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Abstract. The networking software for a VAX/VMS computer system had been 
implemented as a collection of communicating processes. One night, an unusually 
high load on the electronic mail component of the software caused deadlock 
to occur between two of the processes. This paper describes how the deadlock 
was analysed by modelling the software using the Calculus of Communicating 
Systems (CCS) and then by investigating the behaviour of the model using the 
Edinburgh Concurrency Workbench (CWB). The analysis suggested how the 
software should be restructured to prevent the problem recurring; the new set of 
processes was analysed, and shown to be deadlock-free. 

1. Introduction 

The University of Edinburgh has operated packet-switched computer networks 
connecting its various sites since the early 1970's; these networks have sup- 
ported remote logins, file transfers and electronic mail. Initially, the networks 
made use of internally-designed communication protocols but, as standard pro- 
tocols emerged, the networks evolved to make use of them. With the advent of 
standard wide-area networks such as the British academic community's JANET 
and British Telecom's PSS, the Edinburgh networks have become part of a 
world-wide networking community. This has enabled people and computers to 
interact in many ways, some of them unforeseen by the original network devel- 
opers. 

The Department of Computer Science at the University of Edinburgh has 
attached DEC VAX/VMS computer systems to the University networks since 
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1980. The necessary communications software has evolved with the networks, 
and has all been produced locally, usually predating proprietary offerings for 
VAX/VMS. In the version referred to here, the software implemented the CCITT 
X.25 networking protocol, together with a CCITT XXX remote login facility, 
a JNT 'Blue Book' file transfer facility and a JNT 'Grey Book' electronic mail 
facility [Tan88, Mar91]. 

This paper is concerned with a problem that occurred in the software im- 
plementation of the network electronic mail facility. The problem arose from 
the activities of an electronic 'Dr Who Fan Club'. One user of a VAX/VMS 
system received Dr Who mail messages from a source in America and then, using 
automatic mail forwarding from his account, sent a copy of each message to 
around twenty other people on different computer systems throughout Britain. 
One night, after a period of constipation in an American mail system, around 
thirty Dr Who mail messages arrived for the user in close succession. As would 
be expected, this caused a short-term load upon the communications software 
but, unexpectedly, it led to complete deadlock within the mail handling software, 
a fact discovered the following morning. 

To explain how deadlock was possible, it is necessary to'examine briefly 
the overall structure of the communications software. This had a multi-process 
implementation, with one VMS process handling each communication protocol 
used: one dealing with the X.25 protocol and controlling the physical link driver, 
one dealing with the XXX protocol, one dealing with the 'Blue Book' file transfer 
protocol and one dealing with the 'Grey Book' electronic mail protocol. These 
processes interacted with each other, as well as with some system and user 
processes. Interaction between the X.25 process and the other processes was 
via semaphored access to a shared memory area (for speed); all other inter- 
process interaction was by data-passing through VMS inter-process mailboxes 
used as unidirectional data buffers. To avoid any confusion with the electronic 
mail application under consideration, inter-process "mailboxes" will henceforth 
be referred to here as inter-process "buffers". 

Inspection of the deadlocked software revealed that the file transfer and mail 
processes were both stuck, each waiting to send data to the other but neither able 
to, because the inter-process buffers in both directions were full. After consulting 
the logs kept by the two processes, an analysis of the events preceding the 
deadlock gave an indication of what had happened to cause the problem, and 
suggested a possible restructuring of the software implementation that would 
prevent deadlock happening again. 

To investigate the deadlock more thoroughly, it was decided to model the 
electronic mail part of the communication software so that its behaviour could 
be formally analysed. The three main aims were to confirm the explanation of 
why deadlock had occurred, to check whether other forms of deadlock were 
possible under extreme loading conditions, and to check that any restructured 
system was deadlock-free. 

In the next section, the Calculus of Communicating Systems (CCS), and its 
application to deadlock investigation using the Edinburgh Concurrency Work- 
bench (CWB), is introduced. Then, three sections describe the analysis of the 
original mail system, some experiments on the nature of the deadlock, and the 
analysis of the revised mail system, respectively. The final section draws some 
conclusions about the usefulness of automated formal methods. 
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2. CCS and Deadlock Investigation 

The Calculus of Communicating Systems (CCS) [Mi189] provides a semantic 
basis for reasoning about concurrent and communicating systems. Systems are 
described in terms of agents, which are identified here by names beginning with 
upper-case letters. Agents perform actions, evolving to become new (and usually 
different) agents after each action. Communication between two agents is possible 
by one agent performing an output action and the other agent performing a 
complementary input action simultaneously. Actions are identified here by names 
beginning with lower-case letters, with output actions having bars over identifiers 
and sharing identifiers with their complementary input actions (if any).. 

Agents are defined using CCS primitives. There is a basic agent 0 that can 
perform no actions, but it is not required here. The following operators (together 
with recursive agent definitions) will actually be used: 

1. Prefix: if P is an agent, then a. P is an agent that performs action a and then 
behaves like P;  

2. Choice: if P and Q are agents, then P + Q is an agent that behaves either like 
P or like Q non-deterministically; 

3. Parallel composition: if P and Q are agents, then P I Q is an agent that has the 
combined behaviour of both P and Q, with communication possible between 
P and Q if they can perform complementary output and input actions; 

4. Restriction: if P is an agent and a is an action, then P \ a is an agent 
that behaves like P except that it cannot perform actions a or ~ externally, 
although these actions (which are complementary) can still be performed for 
communication internally (as shorthand, a set of restricted actions may appear 
on the right-hand side of the "\");  

5. Relabelling: if P is an agent and a and b are actions, then P[b/a] is an agent 
that behaves like P except that, if P can perform actions a or ~, the relabelled 
agent can perform actions b or b respectively instead (as shorthand, a list of 
relabellings may appear within the "[" and "]" brackets). 

Examples of the operators in use follow in the next three sections. 
CCS possesses an 'invisible' action ~ that represents an action performed by 

agents internally with no externally-visible effect. This action is used here in agent 
expressions of the form z. P + T. Q, which can be regarded as representing an 
agent that makes an internal non-deterministic choice to evolve either to P or 
to Q; this is different from just P + Q, where external factors may influence the 
'non-deterministic' choice. 

This work has made extensive use of the Edinburgh Concurrency Workbench 
(CWB), an automated tool for analysing systems expressed in CCS [Cle90]. 
Definitions of CCS agents can be input to the CWB, which can then answer 
certain questions about the behaviour of these agents. For investigating deadlock, 
which is modelled by a particular agent not being able to perform any action, 
two facilities of the CWB are particularly useful. 

The first is the deadlock-finding facility which, given an agent, examines it and 
all of its evolutionary descendents to check whether any are deadlocked. While 
this facility is exactly what is required here, the number of different descendents 
is typically exponential in the number of parallel-composed sub-agents, meaning 
that, for reasons of both time and space complexity, only relatively simple agents 
can be examined. Morley [Mor90] has devised some heuristics for reducing the 
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size of the searched family tree, which improve the situation. Less subtly, the 
onset of faster computers with more memory has benefitted the work described 
here. 

The second useful CWB facility is that for model-checking which, given an 
agent and a specification written in a modal logic based on the propositional 
mu-calculus [Koz83, Sti89], checks whether the agent meets the specification. In 
particular, this can be used to check whether an agent meets the specification 
that it is deadlock-free. One possible specification is the recursive formula (using 
notation explained below): 

vX.  ( (< .>  true) A ([.]X)) 

which states that, at all stages of its evolutionary history, the agent can always 
perform some action. The <.  > true term involves the possibility operator, and 
specifies that an agent is able to perform some action and then evolves to an 
agent that satisfies the tautological specification true. The [. IX term involves the 
necessity operator, and specifies that, after an agent has performed any action, 
it always evolves to an agent that satisfies the specification X. However, X is 
defined recursively, using the v X maximal fixpoint operator, as the conjunction 
of these two terms, giving an appropriate specification. 

The above specification allows an agent to evolve to a point where it only 
performs internal ~ actions thereafter; thus, as far as an external observer is 
concerned, it has become deadlocked. The specification can be improved to 
exclude such cases by replacing the <.  > true term by the more demanding term 

# Y. ( ( < . - ~ >  true) V ( < . >  Y)) 

in which Y specifies that an agent either can perform some non-z action (the 
< . - ~ >  true sub-term) or can perform some action and then evolve to an agent 
that satisfies Y (the <.  > Y sub-term). This recursive definition of Y uses the 
# Y minimal fixpoint operator, which means that the term specifies that an 
agent, or one of its descendents, is capable of performing a non-~ action. The 
revised specification of deadlock-freedom is consistent with that applied by the 
deadlock-finding facility of the CWB. 

The model-checking facility, like the deadlock-finding facility, potentially has 
an exponential run-time. However, it is sometimes faster here because it only 
investigates the family tree of an agent as far as necessary to determine whether 
the agent meets the specification of deadlock-freedom, whereas the deadlock- 
finding facility checks the whole of the family tree and reports all possible 
deadlocks. Both facilities have been used in this work, with the slower but more 
informative facility being more useful. Full details of how the CWB was used are 
not central to the remainder of the paper but, for the benefit of the interested 
reader, some further information (including execution times) is included as an 
appendix. 

The CWB is only one of a number of tools that are available to assist with 
the analysis of concurrent systems; a survey and comparison of many tools can 
be found in [InP91]. Other tools would also have been suitable for the work 
described here. Examples include TAV [LGZ89], which allows model-checking 
using CCS descriptions, and AUTO [BdR90], which allows both deadlock-finding 
and model-checking using MEIJE [Bou85] descriptions. The particular choice of 
the CWB as the vehicle for this work was largely due to its convenient local 
availability. 
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3. Analysis of the Original Mail System 

CCS was used to model the process interactions within the part of the com- 
munications software that dealt with electronic mail. Note that this software 
only handled mail to or from other computers: local mail was dealt with by the 
standard VAX/VMS mail facilities. The relevant mail system consisted of four 
processes and three inter-process buffers, inter-connected as shown below: 

FileMail Deliver / ,  /o 
/ M a i l N N , ,  N 

I I [ 1. 
MailFile CollectMail 

O q 
Collect 

Circles indicate processes and rectangles indicate buffers; each component is 
labelled by the identifier of the CCS agent that models it. Arrows indicate data 
flows, four of which are between the outside world and the mail system: files 
containing mail are received from, and sent to, networking facilities (arrows at the 
left-hand side of the figure), and mail messages are collected from, and delivered 
to, computer users (arrows at the right-hand side of the figure). The significance 
of the internal arrows will be explained in later paragraphs. 

The CCS agent modelling the mail system is capable of performing two types 
of externally-visible input action: receiving a mail file from the network, and 
receiving a mail message from a user; and two types of externally-visible output 
action: sending a file to the network, and sending a mail message to a user. The 
agent is defined as the parallel composition of four sub-agents corresponding to 
the four processes, and three sub-agents corresponding to the three inter-process 
buffers, with restriction being used to hide internal communication actions from 
external observation. The overall definition is: 

(Collect 
CollectMail 
Deliver 
Mail 
MailFile 
FileMail 
File) 

\ cm_insert, cm_remove, cm_empty, 
rod_start, md_stop, 
mf_insert, mf_remove, mf_empty, 
fmdnsert, fm_remove, fm_empty} 

in terms of sub-agents and actions which will now be defined. 
First, the agents corresponding to inter-process buffers are all relabelled 

versions of a standard buffer defined by: 

Buffer de f insert, remove. Buffer + empty. Buffer 
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which can hold only one item: it either can input an item and then output it, 
or can output a signal that it is empty. The latter capability is necessary to 
allow other agents to check whether buffers are empty, as will be seen soon. 
The buffers in the real system had somewhat larger capacities than this, allowing 
deadlock to be avoided or deferred in most circumstances, but not prevented in 
extreme circumstances. The more limited buffering in the model gives 'harsher' 
behaviour with a focus on deadlock potential; this simplification makes the 
deadlock investigation more tractible. The three actual agents are: 

CollectMail d~f Buffer [cm_insert/insert, cm_remove/remove, 

cm_empty/empty] 

MailFile d~f Buffer [mf_insert/insert, mf_remove/remove, 

mf_empty/empty] 

FileMail d~ Buffer [fmSnsert/insert, fm_remove/remove, 

fro_empty/empty] 

where the nine associated actions are all hidden in the top-level agent. 
Now, the four agents corresponding to processes can be defined. At any time, 

any number of  user processes could be sending mail messages to the mail process 
by placing data in the CollectMail buffer. This dynamic behaviour is modelled 
in a more static manner by having a single collecting agent that can repeatedly 
collect posted mail messages (and can do nothing else). Its CCS definition is: 

Collect d~f letter_posted, cm_insert. Collect 

where letter_posted is the input action for receiving a mail message posted by a 
user. 

A new delivery process was started by the mail process every time a message 
had to be delivered, and then the mail process waited until this process terminated 
before proceeding. This dynamic behaviour is modelled in a more static manner 
by having a single delivery agent that can repeatedly deliver mail messages (and 
can do nothing else) and which interacts with the mail agent via a 'start' and a 
'stop' action for every message. A mail message could actually be sent to a user 
or, if the user had set mail forwarding to one or more other computer systems, 
could cause the generation of one or more mail messages to be sent back to 
the network. This is modelled by the delivery agent incorporating appropriate 
internal non-determinism; as a simplification for now, forwarding is assumed to 
generate only one outgoing mail message. The agent's CCS definition is: 

def 
Deliver = md_start. (z.letter_deliver. md_stop. Deliver 

+ z. cm_insert, md_stop. Deliver) 

where letter_deliver is the output action for sending a mail message to a user. 
The mail process was responsible for handling all matters related to the 'Grey 

Book' electronic mail protocol. It handled both incoming mail files from the 
FileMail buffer and outgoing mail messages from the CollectMail buffer. The 
detailed behaviour of  the process was that, after handling either an incoming 
file or an outgoing message, all remaining messages in the CollectMail buffer 
were handled; this was meant to ensure that user processes posting mail are not 
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unduly delayed. (In theory, such behaviour could lead to 'starvation' affecting the 
handling of incoming files but, in practice, this is not likely to happen.) When the 
mail process handled a mail file from the FileMail buffer, it either could generate 
a mail message to be delivered to a user or, if the file was invalid in some way, 
could generate an error-reporting mail file to be sent back to the network. This is 
modelled by the mail agent incorporating appropriate internal non-determinism. 
Its CCS definition (using an auxiliary agent Maill) is: 

Mail dej fm_remove. (z. md_start, md_stop. Maill  

+ z. mf_insert. Maill) 

+ cm_remove, mf_insert. Mail1 
def 

Maill = cm_empty. Mail + cm_remove, mfdnsert.  Mail1 

where all of the actions are internal to the top-level agent. The Maill agent makes 
use of the cm_empty action to check whether or not all mail messages in the 
CollectMail buffer have been handled. 

Finally, the file transfer process was responsible for handling all matters 
related to the 'Blue Book' file transfer protocol. It handled both incoming files 
received from the network and outgoing files from the MailFile buffer. The 
detailed behaviour of the process meant that it could handle an arbitrary number 
of files received from the network between each handling of a file from the 
MailFile buffer; this was a unintentional feature of the internal organisation of 
the implementation that was potentially dangerous, since accepting new work 
was given priority over ridding the system of completed work. (Again, in theory, 
such behaviour could lead to 'starvation' affecting the handling of files from the 
MailFile buffer but, in practice, this is not likely to happen.) The behaviour can 
be precisely modelled by an agent that just embodies simple non-determinism. Its 
CCS definition is: 

File de~ file_received, fm_insert. File § mf_remove, file_send. File 

where file_received is the input action for receiving a file from the network, and 
file_send is the output action for sending a file to the network. 

The CCS description of the composition of the above sub-agents was supplied 
to the CWB, and the behaviour of the overall mail system model was investigated. 
The model-checking facility confirmed that the overall agent would not always 
evolve to a deadlock-free agent. Further, the deadlock-finding facility revealed 
the extra information that evolution was possible to any of the following three 
deadlocked agents: 

Dead1 de=f (cmdnsert. Collect 

Deliver 

cm_remove. CollectMail 

mf_insert. Mail1 

mf_remove. MailFile 

fm_remove. FileMail 

fmSnsert. File) 
\{...} 
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def 
Dead2 = (cm_insert. Collect 

[ cm_insert, md_stop. Deliver 

I cm_remove. CollectMail 

I md_stop. Maill 

I MailFile 

I fm_remove. FileMail 

I fmSnsert.  File) 

\{...} 
Dead3 d~j (cm_insert. Collect 

cmfnser t ,  md_stop. Deliver 

cm_remove. CollectMail 

md_stop. Maill 

mf_remove. MailFile 

fm_remove. FileMail 

fm_insert. File) 
\{...) 

which shows that two different kinds of deadlock are possible. These can be 
interpreted in terms of the software being modelled. In the case of  Deadl ,  
there is a deadlock between the mail and file transfer processes, since both the 
MailFile and FileMail buffers are full, and the two processes are attempting to 
send files to each other (a collection process is also unable to proceed, but this 
does not contribute to the deadlock). In the case of Dead2 and Dead3, there is 
a deadlock between a delivery process and the mail process, since the delivery 
process is attempting to send a forwarded mail message to the mail process, but 
the CollectMail buffer is full and the mail process is waiting for the delivery 
process to stop. The only difference between Dead2 and Dead3 is whether or not 
the MailFile buffer is full; this feature does not contribute to the deadlock. 

The real observed deadlock corresponded to Deadl ;  the other two deadlocks 
indicated a potential problem that had not been encountered in practice. For 
each deadlocked agent, the deadlock-finding facility also reported a specimen 
sequence of  actions which would cause evolution to that agent. Although inter- 
esting, this information did not shed additional light on the real deadlock: the 
suggested sequence for Deadl  (containing two file_received actions followed by 
four letter_posted actions) seemed unlikely to have led to the observed prob- 
lem. In order to investigate the causes of  both types of deadlock further, more 
experiments were performed, and these are described in the next section. 

4. Experiments on the Nature of the Deadlock 

The mail system model incorporated the (correct) assumption that electronic mail 
could both be arriving from the network and also posted by users. The cause of 
the deadlocks was investigated in more detail by checking the behaviour of  the 
model when each of  these activities happened in isolation. 

Arrival of  mail from the network can be eliminated from the model by 
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changing the File agent to be just: 

File ~f mf_remove, file_send. File 

and, given this, the revised system was found to be deadlock-free. The explanation 
is that the only remaining inter-process data flow is from user processes via the 
mail process to the file transfer process, with no looping possible - -  the mail and 
file transfer processes just act as extra buffers within the overall system. 

Posting of mail by users can be eliminated from the model just by removing 
the Collect agent from the overall system. The revised model was found still to 
contain the same potential for deadlock as before. This was reassuring because, 
in the case of the real observed deadlock, there had been no evidence that any 
users had been sending mail around the time that the problem occurred. 

After these two initial experiments, an examination of the inter-process data 
flows possible revealed two obvious ways in which looping (and thence deadlock) 
might occur: the automatic generation of error-reporting mail by the mail process, 
and the automatic forwarding of mail by a delivery process. To investigate the 
effect of these features, the next experiments involved checking the mail system 
when one or both were suppressed. 

Automatic generation of error-reporting mail can be eliminated from the 
model by changing the Mail agent to be: 

Mail def fm~emove,  rod_start, rod_stop. Mail1 

+ cm_remove, mf_insert. Maill 

Maill def cm_empty. Mail + cm_remove, mfdnsert .  Maill  

but this revised system was found to still have the same potential for deadlock 
(regardless of whether or not the posting of mail by users was also suppressed). 
Again, this was reassuring because, in the case of the real observed deadlock, 
there had been no evidence that any error-reporting mail had been generated. 

Automatic forwarding of mail can be eliminated from the model by changing 
the Deliver agent to be: 

Deliver def md_start, letter_deliver, md_stop. Deliver 

and, with this modification, a change in system behaviour was discovered (re- 
gardless of whether or not the posting of  mail by users was also suppressed). 
The revised system had potential for deadlock, but only in terms of  evolution to 
the Deadl  agent, i.e., deadlock between the mail and file transfer processes. This 
experiment indicated that automatic forwarding of mail definitely was a mail 
system feature that impacted on deadlock-proneness, albeit in a manner which 
differed from its suspected role in leading to the real observed deadlock. 

After the experimentation concerning possible deadlock causes, two more 
experiments were conducted to discover whether simple adjustments to scheduling 
within the mail or file transfer processes could eliminate deadlock-proneness. The 
first experiment involved modifying the behaviour of the mail process so that it 
no longer handled all of  the available mail messages in the CollectMail buffer 
before dealing with any mail files from the FileMail buffer (and so tending to 
increase the total amount of work within the system). The revised Mail agent is: 

Mail def = cma'emove. Mail1 + fm_remove. Mail2 

Maill a~f mf_insert. (fro_empty. Mail + fro_remove. Mail2) 
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Mail2 de=__f z. md_start, md_stop. Mail3 § z. mf_insert. Mail3 

Mail3 de_=f cm_empty. Mail + cm_remove. Maill 

which handles the two buffers in strict alternation when both contain data. The 
revised system was still prone to the same kinds of deadlock as the original 
system. However, deadlock was only possible when sending of  mail by users was 
enabled and so, apparently, the real observed deadlock would have been avoided 
had this scheduling modification been made. Such an illusion could be rapidly 
shattered, however, by making the model a little more realistic: as noted earlier, 
automatic forwarding only resulted in one mail file being sent back to the network 
but, in practice (as with the Dr Who Fan Club), it could result in more than one 
file because mail might be forwarded to several different destinations. If  the above 
Mail agent was adjusted again so that it non-deterministically placed either one 
or two files in the MailFile buffer when forwarding, the change was sufficient to 
make deadlock between the mail and file transfer processes possible again. 

The second experiment involved modifying the file transfer process so that it 
no longer handled an arbitrary number of  files received from the network before 
dealing with each file in the MailFile buffer (and so tending to increase the total 
amount of work within the system). The revised File agent is: 

File def mf_remove, file_send. File + file_received, fmSnsert.  Filel 

File1 de=f mf_empty. File + mf_remove, file_send. File1 

which handles all files in the MailFile buffer after each file has been received 
from the network. Although incorporating more sensible internal scheduling, this 
revised system did not have any better behaviour from a deadlock point of view, 
since it still had the potential for the Mail process to attempt to place more than 
one file in the MailFile buffer when the File process was already waiting with a 
new file received from the network. 

After conducting these experiments, it was clear that it was not possible to 
remove deadlock-proneness just by altering the behaviour of the existing mail 
and file transfer processes, and that rather more significant modification of the 
mail system implementation was required. The final solution adopted involved a 
reorganisation of  the system processes and their interactions, and it is described 
in the next section. 

5. The Revised Mail System 

To remove the deadlock between the delivery and mail processes, it was decided 
to partition the mail process into two separate new processes, so that mail files 
from the FileMail buffer were handled by one process, and mail messages from 
the CollectMail buffer were handled by the other process. Similarly, to remove the 
deadlock between the mail and file transfer processes, it was decided to partition 
the file transfer process into two new processes, so that files received from the 
network were handled by one process, and files from the MailFile buffer were 
handled by the other process. As well as removing deadlock potential, such a 
restructuring appeared better from the point of view of  enhancing modularity in 
the overall software system; those functions that were common to both of a new 
pair of  processes, principally protocol handling functions, were placed in shared 
libraries. The new mail system is shown below: 
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File_in FileMail Mail_in Deliver 

. .0  . I  i .0- 0 
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File_out MailFile Mail_out CollectMail Collect 
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It can be modelled by a new CCS agent incorporating four new agents in place 
of two old ones. The overall definition is: 

(Collect 
CollectMail 
Deliver 
Mail_in I Mail_out 
MailFile 
FileMail 
FileJn J File_out) 

\ ~cmJnsert, cm_remove, cm_empty, 
md_start, md_stop, 
mfAnsert, mf~emove, mf_empty, 
fm_insert, fm_remove, fm_empty} 

The new sub-agents (three of them very simple) are: 

Mail_in de~ fm_remove. (~. md_start, md_stop. MailJn 

+ T. mfJnsert. Mail_in) 
def 

Mail_out = cm_remove, mfJnsert. Mail_out 
def 

File_in = file_received, fmJnsert. File_in 

File_out aef mf_remove, file~send. File_out 

and these have an obvious correspondence to the Mail and File sub-agents of 
before (the 'empty buffer' action is no longer needed). 

The new mail system model was supplied to the CWB. Both the deadlock- 
finding facility and the model-checking facility reported that deadlock was not 
possible. Although the CCS model embodies certain simplifications, such as 
smaller buffer capacities and the fact that only one file is sent to the network for 
each mail message generated, it is reasonably clear by considering the straightfor- 
ward inter-process data flows in the new system that more sophisticated modelling 
would not reveal any potential for deadlock. 

The processes implementing the real electronic mail system were restructured 
in the above way, and no further deadlock problems were encountered, in par- 
ticular during subsequent night-time bombardments by the information-laden 
epistles of the Dr Who Fan Club. 
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6. Conclusions 

With the emergent availability of tools to assist in the analysis of concurrent 
systems, an increasing number of real-life systems are being modelled and verified 
effectively. The most common type of verification criterion is that a modelled 
system exhibits behaviour which is equivalent to the behaviour of a simpler system 
that is 'obviously correct'; for example, that a point-to-point communication 
protocol has behaviour equivalent to a simple buffer. In other cases, particularly 
where only some aspects of overall behavour are of interest, the verification 
criterion is that a modelled system satisfies a specification formulated in a modal 
logic; this style of verification was used here, in addition to checking satisfaction 
of a 'hard wired' specification of deadlock-freedom. 

It is necessary to abstract the essential features of a concurrent system in 
order to produce a model for which analysis is tractible; experience here has been 
that it is non-trivial to ensure that such abstraction is accurate, and that it does 
not omit essential details. Given that a suitable model can be obtained, this work 
has confirmed that it is very desirable to perform full and formal analysis, as 
opposed to thinking about behaviour informally, or even to just observing how a 
real system behaves. Unforeseen deadlock possibilities were discovered, and the 
experiments in section 4 sometimes revealed behaviour that was not immediately 
obvious when thinking informally. 

Although the current version of the Edinburgh Concurrency Workbench, 
like other similar tools under development, is irritating because of its inefficient 
implementation and its rather primitive user interface, there is no doubt that its 
functional capabilities are extremely useful. 

Acknowledgement 

I thank Jo Blishen, Stephen Gilmore and Faron Moller for helpful comments. 

References 

[BdR90] 

[Bou85] 

[Cle90] 

[InP91] 

[Koz83] 

[LGZ89] 

[Mar91] 
[Mi189] 
[Mor90] 

[Sti89] 
[Tan88] 

Boudol, G., de Simone, R., Roy, V. and Vergamini, D.: Process Calculi, from Theory to 
Practice: Verification Tools. Springer-Verlag LNCS 407, pp. 1-10, 1990. 
Boudol, G.: Notes on Algebraic Calculi of Processes. In Apt (ed) Logics and Models of 
Concurrent Systems. Springer-Verlag, 1985. 
Cleaveland, R., Parrow, J. and Steffen, B.: The Concurrency Workbench. Springer-Verlag 
LNCS 407, pp. 24--37, 1990. 
Inverardi, P. and Priami, C.: Evaluation of Tools for the Analysis of Communicating 
Systems. Bulletin of the EATCS no. 45, pp. 158-185, 1991. 
Kozen, D.: Results on the Propositional Mu-calculus. Theoretical Computer Science, 27, 
333-354 (1983). 
Larsen, K., Godskesen, J. and Zeeberg, M.: TAV, Tools for Automatic Verification, 
User Manual, Technical Report R 89-19, Dept of Mathematics and Computer Science, 
•lborg University, 1989. 
Marsden, B.: Communication Network Protocols: OSI Explained. Chartwell-Bratt, 1991. 
Milner, R.: Communication and Concurrency. Prentice-Hall, 1989. 
Morley, M.: Tactics for State Space Reduction on the Concurrency Workbench, Tech- 
nical Report ECS-LFCS-90-109, Dept of Computer Science, University of Edinburgh, 
1990. 
Stifling, C.: Temporal Logics for CCS, Springer-Verlag LNCS 354, pp. 660-675, 1989. 
Tanenbatml, A.: Computer Networks. Prentice-Hall, 1988. 



A CCS-based Investigation of Deadlock 

Table 1. Execution times for original CCS descriptions 

Mail system ":Ed" time "cp" time 

Original 414 28 
New 4569 1740 

Table 2. Execution times for revised CCS descriptions 

Mail system "~d" time "cp" time 

Original 177 13 
New 2331 1533 

479 

A. Details of Concurrency Workbench Use 

Version 6.11 of the Edinburgh Concurrency Workbench (CWB) was run on 
a Sun 4/690 computer with 128 megabytes of memory. For each agent anal- 
ysed, the deadlock-finding facility (the CWB "fd" command) was used, and 
the model-checking facility (the CWB "cp" command) with the proposition 
"max(X.min(Y.<-t>T I <->Y) ~z I-IX)" was used. The approximate CPU time 
in seconds required for each test is shown in Table 1. (Note that there was no sig- 
nificant difference in execution time if the simpler modal logic deadlock-freedom 
specification "max(X. <->T ~ [-] X)" was checked instead.) 

Using a further CWB facility, the "s ize"  command, it was discovered that the 
original mail system model could evolve to any of 718 distinct agents, and that the 
new mail system model could evolve to any of 1613 distinct agents; this accounts 
for the increased time to investigate the new mail system. However, further 
investigation revealed that many pairs of 'distinct' agents were only syntactically 
distinct: for example, agents incorporating the identifier "CollectMail" were 
distinguished from other agents which were identical, except for incorporating 
"Buffer [cmdnsert/insert,cm_remove/remove, cm_empty/empty]" instead. 

To avoid this problem, the auxiliary definitions of CollectMail, MailFile and 
FileMail were removed from the mail system models. The revised agents were 
reported as being able to evolve to only 405 and 1024 distinct descendent agents 
respectively. With this revision, the CPU time in seconds required for each test is 
shown in Table 2. There is a significant improvement, without any loss of function. 

To fully explain and discuss the above timings, knowledge of the internal 
operation of the CWB is necessary: such detail is outwith the scope of this paper. 
The absolute times are not especially important, since it is acknowledged that 
the present version of the CWB is experimental, and has not been implemented 
with an emphasis on efficient execution. The deadlock-finding facility is always 
slower than the model-checking facility for at least two reasons: first, it checks all 
descendent agents for deadlock-proneness; and second, for each deadlocked agent, 
it finds and displays a specimen sequence of actions which leads to that agent. The 
model-checking facility needs only to examine sufficiently many agents in order 
to determine a true/false result; here, this involves only finding one deadlocked 
descendent agent in the case of the original mail system, but involves checking 
all descendent agents in the case of the new mail system. 
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