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Abstract: A new approach to real-time machine vision in 
dynamic scenes is presented based on special hardware 
and methods for feature extraction and information pro- 
cessing. Using integral spatio-temporal models, it by- 
passes the nonunique inversion of the perspective projec- 
tion by applying recursive least squares filtering. By 
prediction error feedback methods similar to those used 
in modern control theory, all spatial State variables in- 
cluding the velocity components are estimated. Only the 
last image of the sequence needs to be evaluated, thereby 
alleviating the real-time image sequence processing task. 
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processing, automatic visual motion control, vehicle 
guidance 

1. Introduction 

Dynamic vision is more than fast processing of 
static image sequences. The dynamics aspect rests 
primarily in the scene observed or in the motion of 
the sensor and is independent of the image fre- 
quency; as in any sampled measurement process, 
high sampling rates are necessary for recovering 
highly dynamical changes. In vision, however, in 
addition to this, high sampling rates reduce the so- 
called correspondence problem, that is, keeping 
track of special image features or objects in space 
from one frame to the next. 
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Note that humans, when talking about dynamic 
scenes, do not converse in image terms but do pre- 
fer spatial interpretations, both in position and ve- 
locity, whenever possible. They try to see motion of 
objects in space. Motion properties of objects are 
an integral part of a person's knowledge base like 
possible shapes and colors. Similarly in the ap- 
proach described below, a direct spatial interpreta- 
tion of image sequences is achieved by using spatial 
and temporal models in conjunction. This unified 
approach in space and time is the core of the 4-D 
method developed and tested for machine vision. 
Applications are discussed in a companion paper 
(Dickmanns and Graefe 1988, this issue; p. 241). 

The immediate inclusion of temporal aspects is 
very essential since it allows a proper definition of 
state variables and the introduction of temporal 
continuity conditions for image sequence interpre- 
tation by exploiting differential equations. Geomet- 
ric shape descriptions and generic models for mo- 
tion together constitute the basis for an integrated 
spatio-temporal approach, which may be termed 
"4-D vision" or "dynamic vision." 

This means that not just objects are being seen 
but motion processes of objects in space and time. 
Note that unlike "stat ic" image sequence process- 
ing, dynamic vision has no separation between spa- 
tial object recognition from one frame to the next as 
a first step and motion reconstruction afterwards as 
a second one. Instead, object  and motion are 
treated as a unit and the least squares fit for deter- 
mining the best estimate for the object motion state, 
based on noise corrupted image sequences, is done 
in space and time simultaneously. 

As a very beneficial side effect, the need for stor- 
ing past images (e.g., for computation of displace- 
ment vector fields or optical flow) is reduced. The 
state of the scene observed is represented on a very 
high symbolic level by the shape descriptors and the 
spatio-temporal state variables including spatial ve- 
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locity components as an integral part (state vector 
components). 

This approach provides an efficient framework 
for data fusion and active control of the viewing 
direction. Angular rates are state variables directly 
and translational velocity components of the ego- 
motion are time integrals of the corresponding ac- 
celerations; both may easily be sensed by inertial 
sensors. Vision and inertial sensors have comple- 
mentary properties when used for state recognition 
under egomotion: High angular rates, causing mo- 
tion blur in the imaging process, are easily mea- 
sured inertially; slow drift rates, hard to detect in- 
ertially, are easily discovered optically. For this 
reason, many organic species have developed this 
sensor combination and corresponding control fa- 
cilities, for example, in vertebrates, the vestibular/ 
ocular measurement and control system (Dichgans 
et al. 1973; Bizzi 1974). Active gaze control, in ad- 
dition, allows the anchoring of the viewing direction 
on relatively fast moving prominent features of an 
object and thereby reduces motion blur for this ob- 
ject, If this object happens to be of special interest, 
the deterioration induced for the viewing conditions 
of most other objects may be acceptable. This fix- 
ation mode of vision also is very common in biolog- 
ical systems. In machine vision, as of course in bi- 
ological vision too, a precisely servoed gaze 
anchoring allows the reading of object angular po- 
sition from the measurement of mechanical angles 
while object shape may be determined from a qua- 
sistationary image. 

For these reasons, active fast control of the view- 
ing direction by the interpretation process is con- 
sidered essential for dynamic vision. Therefore, it 
has been included in the systems design from the 
beginning. 

The observation that in biological systems the 
sense of vision seems to be intimately linked to ac- 
tive motion control has lead us to consider motion 
control as the proper entry point for developing ma- 
chine vision. 

In hindsight, this turned out to be the right deci- 
sion since the dynamical models of modern control 
theory proved to become the cornerstone of the 
new method for dynamic vision. 

Motion control in space requires spatial or stereo 
vision. How many cameras are most appropriate for 
stereo vision? This question is still unresolved. Put- 
ting emphasis on motion and temporal integration, 
we decided to use just one camera. Spatial ambigu- 
ities may be resolved through motion stereo over 
time. In the case of active motion control, move- 
ments may be planned and executed in a way al- 
lowing to disambiguate a situation. For vehicle con- 

trol as discussed in the companion paper (this 
volume) it seems more favorable to devote a second 
camera to high resolution imaging for better farsight 
than to direct stereo. 

The considerations described above have lead to 
an approach to machine vision different from the 
mainstream of vision research originating from dig- 
ital image processing and artificial intelligence. 
Gennery (1981, 1982) has taken a similar approach. 
In recent years Broida and Chellappa (1986) and 
Rives et al. (1986) seem to be heading in the same 
direction. For a literature survey on image se- 
quence processing see Nagel (1983). 

The next section summarizes some basic consid- 
erations on computer architectures for dynamic vi- 
sion. In section 3 the nonuniform low level image 
processing schemes are described, upon which the 
approach is based. The general method for the 
higher levels of dynamic vision is developed and 
explained in section 4. Section 5 very briefly pre- 
sents application results. All four application exam- 
ples treated so far have been performed with real 
image sequence processing hardware in the real- 
time loop. More details on the implementation of 
the 4-D method, together with a discussion of the 
hardware developed, are given in the companion 
paper. 

Finally, in section 6, development perspectives 
for the future are discussed. 

2. Computer  Architecture for Dynamic  Vision 

There are basically two approaches to the design of 
a real-time vision system. One is what might be 
called the brute force approach, using extremely 
fast hardware elements and possibly a massively 
parallel structure, yielding a supercomputer with an 
impressive power in terms of the notorious MIPS 
(million instructions per second). The other one is 
to look for the inherent structure and, possibly, sim- 
plicity of the problem of dynamic vision, and to find 
a computer architecture which is well matched to 
the task of visual motion control. 

The second approach is, indeed, feasible and has 
led to the construction of a family of multiprocessor 
systems specialized for dynamic vision. The archi- 
tecture of these real-time systems is very different 
from that of a typical image processing system. In 
spite of their relative simplicity, they have proven 
to be a very powerful hardware basis for various 
real-world experiments where mechanical systems 
or vehicles were controlled by dynamic vision. 

An important concept upon which to base the 
design of a dynamic vision system is temporal con- 
tinuity. Usually, natural scenes change only gradu- 
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ally, and if two pictures of such a scene are taken 
within a few milliseconds they will normally be very 
similar to each other. 

In order to understand how the temporal conti- 
nuity of natural scenes can facilitate dynamic vi- 
sion, assume that a first TV image of such a scene 
has just been interpreted. It is then rather easy to 
interpret the immediately following image, as the 
differences between the two are very small. This 
observation has important consequences for the de- 
sign of a real-time vision system. It means that the 
task of dynamic scene interpretation becomes eas- 
ier if the time spent on each image is reduced, and 
that the task becomes more difficult if the system is 
slower. Therefore, the cycle time of the low level 
vision subsystem should ideally be less than one 
frame period of the TV signal used, making it pos- 
sible to evaluate every single image as it is delivered 
by the camera. (The higher levels of the vision sys- 
tem which operate on symbolic descriptions of the 
scene may use longer cycle times, depending on the 
dynamics of the machine to be controlled and of the 
objects in the scene.) 

Another important aspect on which to base the 
architecture of hardware for dynamic vision for mo- 
tion control is the desired output of the system: it is 
the behavior of a visually controlled machine, and 
not, as often in traditional static image processing, 
either another image or a fairly complete, perhaps 
even verbal, description of the image. 

The appropriate behavior of a vision controlled 
machine typically depends on the presence and lo- 
cation,, or absence of certain objects in its environ- 
ment. The vision task is then clearly goal directed, 
the first subtask being to locate features in the im- 
age which are indicative of the presence and loca- 
tion of important objects. It seems obvious that 
such features in many typical situations occupy 
only a small fraction of the total area of each image 
(Figure 1). It suffices then to process only those 
areas of each image which actually contain relevant 
features. 

In dynamic scene interpretation the location of 
all important features is usually known in advance 
and with fairly good precision from the interpreta- 
tion of previous images. This means that, when in- 
terpreting the next image in the sequence, the 
search space in which the feature of interest should 
be looked for is small, and the feature can be redis- 
covered rather quickly if the search is indeed fo- 
cused on this small search space. This leads to the 
probably most important point in the design of hard- 
ware for real-time vision: since nearly all the rele- 
vant information in the image is contained in a lim- 
ited number of small regions the combined size of 

Figure 1. Small regions of an image contain almost all 
information relevant for motion control. 

which is only a small fraction (often less than 10%) 
of the whole image, much will be gained if all the 
available computing power can be concentrated on 
those regions. Moreover, since each region may 
contain a different type of feature, it is important to 
be able to use different algorithms in each region. 

This shows that a conventional image processing 
system which is designed to treat all pixels in an 
image in the same way does not have the proper 
structure for dynamic vision. The same is true for 
some massively parallel computers of the single in- 
struction, multiple data (SIMD) type. Because 
these machines, too, must treat all pixels of an im- 
age in the same manner, they may waste 90% or 
more of their computing power on processing parts 
of the image which are known in advance to contain 
no relevant information. In the worst case, addi- 
tional computing power is needed to delete all the 
irrelevant data which are produced in the process. 

The concept of processing only a limited number 
of well defined regions within an image is also the 
key to a natural division of the problem into sub- 
tasks which can be executed  in parallel on a 
coarsely grained multiprocessor system. Each par- 
allel processor in such a system can be assigned one 
relevant region, and it can locate--independently of 
all other processors--the associated features in that 
region. Such a system not only has a very clear 
structure (one region--one group of features--one 
subtask--one processor), but it can also be very 
efficient, since the parallel processors do not have 
to spend time synchronizing or coordinating each 
other. 

An important key to this concept is that the size, 
shape, and location of each region may be varied 
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during the interpretation process in a data depen- 
dent way. Each region will normally be continu- 
ously adjusted in such a way as to completely con- 
tain a relevant feature or object. If the regions were 
fixed, the system would be much less efficient for 
two reasons. First, ~some regions would contain no 
relevant information but would nevertheless absorb 
computing power; secondly, some features or ob- 
jects would be dissected by the borders between 
regions, creating the difficulty of detecting and in- 
terpreting arbitrarily dissected parts, representing 
them internally, and finally recombining them into 
objects. 

Architectural details of a family of vision systems 
designed according to these concepts are given in 
the companion paper (this volume). 

3. Feature Detection and 
Tracking Algorithms 

In a dynamic vision system as discussed here, the 
time available for feature extraction is limited to 
about 50 ms per image. In order to evaluate every 
available image, the time should in fact be limited to 
less than one frame period of the TV camera (17 
ms). An image contains (roughly) l05 pixels, and 
standard image processing methods require many 
operations per pixel [Reddy (1978) has estimated 
that 1000 operations per pixel are required for 
segmentation]. It is therefore obvious that speed is 
a most critical characteristic of any feature extrac- 
tion algorithm for dynamic vision. 

Two powerful approaches are available to maxi- 
mize the speed of feature extraction in dynamic vi- 
sion: application of advance knowledge, and a strict 
concentration on obtaining that, and only that, in- 
formation which i s  necessary to accomplish the 
given task. In other words, only a relatively small 
number of carefully selected relevant features 
should be extracted depending on the situation and 
on the requirements of the task; knowledge should 
be applied to maximize the efficiency in processing 
the selected features. 

Both approaches emphasize the difference be- 
tween static image processing and dynamic vision. 
In static image processing very little is often known 
in advance of the image presented to the system. 
The task then is to extract as much information 
from the image as possible. This is very different 
from dynamic vision, where each new image is 
known to be a natural continuation of a sequence of 
images which the system has interpreted already; 
differences relative to the previous image are to be 
expected in small details only. Most of the time the 
feature extraction has to answer only a small num- 

ber of precise questions relating to one or another of 
the small differences, such as how much and in 
which direction did a certain feature move in a small 
fraction of a second. 

These two approaches will be discussed in more 
detail in the sequel. 

3.1 Task Specific Feature Extraction 
Limiting the number of features to be processed is 
not meant to exclude useful redundancy, which is 
absolutely necessary for any robust system, but 
rather to avoid wasting time or computing resources 
on processing irrelevant parts of a scene. All the 
available resources in a dynamic vision system 
should be concentrated on obtaining that informa- 
tion which is necessary, or at least helpful, to ac- 
complish a certain task, usually the control of a 
moving system. The point is to extract only task 
relevant features and not every conceivably ex- 
tractable feature. In the applications described in 
the companion paper, never more than about 10 
features were needed, and 1000 features will prob- 
ably be sufficient to handle rather complex scenes. 

One of the problems which must be solved in the 
design of a dynamic vision system for a specific task 
is defining and selecting the relevant features. This 
is best done in a top-down approach, starting from 
the task the vision system is supposed to execute. 

For balancing an inverted pendulum on an elec- 
tric cart, which is a simple but typical example, it is 
sufficient to know the coordinates of two points on 
the rod as a function of time. If the coordinates of 
more points are available, this provides valuable 
redundancy which can be used to make the system 
more robust. On the other hand, nothing can be 
gained for the performance of the system by ana- 
lyzing the background or the floor. All the available 
computing power should, therefore, be concen- 
trated on locating various points of the rod. 

Similarly, in the docking experiment discussed in 
the companion paper, the docking partner can be 
recognized and its relative position can be esti- 
mated by localizing corners of its contour in the 
image. Analyzing the entire contour might provide 
useful redundancy, but certainly all background 
features are irrelevant and should be ignored in the 
interest of efficiency. 

Defining all features relevant for an autonomous 
vehicle in a natural environment is more difficult 
because of the great variety of situations it may 
encounter. It is, however, easy to see that large 
parts of a typical scene will never contain any rel- 
evant information, such as the mountains and the 
sky in Figure 1. Certain features will always be rel- 
evant, for instance, grey level edges which are char- 
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acteristic of the borders of the road or lane, while it 
is not clear yet what kinds of other features may be 
relevant for the detection and classification of ob- 
stacles in certain situations. A pragmatic approach 
is to start with relatively simple scenes, such as an 
empty freeway, where the number of relevant fea- 
tures is small and their nature is obvious (borders of 
the road or lane), and then, as experience is accu- 
mulated, admit more complexity, like obstacles, 
other vehicles or intersections. 

In any case, the key point is that the low level 
part of a dynamic vision system should process only 
those features which yield information actually re- 
quired by the higher levels. The requirements of the 
higher levels are derived from the desired perfor- 
mance of the machine to be controlled. 

3.2 Knowledge Based Feature Extraction 
Typically, although there are a few exceptions, the 
appearance of a dynamic scene changes only grad- 
ually; this is due to the inertia and limited energy of 
all massive objects. In a sequence of TV images of 
such a scene it is, therefore, possible to predict the 
appearance of each new image from the previous 
images. Predicting the entire image would be expen- 
sive, and usually it suffices to predict the location, 
and possibly the appearance, of a limited number of 
features, like edges, corners, etc. The prediction 
will not be perfectly correct, but that is not neces- 
sary. All that is required is that the remaining 
search space, which corresponds to the uncertainty 
area of the prediction, be sufficiently small to com- 
plete the actual search for the feature within one 
video cycle. As most features in typical scenes 
move by at most one or two pixels between two 
successive images, a "zeroth order prediction," 
where it is assumed that the feature will reappear at 
the same location as in the last image, will often be 
sufficient. In exceptional cases with very fast mov- 
ing objects (e.g., the inverted pendulum in the start- 
up phase or after an extreme external disturbance) a 
"first order prediction," which also takes the esti- 
mated velocity of the feature into account, may 
sometimes be more appropriate. It should be noted, 
however, that the motion blur caused by all normal 
TV cameras places a natural limit on the admissible 
velocity of features in an image. 

Such a prediction-and-correction method has 
been the key to the success in balancing the in- 
verted pendulum. It was used there in combination 
with an ad hoc method for locating the pendulum in 
the image, based on an anisotropic, nonlinear filter. 
The filter took into account the effects of motion 
blur, caused by the sometimes rapid motions of the 
system (Haas and Graefe 1983). Such a fairly so- 

phisticated method was necessary to cope with 
such problems as camera shading, irregular lighting, 
camera and electronic noise, and the high speed of 
the mechanical system. Applying the filter in the 
entire image in real time would have exceeded the 
capabilities of even very powerful computers. By 
predicting the location of the pendulum in the image 
using either a zeroth or a first order prediction, de- 
pending on momentary velocity, the search space 
was reduced to less than 1% of the image. Two 
eight-bit microprocessors were then sufficient for 
the task. 

As a more general realization of the prediction- 
correction concept,  the method of  "control led 
correlation," sometimes also referred to as "intel- 
ligent correlation," has been developed (Kuhnert 
1986a, 1986c, 1988). First real-time results obtained 
with this method (road tracking and obstacle detec- 
tion from within a simulated autonomous vehicle) 
were reported in Kuhnert and Zapp (1985). 

Correlation is the basis of many visual trackers. 
It is, however, not often used in computer vision, 
probably because it is considered computationally 
expensive. In its discrete non-normalized form, the 
2-D correlation function C is defined as 

Ci,j = E E Ii+kd+l " Mk,l 
k l 

k =  - K . . . K ; l =  - L . . . L  

The essence of correlation is that a 2-D reference 
pattern M (the "mask") ,  which is usually much 
smaller than the image, is laid over the image I (2-D 
array of gray-level values), where each element of 
the mask is multiplied with the corresponding pixel 
of the image, and the products are summed, yield- 
ing a correlation value corresponding to the position 
(ij) of the mask. The process is then repeated for all 
positions of the mask relative to the image, yielding 
a correlation function. If a region in the image re- 
sembles the reference pattern, the correlation func- 
tion has a peak at that location. Thus, correlation 
can be used to find such regions. 

If there are n pixels in the image and m elements 
in the mask (m ~ n) the computation of the corre- 
lation function requires almost m �9 n multiplication, 
which usually is a very large number. After the cor- 
relation function has been computed, it has to be 
searched for the relevant peaks. Because of the 
large number of correlation values this search is 
expensive, too. 

On the other hand, correlation has some very 
desirable properties. It is very flexible in the sense 
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that any pattern can be used as a mask and thus be 
looked for in the image. Most importantly, how- 
ever, correlation is robust against noise. From com- 
munication theory it is known that correlation is the 
best linear method to detect a signal in the presence 
of additive ergodic white noise. 

Noise is a severe problem in feature extraction. 
It may exist in many forms, for example, camera 
noise (time varying and fixed pattern), electronic 
noise in the analog part of the vision system, round- 
ing errors in the digital part, irregular lighting, shad- 
ows, dirt covering parts of a scene, or branches of 
trees moving in the wind. It causes many feature 
extraction methods, which work well in noise-free 
synthetic images, to break down in natural scenes. 
Not all the kinds of noise which impede the pro- 
cessing of natural scenes can be considered addi- 
tive, ergodic, and white. But, nevertheless, corre- 
lation is certainly a good candidate for a noise 
resistant feature extraction method. This is sup- 
ported by results of an investigation (Kuhnert 1984) 
where several edge detectors were compared with 
the human visual system with respect to their ability 
to detect edges in synthetic pseudo-noise images. 
The correlation-based operators reproduced the 
abilities of the test persons more closely than any of 
the other ones. This observation adds to the attrac- 
tiveness of correlation, since the human visual sys- 
tem is one of the best vision systems known. 

Several types have been taken to reduce the 
computational cost of feature extraction by corre- 
lation, leading to "controlled correlation" and mak- 
ing it a very efficient method for dynamic vision. 
The first step is to correlate the mask only with a 
small region of interest which includes the predicted 
location of the feature, rather than with the entire 
image. This alone can reduce the required effort by 
more than two orders of magnitude. 

If only elementary features such as edge ele- 
ments are searched, the correlation masks can be 
small and, moreover, a small set of masks is suffi- 
cient to cover all possible orientations of short edge 
elements. If, on the other hand, complex features or 
even images of entire physical objects are looked 
for, the masks, in general, will be larger and many 
different ones will be needed to cover various sizes, 
orientations, aspect angles, and illumination condi- 
tions of a single class of feature or object. In regard 
to efficiency, short edge elements are therefore ex- 
cellent features to base an image analysis on. They 
may be used in subsequent steps to construct longer 
edges, while still higher levels in the system may 
use knowledge to combine several edges, recon- 
structing 2-D images of objects and finally the 3-D 
objects and their motions. This result perhaps bears 

a relationship with the findings of Hubel and Wiesel 
(1959) indicating that vertebrates also have recep- 
tive fields in their visual system which are tuned to 
short edge elements with specific orientations. 

Depending on the situation, choosing an appro- 
priate path along which to look for a correlation 
peak often helps to gain additional advantages. It 
should be remembered that one is not really inter- 
ested in the entire correlation function, but only in 
the location of that peak which corresponds to the 
correct feature, or, considering the effects of noise 
and of possibly existing false features in the vicinity 
of the desired one, of a small number of candidates 
for the correct peak. If a good search path is cho- 
sen, all good candidates for the correct peak can be 
found quickly and the search can then be discontin- 
ued. 

Correlation masks often contain elements whose 
absolute magnitude is much smaller than that of 
others. The correlation function, and in particular 
the locations of its peaks, do not change much if 
these small values are replaced by zero. It is possi- 
ble to implement the correlation method in such a 
way that mask elements of value zero are skipped in 
the execution of the program and do not cause any 
operation of the computer at all. Setting many mask 
coefficients to zero will then reduce the number of 
operations to be executed, making the resulting al- 
gorithm faster. Masks of  this type are called 
"sparsely populated." It is important to notice that, 
when sparsely populated masks are used, the com- 
putational cost of the algorithm does not depend on 
the extent of the mask, but only on the number of its 
nonzero elements. 

Most correlation algorithms cause the computer 
to spend much time generating addresses and 
checking loop termination conditions. If all ad- 
dresses are computed during compilation and if 
loops are avoided altogether, a much faster program 
results, consisting of only one (very long) linear 
piece of code. An additional step of optimization 
applies only to computers like the BVV 2, which 
require much more time for a multiplication than for 
an addition (the coprocessor of the BVV 3 is differ- 
ent, it multiplies and adds simultaneously). The fact 
is utilized that even very coarsely quantized corre- 
lation masks, if they meet certain symmetry condi- 
tions, are almost as effective as finely quantized 
masks (Kuhnert 1988). This is true even for ternary 
masks which contain only elements with values of 
-1,  0, and + 1. Such masks can be realized by 
algorithms which perform subtractions and addi- 
tions only. 

Figure 2 shows an example of controlled corre- 
lation as it is used to track the left shoulder of a road 
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soil 
border of ~ / 
pavement / ~ ,  ~ /~< .......... predicted 

" / ~ / ~  ' "  ) ' ~ .  painted white 

)~ local peaks of correlation function 

Figure 2. Using controlled correlation in order to find the 
left shoulder of a road. [The figure shows a very small 
section of the total image where the dark road surface 
borders the brighter soil. In the mask, " + "  represents a 
value of + 1 and " - "  a value of -1.  The five search 
paths together constitute the region of interest.] 

from within a vehicle; the figure shows a small sec- 
tion of the image. A white line is painted on the road 
near the border  of the pavement.  The feature 
looked for is the right edge of the painted white line. 
Its predicted location and direction are indicated as 
a dashed line. The region of interest is centered 
around the predicted edge; its size is 2016 pixels 
(3% of the entire image). The mask is also indicated 
in Figure 2; it contains 14 nonzero elements. The 
correlation function is initially computed along a 
search path beginning near the lower corner of the 
region of interest and ending near its left corner. 
The search path is a straight line perpendicular to 
the predicted edge. Of the peaks found on the 
search path either the first peak of significant size or 
the "bes t"  peak is accepted as a border point. 

In natural scenes it is sometimes difficult to dis- 
criminate between a valid peak and noise effects or 
irregularities in the scene. Therefore, several algo- 
rithms are available to select a "bes t"  peak of the 
correlation function; one of them may be chosen 
during runtime according to the situation. 

All masks constituting the initial search path 
form a mask set. The search is repeated four more 
times on parallel search paths, using the same mask 
set, shifted to the upper right by six pixels each 
time, yielding altogether five border points. 

In Figure 2 it is assumed that the white line is not 
clearly visible everywhere. It is, therefore, missed 
by the third search path, and the border of the pave- 
ment is found instead. It happens frequently in dy- 
namic vision that a feature is missed temporarily 
and it is questionable whether an error-free feature 
extraction is at all possible. Fortunately, such er- 

rors usually do not persist and in one of the next few 
images the lost feature or an equivalent one will be 
available again. In reality any robust system will 
have to use redundancy and world knowledge to 
handle such errors as a matter of routine. In any 
case it is up to the higher levels of the system to 
handle such a situation, for example, to recognize 
the outlying point and to eliminate it, or to tolerate 
the error. A more sophisticated version of the fea- 
ture extractor could be designed which would not 
accept the edge of the pavement instead of the 
white line (Kuhnert 1986c); it would, however, run 
more slowly. It should be realized that, because of 
the transient nature of such errors, in dynamic vi- 
sion the total system performance may well be bet- 
ter with a fast algorithm for feature extraction 
which occasionally makes errors, than with a less 
error prone, but slower algorithm. 

The controlled correlation as described requires 
less than 33 ms on the 8086 microprocessor of the 
BVV 2. A similar algorithm employing only three 
paths instead of five runs in less than 16 ms. Vari- 
ous versions of this method have been used in dif- 
ferent applications, among them the automatic air- 
craft landing and the autonomous road vehicle 
described in the companion paper. They have also 
been tested extensively in laboratory simulations 
where videotapes and 8 mm films taken from within 
a landing airplane and from cars driving on free- 
ways or in cities, were played back and analyzed in 
real time (Kuhnert 1986a; Eberl 1987). These exper- 
iments were greatly simplified by the robustness of 
the algorithms. It was not even necessary to syn- 
chronize the film projector with the TV camera of 
the vision system which picked up the projected 
images from a screen; the features could be tracked 
reliably in spite of the severe fluctuations in bright- 
ness of the digitized TV images caused by the lack 
of synchronism. 

Controlled correlation can also be used to track 
features other than edge elements, for instance, cor- 
ners. Figure 3 shows an example (Kuhnert 1988) 
based on a very simple mask. Applying the mask 
once takes about 50 ~s on an 8086 microprocessor. 
The mask works quite well, even if a comer is ro- 
tated slightly or if the enclosed angle is not exactly 
90 deg. The problem is that the response it gives for 
a perfect match is only twice as high as the response 
for, say, a straight horizontal edge. This lack of 
selectivity is both an advantage and a disadvantage. 
If a mask is not very selective it will yield many 
false responses in a natural scene. If the mask is 
very selective (such a mask can easily be con- 
structed by increasing its size), very large mask sets 
are needed to cover all possible angles and orienta- 
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Figure 3. Detection of corners in a noisy image of a natural scene by correlation with a small ternary mask. Upper left: 
Original image (photo from the monitor of an image processing system); the figure shows only a small section of the entire 
image. Lower right: The correlation mask; " + "  represents a value of + 1 and " - "  a value of - 1 ; the shading shows 
the theoretical prototype corner of the mask. Upper right: Visualization of the correlation function; bright areas corre- 
spond to positive values and dark areas to negative values. Lower left: selected contours and the greatest maxima of the 
(non-normalized) correlation function; the numbers indicate the magnitudes. [The image stems from an 8-mm movie, 
taken from within a moving car; it has been projected onto a screen, picked up with a TV camera (262 TV lines) and 
digitized with 8 bits of resolution.] 

tions of  corners.  This problem has to be investi- 
gated in greater  detail, but probably  it is bet ter  to 
look for  two intersecting edges separately  and then 
compute  the point and angle of  intersection, rather  
than looking for each specific type of corner  di- 
rectly. 

Corners  have been used as features in the vehicle 
docking exper iment  (W~insche 1987; Kuhner t  1988). 
The method was knowledge based; however ,  it was 
not based  on correlation. The contours  of  visible 
o b j e c t s  w e r e  e x t r a c t e d  and  m a x i m a  in the i r  

" c u r v a t u r e "  were  t aken  as co rne r  points .  This 
method was implemented  on the older BVV 1 and 
cannot  be general ized easily. I t  is, however ,  also 
based on the concept  of  predict ion and correct ion,  
predicting the location of  the corners  in the image 
and analyzing only those  par ts  o f  the con tours  
which are close to the predicted locations. 

3.3 Feature Detection 
So far it has been  assumed  that  the posit ion of  a 
feature  in the image can be predic ted  using the 
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knowledge gained from processing the immediately 
preceding images. This is usually true, but there are 
at least three exceptions: the initialization phase, 
the recovery after a feature has been lost, and the 
appearance of a new object in the scene. What 
makes the initialization phase manageable, is the 
fact that it is not time critical. It is difficult to make 
general statements about the initialization phase, 
but enough scene- or task-specific knowledge can 
usually be built into the system to avoid searching 
the entire image for each single feature that is 
needed~ In the case of the inverted pendulum, a 
horizontal search path through the center of the im- 
age will find the pendulum, and in the case of a road 
vehicle it can, perhaps, be assumed that the vehicle 
is initially standing on a road, oriented nearly par- 
allel to it. This limits the regions in the image, where 
the borders of the lane can be expected, sufficiently 
for efficient search. 

It is :normal for a feature being tracked to get lost 
once in a while, for example, the center edge ele- 
ment in Figure 2 or the border of the road when 
passing under a bridge while the auto-iris has not 
had time to adjust to the darkness. Usually, a lost 
feature will soon reappear near the location where it 
has been found last or near a location which can be 
easily predicted using adjacent features. If this does 
not happen soon enough, or if the feature tracker 
locks on to a wrong feature, higher levels in the 
system, which have a more comprehensive knowl- 
edge of the situation, must guide the feature extrac- 
tion level to reacquire the lost feature. W~nsche 
(1983, 1987) has shown that this can be done very 
effectively, yielding a remarkably robust system. 

The discovery of objects which suddenly enter 
the scene is of a different nature and often difficult, 
in particular if little is known regarding the visual 
appearance of the new objects and the region of the 
image where they will first be visible. An example is 
the discovery of obstacles which might obstruct the 
path of a vehicle. What makes this class of prob- 
lems particularly difficult is that, unlike in the ini- 
tialization phase, only a small amount of time is 
available. 

4. Feature Based 4-D Dynamic Scene 
Analysis Using Integral Spatio-Temporal 
World Models 

In the previous section it has been shown how sim- 
ple elementary features can be extracted efficiently 
in a robust manner at video rate with relatively 
modest computing power. But what are these sim- 
ple features good for? They receive their signifi- 
cance from a method which is able to provide a link 
from 3-D features on objects moving in space to 2-D 

features in the image. Straight contour elements are 
especially suited for this purpose since on a proper 
scale many objects have straight or nearly straight 
contour elements and zero curvature is an invari- 
ance property under perspective projection. 

As caricatures show in a most impressive way, 
lines and curves do carry most of the information 
characterizing a scene. If the linear features (con- 
tour or edge elements) detected are considered to 
be tangents to curves, they constitute very general 
elements for shape description in differential geom- 
etry terms (Dickmanns 1985a). If sets of features in 
the image move in conjunction, it can be hypothe- 
sized that they belong to the same object, though 
there are exceptional cases where this may not be 
true. 

Objects in the real world may be described as 3-D 
shapes realized by a massive substance having a 
center of gravity. The dynamical models for motion 
of and around the center of gravity (CG) of a phys- 
ical object are combined with representations of its 
3-D shape, emphasizing the position of (contour el- 
ement) features relative to the CG. Feature group- 
ings (aggregations) in the image, interpreted as a 
perspective map, are used to recognize objects in a 
3-D scene. However ,  only in the initialization 
phase, if at all, is this done in the usual nonunique 
inverse way. If the type of scene is known a priori, 
forward perspective mapping of generic models and 
adjustment of model and relative position parame- 
ters is done until the measured image is matched or 
until the model pool is exhausted. Once the real- 
time phase has been initiated, only the model based 
approach is applied. Up to now, features used have 
been limited to linear contour elements (edge ele- 
ments) and corners. A theory for efficient curvilin- 
ear shape representation has been developed and is 
presently under investigation (Dickmanns 1985a, 
1985b). 

Figure 4 shows a juxtaposition of the conven- 
tional method in image sequence processing (top) 
with the integrated 4-D approach (bottom). In the 
former, a considerable amount of computation is 
done in image coordinates and in inter-image com- 
parisons, whereas in the latter a 4-D representation 
of a model world is being maintained in the inter- 
pretation process and servo-controlled by measure- 
ment data from the last image of the sequence only. 

This model based prediction-error-feedback of 
feature positions has several advantages: no differ- 
encing between noise corrupted images of a se- 
quence is required for obtaining velocity compo- 
nents (as in optical flow computation). Motion 
interpretation does not have to be done in image 
coordinates first with a reinterpretation in space af- 
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Two ways for image sequence processing in computer vision 

World {1) 

3 D -space 
& time 

Re- act 

2 D-image h 

2 O-image ~ 
t2 

" I --4 

Computation 
in image- 
coordinates 
over several 
frames 

L-storage 

~retrieval 

Backward 
[nferencing 
for motion in 
space I-not ] 

Lumquej 

time detay in 
results 

-----> good for bootstrap 

World 11) 

3 D- space \ 

&time \sens0r~- ! 

i n t e r ~  2 

- I__ 

a , ~  4 D-World- (7) 
/ / I m~ c~ 

/ . . . . . .  / / i computingj space 
/ model-~aptatbn / / I o . .  

- t /  I steady comp . . . . . .  ~ , ,  I / L (oiff.eqs) 
/Prediction 

D-measured]~__~t2 D-Model- 
image- ~ ~ image- ~ 

sequence I'--/t seauence Processmodel 
' I ( recurs ive,  synchronous) 

--=)best suited for realtime action 

Figure 4. Two basically different methods of image sequence processing. 

terwards; instead, all interpretation is immediately 
performed in the 4-D space-time continuum. 

Similar to using shape models for object recog- 
nition, temporal models appear to be of great ad- 
vantage for motion parameter recognition: As the 
term recognition tells, the interpretation process 
does have background knowledge of what it is going 
to "see ,"  at least as a generic class from which 
special objects are being instantiated through data 
based hypothesis generation. This usual approach 
for shape recognition has been augmented by asso- 
ciating the object with its environment and the 
viewing conditions for image sequence taking: If the 
object is at rest and the camera moves, a generic 
dynamical model with state variables x for the cam- 
era motion is introduced; if the camera is at rest and 
the object moves, a model for this motion is se- 
lected. In both cases physical motion constraints 
and optional control or disturbance inputs are in- 
cluded. (The case where both camera and object are 
moving is much more difficult and presently under 
investigation.) 

The general standard form of a generic dynamical 
model is a set of n differential equations for n state 

variables, usually nonlinear, sometimes with time- 
varying coefficients. As in modern control theory 
for sampled systems, locally linearized approxima- 
tions with transition matrices for the sampling pe- 
riod T and influence coefficients for the control are 
being used. All coefficients are assumed to be con- 
stant over T. This basic cycle of period T for model 
based measurement interpretation and control ac- 
tion has been selected around 0.1 s (10 Hz); the 
more complex situation analysis on a higher level 
may be slower. 

The goal of basing visual process recognition on 
an integral spatio-temporal world model is three- 
fold: 

. 

2. 

. 

Eliminate the need to access past images 
Determine spatial velocity components  by 
smoothing numerical integration 
Bypass the nonunique inversion of the perspec- 
tive projection by doing recursive least squares 
state estimation exploiting the Jacobian matrix 
of the measured image features (their partial de- 
rivatives with respect to the state variables of the 
dynamical model). 
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This matrix contains rich information for the direct 
interpretation of feature prediction errors in spatial 
coordinates; this information becomes accessible 
through the measurement model including perspec- 
tive projection and sensor properties. 

One might say that the problem of dynamic scene 
analysis is solved by doing a servo-controlled syn- 
thesis, based on feature-prediction-error feedback, 
using generic world models for shape, motion, and 
the measurement process. This is in contrast to to- 
day's common approaches that try to achieve geo- 
metric reconstructions from several images (shown 
schematically in the top part of Figure 4). 

The recursive estimation based on the smoothing 
numerical process of integration proceeds as fol- 
lows: An estimate 2 of the complete state vector x 
describing the process to be interpreted is assumed 
to be given; this hypothesis generation in the initial- 
ization phase is a hard task in partially or fully un- 
known environments. Knowing the n vector 2 and a 
dynamical model of the process in the discrete form 
for sampled measurement and control, a state pre- 
diction x* for the next measurement at time (k + 
1)T can be made 

x*[(k + 1)T] = A[k]2[kT] + Bu[kT] (1) 

A is a n .  n state transition matric over one sampling 
period T and B is the n �9 q control effectiveness 
matrix for the q components of the control vector u 
assumed to be constant over one period T. 

If the shape of the objects observed and the rel- 
ative geometry is known, maybe even described in 
terms of state components x*, the predicted position 
y* of features in the next image can be derived by 
forward application of the laws of perspective pro- 
jection exploiting a model of the actual camera used 
for measurement. In general, this will be a nonlinear 
relationship containing measurement parameters p 

y* --- f(x*,p) (2) 

Both the process modeled in Eq. (1) and the mea- 
surements will be corrupted by noise, designated 
v(kT)  for Eq. (1) and w(kT)  for the measurements. 
The problem is to determine best estimates for the 
state 

x = x* + 8x (3) 

given the measured quantities 

y = f ix ,p)  + w (4) 

Assuming that the influence of the noise is small 

and its average is zero, a linearized relationship be- 
tween y, y* and x,  2 may be a good approximation 
to reality 

g y = y  - y *  

= f(x* + aSc,p) + w - f ( x * , p )  

Of(x*,p) 
- - ~ 2 + w  

Ox* 

= C~2 + w (5) 

Note that the Jacobian matrix C contains the m �9 n 
partial derivatives of the m measurement quantities 
y* as predicted, relative to the state variables x in 
3-D space including the spatial velocity compo- 
nents. 

Figure 5 shows the physical meaning of the C 
matrix (some components) for a simple top-down 
view by the reader onto a camera at point P imaging 
a rectangular box O o. The present state is given by 
the distance r and the polar angle coordinate v to the 
center and the angular orientation tb of the object 
around its center. In the image plane (normal to r 
and to the plane containing the figure as shown) the 
edges of the box, designated Mm, M20, and M30, 
may be tracked laterally by three line element fea- 
tures. In the two subfigures at the bottom of Figure 
5 (exploded view with 90 deg plane change), the 
feature position in the image is shown for the nom- 
inal state vector (index 0) and for state vectors with 
perturbed components, one each individually: 

1. Radial translation (index r) 
2. Azimuthal translation (index v) 
3. Rotational displacement (index q~) 

the left subfigure shows the feature displacements 
gYzi for feature 2 for each perturbation in one state 
variable keeping the other ones at the nominal 
value; the fight subfigure shows the same for fea- 
ture 1. 

Combining the state variable change, for exam- 
ple, ~r, with the feature position change (~Ylr), one 
obtains the partial derivative: for example �9 

Cylr  ~- aylJar 

Performing this analytically, based on the 4-D 
model for all features and all feature coordinates 
(besides the image coordinates Y8 and zB, a rota- 
tional feature angle q~R may also be measurable) 
with respect to all state components yields the C 
matrix. It is rich information provided by the inte- 
gral spatio-temporal world model which allows the 
bypassing of the nonunique inverse perspective 
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feature displacements due to state changes 
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Figure 5. Physical meaning of C matrix elements for recursive least squares state estimation by 4-D vision. (a) Object and 
imaging geometry, nominal and perturbed. (b) y position shifts for feature 2. (c) y position shifts for feature 1 due to 
singular state changes. 

transformation. In fact, it allows going to a 4-D rep- 
resentation of the scene observed from the image 
data in just one step. This is performed recursively, 
based on data from the last image only. Besides 
exploiting this information for state estimation in a 

numerical (procedural) way, it may also be used for 
spatial reasoning and general inferencing in a super- 
visory process on hierarchically higher levels. The 
recursive least squares state estimation is done us- 
ing well-known techniques: If the covariance matri- 
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ces of the noise processes v and w are known, Kal- 
man filter techniques or derivatives thereof may be 
used (Bierman 1975; 1977; Maybeck 1979). The new 
best estimate 2 then becomes 

= x* + K(y - y*) (6) 

where the gain matrix K for innovation is deter- 
mined depending on the method used; sequential 
formulations well suited for time varying measure- 
ment vector lengths, such as those due to occlusion, 
are available (Wfinsche 1987). One set of equations 
for the K update showing the role of the Jacobian 
matrix C is given below: 

K ( k )  = P * ( k ) C T ( k )  [C(k )P*(k )CT(k )  + R(k)]- 

P * ( k )  = A ( k  - 1)P(k - 1) + Q ( k  - l) (7) 

P ( k -  1)= P* ( k -  1) - K ( k -  1)C(k- 1)P* ( k -  1), 

where Q = covariance matrix of process noise 
R = covariance matrix of measurement 

noise 
P*(0) is selected according to the confi- 

dence in the initial values x*(0). 
Figure 6 shows the recursive 4-D image sequence 

interpretation method in the form of a block dia- 
gram. At the top left the real world is sensed by a 

television camera (TV) the video signal of which is 
digitized by the image sequence processing system 
BVV and given onto a video bus. In the initializa- 
tion mode, the processors of the BVV are coordi- 
nated to do a feature search over the entire search 
space; based on the distribution and orientation of 
the features found, object hypotheses are generated 
consisting of shape, relative position, and angular 
orientation components (upper right). The 3-D 
shape instantiation proposed is transferred into the 
"geometric reasoning" block of the 4-D real-time 
world representation (center of Figure 6, "world 2" 
in the interpretation process); the relative position 
and orientation estimates are installed as the initial 
conditions for state prediction together with the 
proper dynamical model (lower center left). The 
predicted state of the CG motion is combined with 
the shape description of the object (shown as a cir- 
cled "and"  (A) sign in the geometric reasoning box) 
to yield the internal representation of this object at 
the point in time when the next measurement is 
going to be taken. According to this state the visi- 
bility of various features is checked and those 
which are best suited for relative state estimation 
are selected for tracking (upper line of geometric 
reasoning block). This automatic dynamic alloca- 
tion of processing power to meaningful areas of in- 
terest, decided upon at a high interpretation level 
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Figure 6. Block diagram showing the information flow in 4-D recursive state estimation for dynamic machine vision. 
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with a rich world representation as a basis for in- 
ferencing, is considered to be most beneficial for 
efficient dynamic scene analysis. It has been devel- 
oped in (W~insche 1987): The determinant of the 
pseudo-inverse of the properly scaled and weighted 
C matrix as occurring in a Gauss/Markov estimator 
formulation is maximized by selecting different fea- 
ture combinations (global version); in a local ver- 
sion suited for real-time application, single features 
are substituted by other ones, one at a time, and the 
local maximum always is adopted. 

The features selected are communicated to two 
locations: 

1. To the BVV system for attention focussing and 
nonuniform image processing 

2. To the perspective mapping module within the 
geometric reasoning block for computing the 
"model image" as the reference for prediction- 
error-feedback. 

Note that at this point the Jacobian matrix C [Eq. 
(5)] is computed which is instrumental for bypassing 
the nonunique inversion of the perspective 3-D 
2-D mapping by recursive least squares filtering; the 
matrix C contains all the essential first order depen- 
dencies needed for intelligent interpretation of the 
measured feature data, given the scene model. 

The difference between the measured and the 
predicted feature positions, formed at the circle 
designated with A (upper right) in Figure 6, is used 
for adapting the model state to the measurements. 
First, outlyers are removed exploiting a confidence 
measure which later on results from the estimation 
process itself. Note that through proper use of the C 
matrix the accepted feature measurement data are 
directly interpreted in spatio-temporal state vari- 
ables (3-D position, orientation, and velocity com- 
ponents). 

The interpretation process is monitored through 
prediction error checking (at the A circle, upper 
right). If systematic errors occurring over longer 
periods in time are detected, parameters of the 
model may be changed or other models may be ac- 
tivated. Up to now this has been done off line but 
will be done on line in the future. 

If the prediction errors converge initially and re- 
main small thereafter, the process is considered to 
be recognized. Note that shape and motion are rec- 
ognized simultaneously assuming the model param- 
eters to represent the invariant properties even 
though the image features may change continu- 
ously. 

Knowledge of the complete state vector allows to 
apply state feedback controllers for high perfor- 

mance (lower left). There may be a direct feedback 
for fast reflex-like behavior. By checking the state 
against a sequence of goal states for coordinated 
mission performance, and by superimposing a con- 
trol model switching, very flexible and highly effi- 
cient behavioral competences may be achieved. 
The controls actually output are fed both into the 
real-world machine being controlled and the (world 
2) model in order to generate "expected" motion 
state components [see Eq. (1), last term; signal flow 
in Figure 6 left]. 

5. Applications 

The general method as described above evolved 
during application to four problem areas. 

5.1 Balancing of an Inverted Pendulum 
The first real-time hardware application was in the 
early 1980s in the balancing of rods of various 
lengths in one degree of freedom on an electrocart. 
Rods from 0.4 to 2 m length have been investigated 
(Haas 1982; Meissner 1982; Meissner and Dick- 
manns 1983). Closed-loop eigenvalues of up to 1 Hz 
have been achieved. More details are given in sec- 
tion 3 of the companion paper. 

5.2 Vehicle Docking 
A frequent task in robotics is to position a control- 
lable 3-D vehicle relative to another 3-D object. Us- 
ing the dynamic approach to computer vision de- 
scribed above, H. J. WiJnsche developed several 
important implementational details and demon- 
strated its performance and efficiency in fully au- 
tonomous docking maneuvers in the laboratory 
(W~insche 1987). 

A table-top air cushion vehicle with computer 
controlled reaction jets has the task of autono- 
mously recognizing the situation in its (technical) 
environment ,  consisting of several  objects of 
known 3-D shape but unknown position and orien- 
tation. Then, it has to perform a docking maneuver 
with a particular one of these objects. 

More details are given in section 4 of the com- 
panion paper and in Wtinsche (1986; 1987) and 
Dickmanns and Wfinsche (1986b). 

5.3 Road Vehicle Guidance 
The tasks of a vision system for road vehicle appli- 
cations may be manifold. Both the vehicle state rel- 
ative to the road and environmental parameters 
may be determined in order to support the driver or 
for achieving autopilot capabilities. By continu- 
ously observing the road and its environment the 
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following items relevant to safe road vehicle guid- 
ance can be estimated or recognized in principle: 
road curvature, both horizontal and vertical, lane 
width and number of lanes, surface conditions such 
as smoothness, surface states such as dry, wet, or 
dirt or snow covered, presence of obstacles or other 
vehicles and traffic signs. A discussion of possibil- 
ities and problems related to the application of ma- 
chine vision to road vehicle guidance is given in 
Dickmanns (1986). 

Only the guidance task proper will be discussed 
in the companion paper, section 5, demonstrating 
the specific application of the integrated 4-D ap- 
proach described in general terms in section 4. The 
following results have been achieved: Fully auton- 
omous runs starting from rest have been performed 
under various road and weather conditions, includ- 
ing bright sunshine and light rain as well as road 
surfaces with and without lane markings. Increasing 
the maximum speed limit step by step, in August 
1987 the maximum speed of the vehicle (Vmax ~96 
km/h on a level surface) has been reached. In order 
to obtain some results with respect to reliability, the 
total run length of more than 20 km has been driven 
several times (in both directions) without the need 
for intervention by the safety driver in the driver's 
seat. 

Lane changes from right to left and back have 
been performed on free lanes as well as highway 
entry maneuvers from the acceleration strip. 

The following conclusions for road vehicle guid- 
ance can be drawn: The capability of real time im- 
age sequence processing for guiding high speed 
road vehicles along well structured roads is becom- 
ing a reality. The method derived has been shown to 
allow autonomous vehicle guidance even at high 
speed with a relatively small set of today's micro- 
computers. 

More computing power will be needed to im- 
prove the checking for obstacles and other objects 
in a less restricted environment. In principle, the 
vision system considered has the growth potential 
to allow the development of autonomous vehicles 
that fit neatly into the traffic system developed up 
to now for the human driver. Both gradual deploy- 
ment and mixed human and automatic traffic seem 
to be possible. 

5.4 Aircraft Landing Approach 
This is the most complex real-time motion control 
task solved by computer vision by our group up to 
now. Aircraft motion occurs simultaneously in six 
degrees of freedom: three translatory and three ro- 
tatory ones. In each degree of freedom, according 
to Newton's law, one differential equation of sec- 

ond order is required in order to model the dynam- 
ical behavior. So 12 state variables are necessary to 
describe the rigid body motion. 

An aircraft is controlled by selecting four control 
variable time histories: elevator for pitch and alti- 
tude, aileron for roll, rudder for yaw and sideslip, 
and throttle for thrust level control; in addition, di- 
verse flaps may be set for certain flight regimes 
(takeoff and landing). To direct such a vehicle in a 
well controlled maneuver requires skill and concen- 
tration even for a trained human pilot; he has to 
acquire this capability in an extended learning pro- 
cess. 

Exactly this knowledge, coded in differential 
equations as side constraints to the development of 
trajectories, should be available to an automatic 
system for recognizing and controlling landing ap- 
proaches by machine vision. 

Simultaneously exploiting spatial and temporal 
models as shown in section 4 and Figure 6, Eberl 
(1987) has shown that the problem of controlling 
landing approaches by computer vision may be 
tackled successfully relying on present-day micro- 
processors. In a six degree of freedom fixed base 
simulation with real-time image sequence process- 
ing hardware in the loop, complete landings starting 
from 2 km distance have been performed fully au- 
tonomously with airspeed V being the only quantity 
not determined from vision. It seems unlikely that 
such a complex task can be handled by computer 
vision without using integrated spatio-temporal pro- 
cess models. 

Space does not allow us to go into more detail 
here. A somewhat more extended discussion of ma- 
chine vision for flight vehicles is given in Dick- 
manns (1988) containing a summary of the disserta- 
tion (Eberl 1987) in English. 

6. Development Perspectives 

The following principles have been found to be es- 
sential for real-time dynamic machine vision. 

1. Tangency detection by correlation of linear con- 
tour elements 

2. Active control of the viewing direction, both top- 
down (feature search, mode switching) and bot- 
tom-up (feature tracking, fixation), coupled with 
nonuniform image processing 

3. Analysis by synthesis, that is, building up inter- 
nal spatio-temporal representations via 4-D mod- 
els, the parameters of which are adjusted ex- 
ploiting the sensor data input. 

They will be discussed in the sequel with respect to 
future applications in machine vision. 
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6.1 Tangency Detection for Shape Recognition 
In Kuhnert (1988) it has been shown that by per- 
forming interpolations over the correlation values 
of shifted and rotated bar masks of about 10 pixel 
length, angular resolutions of about 1-2 deg and 
edge position localizations of subpixel resolution 
can be achieved. Taking this type of data as the 
basic input for shape description in differential ge- 
ometry terms, a very efficient signal-to-symbol 
transition has been proposed in Dickmanns (1985a, 
1985b). Using local coordinates only, by simple 
weighted summing and differencing of the slopes, 
the two parameters of a linear curvature element 
can be determined. For direction changes smaller 
than about rr/6 (30 deg), this element closely corre- 
sponds to a spline curve element of third order. 
Whole contours may be pieced together and corners 
can be incorporated as curvature impulses. These 
can be isolated by locating slope discontinuities us- 
ing the same tangency operations. 

This representation is by itself position and rota- 
tion invariant. It can be made scale invariant by 
normalizing the contour  length; this may be 
achieved by some natural scale length, such as nor- 
malizing the contour length to the range 0, 1 (or 0, 
2~) or dividing it by the square root of the area 
enclosed. The resulting very compact representa- 
tion of smooth contours has been termed normal- 
ized curvature function (NCF). The interesting 
point is that NCFs yield a nice basis for shape ide- 
alizations, symmetry detection, and the definition 
of shape terms (e.g., circle, n angle, concavity). 
Complex features of a 2-D object may be decom- 
posed easily on a local basis into an aggregation of 
simple edge element features that will allow object 
tracking and motion interpretation based on edge 
element tracking using the 4-D model based ap- 
proach. Thus, it is in combination with point 3 men- 
tioned above, that edge element correlation appears 
as a powerful tool in 3-D dynamic scene analysis. 

The hardware under development presently for 
low level vision will increase performance by two 
orders of magntidue for correlation based feature 
extraction, yielding the capability of measuring 
many dozens of edge element features per video 
cycle by a single processor. This will allow us to 
tackle visually much more complex scences. 

6.2 Active Gaze Control 
When egomotion and object motion occur simulta- 
neously, signals from inertial sensors may help con- 
siderably in discriminating the motion components. 
High angular relative speeds will lead to motion 
blur. It may result from two components: egomo- 
tion and/or object motion. Angular egomotion may 

be compensated by stabilizing the camera platform 
inertially. Angular velocities due to external object 
motion may be cancelled for the imaging process by 
active feature tracking and corresponding viewing 
direction control by the camera platform. This al- 
lows (close to static) shape analysis in the image 
and motion measurement via the platform orienta- 
tion. 

The tuning of the feedback control loops both 
with inertial and visual signals is presently under 
investigation in a simulation facility. The quality of 
stabilization achievable will influence the range of 
the teleoptics useful with the second camera (for 
high resolution). During periods when the viewing 
direction is quickly changed, the image data are 
blurred and evaluation has to be suppressed; in 
these short intervals, motion control is done purely 
based on the internal models. Experience will have 
to show what are the best strategies for compromis- 
ing foveal fixation and the consequent motion in the 
wide angle image. 

6.3 Representing the World by a Servo-Maintained 
Internal "World 2" 

The basic feedback approach chosen (see bottom, 
Figure 4), using integral spatio-temporal world 
models including perspective (forward) projection, 
may be expanded by incorporating active gaze con- 
trol and long term memory for models. A somewhat 
unconventional block diagram of such a system is 
shown in Figure 7. The basic arrangement is the 
same as in Figure 4; the viewing direction control 
has been introduced as the central horizontal bar. It 
actively controls the camera pointing and takes care 
of the corresponding geometrical transformations. 
For orientation relative to the dominating gravity 
vector, inertial and other conventional sensors (up- 
per left) are being used, yielding a stabilized internal 
4-D world model (center right). The actual models 
instantiated there are installed by a hypothesis gen- 
erator (center top) basing its decisions on bottom up 
feature data and on rules implemented for this pur- 
pose. Models for both shapes and motion processes 
may be selected from a long term memory called 
model store (upper right). Instantiations are first 
done separately per object (second block from top, 
upper right) and then integrated into the world 
model as a representation of the situation as recog- 
nized by the interpretation process (world 2). 

If the interpretation process has a set of goals 
against which it checks the situation recognized, it 
may start or continue action planning in order to 
achieve the goals. Actions may be both attention 
focussing through active vision (lower center and 
right) taking other sensory modalities into account 
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Figure 7. Block diagram of 4-D feature based vision concept including active gaze control, long term model storage, and 
goal driven activity planning. 

(upper left), and application of motion control 
through effectors (bottom). Since dynamical models 
are available, direct state variable feedback may be 
used in order to achieve reflex-like behavioral com- 
petences. Thus, for example, in road vehicle guid- 
ance, lane-keeping and proper speed control may be 
achieved without continuously running cumber- 
some planning activities. Monitoring subprocesses 
just have to provide "road recognized" and "road 
free of obstacle" signals. As long as these are true 
and the goal is not yet achieved, the system contin- 
ues in this mode. All logical variables required for 
mode continuation form the set of continuation con- 
trol tags, 

Their value, in turn, may be changed either by 
sensory data including situation variables derived 
therefrom or by decisions taken in the continuously 
active mission planning and monitoring subpro- 
cesses. Depending on the particular continuation 
control tag becoming false, specific other behavior- 
al modes with proper sensing activities and feed- 
back control laws, if necessary adaptable by situa- 
tion dependent parameters, may be invoked, taking 
care of a gradual transition from the old mode to the 
new one. 

A sufficiently rich set of behavioral modes in- 
cluding smooth transitions has to be developed and 
stored in long term memory. In addition, knowledge 
has to be implemented in the interpretation process 
as to which behavioral competences should be ac- 
tivated with which set of parameters, depending on 
the situation and the goals to be achieved. 

In the long run, the system should be able to 
learn from statistics it accumulates during each mis- 
sion. This is, however, far off in the future. 

The systems we have developed up to now only 
have very simple reflex-like behavioral compe- 
tences. Some interesting questions arise when we 
try to imagine what kind of behavior much more 
complex systems might display (in a not very near 
future), if they continue to be based on the general 
principles explained in the previous sections. 

The actual world 2 instantiated in the interpreta- 
tion process is forced to remain close to the real 
world by critical feature comparison and corre- 
sponding model adaptation based on the measured 
image data and the data from other real-world sen- 
sors (left column in Figure 7). What could happen if 
all these sensory inputs would be cut off and the 
central and right blocks would continue working on 
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their own? Would the system be "daydreaming"? 
Exciting fields of research may open up with re- 
spect to the general problem of cognition. 

If a model generator could be added on top of the 
upper right corner, capable of creating new shape 
models and new motion models including new feed- 
back rules for the generation of new behavioral 
modes, what would be the benefits for adpating to a 
changing real world? Certainly, there will have to 
be some capability for critical evaluation, that is, 
distinguishing useful models that can catch some 
part of reality from "phantasmal" ones; otherwise 
the system may exhibit "idiotic" behavior. 

Can a very much refined model of this basic type 
serve as a model for studying biological intelligent 
systems? Surprisingly enough, the basic paradigm 
of the modern school of philosophy named "hypo- 
thetical realism" (Vollmer 1975) is consistent with 
this scheme: "A recognizes B as C." The interpre- 
tation process A comes to the conclusion that the 
sensory data on some object or event B in the real 
world are identical or similar to those which an ob- 
ject  or event with the internal representation C 
would yield; therefore, B is considered to be what C 
means in the framework of the internal world 2. 

The distinction between worlds 1 and 2 used here 
corresponds to (and was in fact named after) the 
terminology introduced by the philosopher Karl 

Popper for clarifying the semantics in the usage of 
the word "world" (Popper 1977). 

The idea of strictly separating the world one talks 
about in philosophical discussion or in everyday 
conversation from the real process everybody is a 
part of, was first introduced by the philosopher A. 
Schopenhauer almost 180 years ago (Schopenhauer 
1819) in trying to lay a new foundation for modern 
philosophy after Kant's "Critiques" and the up- 
surge of German "Idealismus" (Flichte 1792, Hegel 
1806). 

It is a surprising experience for an engineer and a 
scientist, that a "world as an internal represen- 
tat ion" (Schopenhauer) is not only technically 
implementable on today's computers (admittedly in 
a very crude form), but is numerically very efficient 
for motion control through machine vision. It may 
be that methods in high performance graphics, like 
3-D animation, can contribute to this line of devel- 
opment. 
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