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Abstract. In an exterior domain in R" (n > 2), the solution of the compressible 
Euler equation is shown to converge to that of the incompressible Euler 
equation when the Mach number tends to 0. The initial layer appears. 

1. Introduction 

In our previous work [8], we have shown that the solution of the compressible 
Euler equation in an exterior domain in R 3 converges to that of the incompressible 
Euler equation when the Mach number tends to 0 even if the initial velocity is not 
divergence free. The aim of this article is to generalize this result for R" (n > 2) and 
also to provide a simpler proof. 

We consider the movement of an ideal fluid in a domain f2 in R" (n > 2) exterior 
to a bounded obstacle. Let P be its pressure and V the velocity. Then the Euler 
equation is written as 

~tP +(V" V)P + TPV. V = 0 ,  

OtV +(V. V)V + 22P - 1/~VP=O, 

v.V=O on S, 

where ~ = ~/&, 7 is a constant > 1, S is the boundary of (2 and v is the outer unit 
normal to S. 2 is a large parameter proportional to the inverse of the Ma th  number 
(see, e.g., [14, p. 52]). We assume that S is smooth and f2 is arcwise connected, but 
nothing is assumed on the shape of the boundary. It is convenient to transform the 

7 p1-1/~ Then the above equation can be dependent variable P into Q = ~ 
rewritten as 

0tQ +(V. V)Q+(7-1)QV" v = 0 ,  

Otv +(v" v)v + 2zVQ=O. 

We set 7 = 2 for the sake of simplicity. We want to assume that the initial pressure 
has an asymptotic expansion of the form: Const. + O(2-1). Therefore, without loss 
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of generality, we put Q = 1 + p/A and correspondingly V = v. Then we arrive at the 
following equation: 

c~tp + (v . V)p + pV . v + 2g . v=O, 

t?tv+(v.V)v +2Vp--0, (1.1) 

v .v=O on S. 

Let H"(/2) be the usual Sobolev space of order m, whose norm is denoted by 
If" fl,,. The following assumptions are imposed on the initial data p~ and v~: 

(A-l) {(p~,v~);2>0} is a bounded set in H N+ ~(/2)c~Ll(t?), where U is an integer 
> In/2] + 3. 

(A-2) ~ (Po, %) satisfies the compatibility condition up to order N + 1. 

(A-3) Psvg--->v~ in HN(/2) as 2-,c~, where Ps is the projection onto the solenoidal 
fields to be defined in Sect. 2. 

Then our results are: 
Theorem A (Uniform Estimates). There exist constants T > 0 and A > 0 such that 
for any 2 > A, there exists a unique solution 

N 

Pa(t),v~(t) e n ck(I;HS-k(/2)), I=[0 ,  T].  
k=0 

Moreover, it obeys the following uniform estimate: 

sup ([[Pa(t)l]N+ [IvX(t)HN)< oo. 
A > A , t a I  

Theorem B (Incompressible Limit). For O<t_<_T, p~(t)-~O and v~(t)~v~°(t) in 
H1o~N-t(/2)- as ),~oo. Furthermore, v~(t) satisfies the incompressible Euler equation 

Otv*+Ps(v~'V)v~=O in /2, t e l ,  

< ( 0 )  = esvZ  = v~ .  

In [8], we have already proved the similar results in R 3. The essential point for 
proving Theorem B was the decay lemma for the linearized operator of acoustics 
[8, Lemma2.1]. However, aside from the interest of its own, the proof is 
complicated and can not be applied to the 2-dimensional case. In this paper, we 
shall avoid this difficulty by utilizing the completeness of wave operators for the 
linearized operator of acoustics in an exterior domain. 

The problem of the singular perturbation for non-linear equations of fluids is 
studied by many authors and is still developing (see the references cited at the end 
of this paper). One can see an abundance of problems in Majda's book [14, 
Chap. 2]. 

2. Proof of Theorem A 
The proof of Theorem A is almost the same as in [8]. The only difference is the 
Helmholtz decomposition. Let 

C~, ~(/2) -- {w e C~(/2); div w = 0}, 

and S(/2) be its closure in L2(~2) ". Let G(/2) be the orthogonal complement of S(/2) in 
L2(/2) ". Let PG and Ps be the projections onto G(/2) and S(/2), respectively. 
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Lemma 2.1. (1) I f  w ~ S( f2), divw = 0 in the distribution sense and v . w = 0 in H -  1/2(S). 
(2) I f  v ~ G(f2), there exists a q~ ~ H(oo(O ) such that v = Vcp. 

For the proof, see [18, p. 9] and [11, p. 27]. 
Once the above lemma is noticed, the methods in [8, Sects. 1 and 5] need no 

essential change. Lemmas 1.5 and 1.15 are not necessary in the present case. 
Lemma 1.7 follows from the estimate of [5], Lemma 5. The Sobolev inequality in 
(5.1) should be replaced by 

IIfgll,<=ctlflI~llgllt, O < _ r < _ m i n { s , t , s + t - [ n / 2 ] - l } .  

These modifications are sufficient to prove Theorem A, hence we omit the details. 

3. Proof of Theorem B 

For the solution p~(t), v~(t) of (1.1), we set f~(t)= t(p~(t), v~(t)) and 

A(f~)= (v~; V PZV "~ 
v V } '  V=(O/axl . . . .  ,a/Ox.). 

Let L be the linearized operator of acoustics in Lz(f2): 

with the boundary condition v- v = 0  on S. Then one can rewrite (1.1) as 

~?tf z + A( f ~) f ~ + i2Lf  ~ = 0. (3.i) 

We transform it into the integral equation 

t 
f *~'(t)=e-iO~L f~  - f e-i~t-s)~LA(f ~(s)) f "~(S) ds, 

o (3.2) 
= ~,PO, • 

Let F o be the projection onto the null space of L and F = 1 - -F  o. They are bounded 
in Hm(t?) (m__> 0). For f = t~, v), Fof = t(O, Psv). The first step of the proof is: 

Step 1. For t>0 ,  Ffz ( t )~O weakly in L2(Y2) as ) .~oo.  

We prove this fact at the end of this section. 

Step 2. For t>0 ,  FfZ(t)~O in Hlo~N-a(£2)- as 2~oo .  

In fact, this follows from Theorem A, Step 1 and 

Lemma 3.1. Let {f,}~=l be a bounded set in H"(t?) (m_>l). Suppose that f , ~ f  
weakly in L2(~2) as n~o~.  Then f , -~ f in H~2 I(~) as n~oo .  

Proof By Rellich's theorem, there exists a subsequence {f,,} such that f,, converges 
to some g in H~o21(~) as n ~  oe. But f = g, since f,, converges weakly to f in L2(£2). 
This shows that .f, itself converges to f in H~£- 1(£~). []  

Step3. There exists a subsequence {2~} such that FofX~(t) is convergent 
in C(I; N - 1 -  H l o c  ( ~ ) ) -  
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Indeed, by Theorem A, we have 

sup (ltrof~(t)llN+ llO~FofX(t)llN_a)< oe. 
2 > A , t ~ I  

Then, by the Rellich and the Ascoli-Arzela theorems, there exists a subsequence 
{2~} such that {Fof~(t)} is convergent in C(I; H~-2(O)). Recall the interpolation 
inequality: for a bounded set B in O, there exists a constant C > 0  such that 

Ilfllu~ ~(B)-- -< ,zN (N- x)/N cII f II~(B) II f II~(B) • 

This and Theorem A imply that 

II Foff(t) - Foff  (t) l[ n,~- ~ (R) < C II Fofa(t) - Foff  (t)II L~J)m,  

which shows that Foff~(t) is convergent in C(I; H~o[ ~(0)). 

Step 4. Let f~( t )  be the limit of FofZV(t). Note that sup [! f ~(t)!t N- 1 < co. We show 
t e I  

that 
t 

f ° ° ( t ) = f ~  - f FoA(f~(s))f®(s) ds, f~=t (O,  Psv~). 
0 

In fact, by multiplying F o by (3.2) and taking the inner product with g ~ L2(f2), we 
have 

t 

(Fof~; g) = (Fof~, g ) -  I (A(fZ)fx, Fog)ds. 
0 

Then, we have only to approximate Fog by h e C~(f2) and let 2 = 2, tend to infinity. 

Step 5. Step 4 implies that f°°(t) =t(O, v°~(t)), v®(t) e C(I;HlocN- 1(f2)),- 
sup Ilv°~(t)llN_l < co. Furthermore, v~(t) satisfies 

O,v~(t)+Ps(v~(t).V)v~(t)=O in f2, t e l ,  

v®(O)-%- ~ = Psv~ . 

Now, we know that the above incompressible Euler equation has a unique 
solution, which shows that fx(t) itself converges to t(0, v~°(t)) in Hlo~N- 1 (f2)- as 2 ~ Go. 

We turn to the proof of Step1. Taking the inner product of (3.2) with g ~ L2(t2), 
we have 

t 

( F f  ~'( t), g) = (fo ~, ei°'L F g) -- S (A ( f  ~') f ~', ei(~-~)aL Fg) ds " 
0 

A ~" We show that for t - s > O ,  ( ( f ) f ,  ei(t-~)~LFg)~O as 2 ~ c o .  Here we recall a 
notion in scattering theory. Let 

be the linearized operator of acoustics in L2(R"), and F(M) the projection onto the 
orthogonal complement of the null space of M. Then by the completeness of wave 
operators (see, e.g., [12, 13]), for any f eL2(f2), there exist f± eL2(R ") such that 

--  i t L  --  i t M  tie F f - -e  F(M)f±I[L~(a)~O as t ~ + c o .  
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Therefore, we see that  there exists an h e L2(R ") such that 

Ijei(t-s)'ZLFg--ei(t-s):ZMF(m)htlL2(~)--~O as 2-~oo,  

which implies that as 2 ~  oo 

(A( f  ;t) f ~, e i(t -s)ZLFg)= ((A(f  "~) f "l, e i{t -s)zMF(M)h) + o(1). 

Now, for any e > 0 ,  we choose an h~ such that  ~ = t h e  Fourier  transform of 
h ~ C ~ ( R " - { O } )  and ]]h-h~]I <8. Then we have 

(A( f  X) f "~, e i(t -'*)XLFg) = (A( f  ;~) f ;~, e i(t -~)ZMF(M)h~) + 0(~) . 

In view of Theorem A, we have for a constant C > 0, 

[( A( f Z) f ~', e ~(t - ~);~LFg)[ =< C( II e ~(t -~)z~F(-tvI)h~ il L~{~) + g) 

for large 2. The proof  is thus completed if we show 

IIe*(*-~)xMF(M)h~IIL~{~)--*O as 2--,oo. 

The characteristic roots of M are +I~l and 0. Let Q_+(¢) and Qo(¢) be the 
corresponding eigenprojections. Since the Fourier transform of e-~tMF(M)f is 

e-itl~lQ +(~)f(~) q_ eitl~lQ _(~)f(~), 

we have only to show the following lemma. 

Lemma 3.2. Let f(~) ~ C ~ ( R " -  {0}). Then 

~ ei(X¢-tl~t)f(~)d~L~(R,)--~O as Itl-~oo. 

The proof  of the above lemma follows from the method of stationary phase on the 
sphere, and is omitted. 

In a similar manner,  one can prove (foZ, e"ZLFg)-~O as 2 ~ o o  using the 
assumption (A-I). We have thus completed the proof  of Theorem B. 
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