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Summary. In  this p a p e r  we cons ide r  A n o n y m o u s  S e q u e n t i a l  G a m e s  wi th  A g g r e g a t e  

U n c e r t a i n t y .  W e  p r o v e  exis tence  o f  e q u i l i b r i u m  w h e n  there  is a genera l  s ta te  space  

r ep re sen t i ng  a g g r e g a t e  unce r t a in ty .  W h e n  the  e c o n o m y  is s t a t i o n a r y  a n d  the  

u n d e r l y i n g  p rocess  g o v e r n i n g  a g g r e g a t e  u n c e r t a i n t y  M a r k o v ,  we p r o v i d e  M a r k o v  

r e p r e s e n t a t i o n s  o f  the  equi l ibr ia .  

1 Introduction 

This  p a p e r  d e v e l o p s  a f r a m e w o r k  in wh ich  d y n a m i c  g a m e s  fea tu r ing  b o t h  i nd iv idua l  

s tochas t i c  h e t e r o g e n e i t y  a n d  a g g r e g a t e  u n c e r t a i n t y  can  be a n a l y z e d  t rac tab ly .  F o r  

the class of  d y n a m i c  games  cons ide red  - a n o n y m o u s  sequent ia l  games  wi th  aggrega te  
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and J-F. Mertens. The financial support of the SSHRCC and the ARC at Queen's University is gratefully 
acknowledged. This paper was begun while the first author visited CORE. The financial support of 
CORE and the excellent research environment is gratefully acknowledged. The usual disclaimer applies. 
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0r, y)): Invariant characteristics transition function for Markov game. 
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uncertainty - we provide a set of equilibrium existence and Markov characterization 
results for general state spaces representing aggregate uncertainty. This class 
of multistage (sequential) games features a continuum of heterogeneous agents, and 
is characterized by the "anonymity" property that an agent's payoff in any period 
depends on what other agents do only through the aggregate distributions over 
agent types and their actions. These games are very natural for modeling economies 
where agents are "small", for example competitive economies. 

The framework presents an attractive alternative to representative agent models, 
permitting one to address economic problems where individual stochastic hetero- 
geneity is an important feature. In many economic environments, heterogeneity is 
important. Agents who differ in their abilities, endowments or preferences may make 
different employment decisions, hold different portfolios or purchase different 
goods; firms which differ in their costs may make different investment or R & D  
decisions, and so on. These differences can help explain both the individual 
allocation of resources over time, as well as the evolution of aggregate economic 
variables. For  each agent, the dynamic evolution of such characteristics is invariably 
stochastic in nature: how successful was a firm's R & D  investment? what was the 
return on an asset? what was the worker-firm match quality? what was a firm's cost 
shock?, etc. Questions of this sort can sometimes be addressed in the framework of 
the anonymous sequential game with no aggregate uncertainty (see, for instance, 
Jovanovic 1982, Hopenhayn 1992, Jovanovic and MacDonald 1988). 

However, for many economic problems it is too restrictive to impose the 
requirement that the aggregate distribution of agents evolves nonstochastically. 
"Aggregate uncertainty" arises when the aggregate distribution on the space of 
agents evolves stochastically over time. For  instance, modeling of business cycles 
demands consideration of aggregate demand shocks which affect all firms directly. 
Government policy choices, such as the rate of money growth, which are random 
from the perspective of individual agents are aggregate in nature. Technology shocks 
reflecting global innovations such as computers, are aggregate in nature, as are the 
so-called "oil" shocks. In such cases the stochastic evolution of the economy-wide 
aggregates is an important determinant of agent decisions and hence of economic 
behavior. Anonymous sequential games with aggregate uncertainty allow one to 
model such phenomena. For instance, Bergin and Bernhardt (1993) employ this 
framework to examine entry, exit, investment and R & D  decisions of firms whose 
costs evolve stochastically and who face aggregate business cycle demand shocks. 

Jovanovic and Rosenthal (1988) formally define anonymous sequential games 
for the case where there is no aggregate uncertainty, provide an existence theorem 
and illustrate its broad application to economic problems. Bergin and Bernhardt 
(1992) show how anonymous sequential games can be formulated with aggregate 
uncertainty, and provide an existence result for the case where aggregate uncertainty 
can be represented by a countable state space. The restriction to a countable state 
space is a significant shortcoming in that many problems are more easily modeled 
when the state space is a continuum (such as price in a market). One of the 
contributions of this paper is to. remedy that shortcoming. The paper makes 
contributions along two dimensions. First, we extend the analysis in Bergin and 
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Bernhardt (1992) to allow for aggregate uncertainty with general state spaces. 
Second, we provide a set of Markov characterizations of equilibria when the model 
is stationary and the underlying stochastic processes in the model are Markov. 
In the remainder of section we briefly describe the notions of "aggregate un- 
certainty" and "no aggregate uncertainty" and then summarize the main results 
of the paper. 

Let the set of agents or agent types be A and the action space A (common to all 
agents). An aggregate distribution over agent types 1 and actions is some distribution 

on Y = A x A called a distributional strategy. 2 The anonymity assumption says 
that the behavior of other agents affects agent ct's utility only through z. Agents' 
characteristics or types (e.g. technology quality) can evolve stochastically over time, 
so that a particular e cA (the characteristics space) is not identified with "the same" 
player over time. At time t, if agent e e A  takes action aeA,  and the distributional 
strategy is zt, then he obtains utility ut(o:, a, ~). Given ct, zt and a, the player then 
draws a new characteristic ~+ 1 (reflecting idiosyncratic risk) from a distribution 
Pt+ 1(% e, a) on A (determining his type in period t + 1). Sometimes, to make explicit 
the fact that Pt+ 1(% c~, a) is a distribution, we will write P,+ 1(0; rt, ~, a). 3 In turn, in 
period t + 1 the player obtains a new characteristic, drawn from a distribution 
Pt+2(zr+ 1, ~r+l, a), when action a is taken, the period t + 1 distributional strategy 
is zt + 1, and so on. Thus, idiosyncratic risk arises because a player's payoff depends 
on the random evolution of his characteristic in A space. For  example, the set of 
agent types might be the set of possible firm technologies. The firms might have to 
select output and R & D  actions, with the firm's technology quality evolving 
stochastically over time, depending on the current quality and the firm's R & D  
choice. The economy is competitive so that actions of competing firms affect a firm's 
payoffs only through the equilibrium price. 

"No aggregate uncertainty" is formulated in this model as the non-stochastic 
evolution of a sequence of joint distributions, {/~t}, on the characteristics space A. 
Given the aggregate distribution, % on A x A, the "no aggregate uncertainty" 
hypothesis means that next period's distribution over characteristics space is given 
by 

~,+1(o) = f P,+ l(O; V,,~,a)r,(d~ x da). 

Even though each agent faces individual uncertainty through Pt+l, this 
uncertainty at the individual level "washes out" in the aggregate so that Vt+ 1 is 

1 We identify an agent with his type or characteristic in the sense that we will refer to both agent type 
c~ and agent c~ interchangeably - e.g. firm c~ has technology type ~. 
2 The properties and use of such strategies are discussed further in MasColell (1984), Jovanovic and 
Rosenthal (1988) and the references cited there. 
3 A " o "  is sometimes used as an argument of a measure to denote an arbitrary measurable set in the 
relevant space. Given two measures, # and q~ on some sigma field ~ ,  the expression #(e) = ~0(e) means 
/1(/3) = q~(B), VBe~.  Given a metric space X, Nx is the associated sigma field. 
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non-stochastic.  This "washing out"  of individual risk is intimately related to the fact 
that  the model  has a cont inuum of agents (see Fe ldman and Gilles 1985). 4 

To illustrate the potential difficulties involved in using models with aggregate 
uncertainty, consider a situation where ct indexes a firm's technology and where ~, 
is firm ct's technology next period. One might anticipate that, from an economic  
perspective, agent ct is better off "drawing" a good  technology (a high value of ~',). 
However,  with a stochastic aggregate distribution and the unavoidable correlat ion 
of draws across the ct's, condit ional  on  a high value of  ~',, the distribution of 
technologies may  be more  likely to be concentrated on good  technologies. Thus, in 
a competit ive situation, given that  ~, is high (more efficient), other firms are more  
likely to be more  efficient and the "gain" to ~, of  being more  efficient may  be offset 
by the fact that  the competi t ion is stiffer. Thus the expected result - that  the expected 
payoff  given greater efficiency is h i g h e r - m a y  be reversed. It is worth not ing 
that the difficulty here is not  correlation of characteristics across agents, but  
of correlation between each agent 's characteristic and the aggregate distribu- 
tion. 

Bergin and Bernhardt  (1992) develop a useful decomposi t ion of uncertainty into 
aggregate and idiosyncratic components .  Aggregate uncertainty is introduced by 
having a r andom variable 0 ~ O represent an aggregate "shock" to both payoffs and 
the transit ion function governing individual risk. Idiosyncrat ic uncertainty is 
represented by a second stochastic component .  In the present notat ion,  such a 
procedure is equivalent to writing r /=  (co, 0)~(.(2, O), where 0 represents aggregate 
uncertainty and co embodies "idiosyncratic risk". As before, the aggregate distri- 
but ion is a r andom variable, but  if we impose the "no aggregate uncertainty" 
hypothesis condit ional  on 0, then next period's aggregate distribution is non-  

4 The "no aggregate uncertainty" hypothesis is formalized as follows: Underlying the transition function 
P(o; r, ct, a) (and ignoring time subscripts) is a probability space (N, ~N, P). The process governing the 
evolution of individual characteristics is ~(r/, ~, a, z): if r/~N is drawn, agent ~ takes action a, and the 
current joint distribution on actions and agent characteristics is z, then agent ~t's characteristic next 
period is ~(r/, c~, a, z). The transition function is determined by this process according to: 

P(B; z, ~, a) = p({71 r ~, a, ~) ~ B} ), VB ~ ~'a- 

For any given r/and z, the aggregate distribution next period is given by 

u"(B) = r({ (a, a)l~(tl, a, a, "O c B } ), V B ~ A .  

In general, #n is a random measure. Letting J/(A) denote the set of probability measures on A and ~ ~A~ 
denote the Borel field on .M(A), the joint distribution on J/(A) x A is given by: 

if(O) ~- p({t/I(g", r ct, a, z))eO}), O e ~,(A ) | A. 

Similarly, the distribution of #" is given by: 

The hypothesis of "no aggregate uncertainty" is the hypothesis that the distribution of this random 
measure, ~ ,  is degenerate: 3#*e~'(A), #"=#*, p a.e. t/. In this case p a.e. r/, ,u*(B)= ~P(B;T,a,a) 
z(da x da), V B e ~  A. Aggregate uncertainty may be defined (by default) as the case where /~" has a 
nondegenerate distribution (%,). 
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stochastic, conditional on 0. 5 No aggregate uncertainty conditional on 0, implies 
that the aggregate distribution next period,/~*, can be computed according to: 

/~*(B) = f r  P(B; r, 0, ~, a)z(do~ x da), V B e ~  z . 

In this formulation the aggregate shock 0 enters as an argument of the transition 
function, affecting each agent and represents the aggregate uncertainty facing every 
agent. Agents' actions can be conditioned on the aggregate shock, so that the 
aggregate shock can also affect the transition to future states indirectly through 
current agents' actions. Finally, 0 can enter payoffs directly. For instance, 0 may be 
an aggregate demand shock or an aggregate inflation shock which affects all firms 
(directly through their profits and indirectly through their actions and the future 
evolution of their costs). Observe that conditional on 0, the aggregate distribution 
and each agent's ~ realization are independent, because conditional on 0 the 
aggregate distribution is nonstochastic. This formulation of aggregate uncertainty 
is discussed at some length in Bergin and Bernhardt (1992), where an existence 
theorem is given in the case where the state space of aggregate uncertainty is 
countable (i.e. O is countable). 

Here, we use this formulation of aggregate uncertainty to provide a general 
equilibrium existence theorem. The extension to more general state spaces for 
aggregate uncertainty is important because uncountable state spaces arise in a 
natural way in many applications. For example, an aggregate demand shock 0 
shifting the intercept of a demand curve is most naturally modeled as drawn from 
some continuous distribution. The proof of existence of equilibrium in the general 
case is of independent interest because the approach used in the countable case does 
not carry over. 6 

We then assume that the model is stationary and provide two results on the 
existence of Markov equilibria. The Markov representations provide an alternative 
way of viewing equilibria, and the additional structure facilitates the study of 
equilibria, simplifying the interpretation and analysis of equilibrium behavior. The 
results here are closely related to some of the literature in stochastic games. In a 
stochastic game, a state space S is specified. There is a finite number of players, 
with action space Ai(s),  for player i, i = 1,. . . ,  n. Let A(s)  = x '/= iA~(s).  If at time t in 

s In this formulation, the underlying probability space has the form (g2 x ~ 9 , ~ a | 1 7 4  
(N, ~N, P) and ~(r/, ~, a, 3) = ~((~o, 0), ct, a, 3). Thus, if the "aggregate shock" is 0, the aggregate distribution 
z, and agent ct, takes action a, then agent ~'s characteristic next period is drawn from the distribution 
P(e;  z, 0, ct, a). The aggregate distribution is defined (for a given (e~, 0)) as: 

#~,,,.o)(B) = ~( {ct, a)l ~( (og, 0), ct, a, z)e B} ), V B e  ~A �9 

No aggregate uncertainty conditional on 0 is the requirement that, given 0, 3/t*, such that/~t,o.0) = ,u*, ,9 
a.e. ~o. At the same time, individual agents face individual uncertainty through ~o because the distribution 
over agent ct's characteristics is given by: 

P(B; ~,O,o~,a) = 8({col~((og,0),ct, a, r)~B} ). 

6 The mathematical arguments developed to prove existence with the countable stage space do not 
extend to more general state spaces because the construction in the countable case involves selecting 
each finite history of aggregate shocks and developing "pointwise" arguments there. 
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state st, agents choose an action vector aeA(st), then the payoff to agent i is ui(s t, a). 
Following the choice of a eA(st), a new state is drawn from some distribution 
p(dg[ st, a). When agents select actions from A(st), they observe the history of states 
as well as the current state, (Sl, s2 . . . . .  st), and the history of actions (al, a2 . . . . .  at- 1), 
where a~A(s~). Payoffs are discounted over time at the rate 6, so that the present 
value of rs payoff at time t is (1 - 6)6 t-  ~ui(s, at), where s, eS  and areA(s,). Thus, a 
strategy for i, ai = (~ril, chz,... ,  ~, , . . . ) ,  is a collection of functions with ~i,(Sl,..., s~, 
al , . . . ,  at- 1)~ A~(st). A strategy, % is called Markov if for all t, ~it(Sl,..., st, al . . . .  , at-  1) = 

* agree, a*(st), for all (sl . . . . .  st, a l , . . . ,  at-1). If, in addition, the functions a* and ~r~ 
Vt, x, then the strategy is called a stationary Markov strategy. In this model, when 
the state space S is not finite, a proof of existence of equilibrium is very difficult, 
and requires relatively strong assumptions on the transition probabilities on the 
state space. Mertens and Parthasarathy (1988) provide such a proof  and also discuss 
some of the difficulties involved in obtaining Markov equilibrium strategies. Duffle, 
Geanakoplos,  MasColell and MacLennan (1994) (henceforth D G M M )  also discuss 
stochastic games as an application of a general result on existence of equilibrium. 
They prove existence of a stationary ergodic Markov equilibrium on an enlarged 
state space which includes payoffs. This circumvents some of the difficulties involved 
in obtaining Markov results on the S state space. 

The first result we give on Markov equilibria for anonymous sequential games 
assumes that the stochastic process governing the 0 process is Markov. In this result 
we enlarge the space, ~ / ( A ) x  6), to include payoffs and provide a Markov 
characterization of equilibrium strategies. Thus, a state is a triple (#, 0, v), where/~ 
is a distribution over agents, 0 is an aggregate shock and v a real-valued measurable 
function on A, assigning a payoff to each agent. This approach is analogous to that 
in D G M M  who also include payoffs in the state space: the "state" at time t includes 
the present value of future payoffs. In a sense, this representation has a natural 
interpretation as a type of rational expectations equilibrium. It  is worth stressing 
that we show that every equilibrium payoff in the game arises as the payoff to an 
equilibrium of this form. In this result, the transition functions are assumed to satisfy 
a form of weak* continuity whereas D G M M  assume a stronger form of continuity 
(that the transition functions converge on Borel sets). In addition, we require no 
assumptions concerning absolute continuity of the transitions functions either 
relative to each other or relative to any fixed measure. 

A possible deficiency of this Markov characterization is that the enlarged state 
space can make it difficult to "pin down" behavior. In order to provide a Markov 
result on the "natural" state space we drop the conditional no aggregate uncertainty 
hypothesis and return to a general model of aggregate uncertainty as a random 
measure/~". In this model, where aggregate shocks are not explicitly formulated, the 
"natural" state space is d/(A). Given an underlying stationary Markov stochastic 
environment we demonstrate that a Markovian equilibrium exists on the standard 
(i.e. not enlarged) state space. This result requires stronger, but still standard, 
continuity assumptions on the transition functions which are similar to those in 
D G M M .  We now turn to a description of the game. Sections 3 and 4 detail the 
results. Section 5 discusses the formulation of strategies. Section 6 concludes with 
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a descript ion of potent ia l  applications.  Inconsis tent  with locat ion of  nota t ion  in 
foot i. The  appendix  contains all proofs. 

2 The model 

The  set of agents  is denoted  A with representat ive element ct, where A is assumed 
to be a compac t  metric  space. A is the "characterist ics" space. Similarly, the set of 
act ions avai lable to any  agent  c~ is a compac t  metr ic  space A. Let  Y - A • A. An 
aggregate distr ibution on agents '  characterist ics is a measure/~ on A. Given  a metric  
space X, the set of  probabi l i ty  measures  on X is denoted ~I[(X),  the set of  cont inuous  
functions on X is wri t ten oK(X), and  the family of  Bore /se ts  of  X is given by Bx .  The  
t-fold p roduc t  of  the set X is denoted X t =  • '~= 1X. We assume that  the initial 
measure  of agents is 1, i.e.,/~(A) = 1. 

The  state space represent ing aggregate  uncer ta inty  each per iod is a metr ic  
space O, with 0~ O. In the infinite per iod model  the state space is O ,o = x ~= ~ O, 
with representat ive element  0 | = (01,02 . . . . .  Ot . . . .  ). Let  0 ~ = (01, 02 . . . .  ,0 , )e  @r = 
x r s = 1 @, the history of aggregate  shocks up to the end of t ime t. Fix an exogenously  

given dis tr ibut ion v on O ~176 Deno te  its margina l  distr ibution on O r by v,, its 
condi t ional  distr ibution on @~ given the first t elements of  0 ~176 by v(Ot), and the 
condi t ional  distr ibution on 19 t given 9 ~, s < t, by vt(O~). Sometimes,  for clarity of 
exposi t ion we m a y  write v(e 10') for v(O'), and v~(e 10 ~) for vr(0~). The  Borel field on O '  
is denoted ~ .  

In  the absence of aggregate  uncertainty,  a s t rategy is a sequence z = (v~, ~2 . . . . .  
% . . . ) ,  with "rr~J[(A • A). With aggregate  uncertainty,  the aggregate  shock history 
0 t is observed when agents choose actions at t ime t. There  are two possible ways in 
which the definition of a strategy might  be generalized to this case: (1) define the 
per iod t s trategy as a function f rom O '  to J/C'(A x A), or (2) define the per iod t 
s t rategy as a measure  rr on (@t x A x A). We adop t  the first app roach  because there 
are difficulties of in terpre ta t ion with the second approach  and because the first 
app roach  allows a more  general equil ibrium existence result. These issues are 
discussed in greater  detail  in Section 5. 

A per iod distr ibut ional  s t rategy at t ime t, % is a measurable  function f rom the 
space of aggregate  shock histories tg '  to ~//(A • A), specifying for each shock history 
a jo int  dis t r ibut ion over  agents  and  actions. Hence, zt~ . ~ ( O  ~, ~/((A • A)), the set of  
measurable  functions f rom O t to J//(A x A). Given  zr and the aggregate  shock 
history 0 r, rr(0 r) denotes  a dis t r ibut ion on (A x A), while z(o, A; 0 t) denotes  the 
cor responding  marg ina l  dis t r ibut ion on A. At t ime t, some aggregate  shock 
sequence Ors O r is observed 7 by agents  who then choose actions: this formulat ion 
reflects the informat ion  available to agents a t  t ime t. A distr ibut ional  s t rategy for 
the infinite per iod model  is a vector  ~ = (zl, v 2 . . . .  , ~r . . . .  ) of  the per iod distr ibut ional  
strategies. 

7 The analysis is essentially unchanged if we allow agents to observe only the history of O's up to the 
previous period so that r,+ x e~(O~,~/(A • A)). 
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The evolution of agents' characteristics is described by a process {~t}t > 1. When 
agent a chooses the action a, the aggregate shock history is 0t, and the period 
distributional strategy at this shock is m t = zt(0 t) ~ J I (A  • A), then a's period t + 1 
type is drawn from the distribution P,+ ~(rnt, Or, y), y--(~,a) .  At time t, if 0 t is the 
aggregate shock history and m t is the period distributional strategy on Y = A • A 
at history 0 *, then the aggregate distribution at time t + 1 is given by 

t l  

#t+ 1(*) = J r  P'+ ~('; mr' 0', y)z(dy). 

This connects the distribution on characteristics intertemporally: zt and z,_ ~ are 
not independent. Given aggregate shock history 0 t, the marginal distribution of z t 
on A is a distribution on characteristics which must agree with the distribution 
implied by the transition process: the measure of agents in a given set in A at time 
t must equal the measure of agents entering that set from the previous period. We 
return to this issue of consistency below. Note that in this expression, #t + ~ depends 
on 0 t through the transition function: as 0' varies, so also will #t+ ~. In period t + 1, 
whatever the theta shock, 0t+ ~, the distributional strategy zt+ ~ at 0 ~+ 1 = (0 t, Or+ ~) 
must have a marginal distribution on A which agrees with #t+ ~, and since #t+ ~ will 
generally depend nontrivially on 0 ~, so also must zt+ ~. 

Utility at time t is a function, ut, from A x A • J / (A  x A) x O t to ~t, where u, 
is continuous on A x A. The interpretation of the utility function is that if an agent 
of type ~ takes action a given the aggregate shock history 0 t and distributional 
strategy z t e ~ ( O ' ,  ~[(A x A)), then the agent's utility is ut(~, a,'ct(Ot), Ot). Utility at 
time t therefore depends on the aggregate distribution over A x A, conditional on 
0 t. For  ease of notation we write ut(e, a, rt, Ot) with the interpretation that given 

T t e ~ ( O t ,  J//(A x A)), ut depends only on the value of zt at Ot:ut(e,a,%0') ee=/ 
u~(c~, a, r~(0t), Or). We assume that Vt, ]ut] < K'  < ~ ,  so that without loss of generality 
we may take 0 < u~(e, a, % 0 ~) _< K < ~ ,  V(t, e, a, % 0~). Payoffs are discounted: the 
discount rate at time t is 6,, where supt >__ 1 ~t < 1, SO that the present value of time t 
payoffs is ([It=16~)u~. In the stationary model, we set 6~ = ( 1 - 6 ) 6  t-~, where 
0 < 6 < 1 .  

The sequence of events at time t is the following. First, the period t aggregate 
shock, 0 ,  is realized. Then agent c~ picks an action a~A.  Given the history of 
aggregate shocks (including the current shock) 0 t, and z(Ot), agent ~ receives utility 
u~(~, a, zt(0~), 0~). Following this the agent's characteristics for period t + 1, ~+ ~, are 
drawn from the transition distribution on A, P~+ a (z~(Ot), 0 ~, y), y = (o~, a). 

2.1 Continuity assumptions on payoffs and transition functions 

In this section we give the main technical assumptions. Given a Banach space 
(X, II 1Ix), let Ll (Ot ,  X,  vt) represent the set of integrable functions 8 from @ ~ to X 

8 A function f :  ~ ~ X is called simple if ~x a, x 2 . . . . .  x. ~ X, f = ~7= 1 x~zE~, where E ~  t and xE~ is the 
indicator function of E~. The function f :  O ~ -~ X is called vt-measurable if 3 a sequence of simple functions 
{f.}, such that lira. [I f . -  f II = 0, vt-almost everywhere. Finally, a vcmeasurable function f is called 
(Bochner) integrable if 3 a sequence of simple functions {f.}, such that lim. to,  II f .  - f IL v,(dC) = 0. See 
Diestel and Uhl (1977) for further details. 
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with norm Io, I[ f (0  t) - g(0t) ][ vt(dOt) �9 For f,  g e ~(Y), let [I f - g II~(n - supy[f(y)  - g(Y)r. 
If f ,  g s L l ( O  t, c~(y), vt), then f ( y ,  0 t) and g(Y, 0 t) are functions on Y for each 0 t, and 
given 0 ~, II f - g I[~(r) -= sup f l f ( y ,  0 t) - g(y, 091(or [l f - g I[~(r)(O t) to make the depend- 
ence on 0 t explicit). The L I ( O  t, ~ (Y) ,  v,) norm topology is determined by the metric 
Io '  [I f -- g J[~m vt(dOt) �9 

Define a topology on o~(0 t, Jt'(A x A)) according to the following convergence 
criterion: 9 Say that z~' ~ z t if and only if for all f e ~ ( Y )  and g e L I ( O  t, ~ ,  vt), 

f f(y)g(Ot)z:(dy; Ot)v,(dOt)~ f f(y),(O%(dy;O%,(dO'). 
This is the generalization of the weak* topology to the case of random distributions: 
it is the coarsest topology on f f ( O  t, ~/(A x A)) for which S f(Y)g(Ot)'ct(dy; Ot)vt(dot) 
is continuous in zt. With this topology, ~-(O t, J/g(A x A)) is compact (Mertens 1986). 

Given a continuous function f on A ( f  ~C~(A)), let SA f(~)Pt + l(d~, z~(Ot), 0 t, y) be 
denoted Pt+  l ( f ,  "ct(Ot), Ot, Y). The transition distribution P,+ ~ (~,(0~), 0', y) is assumed 
weak* continuous in y: for each f s C~(A), Pt + 1 (f, Tt(09, 0 t, y) is a continuous function 
ofy. In addition, the following continuity conditions relative to r are imposed. For  
fixed f ,  and r t ~ ( O t ,  J//(A x A)), both Pt+l and ut may be viewed as continuous 
real-valued functions on Y for each 0 t and hence as elements of L l(Ot, cg(y), vt). To 
simplify notation, write Pt+ ~(f, zt, 0t, Y) for It+ a(f, zt(0~), 0t, Y), where r~ is understood 
to be an element o f ~ ( O  t, Jg(A x A)). We assume that for all f ~q (A) ,  Pt + ~ (f,  "~t, or, Y) 
and ut(~, a, zt, 0~) are norm continuous in z~: 

~t ~ Zt n t sup, lp ,+~(f ,  r t , O , y ) - p t + ~ ( f , r ,  Ot, y)lvt(dO t) ,0  
Ot 

and 
X n 

supy l ut(y, "c7, 0 t) -- ut(y, zt, Ot) lvt(dO t) ~' ~ ' ,  O. 
Ot 

These conditions are the natural generalization of the conditions on preferences 
and transition probabilities in the no aggregate uncertainty case. Consider the 
condition on utility and suppose first that O contains just one element, 0", so that, 
in effect, there is no aggregate uncertainty. In this case, 0 t has only one possible 
value, (0") t, and so can be dropped from the notation z(Ot). Thus, the strategy at 
time t, zt, is simply an element of d/(A x A) (with the weak* topology) and utility 
is a function of (c~, a, "c,). The condition on utility is then: 

n 
~t ~zt  

sup, [u,(y, ~;') - u,(y,  ~,)[ , 0 .  

A sufficient condition for this to hold is that ut be continuous on the compact space 
A x A x ~ ' (A x A). Next, consider the case where O is countable, so that 0 t is 
countable for each t. Suppose also, that vt(O t) > 0, VOte O t. In this case, a sequence 
z7 converges to r t if and only if z~(0 t) converges weak*,  for each Ot~ 0 t. The condition 

9 Thanks are due to J-F. Mertens for suggesting this topology. 
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on utility is then: 

supr[ u,(y, ~(Ot), 0') - u,(y, ~,(Or), 0') I ~'~', O, V O' ~ 6) ~. 

Given 0', ut(y , vt(0t); 0 ~) maps Y x vfC(A x A) to ~.  If, for each 0 t, u, is continuous on 
Y • Jt'(A • A), then, as before, the condition on utility is satisfied. A similar 
discussion applies to the condition on the transition probability. In the case where 
O is countable, the assumption implies that for each O',Pc+l(%O~,y) is weak* 
continuous in ~. Thus, these assumptions are the natural generalization of weak* 
continuity of utilities and transition probabilities on aggregate distributions to the 
case of random distributions. 

For  many applications the natural formulation of the transition process will not 
include the aggregate distribution and in such cases the norm continuity assumption 
on the transition probability is trivially satisfied. For  example, in the model of R & D 
discussed in the introduction, the success of a firm's research efforts in terms of 
improving its technology would not be expected to depend on the R & D  efforts of 
other firms although such efforts would affect the firm's competitive position in 
subsequent periods. In that case the aggregate distribution does not appear as an 
argument of the transition function and norm continuity is automatically satisfied. 

3 Equilibrium 

In this section the first result we give attaches a value function to each collection of 
(~, a, ~, 0'). This value function, Vt(~, a, z, or), details the payoff to agent ~ at time t, 
when ~ takes action a, the aggregate shock history is 0 t and the distributional 
strategy is ~. The proof of the existence of a value function does not require that the 
time t utility function, u,, be continuous in the aggregate shock 0,. We then begin 
to set out the conditions for an equilibrium. The definition of equilibrium is 
somewhat involved since the set of agents "available" to optimize at any point  in 
time must be consistent with the set of agents carried forward from the previous 
period through the transition function and the distribution over characteristics at 
that (previous) period. Furthermore, the "set of agents" is defined essentially by the 
distribution over characteristics, and this is a random variable. We formulate these 
intertemporal consistency conditions on strategies and define best response map- 
pings. We then prove that there exists a distributional strategy consistent with 
itself, for which almost all agents are optimizing at almost all aggregate shock 
histories, so that an equilibrium exists. 

In defining value functions we first consider a truncated n-period version of the 
game and families of value functions V'~(~t, a, ~, 0')~= ~ and W~'(a, r, 0~)~'= ~, where, for 
example, W~'(e, ~, 0') is the expected payoff in the truncated game (from period t on) 
to player ~ given history 0 t and z, when ~ plays optimally from period t to the end 
of the n period game. We show that for each t, these functions are continuous in 
(~, a) and ~t respectively, and norm continuous in r. We then demonstrate that these 
functions converge uniformly as n--, ~ ,  so that the limiting value functions also 
have these properties. All proofs are given in the appendix. 

Theorem 1 For each t, there exist value functions Vt(o~, a, r, 0 t) and Wt(7, ~, Or), which 
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are continuous in (~t,a) and ct respectively, norm continuous in z and satisfy 
Wt(~, z, 0 t) = max,  Vt(~, a, z, or). 

These valuation functions are used below to define the "best response" corre- 
spondence. 

We now formulate the appropriate consistency conditions on the distributional 
strategy sequences z = {z~} (in terms of the distribution over characteristics). If ~ is 
an equilibrium distributional strategy, then the measure of agents in existence at 
the beginning of period t, as given by the period t distributional strategy z,, must 
coincide with the measure mapped from period t - 1: in any equilibrium, a strategy 
must be consistent with itself. Note that given a distributional strategy ~, and 
aggregate shock history 0 t, the distribution over characteristics at time t, "implied" 
by z is given by ~rPt(B, Zt_l, Ot- l ,y)z t_l(dy;Ot-1) ,  for all Borel sets B E ~  A. Any 
distribution on A • A whose marginal distribution agrees with this distribution 
is consistent with z at time t. Thus, given z, t and 0 ', there is a set of distributions 
ft(0 ~) on A • A, such that the marginal of ~t(0 t) on A agrees with that implied by z. 
The collection of such distributions (as t and 0 t vary) is the set of distributions 
consistent with z. 

Definition 1 Let f =  {ft}t~l and z={z t } t~  1, with Zl(O,A)=/za(e ). Say that ~ is 
consistent with z if: 

fo '~a(f ,  = fo.l(f)g(O)vl(dO), Vfr~(A) ,  g e L I ( O  , ~ ,  vl) , A; O) g(O)vl(dO) 

fo2~'2(f,A;O2)g(O2)v2(dO2)=fo2frP~2(f, zl,01,Y)'rYl'dy;O1)g'O2)v2(d02), 
V f  e ~ ( A ) , g ~ L l ( O Z , ~ , v 2 ) ,  

and for period t, 

, 

Vf ~ Cg(A), g ~ L1 (@', 2 ,  v,). 

These conditions imply that "~(f, A; 0') = f rP , ( f ,  z,_ ~, 0 ' -  ~, y)z,_ 1 (dy; 0 ' -  1), almost 
everywhere 0 t (relative to re). Recall, if/~ e~ ' (A)  and f is a measurable function on 
A,/~(f)  denotes ~ f d# .  Thus, the condition imposed is that the distribution over 
characteristics space A, determined by the distributional strategy ~ at time 
t, "~,(., A; 0~), is consistent, given the distributional strategy z, with the characteristics 
distribution implied by the characteristics transition function, Pt(zr_ 1, Or- 1, y), and 
the distribution over previous state variables determined by z, zt- 1('; Or- 1). 

Denote the collection of strategies which are consistent with z by C(z). In view 
of definition 1, C(z) may be defined as C(T) _= x o~ Ct(z), where t = l  

CI(T): ('i~ 1 ' ;@~1(f,A'~O)g(O)iil(dO) = f(o]-ll(f),(O)pl(dO),VfGC~(A),~-L1(O,~,ISl)), 
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and for t > 2, 

Ct('r)={~fo'~r(f'A;Ot)9(O~)vt(dOt), 

fo ,  f r  Pt(f, z,_ 1, Or- 1, y)zt_ l(dy; 0'- 1)9(O')vt(dO'),V fEcg(a) ,9~L 1 ( Ot ,~ ,  v,) }. 

Norm continuity of P~(f, zt- 1, 0t- 1, y) in ~ (viewing P~(f, ~r- 1,0~- 1, y) as an element 
of LI (O r- 1, cg(y), vr- 1), for fixed f )  ensures that these equalities are continuous in 
z sequences. A strategy consistent with itself is a fixed point of C. Continuity of the 
equalities in z sequences gives the following result. 

Theorem 2 The correspondence C(r) - x ~= 1Ct(z) is non-empty, upper-hemicontinuous 
and convex-valued. 

We now consider those distributional strategy sequences in which almost all agents 
are maximizing for almost all aggregate shock histories, O r. Consider the period t 
x~aluation function Vt(~, a, z, Or). This gives the payoff to agent ~ if the distributional 
strategy is given by z, the aggregate shock history to period t is 0 r, and ~ chooses 
a. Given z, Ct(z ) gives the set of period t distributional strategies whose marginal 
distributions on characteristics space agrees with the distribution over characteristics 
space implied by z and the transition functions. For a strategy to be an equilibrium, 
we require that it be consistent (with itself) and that at every time period, at almost 
all histories (0 shocks), almost all agents are optimizing. If, for the moment, we fix 
a "representative" 0 t, then z and the transition functions imply some distribution, 
say 2t(e;0 r) on A. With agents selecting actions optimally, the payoff to ~ is 
max,, Vr(~, a, z, 0 r) = Wt(~, z, 0t). Let h(~, Or), be an optimal choice for ~ (at Or), with h 
a measurable function, on A x O r. Then h and 2t determine a joint distribution ~t 
on A • A, for each 0t: ~r(0 r) (or zt(*, *; Ot)) �9 Note that freCt(z). By construction, if 
rt ~ Ct(z), for almost all O r, ~r Vr(~ a, "r, Ot)'~t(dy; 0 ~) < ~r Vr(~, a, z, Ot)~,(dy; Ot). This 
inequality follows directly from the fact that fy Vt(~, a, z, Or)'~r(dy; 0 r) = ~r Vt(ct, h(~, or), 
z, Ot)2,(do~; O'). Further, if for all ~r ~ C(z), ~y Vt(~, a, "c, O~)ft(dy; O r) <_ ~r Vt(~ a, r, Ot)~r(dy; Or), 
for almost all 0 7, then almost all agents are optimizing at almost all 0 t. If zr and Ct 
coincide in this definition, for each t and 0 t, then under the distributional strategy 
~, every period almost all agents are optimizing at almost all aggregate shocks. At 
a representative 0 r (in the measure 1 set) ~yVt(o~,a,z,O~)~t(dy;O r)= IY max,Ea 
V,(~, a, ~, O')r Or). In this case, since z is consistent with itself, it is an equilibrium. 

Definition 2 Let r be a distributional strategy consistent with itself. Then z is an 
equilibrium if for each t, 

sup~c.~, fo, fy Vr(=,a, v,O%(dy; O')vMOt) <- fo, fyV,(~'a' ~'O%(dy;Or)vMO~)" 
Define a best response mapping, B(z): 

f Vt(~,a,z, Or)'~t(dy;Ot)v,(dO r) 
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< f o ,  frvt(~,a,r, Ot)~t(dy;Ot)vt(dOr)} �9 

A fixed point of B is an equilibrium. By construction, if ~ in B(~), then for all t, for 
almost all 0 r, almost all agents are maximizing at state 0'. The next theorem shows 
that B satisfies the conditions of the Glicksbuerg Fan Theorem. That is, B is 
convex-valued, non-empty and upper-hemicontinuous. 

Theorem 3 The correspondence B satisfies the conditions of the Glicksber9 Fan 
theorem and hence has a fixed point, which is an equilibrium of the game. 

4 Markov equilibria 

We now show that when the model is stationary and the 0 process Markov, there 
exists a Markov equilibrium. More precisely, we show constructively that for every 
equilibrium, there is an (expected payoff) equivalent Markov equilibrium. This 
result uses the conditional no aggregate' uncertainty formulation involving the 0 
process. The Markov equilibrium is on an enlarged state space which includes 
payoffs. This is similar to D G M M  who also use an enlarged state space which 
includes payoffs. However, we impose relatively weak assumptions on the transition 
function of the process. We conclude this section by dropping the conditional no 
aggregate uncertainty hypothesis and returning to a general model of aggregate 
uncertainty as a random measure #~. In that environment, under strong continuity 
assumptions similar to those in DGMM,  we provide a result on the existence of 
Markov equilibrium where the state space is just the aggregate distribution over 
characteristics. This illustrates an alternative approach to modeling aggregate 
uncertainty, and does not require that expectations enter the state space. 

For the model with conditional no aggregate uncertainty we first impose the 
following stationaritv assumptions (with a slight abuse of notation): 

1. ur(~, a, % 0 z) = u(~, a, % 00: utility is time independent and depends only on 
the current value of 0. 

2. Pt(e; zr- 1, 0t- 1, y) = P(e;zz_ 1,0r_ 1, Y): the transition function is Markov. 
3. v(O r) depends only on 0r. With a mild abuse of notation v(o l0 r) = v(e for): the 

aggregate shock process is Markov. 

In addition, we assume that 

1. u(~, a, % 0r) is continuous in (~t, a, 0r) and norm continuous in zr- 
2. P(~, a, % 0t) is weak* continuous in (~, a, 0~) and norm continuous in ~t. 
3. v(o]00 is weak* continuous on O. 
4. O is a compact metric space. 

These additional assumptions imply that the value functions Vr(~, a, z, 0 t) and 
W~(~t, z, 0 ~) (given in theorem 1) are continuous in 0 ~. We now introduce a state space, 
S, and define equilibrium Markov strategies relative to this state space. 

Given an initial distribution /~ over the characteristics space and an initial 
aggregate shock 0, we denote the associated set of equilibrium distributional 
strategies as: 
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E(#, 0) -- {z ~ ~/~ [z is an equilibrium of  the game with initial characteristics distribut- 
ion # and initial aggregate shock 0}, where ~/g~-- x ~=o~(Ot, J///(A x A)) and 
W ( O ~  x A ) ) =  J/I(A • A)). Define the state space S: 

S = {(# ,v ,O)~Jg(A)  • <g(A) • O[3z~E(#,0)  and v(~) = WI(o~ ,z ,O) ,V~A} .  

Thus, (#, v, 0)ES, means that given initial conditions (#, 0) there is an equilibrium 
strategy 3, such that the expected payoff to agent ~ in this equilibrium is v(~). In 
addition, define a correspondence q~: S --, ~ '~  according to: 

(,0(#, v, 0) = {z E Jg~ IT~E(#, 0), v(~) : WI(~, z, 0), u  

The correspondence tp associates to any point (#, v, 0)eS an equilibrium strategy z 
(in the game with initial characteristics distribution # and initial aggregate shock 
0), with the property that the payoff to ct is v(~). Under the additional assumption 
of continuity in 0, the correspondence q~ is an upper-hemicontinuous correspondence. 
Define a Markov equilibrium: 

Definition 3 An equilibrium distributional strategy ~ is a Markov  Equilibrium if  for  
almost all 0 t, 0 c such that 

( i) #( . U O' - l ) = #( o l OC -1), ( ii) Wt( ct, f,  O') = VVc ( ~, f, O c) and ( iii) Ot = O c, 

the strategy ~ satisfies ~(o, �9 10') = ~(o, �9 lot'). 

Thus, an equilibrium distributional strategy is a Markov equilibrium if the behavior 
at two different histories is the "same", when the distributions on characteristics, 
the expected payoffs to all agents, and the aggregate shocks agree. The following 
theorem asserts that every equilibrium payoff in the game arises as the payoff to 
some Markov equilibrium. 

Theorem 4 Given an equilibrium z of  the game with initial characteristics distribution 
# and initial state O, there is a Markov  equilibrium, ~, such that the f irst  period payof f  
to each agent is unchanged: the expected payoff  to ct is the same under f as z. 

The proof involves taking a pointwise measurable selection, z*, z*(#,v, 0) ~ ~0(#, v, 0), 
for all (#,v, 0)ES which we use to construct the Markov equilibrium f. Future 
payoffs are supported by reapplying the first component of z*(#, v, 0), z*(#, v, 0), in 
succeeding periods 2, 3 . . . . .  thus introducing Markov stationarity. This follows an 
approach given in Bergin (1989). 

For the final result, we return to a basic formulation of aggregate uncertainty. 
In the model with an aggregate uncertainty parameter (0) identified explicitly, 
aggregate uncertainty is modeled with the aggregate distribution conditionally 
nonstochastic, given the current aggregate shock. Typically, however, "Markov 
type" results require a degree of continuity in the transition process governing the 
state variable (in the sense of absolute continuity relative to a fixed measure or 
relative to the transition measure at all states, say). Conditional no aggregate 
uncertainty runs counter to this type of assumption. Reverting from the conditional 
no aggregate uncertainty assumption to the general specification permitting 
aggregate uncertainty allows us to address the issue of Markov structure with 
standard (although strong) assumptions on the transition process. 
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We return to the process ((t/, a, a, z) governing the evolution of individual 
characteristics, modified slightly to include the distribution on characteristics, 
#: ((t/, a, a, z, #). In this case, for a given (t/, z, p), next period's aggregate distribution 
is given by 

IP(B) = z({(~,a)l~(~,~,a,r,p)~B}), V B ~ A .  

The corresponding distributions on the space of measures over characteristics are: 

r = p({~l~"e Q}), 0 e~,(A), 

and 

r - p({t/l(#, ' ~(thot, a ,z))~Q}) ,O~a(A, |  

Since 0 is no longer separate from r/, it no longer enters the utility function explicitly: 
utility is given by a (time independent) function, u(ct, a, r, g). The transition function 
now is a distribution on Jt/(A) • A, where pa~ (o , . ,  a, a, r,/~) gives a distribution 
over J[(A) • A, given (ct, a, z, if). A period t distributional strategy is a function from 
J[(A) to ~t'(A • A). For a fixed measure ~ on J/(A), the natural topology on the 
space of these functions is given by the following criterion of convergence: r* --+ r if 
V fern(y),  gcLI(d/ (A) ,  J//(A • A), r 

f r f (Y)rk(dY; ff'g(#)r ) ~ f r f (Y)r(dY; ~)g(~)r 

We make the following assumptions. There is a fixed measure r on J / (A) such that 

1. u is continuous in (a, a) and norm continuous in z (relative to ~b): 

f zt ~ z t  

supy l u(y, ~k, fi) _ u(y, r k, fi) l r ,0. 
#(A) 

2. p~r is continuous in (a,a) and norm continuous in r (relative to r on 
measurable functions, f, on J/4'(A) x A: 

f~ sup, Ipar rk, f i )-Par fi)lr r 
It(A) 

3. The p component of the transition functions is dominated by r uniformly, 
3 b < oo such that for any (y, z, fi), 3 f  measurable, f :  d/(A) ~ ~ ,  0 _< f _< b, 
such that 

par  A, y, r,/7) = fx f(l~)r 
In this model, the state space for the Markov formulation is J///(A). An equilibrium 
is Markov if the current distributional strategy z t depends only on the current state, 
/~t. The intertemporal consistency conditions on the distributions have the form: 
Vf  ~ ( J / ( A ) ) ,  Vg e L~ (~/(A), ~ ,  r 

fj~, "Ct+ l ( f ,  /.t)g(fl)~(d/.t) = [Par A; y, ~,, ff)g(#)r Vy~ Y, t >_ l, A; 
(A) J 
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and, 

f ~(n ~,(f,  A; #)g(#)0(d#)= f ~ #(f)g(tOO(d#), 

In this case, say that ~ is consistent with 3. 
The proof that a Markov equilibrium exists proceeds along similar lines to 

theorems 1 and 3. As before, this entails establishing the existence of valuation 
functions { Vt(~, a, 3, #) }, _>1 and { W~(~, 3, tt) }, > 1, where v = (~i, 3z . . . . .  ), 3t: J//(A) 
~/(A x A). We then define intertemporal consistency conditions for the distributional 
strategies and show that the consistency and best response mappings satisfy the 
conditions of the Glicksberg Fan Theorem. 

As before, we prove the existence of value functions by looking at a truncated 
n-period version of the game, establishing the existence of {V~(~, a, r,#)}t_> 1 and 
{ W~(~, 3, #)}, >_1, and then take limits to obtain { V,(~, a, 3, #) }, >_1 and { W~(~, r, #) },_>1. 
Note that even if the function Wt(~t, 3, #) were continuous in g for fixed r, since 3, 
(for example) is an endogenously determined function of g, 3 will depend on # as a 
measurable function which is generally not continuous. When the dependence of 3 
on # is taken into account, Wt(e, r, I~) depends measurably, but not continuously, 
on #. As a result, the convergence of expressions such as ~(A)• a Vr v, fi)Pa~(dfi x 
d~;y, 3k,#)~(dp) to ~r215 fi)P~r • ~;y,z,#)~l(d#) depends on the 
assumption of norm continuity on measurable functions. Assumption 3 of uniform 
boundedness of the Radon-Nikodym derivative is made for similar reasons. 

In this framework, the appropriate definition of equilibrium is: 

Definition 4 A strategy z is a Markov equilibrium if 3 is consistent with itself and for 
each t, 

f a, 3, #)3,(dy; a, 

for all ~ consistent with 3. 

Theorem 5 The consistency and best response mappings satisfy the conditions of the 
Glicksberg Fan Theorem so that there exists a Markov equilibrium. 

5 Strategy specification 

Earlier, when presenting the model we defined strategies as measurable functions 
from the aggregate shock history to distributions on characteristics and actions, 
and promised some further discussion of the formulation of strategies. We now 
describe an alternative approach to strategy formulation, that appears at first glance 
to have the appeal of simplicity. 

One might think that rather than specify a period distributional strategy as a 
measurable function from the history of aggregate shocks to Jg(A x A), that it 
would simplify the analysis to define the period t distributional strategy as a measure 
on (6)' x A x A). Such a formulation simplifies somewhat the choice of topology on 
strategies and appears at first glance to make the proof of existence of equilibrium 
easier (see Bergin and Bernhardt 1993). However, serious problems emerge when 
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trying to interpret payoffs and transition probabilitiTes defined on such strategies. 
For  example, suppose that aggregate uncertainty concerns demand in a market 
which the agents are firms and that demand (0) is uniformly distributed on the 
interval [0~, Oh], Oh > Or. Consider period 1. The profit of firm e, supplying quantity 
a o when demand is O, is given by U a(e, ao, z l (0), 0), where z l(O) represents the actions 
of other firms given that demand is O. The expected profit to firm ~ in period 1 is 
Soux(~,ao, zl(O),O)v(dO), with v the uniform distribution on [0z,0h]. If the distri- 
butional strategy is defined as a measure z 1 on (A x A x O), calculation of expected 
profit of the firm still requires that we compute the conditional distribution over 
A x A for each 0e  0 ,  z~(Oh), a measurable function from O to A x A. Whichever 
way distributional strategies are defined, discussion of continuity of utility on 
distributional strategies involves interpreting the distributional strategy as a 
measurable function from O space to distributions on (A x A). This brings us back 
indirectly to the same formulation - of the strategy as a function from histories. 
Since the economic interpretation of the utility function requires the evaluation of 
distributional strategies on histories it is more useful to proceed directly with this 
formulation. By defining distributional strategies as measurable functions directly, 
i.e. r t ~ ~-(Ot, Jg(A x A)), we avoid the need to move back and forth between joint 
and conditional distributions. Similar comments apply concerning the transition 
probabilities. 

A second virtue of our approach is that much weaker continuity assumptions 
are required to prove the existence of an equilibrium. We do not require continuity 
of the utility or transitions functions in the aggregate shock: neither ut(ot, a, mr, 0 t) 
nor Pt+l(mt, Ot, y) need be continuous in 0 ~. When the distributional strategy is 
defined as a joint distribution (zte./r ~ x A x A)), continuity of both the utility 
and transition probabilities in 0 r is required to exploit the benefits of having z t 
defined as a distribution on O t x A x A. 

6 Conclusion 

As we observed in the introduction, there are many dynamic economic phenomena 
that can be fruitfully modelled as anonymous sequential games with aggregate 
uncertainty. In many economic environments, the stochastic evolution of both an 
individual agent's type and aggregate variables is key, as are their interactions. Our 
paper shows how these problems can be formulated, and provides conditions under 
which the economy's evolution has a Markov representation. 

A classic environment in which such dynamics are key to our understanding is 
that of real business cycles. Davis, Haltiwanger and Schuh (1993), offer overwhelming 
evidence that different firms have very different experiences at the same moment in 
business cycles. They find, for instance, that in both upturns and downturns there 
is considerable entry and exit of plants and creation and destruction of jobs. As 
well, entry and exit of small firms varies less with the business cycle than the exit of 
large firms (which is highly countercyclical). Most job creation and job destruction 
in the economy is at a few firms - the big winners and losers; that is, job gains and 
losses are not evenly spread. 
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Macroeconomic models that do not incorporate both idiosyncratic and aggregate 
stochastic heterogeneity simply have no chance to explain these phenomena. Bergin 
and Bernhardt (1993) show how one can capture these phenomena within an 
anonymous sequential game which features a continuum support for the aggregate 
demand shocks, and provide Markov characterizations. Gouge and King (1994) use 
the formulation in a model that focuses on the labor side of these observations - 
human capital acquisition, job creation and job destruction. 

Our framework can also be used to characterize asset market equilibria with 
incomplete markets, heterogeneous agents (e.g. with stochastically varying idio- 
syncratic endowments or preference shocks) and idiosyncratic and aggregate shocks 
to asset payoffs. D G M M  provide conditions under which a Markov characterization 
of such a market equilibrium obtains in their stochastic games formulation, but one 
could provide related Markov characterizations in our anonymous sequential game 
formulation. To the extent that the technical conditions that we impose are less 
onerous, the anonymous sequential games formulation may allow better charac- 
terizations. 

Another area in which our framework can be usefully employed is where firms 
which receive idiosyncratic cost shocks operate in an economy with aggregate 
inflation shocks. In such an environment one could study how and when firms adjust 
prices when price adjustment is costly. Important  issues to consider include: how 
will inflation shocks be incorporated into prices? how does the mix between 
aggregate inflation shocks and idiosyncratic cost shocks affect price adjustment 
decisions? how will the pattern of price adjustment vary across markets? how will 
price adjustments be correlated within and across markets? how will the nature of 
competition within a market affect the responsiveness of a firm's pricing decisions 
to aggregate inflation shocks?, etc. 

Thus, the anonymous sequential game with aggregate uncertainty formulation 
can be flexibly employed to model a host of economic phenomena. Our paper offers 
a very general equilibrium existence argument for these models, and provides 
conditions under which the economy has a Markov characterization. The researcher 
can then use the additional structure that he places on the economy to tease out 
further characterizations. 

7 Appendix 

We first give two lemmas. The first asserts that "continuity is preserved" through 
integration while the second lemma shows that continuity and norm continuity are 
"preserved under maximization". We use these lemmas to establish the existence of 
appropriate value functions. The value functions are then used to define best 
response mappings, leading to the equilibrium existence proof. 

Lemma 1 Let X ,  Y and Z be compact metric spaces. Let n(x, y, z) be continuous in 
( x , y , z ) ~ X  x Y x Z, and P(o;y,z): Y x Z- -*~I (X)  be continuous in (y,z), so that 
(Yk, Zk) ~ ( y ,  Z) implies that the sequence of  measures P(e; Yk, Zk) converges weak* to 
P(e; y, z). Finally, let Q(e; z): Z ~ Jd(Y)  be weak* continuous in z. Then zk--* z implies 
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that 

Proof: Let ?(y, z) = Sxn(X, y, z)P(dx; y, z) and note that ?(y, z) is continuous. To see 
this, let w = (y, z) and consider a sequence wk ~ w. Then 

<-Ifn(x, wk)P(dx;wk)-f (x,w)P(ax;wk) 
§ f w)P(ax; wk) - f w)P(ax; w) . 

Since IS n(x, Wk)P(dx; w~) - ~n(x, w)P(dx; wk) J _< ~ln(x, Wk) -- ~ n(X, W) l P(dx; w~) and 
is uniformly continuous on X • W (X • W is a compact metric space), then given 
e > 0, 3k such that k _> ~: implies that In(x, wk) - n(x, w)l < e, for all x. Thus, 

] 
Since n is continuous on (x, w) and P(e; Wk) converges weakly to P(e; w), 

]fn(x,w)P(,tx;wk)-fn(x,w)P(dx;w)- O. 
Thus, ? is continuous on W = Y • Z. Since W is a compact metric space, ? is 
uniformly continuous on W. 

Now, ~y ~x n(x, y, z~)P(dx; y, zk)Q(dy; z~) = ~y ?(y, z~)Q(dy; zk), so that using the 
uniform continuity of ? and weak* convergence of Q(e;zk) to Q(o;z), the same 
argument as above gives 

which completes the proof. �9 

For  the next lemma, we need the following notation. Let (s ~,  #) be a given 
probability space and d/t(Y) the set of measures on Y =  A • A. Let ~(s  Jl(Y)) 
denote the set of measurable functions from J2 to ~(Y) .  A sequence of measures 
{z k} in ~(~2, J//I(Y)) converges to a measure z if and only if 

Vf  ~ c#(Y), g ~ L1 (.(2, ~ ,  #). 

With this notation, we have: 
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Lemma 2 Let  r: Y x J [ ( Y )  x .(2 ~ ~t. Wi th  a mild abuse o f  notation, write r(y, z, co) 
to denote r(y, z(co), co) (thus extendin9 r to Y x ~(12,  JC(Y))  x Y2). Let  r(y, z, co) be 
continuous on Y and norm continuous with respect to z: as z k --* z, So supy ]r(y, z k, co) - 
r(y,z ,  co)[ #(dco)~O. Then s(a,z, c o ) = m a x ,  r(a,a,z ,  co) is continuous in a and norm 
continuous in z: z k --)" 72 implies ~a sup, Is(a, ~.k co) - -  S(a,  '1~, co)] #(dco) -~ O. 

Proof: Continui ty of s in ct is clear. To consider norm continuity of s in v, let r k ~ ~. 
Since r is norm continuous,  given e > O, 3 k, such that k _> k implies 

f supr z k, co) - r(a, co) [,u(dco) < e. It(a, a, a, 

Let 

K2k(flO = {COl Ir(a,a, vk, co) - r(a, a, ~,co)l _> fie}. 

Then 

e >_ Ja  supy [r(a, a, z k, co) - r(a, a, z, co) l~(dco) 

>_ f supy I r(a, a, vk, co) - r(a, a, ~, co) l#(dco) _> ). 
dO u(#~) 

Thus, 1 >  fl#(.O,(flO), and setting fl = 1/x/~ gives ~ >/~(t2~(,v/~)). Let ak(a, co) 
maximize r(a~a, vk, co) and a(~, co) maximize r(a, a, ~, co). On ~k(v/~) c, Va 

r(a, ak(a, co), z k, co) > r(a, a(a, co), z k, co) > r(a, a(a, co), "c, co) -- , j~ .  

The first inequality follows since ak(a, co) is a maximizer of r(a, a, z k, co) and the second 

inequality follows since co ~ I2k(V/-~) c. Similarly, 

r(9:, ak(a, co), z k, to) < r(a, ak(a, co), z, co) + ,,See < r(a, a(c~, co), r, co) + ,See. 

The first inequality follows since co e-Ok(V/~)~ and the second follows since a(a, co) is a 

maximizer of r(a, a, r, co). Consequently, V ~, Is(a, z k, co) - s(a, ~, co)] < v/~, co e 12k(X/-e) c. 
Thus, 

sup~ Is(a, ~ ,  co) - s(a, ~, co) l -< ,/~, co ~ o ~ ( v @ .  

Therefore, 

f sup. ~, co)- s(c~, co) l,.(dco) S(~, 

= f sup~ Is(a, z k, co) -- s(a, z, co) lit(de) ) 
% k(.fO 

+ t "  sup~ Is(e, z k, co) -- s(a, z, co) ]/t(dco). 
% ~(,/~)~ 
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The latter expression is bounded above by 2K/t(f2k(X/e)) + X/~/~(f2k(X/~)0 < 2Kx/~ + 
 =E2K+IJ,fi. �9 

Theorem 1 For  each t, there ex is t  value func t ions  V~(g, a, 3, 0 t) and W,(~, 3, 0~), which 
are cont inuous  in (g,a) and ~ respect ively ,  norm cont inuous in z and satisfy 
W,(~, 3, 0 ~) = maxa Vt(~, a, r, 0~). 

Proof :  Consider  an n-period t runcat ion of the game. Trivially in period n, 
V~(~, a, 3, 0") = u.(~, a, 3,, 0.), which, by assumption,  is cont inuous in (~, a) and norm 
cont inuous in 3, as is W~(~, z, 0 ~) = maxau.(~,  a, ~., 0.), by lemma 2. Now define 

V~_l (~ ,a ,  3, O ' ' -1)  = Un_l(~,a,  3 ,_ l ,O , ._ l )  

+ ;OfA W:(r176  

V~ _ i (~, a, 3, 0" - l) satisfies: (1) V~ n _ 1 (g, a,3, 0" ) is cont inuous in (g, a) and (2) if ~k ~ 3, 
then So sups,,,, I V~ _ 1 (o~, a, z k, 0" - l) _ V~ _ 1 (o~, a, "c, 0" - i)lv,.(dO" - 1) ~ O. Continui ty  in 
(7, a) follows from lemma 1, treating (z._ 1,0"-1) as parameters  of u._ x and P. ,  
respectively. N o r m  continuity in z can be seen by separating current  and future 
components  of expected payoffs, so that, using abbreviated nota t ion (writing P~ 
for pk t,/;~ zk r  ,_ 1, 0"-  1, 0q a), etc.), 

fosup(,,,,,)l V".,_ i (~, a, -- V~_ 1 (~, a, 3, 1)[v.(dO" 1) 3k~ O" 1) O" 

becomes 

f@ sup(,,a) Ukn 1 Un_l...[_(~nf@)f A nk k n _ - W . P . v , , ( d O  IO " - l )  
n - i  

--OnfofAwnnPnVn(dOnlOn-1 ) Vn_l(dO n-l) 

< f sup~, . , , ) lu~. -~-u , , - l lv (dO " -~)  
do n - 1  

sup,,..o, fofAW:"P".v,.(aO",O "-1, 

The first term on the right hand side converges to 0 as 3 k ~ z, because u._ 1 is norm 
continuous,  For  the second term consider 

fo._ sup,.,.) fo fa - fo fA wnr'.v.(dO"lO"- ) 
sup,.a, fAW:"P:-fAW:P,,v,,(dO"'O"-I)v,,-I(dO 
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f fA f W~P. o.  sup~,.) w;kp~ - v.(dO"). 

The last expression is no greater  than: 

fonsupt~,.) fA W~kPk-- fA W".pk v.(dO") 

+foosuP, ..,fAW:P:--fAW:P.v.(dO")" 
The first t erm is bounded above by ~o~ sup~l IA W"? - W".lv.(dO"), which converges 

" h to O, from norm continuity of W,. T e second term converges to O, by norm continuity 
of r.ta~,z._l,nk"" on-X, ~, a) in z. W."_I(a , r ,0  " -1)  is defined from V"._l(e,a,r,O "-1) 
and, as before, is cont inuous in c~. N o r m  continuity of W . "  l(e, ~, 0"-1)  in z follows 
f rom l emma 2. 

Proceed inductively in this way to define VT(e,a,r,O') and WT(a,z, 0 t) for 
1 < t _< n. The discussion above defines the recursion for fixed n and shows that  for 
any t, 1 < t  <n,  that  both  V'~(~,a,z,O')(- V~ . ~(~,a,z,O'-("-~ and W'~(cq z, O') - -  - ( - )  

are cont inuous functions of (a,a) and e respectively, and that  both  are no rm 
cont inuous in z. To  conclude we show that  the following limits exist for each j and 
are cont inuous functions of (~, a) and ~ respectively: 

lim. ~ o~ V"j(e, a, r, 0 j) = Vj(e, a, v, 0 ~) and lim.~ ~ Wj(ct, z, 0 j) = Wj(ct, z, O J). 

Taking  n > j ,  observe that  each .o f  the functions V~(e,a,r,O j) and WT(e,z,O j) is 
increasing in n, and that  

s 

__ • n+r- 1 (~j+h) K < [(~n-j+ 1/ (  1 __ 6)]K,  O <  V~+S(~z,a,z, OJ) - V~(cx, a,z, OJ) < - ~ ( h=j 
r = l  

$ 

0 ~ WT+S(o~, T, 0 j) -- W~.(o~, T, O J) --< Z t ( x n+r-h:j 16~+h)K <- [ 6" - j+  1/(1 - 6)]K.  
r = l  

Therefore V~.(e, a, ~, 0 j) and W~(e, z, 0 j) are Cauchy  sequences in n. Since V~.(e, a, z, 0 i) 
and W~(~, r, 0 j) are cont inuous in (e, a) and e respectively and are bo th  no rm con- 
tinuous in z, the limits Vt(e, a, z, 0 t) = lira. V~(e, a, ~, 0') and Wt(e, z, 0 t) = lira. WT(c~, r, 0 ~) 
inherit these propert ies  also. �9 

Theorem 2 The correspondence C(z) m X ~= 1Ct(z) is non-empty, upper-hemicontinuous 
and convex-valued. 

~. - . . .  " " z , , r , e ~ ' ( O ,  JC/(A x A ) )  Proof: L e t f " = ( z  1 . . . . .  z,, . ) a n d z " = ( z  1 . . . . .  r t . . . .  ) w h e r e - "  " ~ ' 
with ~" ~ C(z"), z,~" --* r t,~ r~" --* r .  and 

er(f, A; O')o(O')v,(dO t) e , ( f ,  rT_ ~, , .  ,_ l(dY; 0 '-  ~)o(0%(dO'). 
O t  t 

Then, 

fog,(f,A;O')g(Ot)v,(dOg=fo, f P,(f,',-1,0'-l,Y)V,-l(dy;O'-l)o(O~)v,(dO')" 
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To  see this, note  directly f rom the topo logy  on z that  

o<?'~(f, A; O')g(Ot)v,(dOt)--> fo<?t(f, A; Ot)g(O')vt(dO'). 

N o w  consider the right hand  side. Abbrevia te  Pt(f ,  r~'_ 1, 0 t -  1, y) by P~'(0 t -  1, y) 
and Pt(f ,  rt _ 1, 0 t -  l, y) by Pt(0t-  l, y). Then 

I fo, fyPT(O'-l,y) 7-1(dy;O'-i)vdv,- fo< fyP,(O'-l,y) ,-l(dy;O'-l)vdv, I 
<_l j@< fyP~(Ot-l,y)rT_l(dy;O'-l)gdv,- f,~< fvP,(O'-I ,yj"z"t_lt'dy; Ot-1)gdvt 

The first term on the right of the inequali ty is less than  or equal  to 

fo<fyIIP~(Ot-l,Y)-P,(O'-l,y)llrr~_l(dy;O'-l)gdv, 

= ~ NP~'(0t- I ,Y)-  p,(ot-l,y) llrodv,, 
J o  t 

and the no rm continuity condit ion on P, implies that  this goes to zero. The  second 
term converges to zero f rom the topology  on z. Convexi ty  follows since the 
restrictions are linear. It  remains  to show that  non-emptyness  is also satisfied. To  
see this, given #l(e) ,  the initial measure  on A, and given the measure  v 1 on 6), let h 
be a measurable  function f rom A x @ to A. Define a measure  q) on A x A x O 
according to the p roper ty  that  ~p(X x Z) = / q  | vl(h- I(X)~Z) for any measurable  
sets X and Z in A and A x 6) respectively. (Interpret  ~o as the unique extension f rom 
such measurable  rectangles). Let f l ( e ,  e; 01) = qg(e, e; 0i), where q~(e, e; 01) is the 
condit ional  distr ibution of ~o on A x A, given 01. Note  that  ~o(A x Z ) = / z  I | Vl(Z ) 
so that  f l ( e ,  A; 01)=  ~/i | Vi(O; 01)-~-#1(O) �9 For  t > 2, a similar discussion applies. 
View ~r Pt(f, "r,_ 1, Or- 1, y).q_ l(dy; 0'- 1) as a condit ional  distr ibution on A given 
0 ' - l .  Let Q be the joint  distr ibution on A x 6)t determined by ~rP,(f,'c,_l, 
0t -  l, y)r,_ l(dy; 0'- 1) and yr. As before, let h be a measurable  function f rom A x 6)t 
to A. Define a measure  on A x A x 6)t, 49, determined on rectangles X x Z, where 
X and Z are measurable  subsets of  A and A x 6)* respectively, by ~p(X x Z) = 
Q(h ~ I(X) nZ). Let ?t(e, e; 0 t )= (p(e, e; 0t). Lastly, note  that  ?t(e, A; 0t )= (p(e, A; 0') = 
Q ( h -  I(A) ch e; Or) = Q(o; Or) = ~r Pet(e, zt- 1, or- 1, y)zt_ l(dy; 0'- 1). [] 

Theorem 3 The correspondetice B satisfies the conditions of the Glicksber9 Fan 
theorem and hence has a fixed point, which is an equilibrium of the 9ame. 

Proof: To see that  B is convex-valued,  recall that  C is convex-valued and the 
addi t ional  constraints  on f in the definition of B are defined by linear inequalities, 
so that  B is convex-valued.  Next  B is non-empty  since for any t, C,(r) is closed and 
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non-empty  (in view of theorem 2) and ~e~ ~r Vt(~,a, r, Ot)z,(dy; O')vt(dO' ) is cont inuous  
in z. It  remains to show that  B is upper-hemicont inuous .  We prove  this in two steps. 

Step 1: We first show that  f eB(z )  if and only if, 

where 2t(e; 0 t) is the (unique) marginal  distr ibution on characteristics, A, determined 
by any distr ibution consistent with r . l~ To  see this, consider the correspondence  

~(~, 0') --- {alrnax,, V,(~, a, ~, 0') < Ve(~, a, ~, 0~)} -= {al W,(~, r, 0') < Vt(=, a, r, 0') }. 

Denote  the graph of r by fg~, and observe that  f#~, eMA • ~ a  • ~ b  (4 has a 
measurable  graph) since 

c~O = { (ot, a, Ot)laeO(o~, Ot) } = { (~, a, Ot)l Wt(o~, .r, O t) < Vt(~, a, .c, Ot) }. 

Denote  by 2 |  t the measure  on A x 0 t determined by 2 and v,. Viewing ~ as a 
correspondence f rom (A x Ot, NA x ~ , 2 |  there is a measurable  selection 
h: A x 0 t ~ A, with h(~, 0 t) e ~p(e, 0 t) almost  everywhere 2 | vt since f#~ e Ma x ~ a  X ~)~ 
(using the measurable  selection theorem). Thus Vt(~, h(e, Or), z, 0 t) = Wt(e, "c, 0'), 
almost  everywhere 2 | v,. Now,  define a distr ibution on A x A x O ~ by r x Z) =- 
2 | v,(h- I(W) ~ Z), u W e  MA and Z e NA x ~ ' .  Observe  that  q~(A x Z) = (). | vt)(Z ) 
so that  v t a lmost  everywhere 0 t, ~o(A, e; 0 t) = 2(e; or). Thus, q~ has two key features: 
for a lmost  all 0 t, the condit ional  distr ibution on A x A, given 0' has suppor t  on the 
best response mapp ing  (h) f rom A to A and the marginal  on A has the required 
consistency property.  Define r* :z*(e, e; 0 r) = r e; or). Then ~* eCt(r)  and, 

fo, f v,(=,a,~,O')~*(dY;0%(clO') 

However ,  since W~(~, r, 0') > Vt(o:, a, v, 0'), V(~, a ) e A  • A, we have 

f o, f V,(=,a,v,O')':,(dY;O%(dO')=fO~;AW,(~,~,O')'~,(cl=;O%(dO~). 
Step 2: Now,  let r " ~ z  and suppose that  ~"eB(r"),  with ~ " ~ { .  It  is necessary to 
show that  ~eB(z). Recall W~(~, z, 0 ~) is n o r m  continuous:  

fosup, I W,(~,  - W,(~ ,  ~, --, 
"C n ' 0 ~ ) O')l v(dO') O. 

t 

Let 2t(e; 0 ~) be the distr ibution on A determined by Ct ( : ) ,  so that  if "~' e C ( : ) ,  then 
f~'(e, A; 0 t) = 2~(e; 0~), vt a lmost  everywhere. N o r m  continuity of Wt(o~, "r, 0 t) implies 

lo Recall that each distribution in Ct(r) must have the same marginal distribution on A: if ft, ?r~ Ct(z), 
then ~t(e, A; 0 *) = vt(e, A; 0'), vt almost everywhere 0'. We denote this distribution on A by 2t(e; 03). 
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that 

f o~ L I Wt(o~, z", 0') - W,(o:, 0')12~(dct; O')v(dO') --* O. 
t "  

Hence, 

I fOt ~A l/Vt(o~, zn, Ot)2~(do~; O')v(dOr) - fe t  f a W,(~, z, Ot))~(d~ Ot)v(dO') ---~O" 

Now in the topology given on measures, let 2, be the limit of 2~' and note that fr~C(z), 
so fr(A, e;O t) = 2,(o;0r), vr almost everywhere. Observe also that W~(~,z,O r) is 
continuous in ~ (since l, Vt(~, v, 0 r) = max,, V,(~, a, z, O r) and Vr(~, a, r, 0 t) is continuous 
in (~, a), so that W~(ct, z, 0') is continuous in ~ for each 0r). Thus 

fO, fAVC,(~,r, Or'27(d<O"v(dO')-'fo, faw,(~,z,O%(d<O')v(dOr', 
so that 

Now recall that since g"~B(v"), by step 1: 

fO, 
Since g" ~ g as v" ~ z, using the norm continuity of Vt(~, a, z", 0 t) we find that 

Therefore, 

Thus, ~B(z ) ,  so that B is upper-hemicontinuous. Therefore B is convex-valued, 
non-empty and upper-hemicontinuous and so has a fixed point. �9 

Theorem 4 Given an equilibrium z of the game with initial characteristics distribution 
I~ and initial state O, there is a Markov equilibrium, ~, such that the first period payoff 
to each agent is unchanged: the expected payoff to ~ is the same under ~ as z. 

Proof: In view of the following facts: 

1. E is upper-hemicontinuous, 
2. Wa is norm continuous in z, and continuous in (~, 0), 
3. Mg~ is metrizable and compact, 

it follows that q) is an upper-hemicontinuous correspondence into a complete 
separable space. Hence there is a pointwise measurable selection, z*, z*(#, v, O)~ 
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~0(#,v,0), for all (#,v, 0)ES. We use z* to construct the Markov equilibrium ~. 
Consider the first component of ~*(#, v, 0), z]'(#, v, 0). This is a measure on A x A 
which is optimal in the sense that at (#, v, 0): 

v*(#, v, 0){(~, a)l Vl(~, a, v*, 0) > Wa(~, z*, 0)} = 1. 

To implement the strategy in period one, knowledge of (#, v, 0) is required. Now 
given 0, let 

#2(" 10) = f r  P ( ' '  z*, 0, y)z*(dy). 

The measure #2(o 10) is the second period distribution on characteristics. Given 
a realization of the aggregate shock in the second period, say 0', the expected payoff 
to agent a over the remainder of the game is: W2(~, ~*, (0, 0'))( = V l(o,o,)(e)). Consider- 
ing ~* and (0, 0') fixed, W(e, z*, (0, 0')) is an element of C(A)), which we can write 
as v2(e ). Now observe that r* induces an equilibrium from period 2 on, for all 
"histories" except possibly a set of v measure 0. Thus, except for a set 0"s of v 
measure 0, 

(#2(�9 10), w2(~, ~*, (0, 0')), 0')es. 

Denote this "state" by (#2, v2, 0'). Viewed as a subgame, the expected payoff to agent 
is v2(a). Note that this payoff is generated at this subgame by z*: z*(�9 �9 ](0, 0')). 

However, note that exactly the same payoff is obtained on this subgame if 
(r~, v*,...) is replaced by r*(#2, v2, 0'). For this reason, v* remains optimal and the 
stregegy obtained in this way is an equilibrium. Denote this strategy by z*(2)~ Jr 
(given the initial 0) as 

r*(2) = (v*(#, v, 0), r* E#2(�9 10), w2(~, z*, (0, 0')), 0'3o~o ). 

Thus, z*(2) is composed of r~'(#, v, 0) in the first period, and then z* is "restarted" 
in period 2: at the subgame reached by history 0', the "state" is s 2 = (#2(�9 
W2(~, z*, (0, 0')), 0') and this state is sustained by the strategy z*(s2), at that subgame. 

The important point about this construction is that z* is being applied at period 
two and this is the way in which Markov stationarity is introduced. Note that r*(2) 
induces an equilibrium on almost all histories, (0, 0'), and gives the same continuation 
payoffs from the second period at each history as did ~*. This ensures that z* is 
optimal at almost all 0 in period one. Thus, the strategy r*(2) is also an equilibrium 
which gives the same first period payoff(v) as z*. First period "strategies", ~]'(#, v, 0) 
are unchanged while second period strategies under ~*(2) generate the same 
expected payoff there as did v*. The result of this construction is that the Markov 
property holds for the first and second period. 

Now, replace the equilibrium strategy T* by the equilibrium strategy z*(2). This 
alters the evolution of the characteristics distribution and the valuation functions. 
In particular, 

y r , t , #3( �9  0 ')  = P(�9 ) 

x r*(2) [/*2(" 10), W2(~, r*, (0, 0'), 0'3 (dy). 
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(0, 0 ,0)) .  Here again, Similarly, there is a valuation function for period 3, W3 (e, z*(2), ' ~ 
(0, 0 ,0) ,  W3(e, z*(2), (0, 0', 0)) ~ C(A).  Now, define v*(3) for a fixed history, ' ~ 

~ ~ 
r*(3) = (r*(2), z*(2), ~* [(/~a(e [0, 0'), W2(e, z*, (0, 0', 0)), 0]t0,0.)~ o:)" 

As with z*(2), z*(3) is an equilibrium. Proceed in this way to define iteratively a 
sequence of equilibria r*(n) from z * ( n -  1) and observe that the sequence {z*(n)}, 
converges, say to f. Under  g and the Markov  distribution on ~9, the state variable 
s = (/~, v, 0) evolves stochastically as a Markov  chain. Schematically, 

0' 
S1 =(~,VlO, O) '(fllo, Vl(o,o,,O')=S2 '(~lo,o,,Vko,o,O,'O) 

0 o 

: S3 ' (~[ (0 ,0 ' ,0 ) '  /)l(0,0",0,0~ 00)"  

or alternatively, 

O' 
S 1 = ( f l , / ) 1 0 , 0 )  ,(~lo, Vlr 

0 ~ 
, (~  Io,,v I~, O) = (~,~,0") = s3 ,(/~loo,~loo, 0~ 

The evolut ion of the states may  be described as follows. With f, given sl, the 
distributional strategy at time 1 is z~'(Sl). (Note that the first components  of z* and 
f are related: r*(/~, v, 0) = fl(lt ,  v, 0), V(/~, v, 0). At t = 2, the distributional strategy is 
z*(s2), and at time t, z~'(st). The  influence of the 0 sequence on strategies is only 
through the s variables, since given ~, s t depends on 0 t = (01,02 . . . . .  Or). The behavior  
of f th roughout  the remainder  of the game (from period t on) depends only on 0 t 
through s,, so we can write the value function Wt(ct, "c, 0 t) as l~',(e, z, 0,, s~(O ~- 1)). Note  
also that, since the environment  is stationary, if st(0 *- 1) = st(O t-  1), then (z*, st(O ~- 1)) 
and (r*, se(O t -  1)) induce the same distribution over the state space in subsequent 
periods so that W~(e, g, 0, st(O ~- 1)) = lTVt(e, ~, 0, sl(O z- 1)). Consequently,  we may write 
i f (a ,  ~, O, s,(O t -  1)) to denote  the time t value function (without the time subscript). 

A play of the game in this formulat ion may be described as follows. Fix an initial 
state s = (#, v, 0). At time t = 1 the distributional strategy z~'(s) is played. Depending 
on the realization of the second period aggregate uncertainty variable, 0', a new 
state s 2 = (~ ]0 , / ) l (0 ,0 , ) ,  0 I) is reached. The first component  of s2 = (#10, Vl(o.o,), 0') is 
equal to /~2(e10)= ~rP(e,r ,~,O,y)z*(dy)  and the second component  is equal to 
ITV2(e, ~, 0, s2) = W(e, 0, ~, s2). For  fixed s z and given f, l~(e, a, 0, ~, s2 )eLl (O,  Cg(A), vl) 
and for fixed 0, #2 (e l0 ) s~ ' (A) .  This completes the description of the Markov  
equilibrium. �9 

Theorem 5 There exists  a Markov  equilibrium. 

Proof: The p roof  follows essentially the same plan as the proof  of theorem 3. This 
requires showing first that  the consistency mapping is an upper-hemicont inuous 
correspondence and that  there exist value functions for this case, analogous to those 
given in theorem 1. To  define the value functions, follow theorem 1 and consider a 
game t runcated to n periods. Given z = {z,}t~ 1, define V,"(e, a, ~,/~) = u(e, a, ~,, #). 
Cont inui ty  in (e, a) and norm continuity in ~ of V,"(e, a, z, #) follow directly since 
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u(~, a, z,, #) has these properties. Let W."(~, r, #) = max,, V~,(~, a, T, #). W,"(a, z, #) is 
cont inuous in ~ and norm cont inuous in ~ by lemma 1. Next, define 

V~-l(~176 fA W'(~'z"fi)P(d(a'#)[~'a"r"-l'#)" 
x ~ (A) 

To see that  V~_ 1 (a, a, r, #) is cont inuous in (a, a) and norm cont inuous in ~, observe 
that 

fsup,, I v~_ 1 (y, ~) - v2_ 1 (y, -c, ~)10 (d~) T k , 

<_ fs,,prlu(~,,a, " Tn - 1 '  U) - -  U(~,  a ,  T n _ 1, ~)1 q 4 d ~ )  

+,~fsup, 
f W~(" r,/~)P(d(~,/~)l~,a,~._l,#) O(d#). 

The first term on the right goes to O, by norm continuity of u. The second term is 
bounded  from above by 

fsupy fw".(~,r",r,)P(d(e,,~)l~,,a,~:_l,#) 

- fw".(a,v, fi)P(d(a,~)l=,a, vk._l,#) O(d#) 

+fsup,,fw:(e,,.~,~)P(d(r " a, z,_ t, #) 

- fw".(~,'r, fi)P(d(~,fi)lc~,a,T.-,,#) O(d#). 

The second of these terms converges to O, since P(d(~,/~)[~,a,z,_l ,p) is norm 
continuous on measurable functions. The first of these two terms is bounded from 
above by 

fsup,, fsup ,lw.( ,, e ,  wz(a ,  I P(d(5,/~), y, z k 1' #)~p(d/t) 

<-f,,f;supalWZ(~,'~k,~)-w:(~,c,;,)lb~'(d~)~,(d~) . 

The  latter term converges to 0, hence V~_ 1 (~, a, T, p) is norm cont inuous in T. 
Finally, continuity of V~_ l(a, a, ~,/~) in y = (~, a) follows directly from continuity of 
u(a, a, z,_ l, #) in y and since P(d(~,/~)IY, r ~ I , P )  is assumed continuous in y on 
measurable functions. 

Let W~_ 1(~, z, #) = max,, V~_ 1(c~, a, T, #), and proceed inductively to define 
" ) " As in the proof  of sequences of functions, {V~(~,a,z,#)}t= 1 and {W'~(~,z,# },=1" 
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theorem 3, the limits lim, V~(a,a, ~,/1) and lim, W~'(~,a, ~,#) exist and are norm 
continuous in ~ and continuous in (~, a) and ~ respectively. 

Next, observe that the intertemporal consistency conditions satisfy upper- 
hemicontinuity. To see this let v" ~ �9 and let g" be a consistent sequence in the range 
of the correspondence with g ' ~ g .  Thus, considering period t, u  
u e L~ (J/(a),  ~ ,  0) 

f ~  ?,+ a(f, A; ~)g(Iz)~p(dp) = fV~ar A; y, z,, #)g(#)tk(d#), r y e  Y. 
(A) 3 

S~a(a) ~t + l(f, A;#)g(l~)~h(d~) converges to S~a(A)zt + l(f ,  A; g)g(p)~(dp), in view of the 
topology on T. Comparing ~ P~ r A; y, ~7, I-t)g(It)g'(dP) and ~ P~r A; y, % P)g(#) 
~/,(d/0, the difference (in absolute value) converges to 0, by norm continuity of P~r r 

Finally, we construct the best response mapping in exactly the same way as in 
theorem 3. A consistent strategy "~ is a best response (with consistent marginal 2 on 
~'(A): "~(o, A:/~)= 2t(,:#), ~k a.e. #), 

The reasoning given in the proof of theorem 3, establishes existence here also. �9 
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