

Inductive Definition ProcVar = X:ProcVar t Y:ProcVar.
Definition Typ = [P:ProcVar] (<types>Match P with (* X *) onetype

(* Y *) booltype).
Definition Inttype = (P:ProcVar)(type (Typ P))->proc.
Definition DefEq = [iPV:Inttype] [P:ProcVar]

(<[P:ProcVar](type (Typ P))->proc>Match P with
(* X *) [j:one](seq (ia onetype a i)

(iPV Y true))
(* Y *) [b:bool](alt (iPV X i)

(seq (ia onetype a i)
(iPV Y (neg b))))).

RDP states that a system of recursive equations has a solution, i.e., that
a process operator has a fixed point. Thus we declare the solution function
Sol : (I n g t y p e - > I n t g y p e) - > I n t g y p e giving a solution for each system of equa-
tions (think of it as the #-operator). That (Sol DefEq) is indeed a solution for
DefEq is stated in axiom P~DP. (A V a r i a b l e declaration is local within a S ec t i o n ;
it is translated to a universal quantification outside.)

Section RDP.
Variable ProcVar : Set.
Variable Typ : ProcVar->types.
Local Inttype = (X:ProcVar)(type (Typ X))->proc.
Variable DefEq : Inttype->Inttype.

Parameter Sol : (Inttype->Inttype)->Inttype.
Axiom RDP : <Inttype>(Sol DefEq)=(DefEq (Sol DefEq)).
End RDP.

3.6. RSP

RSP states that guarded systems of equations have unique solutions. So we
must define guardedness in Coq. A single recursive equation is guarded if we can
determine for all n the first n visible actions of its solution by repeatedly unfolding
the equation. For example, if we have X (b : Bool) = (z< b ~, a) . X(not(b)) , then
X (T) = r �9 X (F) = z . a . X (T) , so we can determine the first visible action (a) of
X (T) by unfolding the equation twice. Further applications of the equation give
us further visible actions: the equation is guarded.

In contrast, if we have Y = a'z{a}(Y), then this equation gives us the first visible
action, but a second unfolding yields Y = a. 17{a } (a" "C{a } (Y)) = a" z" Z{a} (%'{a} (Y)) =
a ' r { a) (Y) . Clearly, further unfoldings do not yield further visible actions for Y,
so this equation is unguarded. Indeed, both a and a . 6 are solutions for this
equation, thus RSP should not be applicable. In view of this second example, we
will simply consider every recursive equation in which the hiding operator 9 occurs
as unguarded (unless of course we can remove the hiding operator by rewriting
the system using the axioms).

Now we return to the first example. We note that when we unfold X (T) , we

9 Allowing ~,(a,b) = z would give similar problems for II, I and [~, consider e.g. Z = a.(b I Z).

22 M . A . Bezem, R. N. Bol and J. F. Groote

obtain X(F) without a visible action (guard) in front. We say that X(T) depends
unguarded on X(F). On the other hand, unfolding X(F) yields X(T) only behind
a guard, so X(F) does not depend unguarded on X(T). We can have the same
notion in a system of equations: if we replace X(T) by Y and X(F) by Z then
we obtain the system {Z = T- Y, Y = a . Z} in which Z depends unguarded on
Y, but Y does not depend unguarded on Z.

We conclude that 'depends unguarded on' is a binary relation R on pairs of
the form (X, e), where X is a process variable and e is data of the correct type for
X. R must be well-founded for the system to be guarded} ~ Rather than writing
an axiomatization that tries to compute R, we let the user provide R. Then we
check that R is well-founded (see also [BeG94c]) and that for all process variables
X and data e of the type for X, the body of the equation for X(e) is safe w.r.t. X,
e, and _R, that is, if Y (f) occurs in this body, either it occurs behind a guard, or
R(X, e, Y, f) holds. What follows is the translation of this into Coq; the details
are explained thereafter.

Parameter Safe : (ProcVar:Set)
(Typ : ProcVar->types)
(iPV : (X : ProcVar) (type (Typ X)) ->proc)
(X : ProcVar)
(e:(type (Typ X)))->
((X: ProcVar) (type (Typ X)) ->
(Y : ProcVar) (type (Typ Y)) ->Prop)->proc->Prop.

Section RSP.
Variable ProcVar : Set.
Variable Typ : ProcVar -> types.
Local typ = [X:ProcVar](typs (Typ X)).
Local Inttype = (X:ProcVar)(typ X)->proc.
Local RT = (X:ProcVar)(typ X) -> (Y:ProcVar)(typ Y) -> Prop.
Variable iPV Inttype.
Variable DefEq Inttype->Inttype.
Variable X ProcVar.
Variable e (typ X).
Variable R RT.

Local RSafe : proc->Prop = (Safe ProcVar Typ iPV X e R).
Local TSafe : proc->Prop = (Safe ProcVar Typ iPV X e

[X:ProcVar] [e:(typ X)]
[Y:ProcVar] [f:(typ Y)]True).

Variable
Variable

x,y : proc.
T : types.

Axiom SO:(Y:ProcVar)(f:(typ Y)) (R X e Y f) -> (RSafe (iPV Y f)).
Axiom Sl:(a:act)(t:(type T)) (KSafe (ia T a t)).
Axiom S2:(a:act)(t:(type T))

-(<act>a=tau) -> (TSafe y) ->
(RSafe x) -> (RSafe y) ->
(RSafe x) -> (RSafe y) ->
(RSafe x) -> (RSafe y) ->
(RSafe x) -> (RSafe y) ->
(RSafe x) -> (RSafe y) ->

(p:(type T)->proc)((d:(type T)) (RSafe (p
->

(L:ehset) (RSafe x) ->

Axiom $3:
Axiom $4:
Axiom S5:
Axiom S6:
Axiom S7:
Axiom S8:

Axiom $9:

(RSafe (s eq (i a T a
(RSafe (s eq x y)) .
(RSafe (a l t x y)) .
(RSafe (mer x y)) .
(RSafe (Lmer x y)) .
(RSafe (comm x y)) .
d)))
(RSafe (sum T p)) .
(RSafe (enc L x)) .

t) y) .

10 Apart from cyclic ones, this also excludes unfounded specifications like X(n : n a t) = X (S (n)) .

Formalizing Process Algebraic Verifications 23

Variable ProcVar' : Set.
Variable Typ' : ProcVar' -> types.
Local typ' = [X':ProeVar'](type (Typ' X')).
Local Inttype' = (X':ProeVar')(typ' X')->proc.

Local TSafe' = [iPV':Inttype']
(Safe ProcVar' Typ' iPV' X' e'

[X':ProcVar'] [e':(typ' X')]
[Y':ProeVar'] [f':(typ' Y')]True)

Axiom Sl0:(DefEq':Inttype'->Inttype')(X':ProcVar')(e':(typ' X'))
((iPV':Inttype')(X':ProcVar')(d':(typ' X'))

(TSafe' iPV' (DefEq' iPV' X' d')))->
(RSafe (Sol ProcVar' Typ' DefEq' X' e')).

SO states that Y(f) can occur unguarded in the defining equation of X(e),
provided R(X,e, Y,f) holds. 82 states that all process variables may occur after
a guard; the effect is obtained by replacing g by the relation that is always true.
The premiss (YSafe y) serves to check that no hiding operator occurs in y.

S l0 states that the system may refer to another system of equations. This other
system must be proved safe la w.r.t, the relation that is always true, i.e. it must not
contain hiding and, more importantly, it must not contain variables of the current
system (technically: the defining equations Defgq' of this new system must not
depend on the iPV of the current one). For example, following the notation of
[BW90], we could have E = {X = a . (X' [E~c)}, with E~c = {X' = X + b. X'}.
Notice that in #CRL we cannot distinguish this combination from the flattened
system {X -- a . X', X' -- X + b . X'}, but that we need the distinction to
modularize proofs.

One can observe that the above combination of E and E~c is in fact safe,
because the flattened system is. Indeed, we can allow the stronger variant of
axiom Sl0 below, which allows the occurrence of those variables Y(f) that
were allowed to occur unguarded anyway in the equation for X(e), because
R(X,e, Y, f) holds. It does however not change R to the relation that is always
true after encountering a guard. Anyway, we do not need this stronger version of
Sl0 if we only build one system on top of the other, instead of mutually recursive
ones.

Axiom S10:(DefEq':Inttype'->Inttype')(X':ProcVar')(e':(typ' X'))
((iPV':Inttype')(X':ProcVar')(d':(typ' X'))

((Y:ProcVar)(f:(typ Y)) (R X e Y f)->(TSafe' iPV' (iPV Y f)))->
(TSafe' iPV' (DefEq' iPV' X' d')))->

(RSafe (Sol ProcVar' Typ' DefEq' X' e')).

Finally, we can state the axiom RSP. Given are an interpretation of process
variables iPV, the system of equations DefEq and the relation R. The system is
guarded if R is well-founded and all bodies are safe (for no X and d, there is an
infinite descending chain from X and d, and the body of the equation for X and d

1I We need not prove that this other system is guarded! If it is not, then it will not have a unique
solution, but the unique solution of the current system will contain the (not uniquely determined)
term (Sol ProcVar' Typ' DefEq' X' e').

24 M.A. Bezem, R. N. Bol and J. F. Groote

is safe). I f the system is guarded and iPV is indeed a solution 12, then • equals
the canonical solution (Sol ProcVar Typ DefEq) of the system.

Inductive Definition WF : (X:ProeVar)(typ X)->Prop =
WFI: (X:ProcVar)(d:(typ X))

((Y:ProcVar)(e:(typ Y))(R X d Y e)->(WF Y e))
-> (WF X d).

Definition Guarded = (X:ProcVar)(d:(typ X))(iPV:Inttype)
(WF X d) /\ (Safe ProcVar Typ iPV X d R (DefEq iPV X d)).

Axiom RSP:
Guarded ->
((X:ProeVar)(d:(typ X))<proc> (iPV X d) = (DefEq iPV X d)) ->
<Inttype> iPV = (Sol ProcVar Typ DefEq).

End RSP.

3.7. Fair Abstraction

As we noted before, the ABP can function correctly only if the channels do not
corrupt data ad infinitum. This assumption was translated into process algebra
in various ways, most notably in the form of fair abstraction rules. For an
overview we refer to Section 5.6 of [BaW90]. We chose to translate CFAR b
into Coq (Cluster Fair Abstraction Rule for branching bisimulation, we omit the
superscript b further on). Informally, a cluster is a (maximal) set of states of a
process such that each state in it can reach each other in it by taking only hidden
steps. CFAR deals with all possible clusters, as opposed to KFAR, , which only
deals with cycles of n states 13.

We have adapted CFAR to the presence of data as follows. Instead of a single
cluster, we like to collaps a number of clusters at the same time. For example, if
we have a process definition

X (n : nat) = b(n) + i . (X (n + 9) < (n mod 10) = 0 > X (n - 1)),

then we want to infer

Vn : nat r . z{ i } (X(n)) = z- (b(10 (ndiv 10)) + . . . + b(10 (n div 10) + 9)).

There are infinitely many clusters, therefore we cannot collaps each cluster
separately. One way to proceed would be to fix a k : nat and to define

Yk(m : [0..91) = b(10k + m) + i. (Yk(9) < m = 0 t> Y k (m -- 1)).

Then we prove by CFAR

for all m : [0..9]: z. z l i I (Yk(m)) = z " (b(k) + . . . + b(k + 9)).

12 We must put this premiss as ((X:ProcVar)(d: (typ X))<proc>(iPV X d)=(DefEq iPV X d)),
rather than <Inttype>iPV=(DefEq iPV), because the latter equality does not follow from the former
in Coq.
13 As the structure of c and i actions in the ABP turns out not to be a cycle, we need CFAR in our
proof. Alternatively, we could hide the c actions first. Then applying T1 yields a cycle of i actions of
length 2. Hiding the i actions and applying KFAR2, yields the desired result, provided that we add
the axiom r l ('Cj (x)) = r l o j (x) .

Formalizing Process Algebraic Verifications 25

tb(0) tb(1) tb(2) tb(3) t b(4)

;b(9) ~b(8) ~b(7) ~b(6) ~b(5)

lb(10) Ib(11) Ib(12) I b(13) lb(14)

~b(19) ~b(18) ~b(17) ~b(16) ~b(15)

(1(
~b(19)~b(18)~b(17)~b(16)~b(15)

lb(O) lb(1) lb(2)lb(3)Ib(4)

)
~b(9)~b(8)~b(7)~b(6)~b(5)

Fig. 2. Collapsing two clusters.

Finally we prove by RSP X(n) = Yndivlo(nmod 10). We cannot formalize this
approach in ttCRL, because there k should be a formal parameter of Y, leaving
us with many clusters again. However, our translation of recursive specifications
into Coq does not prevent parameterized specifications such as the one of Yk : we
can encode this approach in Coq, albeit clumsily (we must add a new datatype
with ten elements and a function interpreting them as 0..9).

Therefore we chose a formulation of CFAR that collapses multiple clusters
explicitly. First we number the different clusters. Then we number the different
pairs (X,d) within each cluster, where X is a process variable and d a data
parameter of the type of X. That is, we assume having the following functions.

�9 cluster(X,d) gives the number of the cluster to which the pair (X,d) belongs.

26 M.A. Bezem, R. N. Bol and J. E Groote

�9 element (X, d) gives the order number o f (X, d) within its cluster.

�9 process(n,m) (n,m c nat) returns X(d) such that cluster(X,d) = n and
element(X,d) = m. It returns 3 if n > the number o f clusters or m > the
number o f processes in the cluster.

�9 Exit(n,m) (n,m E nat) returns the exit process o f the ruth item in the nth
cluster. Again it is 6 if n or m are too large.

�9 a(X, d, m) is the action (including data) that leads from X(d) to the ruth item
in the cluster of X(d). It is 3 if there is no such action.

In our translation into Coq, the user must provide these functions for each
application o f CFAR, and show that they have the following properties (let L be
the set o f actions going to be hidden).

1. For all X and d: X(d) = process(cluster(X, d), element(X, d)).
2. For all n and m: if for no X and d: (n,m) = (cluster(X,d),element(X,d)),

then Exit(n, m) = process(n, m) = 3.

3. The system of equations can be written in the form 14

X(d) = Y'~m:nat a(X, d, m) " process(cluster(X,d), m)+
Exit (cluster (X, d), element (X, d)).

4. Each a(X, d, m) is either 6, z, or its action name is in L.

5. All clusters are connected: we can step from X(d) to Y(e) exactly if the action
a(X,d, element(Y,e)) :p 6; a cluster is connected if for all X(d) and Y(e) in it,
we can go from X(d) to Y(e) in one or more steps.

6. The system is guarded.

Given definitions satisfying these properties, C F A R concludes for all X and d:

Z" ZL(X(d)) = Z " TL(Z Exit(cluster(X, d), m)).
191 :nat

In our example, we could use the following functions.

cluster(X,n) = ndiv 10
element(X,n) = n mod 10
process(k, m) = X(10 k + m) if m < 9, 6 otherwise
Exit(k,m) = b(10k + m) i f m < 9, 6 otherwise
a(X, n, m) = i if m = (n - 1) rood 10, 3 otherwise.

We now provide the representation o f C F A R in Coq. Notice that p r o c e s s
needs an interpretation o f process variables, and that the definition o f a(X, d, m)
is split in three parts: sort, action name, and data.

Section CFAR.
Variable ProcVar : Set.
Variable Typ : ProcVar -> types.
Local typ = [X:ProcVar](type (Typ X)).
Local Inttype = (X:ProcVar) (typ X)->proc.
Variable DefEq : Inttype->Inttype.
Variable R : (X:ProcVar)(typ X)->(Y:ProcVar)(typ Y)->Prop.
Variable L : ehset.

14 Here we see a summation over the natural numbers. Since we have only summation over sorts, we
need nat as a built-in sort.

Formalizing Process Algebraic Verifications 27

Variable cluster : (X:ProcVar)(typ X) -> nat.
Variable element : (X:ProcVar)(typ X) -> nat.
Variable process : Inttype -> nat -> nat -> proc.
Variable Exit : nat -> nat -> proc.
Variable D' : (X:ProcVar)(typ X) -> nat -> types.
Variable a : (X:ProcVar)(typ X) -> nat -> act.
Variable d' : (X:ProcVar)(d:(typ X))(n:nat) (type (D' X d n)).

Definition CheckInside = (X:ProcVar)(d:(typ X))(iPV:Inttype)
(.1.) <proc>(process iPV (cluster X d) (element X d)) = (iPV X d).

Definition CheckOutside = (n,m:nat)(iPV:Inttype)
(*2*) ((X:ProcVar)(d:(typ X)) ~(<nat>n=(cluster X d) /\

<nat>m=(element X d))) ->
<proc>(process iPV n m)=Delta /\ <proc>(Exit n m)=Delta.

Definition CheckDef = (X:ProcVar)(d:(typ X))(iPV:Inttype)
(.3.) <proc>(DefEq iPV X d)=

(alt (sum nattype [n:nat](seq (ia (D' X d n) (a X d n) (d' X d n))
(process iPV (cluster X d) n)))

(Exit (cluster X d) (element X d))).

Definition Checka = (X:ProcVar)(d:(typ X))(n:nat)
(*4*) <act>(a X d n)=delta \/ <act>(a X d n)=tau \/ (goodset L (a X d n)).

Inductive Definition Conn: (X,Y:ProcVar)(typ X)->(typ Y)->Prop
= connl: (X,Y:ProcVar)(d:(typ X))(e:(typ Y))

~<act>(a X d (element Y e))=delta -> (Conn X Y d e)
I connt: (Z:ProcVar)(f:(typ Z))

(X,Y:ProcVar)(d:(typ X))(e:(typ Y))
(Conn X Z d f) -> (Coma Z Y f e) -> (Corm X Y d e).

Definition CheckConn = (X,Y:ProcVar)(d:(typ X))(e:(typ Y))
(*5*) <nat>(cluster X d)=(cluster Y e) -> (Conn X Y d e).

Axiom CFAR: (X:ProcVar)(d:(typ X))
Checklnside -> CheckOutside -> CheckDef -> Checka -> CheckConn ->

(*6*) (Guarded ProcVar Typ DefEq R) ->
<proc>(seq Tau (hide L (Sol ProcVar Typ DefEq X d))) =

(seq Tau (hide L (sum nattype [n:nat] (Exit (cluster X d) n)))).
End CFAR.

How we use this formulation of CFAR in proving the correctness of the ABP
is outlined in Section 5.4.

3.8. A Library of Lemmas

Although the axioms and rules are the most important part of the translation
of/~CRL into Coq, it would be incomplete without a library of lemmas that are
useful regardless of the protocol being verified. The current library is listed in
Tables 4, 5, and 6; this library will grow further when more protocols are verified.
We distinguish the following parts of our library.

�9 Lemmas about standard data: the sorts n a t and Bool, and equality. These
lemmas are typically trivial, requiring only a few lines of proof. Nevertheless
they are necessary to automate parts of the further proof. See Table 4.

�9 A few short lemmas about actions. See Table 4.

28

Table 4. Booleans, equality, naturals and actions.

M. A. Bezem, R. N. Bol and J. E Groote

negfalse neg(F) = T refl_eql eqo(t,t) = T
negtrue neg (T) = F sym_eql eqo (t, u) = eqo(u, t)
negneg neg(neg(b)) = b make_equal t = u ~ eqo(t,u) = T
not_eqLtrue_false eqBaol(F, T) = F make_eql t 5 ~ u ~ eqo(t, u) = F
not_eql_b_negb eqBool(b, neg(b)) = F make_uneql eqo(t, u) = F ~ t =/: u

O_S S(n) ~ 0 not_goodset a ~ L ~ a ~ goodset(L)
unequaLS n 5 ~ m ~ S(n) ~ S(m) comm_action ~c : a(t) [a'(u) = c(t)

b ~ Bool, D a sort, t ,u E D, m,n E nat, a,a' ,c E A c t U {6, r}

Table 5. Derived axioms.

A6' 6 + x = x
Dl_Del ta OL(~) =
TIl_Delta "CL(~) =
CM2' 6[[x = 6

SC6 xlly = yl[x
SC7 (xlly)llz) = xll(yllz)
DC2 x] 6 = 6
Handshaking ' (x I Y)] z =

SUM7'

SUM7"

DLCSS

S U M m a n d

EXP_bool

~ e : E (X] y) = X I E e : E Y

Ed:D E e ' E ~L((x I y)ll Z)
='~3L((~'-~.t:D X I~-~e:Ey)[~Z)

E d : D X = x[d'/d] + Ed:D(6 <1 eqD(d, d')t> x)

x[b/c] + x[neg(b)/c] = ~ c : B o o l x

if e not free in x

if e not free in x

and d not free in y
if e not free in x and z

and d not free in y and z

EXP3

EXP4

xll(yllz) = xU. (yllz) + yll (xllz) + z[[(xlly) + (y I z)L x + (x [y)ll z + (x I z)L y

xlJ(yll(zllu)) = x[~ (yH(zllu)) + y~_ (xll(zllu)) + z~. (xll(yllu)) + u[~ (xll(yllz))
+(z I u)~(xlly) + (y I z)~(xllu) + (y I u)[[(xljz)
+(x I y)U(zllu) + (x I z)l~(yllu) + (x I u)L(yllz)

C O N D 3
C O N D 4
C O N D 5
C O N D 5 '
C O N D 6
C O N D 6 '
C O N D 7
C O N D 7 /
C O N D 8
C O N D 8 '
C O N D 9

C O N D 9 '

C O N D 9 "

C O N D 1 0
COND11

x = x'~bE> x
x,~b~, y = y ~neg(b)~. x
(x | z) ,ab~ (y | z) = (x ,~b~ y) | z
(x | y) ,ab~, (x | z) = x | (y ,~b~. z)
(x '~b~ z) + (y ~b~. z) = (x + y) ~ b ~ z
(z '~b~ x) + (z '~b~ y) = z ~b~ , (x + y)
b = c --~ x , ~ b ~ z = x ' ~ b ~ (y ' ~ c ~ z)
b = c --~ y ~ b > x = (y '~c~ z) ,~bt~x
b = neg(c) ~ x . ~ b ~ y = x , ~ b ~ (y , ~ c ~ z)
b = neg(c) ~ z ~ b u x = (y , ~ c t ~ z) , ~ b ~ x

~d:D(X,abr , y) = (Ed:D X) '~b~ y

Ed:D(X<~bt> y) = x<~bt>(Ed:DY)

~--~d:D(X "~ b ~ y) = (~d :D X) "~ b ~ (~'~d:D Y)

C~L(X) ,a b ~. 8L(y) = 8L(X ,a b ~ y)
ZL(X) ,a b ~ "eL(y) = ZL(X .,a b I> y)

if d not free in y

if d not free in x

b,c ~ Book D and E sorts, d,d / E D, e E E, | any binary process operator.

�9 Derived axioms. For example symmetric versions of axioms, like Aft: 6 + x = x .

A large number of lemmas about the conditional operator can also be derived
by a case analysis on the condition being true or false. See Table 5. Proofs are
still only a few lines. SUMmand occurs as Lemma 4.3.2 in [GrP93]. EXP_bool is
an instance of the final remark of the same lemma.

Formalizing Process Algebraic Verifications

Table 6. Rules.

29

Split_alt z = x ---*
RuleA3 z = x
RuleA6 6 = x --*
RuleA6' 6 = x ---+
RuleA7
ID_enc
RuleD l_delta
RuleTI 1 _delta
RuleCM2'
RuleSU M 1

RuleSUMrep

RuleCOND1
RuleCOND2
Split_COND (eqD(d,d')

w = y . - - ~ z + w = x + + y
z = y . - - + z = y + x
z = y . - - * z : y + x
z = y . - - - ~ z = x + y
6 =x - -* 6 : x ' y
x = y ---+ OLtX) = OLfy)
6 = x -o 6 • OL(x)
6 = x ~ 6 = ~L(x)
6 = x ~ 6 =xliY
X = y ~ X = z...a~'d:D y
x < e q o (d , d ') t > 6 = y

X = E d : D Y

T=b. - -* x = x < b > y
F = b - ~ y : x < b > y

=T--* x = y) - *
2 = W - " ~

if d not free in x

if d not free in x and the
assumptions of the premiss

x < eqD(d ,d ') t> z = y .0 e q o (d , d ') t> w

b e Bool, D a sort, d, d' e D.

�9 Expans ions o f the merge, which are a special k ind o f der ived axioms. They
are used to de te rmine the first act ions o f a process defined as the para l le l
compos i t i on o f several components . F o r all n, EXPn is an ins tance o f the
e x p a n s i o n t h e o r e m ([BaW90], Theo rem 4.3.5)

xl II... IIx. =
E i = l . . . n xil](X111.-. Ilxi-1UXi+l I[... IIx.) +
~i=1.... f~j=i+L..(xilxj)ll(xl II... Ilxi-111x/+l II... IIxj-1 [IXj+l II..-IIx.).

Note tha t the summat ions are ac tual ly sho r thand for a sequence o f a l ternat ive
compos i t ions . The expans ion theorem canno t convenient ly be t rans la ted in its
full general i ty, i.e., with the n u m b e r o f co mpone n t s n as a parameter . Thus
each vers ion mus t be proved separately, with larger proofs for larger values
o f n. A n o t h e r d i sadvan tage is tha t an expans ion makes m a n y copies o f the
const i tu ing componen t s x l . . . x , . A different p r o o f technique avoid ing bo th
d i sadvan tages is being deve loped by Van de Pol [POS93].

�9 Ax ioms res ta ted as rules. The axioms as they are suppor t s implif icat ion ' inside
out ' : for proving y . x = 6, we first rewrite y to 6 and then app ly A7:
6 . x = 6. Often (see Sect ion 5.3) we would like the oppos i te : first app ly
RuleAT: y = 6 ~ y ' x = 6 and then proceed proving the premiss y = 6.
Proving these rules is o f course trivial. See Table 6.

4. The Translation of the ABP

�9 s o r t

A p a r t f rom D, b o o l _ E r r , and F r a m e _ E r r , we mus t also declare a sort for D x Bool,
which we obvious ly name F ram e . Together with the bui l t - in sorts, we get the
fol lowing definit ions.

Inductive Set types = onetype:types] booltype:types [nattype:types]
Dtype:types [Frametype:types] bool_Errtype:types I Frame_Errtype:types.

Definition D = (type Dtype).

30 M . A . Bezem, R. N. Bol and J. F. Groote

Definition Frame = (type Frametype).
Definition bool_Err = (type bool_Errtype).
Definition Frame_Err = (type Frame_Errtype).

�9 func and rew
It remains to translate the ABP-specific function declarations and rewrite rules,
including those needed because of the introduction of type Frame (which also
allows a more intuitive formulation of the axiom same_err_frame). Note that
the defining equation of n e g in the specification is simple enough to translate
it to a D e f i n i t i o n in Coq, whereas the remaining functions are declared and
their defining equations turned into axioms. For constructors (here pair , iFrame,
error frame , i b o o l , and e r r o r b i t) and projections (data_of and b i t _ o f) this
appears to be the only way.

Section ABP_DATA.
Variable b,c:bool.
Variable d :D.
Variable f ,g:Frame.

Parameter pair :D->bool ->Frame.
Parameter data_of : Frame->D.
Parameter bit_of : Frame->bool.

Axiom pair_inj: <bool>(eql Frametype f (pair (data_of f) (bit of f)))=true.
Axiom bit_inj : <bool>(eql booltype b (bit of (pair d b))) =true.
Axiom data_inj: <bool>(eql Dtype d (data_of (pair d b))) =true.

Definition neg = [b:bool] (sql booltype b false).

Parameter iFrame Frame->Frame_Err.
Parameter errorframe Frame_Err.
Parameter ibool bool ->bool_Err.
Parameter errorbit bool_Err.

Axiom same_err bit <bool>(eql booltype b c)=
(eql bool_Errtype (ibool b) (ibool c)).

Axiom find_errorbit <bool>(eql bool_Errtype (ibool b) errorbit)=false.
Axiom same_err frame <bool>(eql Frametype f g)=

(eql Frame_Errtype (iFrame f) (iFrame g)).
Axiom find_errorframe: <bool>(eql Frame_Errtype (iFrame f) errorframe)=false.
End ABP_DATA.

�9 act
When we consider the actions of the ABE the actions rl and s4 stand out, as
there are no communicating sl and r4 actions. Therefore we renamed them to
a i n (input action) and aout (output action). We can now drop the indices of the
remaining r, s, and c actions, as their sorts differ. The only communicat ion is now
7(r , s) = 7(s , r) = c. Finally we renamed i to in t , because i is already used as the
inhabitant of one. Thus we have the following definitions.

Inductive Set act =
ain:act [aout:act I int:act I r:act [s:act 1 c:act I delta:act I tau:act.

Definition gamma = [e,f:act] (<act>Match e with
delta delta delta
(<act>Match f with delta delta delta delta c delta delta delta)
(<act>Match f with delta delta delta c delta delta delta delta)
delta delta delta).

This definition of gamma is by case analysis. First, if e is a in, aout , in t , c,

Formalizing Process Algebraic Verifications 31

de l ta , or tau, then (gamma e f) is de l ta . Second, if e is r or s, then (gamma e
f) is d e l t a unless f is s respectively r.

�9 proe
As we did earlier in Section 2.3, we add structure to the pCRL-specification by
distinguishing four (sub)systems of equations.

1. The buffer, containing only the equation for Buffer,
2. the sender, containing the equations for Sb, Sf, and Tf,
3. the receiver, containing only the equation for Rb, and
4. the equations for Sd, Re, K, and L.

The equations for ABP_nohide and ABP are not recursive. Therefore we translated
them to Definitions.

(* Buffer *)
Inductive Set PVBuf = Bur : PVBuf.
Definition TypBuf = [X : PVBuf] onetype.
Definition BufEq = [iPV:PVBuf->one->proc] [X:PVBuf] [j :one]

(sum Dtype [d:D] (seq (ia Dtype ain d)
(seq (ia Dtype aout d)

(iPV Bur i)))).
Definition Buffer = (Sol PVBuf TypBuf BufEq Bur i).

Section ABPdef.

(* The Sender *)
Inductive Set SendSubState = Sb:SendSubState [Sf:SendSubState [Tf:SendSubState.

Definition SSSTyp = [X:SendSubState](<types>Match X with booltype
Frametype
Frametype).

Definition SSSDef = [iPV:(X:SendSubState)(type (SSSTyp X))->proc]
[X:SendSubState]

(<[X:SendSubState](type (SSSTyp X))->proc>Match X with
(*Sb *)[b:bool] (sum Dtype [d:D](seq (ia Dtype ain d) (iPV Sf (pair d b))))
(*Sf *) [f:Frame] (seq (ia Frametype s f) (iPV Tf f))

(*Tf *)[f:Frame] (alt (seq (alt (ia bool_Errtype r errorbit)
(ia bool_Errtype r (ibool (neg (bit_of f)))))

(iPV Sf f))
(ia bool_Errtype r (ibool (bit of f))))).

(* The Receiver *)
Inductive Set RecSubState = Kb:RecSubState.
Definition RSSTyp = [X:RecSubState]booltype.

Definition RSSDef = [iPV:RecSubState->bool->proc] [X:RecSubState]
(*Rb *)[b:bool] (alt (seq (alt (ia Frame_Errtype r errorframe)

(sum Dtype [d:D]
(ia Frame_Errtype r (iFrame (pair d b)))))

(seq (ia booltype s b) (iPV Rb b)))
(sum Dtype [d:D]

(seq (ia Frume_Errtype r (iFrame (pair d (neg b))))
(seq (ia Dtype aout d) (ia booltype s (neg b)))))).

(* The ABP *)
I n d u c t i v e Se t Components = Sd : Components [R c : Components]

CK : Components [CL : Components .
D e f i n i t i o n CompTyp = [X :Componen t s]one type .

32 M . A . Bezem, R. N. Bol and J. F. Groote

Variable phase : bool.

Definition CompDef = [iPV:Components->one->proc] [X:Components]
(<one->proe>Match X with
(*Sd *)[j:one] (seq (Sol SendSubState SSSTyp SSSDef Sb phase)

(seq (Sol SendSubState SSSTyp SSSDef Sb (neg phase))
(iPV Sd i)))

(*Rc *)[j:one] (seq (Sol ReeSubState RSSTyp RSSDef Rb (neg phase))
(seq (Sol RecSubState RSSTyp RSSDef Rb phase)

(iPV Rc i)))
(*CK *)[j:one] (sum Frumetype [f:Frame]

(seq (ia Frametype r f)
(alt (seq (ia onetype int i)

(seq (ia Frame_Errtype s (iFrame f))
(iPV CM i)))

(seq (ia onetype int i)
(seq (ia Frame_Errtype s errorframe)

(iPV CK i))))))
(*CL *)[j:one] (sum booltype [b:bool]

(seq (ia booltype r b)
(alt (seq (ia onetype int i)

(seq (ia bool Errtype s (ibool b))
(iPV CL i)))

(seq (ia onetype int i)
(seq (ia bool_Errtype s errorbit)

(iPV CL i))))))).

Definition Encaps = [a:act] (<Prop>Match a with False False False True
True False False False).

Definition ABP nehide =(enc Encaps
(mer (Sol Components CompTyp CompDef Sd i)
(mer (Sol Components CompTyp CompDef Rc i)
(mer (Sol Components CompTyp CompDef CK i)

(Sol Components CompTyp CompDef CL i))))).

Definition Hiding = [a:act](<Prop>Match a with False False True False
False True False False).

Definition ABP = (hide Hiding ABP_nohide).
End ABPdef.

The role of the boolean phase in the equations for Sd and Rc deserves some
explanation. Clearly, these equations resemble the equations for Sd(b : Bool) and
Rc(b : Bool), with phase in the role of b, more than the parameterless equations
for Sd and Rc. However, the type of Sd and Rc is not boo1, but one. Thus phase
is not the formal translation of the formal parameter b. In fact, we have here
the translation of the equation Sdb = Sb(b) �9 Sb(neg(b)). Sdb. In this equation,
b is an informal parameter in the process algebraic sense; the equation can be
seen as shorthand for the two equations Sdr = S b (T) . S b (n e g (T)) . Sdr and
Sdv = Sb(F). Sb(neg(F)). Sd1:. ABP_nohide and ABP inherit the parameter phase.

5. P r o v i n g the C o r r e c t n e s s o f the A B P in C o q

This section discusses in detail the correctness proof of the ABP in Coq. Signifi-
cant parts of it become more clear by running Coq (version 5.8.3, which can be
obtained by ftp from n u r i . i n r i a , f r -= 1 2 8 . 9 3 . 1 . 2 6) on the complete verifica-
tion, which can be obtained from the authors. The structure of this section is as
follows. Section 5.1 gives a few basic lemmas about data and actions in the ABP.

Formalizing Process Algebraic Verifications 33

(
int

)

Loop

Fig. 3. The generic inner loop.

Section 5.2 corresponds to the definitions preceding Lemma 2.3, and contains
preparations for the applications of RSP in its proof. Section 5.3 discusses how
we extract the first possible action(s) from a state of the protocol, as is done
repeatedly in the proof of Lemma 2.3. Section 5.4 discusses the application of
CFAR, which corresponds to the first line of the proof of Theorem 2.4. Finally,
Section 5.5 corresponds to the remainder of the proof of Theorem 2.4.

5.1. Data and Actions in the ABP

We proved the following lemmas about the data in the ABE

Section ABP_data.
Variable b,c:bool.
Variable d,e:D.
Variable f :Frame.

Lemma pair_inj_equal: <Frame>f=(pair (data_of f) (bit_of f)).
Lemma bit_inj_equal: <bool>b=(bit_of (pair d b)).
Lemma data_inj_equal: <D>d=(data_of (pair d b)).

Lemma differ_frame: <bool>(eql Dtype d e)=false \/
<bool>(eql booltype b c)=false ->
<bool>(eql Frametype (pair d b) (pair e c))=false.

Lemma same_bool: <bool>(eql Frametype (pair d b) (pair e b))=(eql Dtype d e).
Lemma hack: <bool>(eql Frametype f (pair d (neg (bit_of f))))=false.
Lemma ack: <bool>(eql Frametype f (pair d (bit_of f)))

=(eql Dtype (data_of f) d).

34 M.A. Bezem, R. N. Bol and J. F. Groote

ABP_nohide (b)

l
a 2 n (d)

<

<
Loopl (d,b)

f

Exitl(d,b)

c (<d, b>)

<> aout(d

Loop2(e,neg(b))

Loopl(e,neg(b))

> b >(~

erz

?

ain (e)I

ABP_noh ide (neg (b))

Loop2(d,b)

Fig. 4. Putting the loop definitions in place.

End ABP_data.

Definition Differtypes = [T,U:types](<Prop>Match T with
(<Prop>Match U with False True True True True True True)
(<Prop>Match U with True False True True True True True)
(<Prop>Match U with True True False True True True True)
(<Prop>Match U with True True True False True True True)
(<Prop>Match U with True True True True False True True)

Formalizing Process Algebraic Verifications 35

(<Prop>Match U with True True True True True False True)
(<Prop>Match U with True True True True True True False)).

Lemma differtypes : (T,U: types) (Differtypes T U)->'<types>T=U.

The aim of these lemmas is the following. After applying EXP4, we obtain
terms containing the communication merge. After some more rewriting (see
Section 5.3), we can rewrite with CF1 or CF2. The result of CF1 is a conditional,
the condition being (eq l Y t t '). With the above lemmas, we built a tactical
that rewrites this condition to true (by same_bool and ack) or false (by
d i f f e r _ f r a m e and nack). The first three lemmas are used to put the data in
a form matching the left sides of the other four. For rewriting with CF2, the
premiss ~<types>T=U must be proved. As we have enumerated the datatypes by
an I n d u c t i v e Set, this can be done automatically by applying d i f f e r t y p e s :
when T and U are filled in, (O i f f e r t y p e s T U) beta-reduces to True (or to
False , but then CF1 should be applied instead).

Apart from the lemmas mentioned in Section 3.3, which establish the necessary
properties of g~,nma, we proved the following lemmas about actions. The aim of
the first three lemmas is to prove that certain actions are not t au (for guardedness,
see S2) and not d e l t a (for connectedness of a cluster, see connl). The last two
lemmas state that the encapsulation and hiding sets are 'good' in the sense that
they do not contain t au and de l t a .

Section ABP_actions.
Variable a,b:act.

Lemma not_tau_action:
(<Prop>Match a with True True True True True True True False)->-(<act>tau=a).

Lemma notdelta_action:
(<Prop>Match a with True True True True True True False True)->~(<act>delta=a).

Lemma not_action_action: ~(<act>b=a)->~(<act>a=b).

Lemma goodHiding: (Hiding a)->(goodset Hiding a).
Lemma goodEncaps: (Encaps a)->(goodset Encaps a).
End ABP_actions.

5.2. Auxiliary Definitions and RSP

In this section, we translate the definitions preceding Lemma 2.3 into Coq. Then
we add two more definitions necessary for the application of RSP. Finally, we
show how RSP is applied by a typical example.

In Section 2.3, we defined the 'inner loops' Et and E2 of the ABP: the loops
that occur when a message is corrupted in a channel. The following definitions
represent the common structure of Et and E2, depicted in Fig. 3. They are
parameterized by the data sent (dl dS), the types of this data, and the exit
process P. In this way, we need to apply CFAR only once, on this common
structure, instead of twice.

Section CFARLoop.
Variable T1,T2,T3,T4 : types.
Variable dl : (type T1).
Variable d2 : (type T2).
Variable d3 : (type T3).
Variable d4,d5 : (type T4).
Variable P : proc.

36 M.A. Bezem, R. N. Bol and J. F. Groote

Inductive Set PVLoop = X1 : PVLoop I X2 : PVLoop I X3 : PVLoop I X4 : PVLoop
I X5 : PVLoop I X6 : PVLoop I X7 : PVLoop.

Definition TypLoop = [X:PVLoop]onetype.
Definition RLoop = [X:PVLoop] [d:one][Y:PVLoop][e:one]False.
Definition DefEqLoop = [iPV:PVLoop->one->proc] [X:PVLoop] [d:one]
(<proc>Match X with

(*Xl*)
(*X2*) (alt

(*XS*)
(*X4*)
(*X5*) (a l t

(*X6*)
(*X7*)

End CFARLoop.

(seq (ia T1 c dl) (iPV X2 i))
(seq (ia onetype int i) P)
(seq (ia onetype int i) (iPV X3 i)))
(seq (ia T2 c d2) (iPV X4 i))
(seq (ia T3 c d3) (iPV X5 i))
(seq (ia onetype int i) (iPV X6 i))
(seq (ia onetype int i) (iPV X7 i)))
(seq (ia T4 c d4) (iPV Xl i))
(seq (ia T4 c d5) (iPV Xl i))).

Next, we use the above definition to define the first half of the main loop
of the ABP, exactly as in Section 2.3, see Fig. 4; the second half is treated by
symmetry.

Section StepDefs.
Variable b:bool.
Variable d:D.

Definition Exit2 = (seq (ia bool_Errtype c (ibool b)) (ABP_nohide (neg b))).

Definition DefEqLoop2 =
(DefEqLoop booltype bool_Errtype Frametype Frame_Errtype

b errorbit (pair d b) errorframe (iFrame (pair d b))
Exit2).

Definition Exitl =
(seq (ia Frame_Errtype c (iFrame (pair d b)))

(seq (ia Dtype aout d)
(Sol PVLoop TypLoop DefEqLoop2 Xl i))).

Definition DefEqLoopl =
(DefEqLoop Frametype Frame_Errtype booltype bool_Errtype

(pair d b) errorframe (neg b) errorbit (ibool (neg b))
Exitl).

Definition First = (seq (ia Dtype ain d) (Sol PVLoop TypLoop DefEqLoopl Xl i)).

According to the proof sketch of Lemma 2.3, we must apply RSP to show
that (Sol PVLoop TypLoop DefEqLoopl Xl i) (that is, <XI]E1)(d,b))is equal
to the encapsulated merge of the four components in certain states. But our
formulation of RSP does not conclude the equality of two processes, but of two
solution functions for a system of equations. Thus we need a function which
returns this encapsulated merge for Xl, and (So l PVLoop TypLoop DefEqLoopl
Xk i) for Xk, 2 < k < 7. Similarly for DefEqLoop2.

Def in i t ion DefEqLoopl' = [iPV :PVLoop->one->proc] [X :PVLoop] [j : one]
(<proc>Match X with
(*Xl*) (enc Encaps

(mer (seq (Sol SendSubState SSSTyp SSSDef Sf (pair d b))
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b))

(Sol Components CompTyp (CompDef b) Sd i)))
(mer (Sol Components CompTyp (CompDef b) Rc i)
(mer (Sol Components CompTyp (CompDef b) CK i)

Formalizing Process Algebraic Verifications 37

(*X2*)

(*XT*)
End StepDefs.

(Sol Components CompTyp (CompDef b) CL i)))))
(*X2*) (DefEqLoopl iPV X2 i)

(*XT*) (DefEqLoopl iPV X7 i)).

Definition DefEqLoop2' = [iPV:PVLoop->one->proc] [X:PVLoop] [j:one]
(<proc>Match X with
(*Xl*) (enc Encaps

(mer (seq (Sol SendSubState SSSTyp SSSDef Tf (pair d b))
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b))

(Sol Components CompTyp (CompDef b) Sd i)))
(mer (seq (• booltype s b)

(seq (Sol RecSubState RSSTyp RSSDef Rb b)
(Sol Components eompTyp (CompDef b) Rc i)))

(mer (Sol Components CompTyp (CompDef b) CK i)
(Sol Components CompTyp (eompDef b) CL i)))))

(DefEqLoop2 iPV X2 i)

(DefEqLoop2 iPV X7 i)).

As an example, we consider the application of RSP in the first inner loop, starting
from

<proc>(Sol PVLoop TypLoop (DefEqLoopl b d) Xl i)
=(enc Encaps (mer (seq (Sol SendSubState SSSTyp SSSDef Sf (pair d b))

(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b))
(Sol Components CompTyp (CompDef' b) Sd i)))

(mer (Sol Components eompTyp (CompDef' b) Rc i)
(mer (Sol Components CompTyp (CompDef' b) CK i)

(Sol Components CompTyp (CompDef' b) eL i)))))
=

b : bool
d : D

Our first step is to execute the command

Elim (RSP PVLoop TypLoop (Sol PVLoop TypLoop
(DefEqLoopl' b d)) (DefEqLoopl b d) RLoop).

This instance of RSP says:

(b:bool) (d:D) (X:PVLoop) (dO:(typa (TypLoop X)))
(Guarded PVLoop TypLoop (DefEqLoopl b d) RLoop)->
((XO:PVLoop) (dl:(type (TypLoop XO)))

(<proc>(Sol PVLoop TypLoop (DefEqLoopl' b d) XO dl)
=(DefEqLoopl b d (Sol PVLoop TypLoop (DefEqLoopl' b d)) XO dl))) ->

(<proc>(Sol PVLoop TypLoop (DefEqLoopl' b d) X dO)
=(Sol PVLoop TypLoop (DefEqLoopl b d) X dO))

Thus the effect is that two subgoals are added, and DefEqLoopl is replaced
by DefEqLoopl' in the first subgoal. This goal is now solved by Rewrite (RDP
PVLoop); Unfold DefEqLoopl'; Apply r e f l _ e q u a l . That is, we prove that
the definition of the process variable Xl in the loop DefEqLoopl' is exactly the
desired encapsulated merge.

The second subgoal is that the loop is guarded. This is proved by

Unfold Guarded;
Induction X;
Split ; [Apply WFI; Intros; Contradiction

I Unfold DefEqLoopl; Unfold DefEqLoop; Unfold Exitl; Auto i0].

38 M . A . Bezem, R. N. Bol and J. F. Groote

That is, we unfold the definition of guarded, and then continue by a case
distinction on X:PgLoop. Thus we perform the remaining tactic seven times:
for Xl to X7. Guardedness is defined as the conjunction of well-foundedness and
safeness. As the relation RLoop is always False , well-foundedness is easily proved.
Safeness is proved automatically after unfolding some definitions. Typically, Coq
finds the tactical

Intros; Apply S2;
[Apply not_action_action; Apply not_tau_action; Exact I [Apply SO; Exact I],

but the cases for X2 and X5 are a little harder because they have two exits.
For X2, Coq finds

Apply $4; [Apply S3; [Apply Sl l
Apply $3; [Apply S1 [

Apply $2; [Apply not_action_action;
Apply not_tau_action; Exact I]

Apply SlO; Intros;
Apply SafeLoop2]]]]

Apply $2; [Apply not_action_action; Apply not_tau_action; Exact I I
Apply SO; Exact I]]

SafeLoop2 is one of a series of lemmas that the recursive specifications of the
sender and receiver, the components, Loop2, and finally Loop1 are Safe w.r.t, the
relation that is always True. In other words, these lemmas prove that we have a
sequence of recursive systems, one depending on the other (in the above order),
but without mutual dependencies. These proofs are straightforward.

After rewriting by RDP once, the third subgoal is

(X:PVLoop) (j : (type (TypLoop X)))
(<proc>(DefEqLoopl' b d (Sol PVLoop TypLoop (DefEqLoopl' b d)) X j)

=(DefEqLoopl b d (Sol PVLoop TypLoop (DefEqLoopl' b d)) X j))

This is proved again by case distinction. For X2 to X7 it is trivial, because
DefEqLoopl and DefEqLoopl ' coincide. For Xl, we unfold some definitions and
obtain

<proc>(seq (ia Frametype c (pair d b))
(Sol PVLoop TypLoop (DefEqLoopl' b d) X2 i))

=(enc Encaps (mer (seq (Sol SendSubState SSSTyp SSSDef Sf (pair d b))
(seq (Sol SendSubState SSSTyp SSSDef Sb (neg b))

(Sol Components CompTyp (CompDef b) Sd i)))
(mer (Sol Components CompTyp (CompDef b) Rc i)

(mer (Sol Components CompTyp (CompDef b) CK i)
(Sol Components CompTyp (CompDef b) CL i)))))

This goal is almost the same as our starting point. The fact that in the
lefthandside Xl is unfolded to c.X2 is not important. The important change is
that we have DefEqLoopl ' on the lefthandside: after unfolding X2 to i.Exitl+i.X3,
X3 to c.X4, and so on, we do not return to Xl but to the encapsulated merge
that is currently the righthandside. This means that we can prove the goal by
linearizing the righthandside several times. This is the topic of the next section.

5.3. Linear izat ion

This section corresponds to Lemma 2.3. We outline how we prove in Coq

(b :bool) <proc> (ABP_nohide b) = (sum Dtype (First b)) .

Formalizing Process Algebraic Verifications 39

As we noted in the proof of Lemma 2.3, the bulk of the verification consists
of proving this lemma. We must linearize (determine the possible first actions of)
a process of the form OH(SenderState II ReceiverState tl KState II LState) for all
18 states in the first half of the ABP. This is by far the most time and space
consuming part of the proof. In this section, we discuss in detail the tactical that
performs this task without any user guidance. The tactical is specialized for the
ABP, and will have to be adapted for other protocols.

It is clear that future research must concentrate on improving the linearization
technique, in order to verify larger protocols. It must become much more efficient,
and (almost) completely independent of the protocol. This seems ambitious at
first, but for effective/~CRL-specifications [GrP94], all that is needed is an efficient
encoding of term-rewriting in Coq. On the other hand, it must be investigated
whether proof checkers based on term-rewriting are capable of also handling the
other parts of the verification. If so, they might be better candidates than Coq for
formal protocol verification. We now return to our current linearization tactical.

The possible first actions of a state of the ABP are determined by the
possible first actions of the substates of the four constituing components. It
turns out that the term describing such a substate can have four syntacti-
cal forms: (Sol Components . . .) , (seq (Sol SendSubState . . .) x), (seq
(Sol RecSubState ...) x) and (seq action x).

Expanding the merge yields the alternative composition of four terms (Lmer
Substate l Substates) and six terms (Liner (comm Substate l Substate2) Substates).
Our first step is to apply RDP on Substatel and Substate2 unless they are in
the fourth syntactical form. That is, we replace a process variable (Sol . . .) by
its definition (DefEq (Sol . . .)) only if it plays a role in determining the first
possible actions. Then we unfold DefEq. DefEq occurs also as an argument of
Sol, and that occurrence should not be unfolded. Therefore we replace it by a
renamed copy DefEq' before (respectively during) this tactical.

For example, Unfold_Lmer_comm_Soll is the lemma

(ProcVar : Set) (Typ : ProcVar->types)
(DefEq,DefEq' : ((X:ProcVar) (type (Typ X))->proc)->

(X:ProcVar)(type (Typ X))->proc)
(X:ProcVar) (d:(type (Typ X))) (x,z:proc)

(< (((XO : ProcVar) (type (Typ XO)) ->proc) ->
(XO:ProcVar)(type (Typ XO))->proc) >DefEq=DefEq ') ->

(<proc>(Lmer (comm (Sol ProcVar Typ DefEq' X d) z) x)
=(Lmer (comm (DefEq (Sol ProcVar Typ DefEq') X d) z) x))

The first part of the linearization tactical is the following.

Elim EXP4;
Repeat

(Rewrite (Unfold_Lmer_Sol Components CompTyp (CompDef b) (CompDef' b));
[IdtaclApply refl_equal]);

Repeat
(Rewrite (Unfold_Lmer_comm_Soll Components CompTyp (CompDef b) (CompDef' b));
[IdtaclApply refl_equal]);

Repeat
(Rewrite (Unfold_Lmer_comm_Sol2 Components CompTyp (CompDef b) (CompDef' b));
[IdtaclApply refl_equal]);

Unfold CompDef;
Try (Replace SSSDef with SSSDef~;[IdtacLApply refl_equal]);
Try (Replace RSSDef with RSSDef';[IdtaclApply refl_equal]);
Repeat (Rewrite (Unfold_Lmer_seq_Sol SendSubState SSSTyp SSSDef SSSDef');

[IdtacIApply refl_equal]);

40 M . A . Bezem, R. N. Bol and J. E Groote

Repeat (Rewrite (Unfold_Lmer_seq_Sol RecSubState RSSTyp RSSDef RSSDef');
[Idtac I Apply refl_equal]) ;

Repeat (Rewrite (Unfold_Lmer_comm_seq_Soll SendSubState SSSTyp SSSDef SSSDef') ;
[Idtac I Apply refl_equal]) ;

Repeat (Rewrite (Unfold_Lmer_comm_seq_Soll RecSubState RSSTyp RSSDef RSSDef'I ;
[Idtac I Apply refl_equal]) ;

Repeat (Rewrite (Unfold_Lmer_comm_seq_Sol2 SendSubState SSSTyp SSSDef SSSDef');
[Idtac I Apply refl_equal]) ;

Repeat (Rewrite (Unfold_Lmer_comm_seq_Sol2 RecSubState RSSTyp RSSDef RSSDef'I;
[Idtac I Apply refl_equal]) ;

Unfold SSSDef RSSDef;

We are now faced with terms having the following structure (in the worst
case).

(enc H (alt (Lmer (comm (alt (seq (alt (action)
(sum T [t:(type T)]action))

(... unimportant ...))
(sum T [t:(type T)](seq action x)))

(... similar ...)1
(... unimportant ...))

(... similar ...)))

We continue by bringing out the alts, and then by bringing out the sums.
We use several distributivity axioms, and need only the special lemma DLCSS

(see Table 5). We need this lemma because we cannot rewrite terms that occur
inside a sum, for these terms do not denote processes, but functions of type (type
T)->proc . We cannot conclude in Coq that two such functions f and g are equal,
even if (t : (type T))<p roc>(f t) = (g t) .

Repeat Elim A4; (* over seq *)
Repeat Elim CM8; (* left over comm "1
Repeat Elim CM9; (* right over eomm "1
Repeat Elim CM4; (* over Lmer "1
Repeat Elim D3; (* over enc "1
Repeat Elim A2; (* over alt *)

Repeat Rewrite SUM5; (* over seq *)
Repeat Elim DLCSS; (* two over comm, Lmer, and enc *)
Repeat Rewrite SUMT; (* left over comm "1
Repeat Elim SUMT~; (* right over comm *)
Repeat Rewrite SUM6; (* one over Lmer "1
Repeat Rewrite SUM9; (* one over enc *)

N o w we have a long list o f alternatives. Most of these will turn out to be
equal to Del ta . Therefore we continue by trying to rewrite each alternative to
Del ta . We cannot rewrite the term as a whole, because we cannot rewrite inside
sums. This is the main reason for using 'axioms restated as rules'. The tactical
has the following structure.

Repeat (
Repeat ((Apply RuleA6' 0 r e l s e Apply T r u e _ i n d) ;

[t a c t i c a l f o r r e w r i t i n g one a l t e r n a t i v e t o D e l t a I Try Exact I]) ;
Apply Split_alt 0relse Apply RuleA6);

tactical for an alternative that is not Delta

This tactical is applied on a goal of the form <proc>target=alternatives.
target is the linearized form (which we do not compute, but is defined before-
hand, as in Lemma 2.3), which consists o f one or two alternatives, a l t e r n a t i v e s
is the long list. We can pick the first alternative off the list by applying

Formalizing Process Algebraic Verifications 41

RuleA6' :" (<proc>Delta=x) -> (<proc>z=y) -> (<proc>z=(alt x y)).

The first subgoal is now attempted; the second one is treated in the next iter-
ation. The application o f RuleA6' fails when we have only one alternative left. In
that case, we do not need to do anything, except that the remaining tactical expects
two subgoals. Thus in that case we apply True_• (P:Prop)P->True->P. In
this case the second subgoal True is solved by Try Exact I, which has otherwise
no effect.

If the tactical for rewriting one alternative to D e l t a fails, then the inner loop
terminates: this alternative is not De l ta , but (one of) the alternative(s) in t a r g e t .
If the target contains more than one alternative, then we apply
Split_alt : ~ (<proc>z=x) -> (<proc>w=y) -> (<proc>(alt z w)=(alt x y))}.

We must ensure before starting the linearization that we encounter the al-
ternatives from the list in the correct order. If the target is (reduced to) one
alternative, then we apply
RuleA6 : - (<proc>Delta=x) -> (<proc>z=y) -> (<proc>z =(alt y x))}.

Next we consider the tactical for rewriting an alternative to Del ta . First,
we remove the sums, which are already on top. Then we take the first actions
of both sides (which are by now sequences of actions) and make them into a
communicat ion (comm a c t i o n a c t i o n) , which we try to prove equal to De l ta .
(Recall that the tacticals Try . . . and Repeat . . . never fail: if we have an
alternative without communication, nothing happens.) It can be D e l t a for three
reasons: the actions have different types, the actions do not communicate (their
gnmma is de l ta) , or the data are incompatible. Finally, we push the D e l t a
outward. Recall that Auto;Exact I serves as the version of Auto that can fail.

Repeat (Apply RuleSUMl;Intro); (* remove sums *)

Repeat Elim A5; (* over seq *)
Repeat Elim CMT; (* two over comm *)
Repeat Elim CM6; (* right over comm *)
Repeat Elim CM5; (* left over comm *)

Try (Replace (bit of (pair d b)) with b;
[IdtaclApply (make_eql booltype) ;Apply bit_inj]) ;

(Elim CF2;[IdtaclAuto;Exact I]) (* types *)
0relse Try (Elim CFl;Unfold gamma;

(Elim Delta_Data;Elim COND3) (* actions *)
Orelse (* data *)
(tactical for incompatible data 0relse

(Elim sym_eql; tactical for incompatible data));Elim COND2);

Try Elim AT;
Try Elim CM2';
Try Elim CM2;
Try Elim CM3;
Try Elim D4;
Try Rewrite D2;
Auto;Exact I

In this, the tactical for incompatible data reads

(Try Elim same_err_frame;
Rewrite differ_frame ;
[Idtac I Right ; Apply not_eql_b_negb])

42 M . A . Bezem, R. N. Bol and J. F. Groote

Orelse Rewrite find_errorframe
Orelse (Try Elim same_err_bit;Rewrite not_eql_b_negb)
Orelse Rewrite find_errorbit
Orelse Rewrite not_eql_b_negb

This concludes the tactical for rewriting an alternative to Delta. We continue
by linearizing further the remaining alternatives. First, we remove the summation,
if any. If the target is a summation too, then it is of the same type, and we must
apply S U M l l . Otherwise, we have a goal of the form c(t) �9 P = ~d:O 3n((s(t) I
(r(d).Q(d))) [[...) (omitting other components and actions). That is, one component
sends data t of type D, while another component is willing to receive any item of
type D. In this case, we must apply RuleSUMrep, except if D is Bool, in which case
we apply EXP_bool.

(Apply (SUM11 Dtype); Intro d) Orelse
(Apply (RuleSUMrep Frametype (pair d b));Intro NewVar) Orelse
(Apply (RuleSUMrep Dtype d); Intro NewVar) Orelse
Try Elim (EXP_bool b);

What follows is similar to the tactical rewriting a communication to Delta, ex-
cept that we now expect matching types, communicating actions, and compatible
data (except for booleans: due to the use of EXP_bool).

Try (Replace (bit_of (pair d b)) with b;
[IdtaclApply (make_eql booltype) ;Apply bit_inj]) ;

Repeat Elim A5;
Repeat Elim CMT;
Try (
Elim CFl;Unfold gamma;
((* If EXP_bool is used, we have two communications; one succeeds, *)

Elim CFI ;Unfold gamma;Rewrite refl_eql;Elim CONDI ;
(* and one is Delta. *)

(Rewrite not_eql_b_negb Orslse (Rewrite sym_eql;Rewrite not_eql_b_negb));
Elim COND2;Elim AT;Elim CM2';Elim Dl_Delta;

(* The Delta goes. *)
(Elim A6 Orelse Elim A6'))

Orelse
(Rewrite refl_eql;Elim CONDI)

Orelse . . .

If RuleSUMrep is used as mentioned above, it changes the proof obligation to
(C(t) 'P)<eqD(t , d)>6 = 3n((S(t) I (r(d). Q(d))) II...). CF1 replaces the communication
by a second conditional, with the same condition (after simplification and modulo
symmetry). This second conditional is taken outside, and then cancelled against
the one on the lefthandside by the rule Split_COND. This rule gives two subgoals.
One is c (t) . P = ~ n ((c (t) ' Q (d)) l l . . .) given the hypothesis eqo(d , t) , the other is
6 = ~i~((5 - Q(d))~. . .) . The hypothesis in the first is necessary for replacing Q(d)
by Q(t). (The tactic Clear removes the hypothesis and the new variable d from
the context, in order to avoid name clashes when the tactical is applied again.)

Orelse . . .
(Unfold Delta;
Elim (COND5 seq); Elim (COND5 Lmer); Elim CONDIO;
Try Elim same_err_frame;
Try Elim same_err_bit;
Try Rewrite negneg;
Try Rewrite same_bool;
Apply SpIit_COND Orelse (Elim sym_eql;Apply SpIit_CDND);
[Intro H;

Formal iz ing Process Algebra ic Verif ications 43

(Replace NewVar with (pair d b); [IdtacIApply (make_eql Frametype);Auto])
Orelse (Replace NewVar with d; [IdtaclApply (make_eql Dtype);Auto]);
Clear H NewVar
I Elim AT;Elim CM2';Elim Dl_Delta;Apply refl_equal]));

Finally, we can get the first action on top by taking it outside the left-merge
(which returns to a merge) and the encapsulation. We remove the first actions on
both sides by an instance o f the trivial rule f - e q u a L namely

(f:proc->proc)(x,y:proc)(<proc>x=y)->(<proc>(f x)=(f y)),

where f is (s e q action). SC7 restores the expected association o f the merges.

Try Elim CM3;
Try Elim D4;
Try (Rewrite Dl;[IdtaclAuto]);
Repeat Apply (f_equal proc proc);
Repeat Elim SCT.

5.4. Applying CFAR

We apply C F A R on the general loop depicted in Fig. 3, and assume declarations
o f T1 T4 and d l , . . . , d5 accordingly. This loop consists o f one cluster o f seven
elements, Xl XT, all o f type one. Thus we must define the following functions.

cluster(Xn, i) = 0
element(Xn, i) = n - - 1
process(k,m) = X(m + 1) if k = 0
Exit (k, m) = i . P if k = 0
a(Xl, i ,m) = c(dl) i f m = 1,
a(X2, i, m) = i if m = 2,
a(X3, i, m) = c(d2) if m = 3,
a(X4, i, m) = c(d3) if m = 4,
a(X5, • m) = i if m = 5 or m = 6,
a(X6, i, m) = c(d4) if m = O,
a(X7, i, m) = c(ds) if m = O,

In Coq, we

and m < 7, 6 otherwise
and m = 1, ~ otherwise

6 otherwise
6 otherwise
6 otherwise
6 otherwise
6 otherwise
6 otherwise
6 otherwise.

define element through the Match-function. We cannot do that
for process and Exit , because n a t is not inductively defined. The problem is
circumvented by making extensive use of the condit ional construct. For example,
Exit is defined as

2 k , m : nat (i . P < eqnat(n, 1) ~ 6) < eqnat(k,O) t> 3.

The definition o f process contains eight conditionals!
As we noted in Section 3.7, the function a must be split in three parts in Coq:

sort, action name, and data. Because <proc> (• D d e l t a d) = D e l g a for all sorts
D and data d, we can define sort and data independent o f m:

Definition D' = [X:PVLoop] [j:one] [m:nat]
(<types>Match X with T1 onetype T2 T3 onetype T4 T4).

Definition d' = [X:PVLoop] [j:one] [m:nat]
(<[X:PVLoop](type (D' X j m))>Match X with dl i d2 d3 i d4 d5).

In contrast, the function a giving the action name depends on both the process
variable and m. Here it is really a problem that n a t is not inductively defined. I f

44 M.A. Bezem, R. N. Bol and J. E Groote

it were, we could define a by two nested Matches. As it is, we found no other way
than writing an axiom am for each m (0 < m < 7) and one axiom a7 for m > 7.

Parameter a : PVLoop->one->nat->act.

Axiom aO: (X:PVLoop)
<act>(<act>Match X with delta delta delta delta delta c c)=(a X i 0).
Axiom al: (X:PVLoop)
<act>(<act>Match X with c delta delta delta delta delta delta)=(a X i (S 0)).

Axiom a7: (n:nat)(X:PVLoop) <act>delta=(a X i (S (S (S (S (S (S (S n)))))))).

Our aim is to prove the following goal.

((iPV:PVLoop->one->proc) (X:PVLoop) (d: one)
(Safe PVLoop TypLoop iPV X d [X:PVLoop] [e : one] [Y:PVLoop] [f : one] True P))->

<proc>(seq Tau (hide Hiding
(Sol PVLoop TypLoop

(DefEqLoop T1 T2 T3 T4 dl d2 d3 d4 d5 P) X1 i)))
=(seq Tau (hide Hiding P)).

The assumption that P is safe is necessary for proving that the cluster is
guarded�9 It will be trivial to verify it for Exit1 and Exit2 later.

Before we can apply CFAR, we must bring the exit process in the correct
form, that is, we must prove z. zr(P) = z" Tl(~-~,:,~t Exit(O, n)). This is rather easy:
because there is only one exit i. P for n = 1, we can apply SUMmand with d' = 1
and manipulate the conditionals to prove that the remaining sum is 6. Then we
take the hiding inside to hide the action i.

We can now apply CFAR:

Apply (CFAR PVLoop TypLoop (DefEqLoop T1 T2 T3 T4 dl d2 d3 d4 d5 P) RLoop
Hiding cluster element process Exit D' a d' Xl i).

The prerequisites CheckIns ide and Check0u t s ide are relatively easy to verify,
although the large number of conditionals in p r o c e s s makes the proofs somewhat
cumbersome�9 Verifying CheckDef is even more cumbersome: for each i, we must
simplify ~,:nat a(Xi, i, n).process(O, n). For most values of n, a(Xi, i, n) is 6. We use
SUMmand to isolate the useful value(s) of n, and rewrite the remaining sum to 6.
Instead of induction on n, we apply the lemma

(n:nat) <nat>n=O \/
<nat>n=(S O) \/
... \/

<nat>n=(S (S (S (S (S (S 0)))))) \/
<nat>Ex([m:nat] <nat>n=(S (S (S (S (S (S (S m)))))))).

The same lemma is used to prove Checka, which is otherwise trivial�9 CheckConn
states that each state must be reachable from each other state within the cluster.
In order to avoid double induction, we apply transitivity first, and prove that each
state is reachable from Xl, and vice versa. This part of the proof is implemented
by 'walking forward' through the loop. Finally, proving guardedness was already
discussed in Section 5.2.

In the ABE we need CFAR only once, and on a loop of only seven states.
We conclude that the current definitions are good enough in this situation. But it
is clear that for larger loops, and for protocols that require multiple applications
of CFAR, more sophisticated proof techniques are necessary, in particular for
CheckDef and CheckConn. Improved techniques for linearization will probably
apply to CheckDef also. For CheckConn, an existing efficient algorithm for check-
ing that a graph is strongly connected must be translated to Coq. Here we see

Formalizing Process Algebraic Verifications 45

a reversal of the programs-as-proofs paradigm: instead of extracting a program
from a proof, we want to translate an existing program (and its verification) to a
proof generator.

5.5. Completing the Proof

We define the process BufferTwice as the process that satisfies the final equation
in the proof of Theorem 2.4, namely the defining equation of a buffer unfolded
twice.

Definition Buff erTwice =
(Sol PVBuf TypBuf [V:PVBuf->one->proc] (BufEq (BufEq V)) Buf i).

We prove that this equation is guarded (trivial) and then by RSP that
<proc>BufferTwice = Buffer. And, we prove <proc>Buffer=(ABP true) by
replacing Buffer by BufferTwice, (ABP true) by (hide Hiding (sum Dtype
(First t rue))) and applying RSP again. The goal is now

<proc> (hide Hiding
(sum Dtype [d:D] (seq (in Dtype ain d)

(Sol PVLoop TypLoop (DefEqLoopl true d) Xl i))))
=(sum Dtype [d:D] (seq (in Dtype ain d)

(seq (in Dtype aout d)
(sum Dtype [d0:D] (seq (in Dtype ain dO)

(seq (ia Dtype aout dO)
(hide Hiding

(sum Dtype (First true)))))))))

We continue by moving the hiding inside the sum and removing the summation
on both sides. Then we add a tau-action after the ain-action (using TAU1). Then
we move the hiding further, inside these actions. Now we can apply the instance
of CFAR discussed in the previous section on the first loop. Again we add a
tau-action, this time after the aout-action, move the hiding further, and apply
CFAR on the second loop. Stripping the ain- and aout-actions on both sides,
we arrive at the goal

<proc>(hide Hiding (ABP_nohide (net true)))
=(sum Dtype [d:D] (seq (in Dtype ain d)

(seq (ia Dtype aout d)
(hide Hiding (sum Dtype (First true))))))

NOW we replace (ABP_nohide (neg true)) by (sum Dtype (First (neg
t r u e))) , and repeat the proof steps of the previous paragraph. The resulting
goal is

<proc>(hide Hiding (ABP_nohide (neg (neg true))))
=(hide Hiding (sum Dtype (First true)))

Replacing (neg (neg true)) by true and then (ABP_nohide true) by (sum
Dtype (First true)) concludes the proof.

6. Future Work

A number of directions for future research is immediately obvious:

�9 Improving the proof theory of ~CRL, see e.g. [BeG94b].

46 M.A. Bezem, R. N. Bol and J. E Groote

�9 Improving the proof techniques of this paper, in particular linearization and
the verification of the premisses of CFAR.

�9 Proving the soundness of the translation w.r.t. #CRL. This is a moving target,
as changes to Coq are still made, and changes to #CRL are proposed, e.g. in
[GrW94].

�9 Verification of other protocols, probably developing new proof techniques at
the same time, see e.g. [BeG94a, KOS94, GrP96].

�9 Extending/~CRL with (discrete) real time [BaB92] and translating the resulting
formalism to Coq in order to verify timed protocols [KaP93, Klu91].

�9 Investigate if other proof checkers, or perhaps even theorem provers, are more
suitable than Coq for the verification of protocols. It appears that the proofs
consist for a significant part of term rewriting, which is not easy to do in Coq.

Acknowledgments

We thank Jaco van de Pol, Jan Springintveld, Alex Sellink, Erik Poll, .los Baeten,
and Jan Bergstra for some valuable discussions,

References

[Bar92]

[BaB92]

[BEG93]

[BeG94a]

[BeG94b]

[BeG94c]

[BeK86a]

[BeK86b]

[BSW69]

[BaW90]

[CAB86]

[COH881

[Cou931

Barendregt, H. R: Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, pages 117-309.
Oxford University Press, 1992.
Baeten, J. C. M. and Bergstra, J. A. : Discrete time process algebra. In W. R. Cleaveland,
editor, Proceedings Concur'92, LNCS 630, pages 401420. Springer Verlag, 1992.
Bezem, M. and Groote, J. E: A formal verification of the alternation bit protocol in the
calculus of constructions. Technical Report 88, Logic Group Preprint Series, Utrecht
University, March 1993.
Bezem, M. and Groote, J. F.: A correctness proof of a one-bit sliding window protocol
in I~CRL. The Computer Journal, 37(4):289-307, 1994.
Bezem, M. and Groote, J. E: Invariants in process algebra with data. In B. Jonsson and
J. Parrow, editors, Proceedings Concur'94, LNCS 836, pages 401416. Springer Verlag,
1994.
Bezem, M. and Groote, J. E: Proving a graph well founded using resolution. Technical
Report 113, Logic Group Preprint Series, Utrecht University, May 1994.
Bergstra, J. A. and Klop, J. W.: Process algebra: specification and verification in
bisimulation semantics. In M. Hazewinkel, J. K. Lenstra, and L. G. L. T. Meertens,
editors, Mathematics and Computer Science 11, CWI Monograph 4, pages 61-94. North-
Holland, Amsterdam, 1986.
Bergstra, J. A. and Klop, J. W.: Verification of an alternating bit protocol by means
of process algebra. In W. Bibel and K. P Jantke, editors, Math. Methods of Spec. and
Synthesis of Software Systems 1985, LNCS 215, pages 9-23. Springer Verlag, 1986.
Bartlett, K. A., Scantlebury, R. A. and Wilkinson, R T.: A note on reliable full-duplex
transmission over half-duplex links. Communications of the ACM, 12:260~261, 1969.
Baeten, J. C. M. and Weijland, W. E: Process Algebra, volume 18 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.
Constable, R. L., Allen, S. F., Bromley, H. M., Cleaveland, W. R., Cremer, J. F., Harper,
R. W., Howe, D. J., Knoblock, T. B., Mendler, N. R, Panangaden, R, Sasaki, J. T. and
Smith, S. E: Implementing Mathematics with the NuPrl Development System. Prentice-
Hall, inc., Englewood Cliffs, New Jersey, first edition, 1986.
Coquand, 2". and Huet, G.: The calculus of constructions. Information and Control,
76:95 120, 1988.
Courcoubetis, C.: editor. Proceedings O[the 5th International ConJerence on Computer
Aided Verification, Elounda, Greece, June/July 1993. Springer-Verlag, 1993.

Formalizing Process Algebraic Verifications 47

[C1P88]

[COP90]

[DFH931

[Dro94]

[EGL92]

[Gim95]

[GrP93]

[GrP94]

[GrP96]

[GrW94]

[Hes94]

[Hes95]

[Hoo91]

[HSV94]

[Kam93]

[Klu91]

[KaP93]

[KOS94]

[LMW94]

[Mil80]

[MAP82]

[OWL82]

[PaM93]

Cleaveland, R. and Panangaden, R: Type theory and concurrency. International Journal
of Parallel Programming, 17:153-206, 1988.
Coquand, T. and Paulin, C. : Inductively Defined Types. In P. Martin-Lrf and G. Mints,
editors, COLOG-88, LNCS 417, pages 50-66. Springer-Verlag, 1990.
Dowek, G., Felty, A., Herbelin, H., Huet, G., Murthy, C., Parent, C., Paulin-Mohring, C.
and Werner, B.: The Coq Proof Assistant User's Guide, version 5.8. Technical report,
INRIA-Rocquencourt and CNRS - ENS Lyon, 1993.
Drost, N. J.: Process Theory and Equation Solving. PhD thesis, University of Amsterdam,
February 1994. (Section 2.5.1).
Engberg, U., Gronning, P. and Lamport, L.: Mechanical verification of concurrent
systems with TLA. In G. v. Bochmann and D. K. Probst, editors, Proceedings of the 4th
International Workshop on Computer Aided Verification, Montreal, Canada, volume 663
of Lecture Notes in Computer Science, pages 44-55. Springer-Verlag, 1992.
Gim~nez, E.: Co-Inductive Types in Coq : An Experiment with the Alternating Bit
Protocol. Submitted for the proceedings of the BRA Workshop on Types for Proofs
and Programs. Also available by ftp at f tp . ens-lyon, fr /pub/users/LIP/ABP.ps, Z,
June 1995.
Groote, J. F. and Ponse, A.: Proof theory for #CRL: a language for processes with
data. In D. J. Andrews, J. F. Groote, and C. A. Middelburg, editors, Proceedings
of the International Workshop on Semantics of Specification Languages, Utrecht, The
Netherlands, pages 231-250. Workshops in Computer Science, Springer-Verlag, 1993.
Groote, J. F. and Ponse, A.: The syntax and semantics of pCRL. In A. Ponse,
C. Verhoef, and S. F. M van Vlijmen, editors, Algebra of Communicating Processes
(Proceedings ACP'94), pages 26-62, 1994.
Groote, J. F. and van de Pol, J. C. : A bounded retransmission protocol for large data
packets. A case study in computer checked verification. In M. Wissing and M. Nivat,
editors, Proceedings of AMAST'96, Munich, Lecture Notes in Computer Science 1101,
Springer Verlag, pages 536-550, 1996.
Groote, J. F. and van Wamel, J. J.: Algebraic data types and induction in pCRL.
Technical Report P9409, University of Amsterdam, April 1994.
Hesselink, W. H.: Wait-flee linearization with an assertional proof. Distributed Comput-
ing, 8:65-80, 1994.
Hesselink, W. H.: Wait-flee linearization with a mechanical proof. Distributed Computing,
9:(to appear), 1995.
Hooman, J.: Specification and Compositional Verification of Real-Time Systems, LNCS
558. PhD thesis, Eindhoven University of Technology, 1991.
Helmink, L., Sellink, M. P. A. and Vaandrager, E W. : Proof-checking a data link protocol.
In Proceedings Workshop Esprit BRA Types for Proofs and Programs, Nijmegen, The
Netherlands, May 1993, LNCS 806. Springer-Verlag, 1994.
Kamsteeg, G.: A formal verification of the Alternating Bit Protocol in pCRL. Technical
Report 93 37, Dept. of Comp. Sci., Leiden University, Netherlands, 1993.
Klusener, A. S.: Abstraction in real time process algebra. In J. W. de Bakker, C. Huizing,
W. P. de Roever, and G. Rozenberg, editors, Proceedings of the REX workshop "Real-
Time: Theory in Practice", LNCS 600. Springer-Verlag, 1991.
Kaart, M. and Polak, I.: Het alternating bit protocol met time-out in discrete tijd.
Technical Report P9323, Programming Research Group, University of Amsterdam,
September 1993. (in Dutch).
Korver, H. and Springintveld, J.: A computer-checked verification of Milner's Scheduler.
In: M. Hagiya, J. C. Mitchell, editors, Proceedings TACS'94, Sendai Japan, Lecture Notes
in Computer Science 789, pages 161-178. Springer-Verlag 1994. Full version: Technical
Report 101, Logic Group Preprint Series, Utrecht University, November 1993.
Lynch, N., Merritt, M., Weihl, W. and Fekete, A.: Atomic Transactions. Morgan
Kaufmann Publishers, 1994.
Milner, R.: A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.
Manna, Z. and Pnueli, A.: Verification of concurrent programs, a temporal proof system.
In Foundations of Computer Science IV, Distributed Systems: Part 2 Mathematical Centre
Tracts 159, pages 163-255, 1982.
Owicki, S. and Lamport, L.: Proving liveness properties of concurrent programs. ACM
Transactions on Programming Languages and Systems, 4(3):455-495, 1982.
Paulin-Mohring, C.: Inductive definitions in the system Coq. In Typed Lambda Calculi
and Applications, LNCS 664, pages 328-345, 1993.

48

[POS93]
[Se193]

[Se196]

[Wer94]

M. A. Bezem, R. N. Bol and J. E Groote

van de Pol, J. and Sellink, M. E A.: Personal communication, 1993.
Sellink, M. E A.: Verifying process algebra proofs in type theory. In D. J. Andrews,
J. E Groote, and C. A. Middelburg, editors, Proceedings of the International Work-
shop on Semantics of Specification Languages, Utrecht, The Netherlands, pages 315-339.
Workshops in Computer Science, Spfinger-Verlag, 1993.
Sellink, M. E A.: On the conservativity of Liebniz equality. Technical Report P9611,
Programming Research Group, University of Amsterdam, 1996.
Werner, B.: Une th~orie des Constructions Inductives. PhD thesis, Universit~ de Paris 7,
May 1994.

Received December 1994
Accepted in revised form November 1995 by A. J. R. G. Milner

