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Abstract. The authors prove that the maximum norm of the vorticity controls 
the breakdown of smooth solutions of the 3-D Euler equations. In other words, if 
a solution of the Euler equations is initally smooth and loses its regularity at 
some later time, then the maximum vorticity necessarily grows without bound as 
the critical time approaches; equivalently, if the vorticity remains bounded, a 
smooth solution persists. 

The motion of an ideal incompressible fluid is governed by a system of partial 
differential equations known as the Euler equations. For two-dimensional flow, 
solutions of the Euler equations with smooth initial data remain smooth for all 
time. However, in three space dimensions several numerical investigations ([2, 3,11]) 
predict very different phenomena. In particular, these computations suggest that 
solutions of the fluid equations which at first represent smooth flows may develop 
singularities, and furthermore that this breakdown of regularity signifies the onset 
of turbulent behavior. Qualitative arguments and numerical experiments indicate 
that the formation of singularities is related to the concentration of vorticity on 
successively smaller sets ([-3, 4]). In this note we establish a mathematicaUy rigorous 
link between the accumulation of vorticity and the formation of singularities for 
the 3-D Euler equations: we show that, if a solution is initially smooth and loses 
its regularity at some later time, then the maximum vorticity necessarily grows 
without bound as the critical time approaches. Therefore, it is not possible for 
other kinds of singularities (such as those in the deformation tensor or even milder 
singularities) to form before the vorticity becomes unbounded. In other words, the 
maximum norm of the vorticity alone controls the breakdown of smooth solutions 
for the 3-D Euler equations. 

Euler's equations for the motion of an incompressible, inviscid fluid in free 
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space are known to have regular solutions for some time interval depending on 
a norm of a initial data. A concise treatment of the existence theory for these 
equations, as well as the Navier-Stokes equations of viscous flow, can be found 
in [6 or 5, Sect. 14]. In describing the solutions it is convenient to use the Sobolev 
space HS([~3), consisting of functions whose distributional derivatives up to order 
s are in U(N3),s being a positive integer; the norm of u in H s is denoted by luls. 

Euler's equations of incompressible fluid motion are 

u~ + (u-V)u + Vp = 0, V.u = 0, (1) 

where u = u(x, t) is the velocity field and p = p(x, t) is the pressure. The local existence 
theorem for Euler's equations can be stated as follows: Suppose an initial velocity 
field u o is specified in H ~, s > 3, with lu o 13 --< No, some N O > 0. Then there exists 
T o > 0, depending only on No, so that Eqs. (1) have a solution in the class 

ueC([0, T];H~)c~CI([O, T ] ; H  ~-t) (2) 

at least for T = To(No). (For the fact that To depends only on No, see [10 or 13].) 
Of course, such a theorem gives no indication as to whether solutions actually 
lose their regularity or the manner in which they may do so. The property derived 
here is that, if the solution fails to be regular past a certain time, then the vorticity 
co = V x u must necessarily become unbounded. 

Theorem. Let u be a solution of Euler's equations as described above, and 
suppose there is a time T, such that the solution cannot be continued in the class (2) 
to T = T,. Assume that T, is the first such time. 
Then 

r, 
Io)(t) ]L~dt = oo, 

0 

and in particular 

lira sup ]co(t)If" = oo. 
t? T ,  

The proof  of the Theorem which we give below also has the following 
immediate consequence: 

Corollary. For some solution of Euler's equations, suppose there are constants 
M o and T, so that on any interval [0, T] of existence of the solution in class(2), 
with T < T,, the vorticity sat ires  the a priori estimate 

T 

t°)(t) IL , d t <  M o. 
0 

Then the solution can be continued in the class (2) to the interval [0, T,]. 
Similar statements hold for the Navier-Stokes  equations; the arguments below 

apply equally well in this case. 
We first claim that 

lim sup lu(t)J~ = oo. (3) 
tTT, 
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If not, then ]u(t)[, =< C O for some C O and all t < T,. By the local existence theorem 
stated above, we can start a solution at any time q with initial value u(q), and 
this solution will be regular for t I < t < t~ + To(Co), with 7 o independent of q. If 
tl > T, - To, we have then extended the original solution past time T,, contrary 
to the choice of T,. 

To prove the theorem, we will assume 

T, 

]co(t) [L® dt = M 0 < o% (4) 
0 

and show that 

lu(t)I~s ~ Co, t < Y, ,  (5) 

for some Co, contradicting (3). Usually such bounds are obtained from inequalities 
which allow exponential growth. In this case our inequality leading to (5) will be 
slightly nonlinear bu t  will still prevent arbitrarily large growth in a finite time. 

We first estimate co(t) in L z. Taking the curl in (1) leads to the vorticity equation 

co, + u-Vco = co-Vu. (6) 
We recall the important fact that 

((u" V)w, w) = 0, (7) 
at least for w ~ H  1, where parentheses denote the inner product in L z = H°;  this 
follows from integration by parts and the fact that V.u = 0. Thus if we multiply (6) by 
co and integrate, we have 

1 d 2 ~ Icok~ = (co Vu, co). (8) 

The velocity u is determined from co by the relation 

u = - V x ( V -  lo9). (9)  

Therefore the Fourier transforms of Vu and co satisfy (Vu)~(~) = S({)c5(~), where S 
is a matrix which is bounded independent of ~, and consequently [Vu]r2 =< Clco[r~. 
Applying this to (8) gives 

d z 
I~olL2 < 2Cm(t)Icot~, 

where re(t)= [co(t)[r~, so that 

o r  

l 

[co(t) [r2 < [co(0)[c2 exp C S m(z)dt, 
0 

Ico(t)[L2 ~ Mllco(0) lL2 (10) 

with M 1 --exp CM o. 
Next we derive an energy estimate for (1) in terms of [Vu[L~. Let ~ be a 

multi-index with t~I _-< s, and let v = D~u. Applying D~ to (1), we have for v the 
equation 

v~ + u 'Vv  + Vq = - F, (11) 



64 

where q = D~p, and 
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F = D~(u-Vu) - u'VD~u. (12) 

We will estimate F using the calculus inequality 

1D=(fg) --fD=gtL2 < C(U'[mlglL® + IVJ'IL~ Ig[n,-1) (13) 

with f =  u and g = Vu. This inequality is well-known i f f e H * ~  C 1 and geI-ISc~ C 
(see [8 or 12]), but we need it here with gEHS- lc~C.  The simple proof of (13) 
in the appendix of [8], based on the Gagliardo-Nirenberg inequalities, can be 
combined with a passage to the limit to show that it remains true in this case, 
even though the individual terms on the left in (13) may not be in L 2. Substituting 
in (13) we have [F[L2 < C[VU[Lm[U[Hs. 

We now proceed formally, multiplying (11) by u and integrating to obtain 

l d  
2 d-t lvt6 < ClVul~luUVlo. 

We have used (7) and the orthogonality of gradients and vector fields of divergence 
zero. Summing over ~ with 0 =< I c~} < s, we now have 

d 2 
)71u[~ ~ 2CIVu[L® [ul~, 

so that 

fu(t)[~ <= [u(O)[~ exp C Wu(z)[ L =dr . (14) 

The steps leading to (14) can be justified by regarding v as the weak solution of 
a linear equation (11) in the class C([0, T] ;L z) and arguing as for linear hyperbolic 
equations. (We approximate v(0) by smooth initial data, derive an L 2 energy 
estimate, and pass to the limit, using the uniqueness of weak solutions.) Weaker 
forms of (14) were derived earlier in [10, 13], and this sharper version was given 
in [9, pp. 62-63]. 1 

To complete the argument we use a time-independent estimate for [VUlL~ in 
terms of bounds on co and slight dependence on a higher norm of u, 

IVulL~ < C{1 + (1 + log +luI3)lcoIL ~ + IcolL2}- (15) 

Here C is a universal constant and log + a = loga if a > 1, log + a = 0  otherwise. 
This estimate is based on the relation (9) between u and co. It was derived in the 
two-dimensional case by the second author in other work [7]. In view of (4) and 
(10), we can write (15) as 

WUlL~ < C{1 + m(t)log(lul3 + e)}. (16) 

Here and below, C, denotes a constant depending on M o and T,. 

1 Such estimates are valid for general symmetric hyperbolic systems--see [14] 
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Now let y(t) = lu(t)l~ + e. Combining (14) and (16) we have 
I 

y(t) < y(0) exp C ~ { 1 + re(z) logy(~) }d~, 
o 

and if z(t) = logy(t), 
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or  

to obtain 

so that  

IVu(1)l ~ Cpl/41u[tf3. (17) 

We are left with 

Vu(x) - Vu~l)(x) = ~ V{ K ( x  - y)(1 - ~o(x - y) ) }co(y)dy - Vu (2) + Vu (3), 

where Vu ~z) is the integral over p < Ix - y] < 1, and Vu ~3) over Ix - y[ > 1. For  Vu ~2) 
we estimate the two terms in the gradient separately and use 

jVK(x - Y)I < Clx -- Yl-3 (18) 

{! }, lVu(2)(x)[ <=C r-3"rZdr + 5 r -2p -*r2dr  (Olc~, 
P 

[Vu~2)(x)[ < C ( -  logp + 1)]COIL,. (19) 

Finally, (18) implies that VK is L z for Ix - y[ > 1, and we can estimate Vu ~3) by 

z(t) < z(O) + C S {1 + m(z)z(~)}dz. 
o 

It follows from Gronwall 's  inequality that  z(t) is bounded by a constant  
depending on M o, T , ,  and ]u o t~, and (5) is established. The p roof  of the theorem 
is now completed except for the 

Proof  o f  (15). The  relation between co and u, as expressed in (9), is given 
explicitly by the Bio t -Savar t  Law: 

1 ( x -  y)  , , ,  
u(x) = - ~ ~ ~-~_-~xco~y)ay - ~ K(x,  y)a)(y)dy. 

We introduce a cut-off function (p(x), satisfying (;(x) = 1 for [xl < p, ~,(x) = 0 for 
lxl > 2 p ,  and IV~p(x)] < C / p .  Here p _< 1 is a radius to be chosen suitably small 
later on. We introduce a factor (p(x - y) + [t  - rp(x - y)] under  the integral sign 
and split Vu(x) into two terms, the first being Vu~i)(x) = ~ (p(x - y )K(x  - y)Vco(y)dy. 
Since IK(x - y)[ <= Ctx - yt -2, K,  as a function of y, belongs to LP({y: [x - Yl < 2p}) 
for p < 3/2. For  convenience we take p = 4/3. By H61der's inequality, 

IVu(1)(x)[ __< IKIL4/31VOg[L, <= CpI/aIVCO[L4 , 

both norms being taken over { tx - Yl < 2p}. By Sobolev's inequality 

fVcolL4 < ClVcoIH, < CfulH~, 
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the C a u c h y - S c h w a r z  i n e q u a l i t y  

IVu~3~(x) l =< ClO~lg2. (20) 

C o m b i n i n g  (17), (19), (20) we have  

[VulL~ < C{pl/4lul3 + (1 - logp)l~olL® + [CelL2}. (21) 

If lUJ3 < 1, we t ake  p = 1; o t h e r w i s e  we c h o o s e  p so t h a t  the  first  t e r m  is 1, 
i.e., p = lul; -4, a n d  (21) b e c o m e s  

[VulL~ _-< C{1 + (1 + 4 togtufa)lCO,IL~ + [COIL1}. 

In e i ther  case  (13) holds .  
The  i nequa l i t y  (15) is r emin i scen t  of  a s o m e w h a t  different  e s t ima te  in [1] ,  which  

b o u n d s  a func t ion  in  L ~° in  t e rms  of  the  H "/2 - n o r m  a n d  the l o g a r i t h m  of  a h ighe r  
n o r m ,  n be ing  the space  d ime n s io n .  

Reemark. W i t h  o n l y  m i n o r  changes ,  the  s ame  p r o o f  app l i e s  to  p e r i o d i c  fluid 
flow. In fact  the p r o o f  of  (15) is even s imple r  s ince the  ke rne l  exp re s s ing  u f rom 
c0 has  the  s ame  loca l  b e h a v i o r  whi le  the  c o n t r i b u t i o n  f rom Vu tz) in (20) is a b s e n t  

in the pe r iod i c  case. H o w e v e r ,  a m o r e  invo lved  p r o o f  us ing  a d d i t i o n a l  ideas  seems 
necessa ry  for  f luid f low in b o u n d e d  d o m a i n s .  
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