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Abstract: The subject of this paper is very high precision 
parameter estimation using the Hough transform. We 
identify various problems that adversely affect the accu- 
racy of the Hough transform and propose a new, high 
accuracy method that consists of smoothing the Hough 
array H(p, 0) prior to finding its peak location and inter- 
polating about this peak to find a final sub-bucket peak. 
We also investigate the effect of the quantizations 2xp and 
A0 of H(p, 0) on the final accuracy. 

We consider in detail the case of finding the parame- 
ters of a straight line. Using extensive simulation and a 
number of experiments on calibrated targets, we compare 
the accuracy of the method with results from the standard 
Hough transform method of taking the quantized peak 
coordinates, with results from taking the centroid about 
the peak, and with results from least squares fitting. The 
largest set of simulations cover a range of line lengths and 
Gaussian zero-mean noise distributions. This noise model 
is ideally suited to the least squares method, and yet the 
results from the method compare favorably. Compared to 
the centroid or to standard Hough estimates, the results 
are significantly better--for the standard Hough esti- 
mates by a factor of 3 to 10. In addition, the simulations 
show that as Ap and A0 are increased (i.e., made coarser), 
the sub-bucket interpolation maintains a high level of ac- 
curacy. Experiments using real images are also de- 
scribed, and in these the new method has errors smaller 
by a factor of 3 or more compared to the standard Hough 
estimates. 

Key Words: high precision measurement, subpixel accu- 
racy, straight-line detection, object location, Hough 
transform 

1 Introduction 

The Hough transform (Hough 1962; Duda and Hart 
1972; Ballard and Brown 1982) provides a technique 
for deriving the values of parameters of a model 
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given a set of points that includes instances of the 
model. Common uses include finding the parame- 
ters of a line or circle given a set of points, but it 
may be extended to other parameterized objects 
such as parabolas, ellipses, and so on, and it has 
been generalized to arbitrary shapes (BaUard and 
Brown 1982). A recent and thorough survey is given 
in Illingworth and Kittler (1988). It has been widely 
discussed in the literature, including theoretical as- 
pects (Cohen and Toussaint 1977; Shapiro 1978; 
Sklansky 1978; Shapiro and Iannino 1979; Van 
Veen and Groen 1981; Brown 1983; Maitre 1986; 
Hunt et al. 1988; Srihari and Govindaraju 1989), 
efficient software implementations (Li et al. 1986; 
Illingworth and Kittler 1987), computation by spe- 
cial VSLI architectures (Baringer et al. 1987; 
Hinkle et al. 1987; Hanahara et al. 1988; Rhodes et 
al. 1988), computation by optical means (Eichman 
and Dong 1983; Gindi and Gmitro 1984; Arabs et al. 
1986; Steier and Short 1986), and industrial applica- 
tions (Li 1983; Dyer 1983). Although much has been 
published, practical questions on its accuracy and 
performance remain open. The objectives of this 
paper are to describe methods that achieve very 
high accuracy in parameter estimates using the 
Hough transform. We consider the case of finding 
the parameters of a straight line although the tech- 
niques apply to any use of the Hough transform to 
compute feature values and, in fact, apply to the 
generalized Hough transform. The improved accu- 
racy is compared with that obtained from other 
methods, specifically the standard Hough technique 
of taking the absolute peak, with taking the centroid 
about the peak of the Hough array, and with least 
squares fitting. To start, several problems that ad- 
versely affect the accuracy of the Hough transform 
are described. We then investigate methods to over- 
come the problems that are based on preprocessing 
and interpolation in Hough space. To verify the 
methods, we use extensive simulation (various 
noise levels, line lengths, orientation, Hough space 
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Figure 1. The noise model for 45 ~ -< 0 -< 90 ~ The vertical 
bars on each point represent, for example, a one sigma 
range about the point. 

quantizations, etc.) and a number of experiments on 
real images of calibrated targets. The main empha- 
sis of the paper is on the simulations because using 
real images brings in the problems of digital edge 
detection and optical and electronic distortion. For 
the experiments with real images we are mainly 
concerned with properly combining the edgel esti- 
mates to provide high precision line estimate, rather 
than high precision edgel detection. Clearly, im- 
proved edgel detection will increase the accuracy of 
our methods, but we do not address this and in our 
experiments we use straightforward edge detectors. 
Also, our work is geared toward machine vision, 
where knowledge of approximate line parameters 
(e.g., position, orientation, noise) is available. It is 
easily extended to less restricted domains, where a 
low-resolution Hough transform can be used to ini- 
tially identify approximate line parameters to pro- 
vide a smaller search region, such as that in I1- 
lingworth and Kittler (1987). 

Our noise model for the points on a given line is 
similar to the one in Gordon and Seering (1986, 
1988): we assume noise in only one of the coordi- 
nates. For lines whose normal make an angle 0 with 
respect to the positive x-axis in the range [45 ~ , 90~ 
the noise is assumed in y so that the method for 
deriving the edgels can be considered to have a de- 
terministic x and noisy y. See Figure 1. For angles 
in the range [0 ~ 45 ~ we flip the problem and use a 
deterministic y and noisy x. This choice of determi- 
nistic x (or y) matches many computational meth- 
ods of determining (x, y) edgel coordinates [see, 
e.g., Canny (1986) and Young (1986)]. In most of 
our simulations we used Gaussian zero-mean noise, 
but we also include tests with zero-mean uniform 
noise and with non-zero-mean noise. 

We compare our results with results from least 
squares fitting. Assuming one line and zero-mean 

Gaussian noise, least squares gives the best esti- 
mate in the sense of maximum likelihood, and we 
show that our methods compare favorably with 
least squares even in the case to which the latter is 
ideally suited. In other cases, for example, multiple 
lines or lines with pattern or biased noise, standard 
least squares is not appropriate whereas the Hough 
transform may still be used. 

Section 2 contains general introductory remarks 
and examples comparing the Hough transform and 
least squares for line parameter estimation. Section 
3 reviews the Hough transform and previous work, 
and section 4 describes the new method for estimat- 
ing the line parameters from the Hough array. Sec- 
tion 5 presents results from simulations using the 
methods, and section 6 has results from real images. 
Section 7 shows that the methods correspond to 
particular image domain filters, and section 8 con- 
tains conclusions. 

2 Examples of Line Fitting Using Least 
Squares and the Hough Transform 

The problem we are addressing is the one in which a 
set of points {(xi, Yi), i = 1 . . . . .  n} is given, and we 
are to determine the parameters of instances of a 
known geometric model suggested by the points. 
We will consider the case where the model is of a 
straight line. The points are assumed to contain 
noise. Otherwise the problem is trivial. The noise 
can include "background noise," for example, uni- 
formly distributed over the plane, or "pattern 
noise," by which we mean non-zero-mean noise 
such as from points along another line or curve, 
from a defect such as a "mousebite" along the line, 
and so on. Examples are shown in the figures given 
later in this section. 

There are two well-known methods for solving 
this problem. The most common is least squares 
fitting. Least squares is computationally efficient, 
parameter free, and provides highly accurate esti- 
mates of line parameters in many cases. In particu- 
lar, if the noise can be modeled as Gaussian and 
zero-mean (in fact, the conditions are more gen- 
eral), least squares has the desirable property that it 
produces the maximum likelihood estimate of the 
line parameters. In many practical problems it is an 
excellent choice. In addition, the basic method has 
been extended to robust least squares methods 
(Holland et al. 1977; Huber 1981), and these can be 
applied to situations containing outliers, certain 
cases of background and pattern noise, and various 
other cases for which standard least squares pro- 
duces poor results. 

An alternative to least squares is the Hough 
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Figure 2. Left column, top to bottom, points and fits from a 
noisy line with background noise. (a) original points; (b) 
least squares fit minimizing y distance; (c) least squares fit 
minimizing perpendicular distance; (d) robust least squares; 
(e) Hough transform. Right column, top to bottom, points 
and fits from a noisy line with pattern noise. (f) through (j) 
corresponding to (a) through (e). 

transform. The principal advantage of the Hough 
transform is its strong immunity to noise. Second- 
ary advantages are the natural way a priori informa- 
tion on the approximate line parameters can be in- 
cluded, and for some cases its ability to handle 
multiple lines. Not often discussed is the accuracy 
of the computed parameters, which is the subject of 
this paper. 

By way of introduction we give several exam- 
ples. Figure 2a shows a set of noisy points from a 
line, together with background noise. The fit from a 
standard least squares, minimizing the sum of the 

squares of the errors in the y-coordinate, is shown 
in Figure 2b. Results from fitting to minimize the 
sum of the squares of the orthogonal distances to 
the line are shown in Figure 2c. Clearly, neither of 
these is satisfactory. Results from a robust least 
squares and from the Hough transform are shown in 
Figure 2d and 2e, and both are good. The same five 
figures are shown for the case of noisy points with 
sections of non-zero-mean pattern noise, Figure 2f 
through 2j. (The non-zero-mean noise segments are 
most clearly seen in the robust least squares and 
Hough transform fits as two sections of points 
slightly above the fitted line.) Also shown are cases 
with two lines. The first case has two nearly parallel 
intersecting lines (Figures 3a through 3e); the other 
case has two close parallel lines (Figures 3f through 
3j. These are cases when even robust least squares 
does not uniquely identify the individual line. For 
all plots the robust least squares fits were done with 
the GRAFSTAT statistical and plotting package 
(GRAFSTAT User 's Guide), which has a variety of 
robust regression techniques. We used the Beaton- 
Tukey option. 

The examples give some idea of the type of prob- 
lems where the various techniques are suitable. No 
technique can be directly applied in all cases, and 
each application must be evaluated and an appropri- 
ate technique selected. 

3 Review of the Hough Transform and 
Previous Work 

The parameters used to describe a line may be the 
slope and y-intercept. An alternative set of parame- 
ters is p and 0 in the normal form (Duda and Hart 
1972) 

p = x c o s 0  + y s i n 0  (1) 

where p is the perpendicular distance of the line to 
the origin, and 0 is the angle between a normal to 
the line and the positive x-axis. The normal form 
has several advantages over the slope-intercept 
form, related to the fact that p and 0 vary uniformly 
as the line orientation and position change, and nei- 
ther goes to ~ as the line becomes horizontal or 
vertical. When using the Hough transform, input is 
a set of coordinates {(xi, Yi), i = 1 . . . . .  n} of typi- 
cally noisy points and output is the parameters p 
and 0 describing a line through (or near) (some max- 
imal subset of) the points. 

The essential idea of the Hough transform is il- 
lustrated in Figure 4. A point (xi, y;) in Cartesian 
coordinates is mapped to all points in the p-0 param- 
eter space that specify a possible line through the 
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Figure 3. Left column, top to bottom, points and fits from 
two noisy nearly parallel lines. (a) original points; (b) least 
squares fit minimizing y distance; (c) least squares fit mini- 
mizing perpendicular distance; (d) robust least squares; (e) 
Hough transform. Right column, top to bottom, points and 
fits from two noisy parallel lines. (f) through (j) correspond- 
ing to (a) through (e). 

point. From Eq (1) it is easy to show that this set 
traces a sinusoid in parameter space. Points on a 
particular line will all map to sinusoids that intersect 
in a common point and the (p, 0) of that intersection 
point gives the parameters of the line. To compute 
the parameters p and 0 given a set (xi, y;), parameter 
space is quantized to P x O, where p extends over a 
range P = {P0, Pl, P2 . . . . .  0n} = {Ok]Ok = P| + 
k A O} and 0 extends over | = {00, 01, 02 . . . . .  Ore} 
= {01101 = 00 + l A 0}. An accumulator array H(p, O) is 
defined on P x | Each point (xl, y~) is mapped to a 
set of locations in P x | by sampling 0 (to the set 
O), using Eq (1) to compute p and quantizing this to 

the closest O in P. In this way (x,-, yi) maps to a 
sampled, quantized sinusoid in P x | and each ac- 
cumulator in H(p, O) along the sinusoid is incre- 
mented. When H(O, O) has been filled in by all 
points, the (p, 0) location with the highest count is 
taken to indicate the parameters O and 0 of the line 
that best explains the points. This is the most com- 
mon method described in the literature, although 
many variations have been suggested. Of particular 
interest to us is that, due both to noise in the (xi, yi) 
and to the quantization of P and | the sampled, 
quantized sinusoids do not in general intersect pre- 
cisely at a common point, and some modification to 
the method is necessary if high accuracy in parame- 
ter estimation is desired. 

Using the method as described above, the fol- 
lowing three factors adversely affect the accuracy 
obtained. First, when accumulating H(O, 0), given a 
point (x, y), the bucket to increment in a particular 0 
column is computed by rounding O from Eq. (1). 
The fractional O information is lost and all subse- 
quent computations are done on rounded p values. 
Another way of looking at this is that a given cell in 
H(p, O) corresponds to a swath, and not a line, in 
the image. The swath is at angle 0 and is centered at 
p with width Ap. O information finer than the swath 
width is lost. Second, after the accumulation is 
completed, an error may occur when selecting the 
cell in H(O, O) with the maximum value if no consid- 
eration is made for the spreading of the peak in the p 
direction. This spreading, which was presented in 
Van Veen and Groen (1981), is discussed in detail 
below. The implicit assumption in the standard 
Hough approach is that all points from a line will fall 
in one bucket, but this is not necessarily true even 
in the noise-free case unless the 0 of the line hap- 
pens to be one of the O's in the set | And in the 
presence of even a small amount of noise, the maxi- 
mum of H(p, O) can occur at other than the (0, 0) in 
P x | closest to the (p, 0) of the line. Third, by 
taking the line parameters (p, 0) to be the coordi- 
nates of the peak, the quantization in p and 0 is 
given by Ap and A0, limiting the accuracy. These 
are the three main factors we will examine. Due to 
these factors, the accuracy of the parameters com- 
puted by the standard Hough transform is often in- 
ferior to those computed by reasonable least 
squares techniques. (Reasonable means, e.g., that 
outliers are removed.) 

A relevant comment is that the original patent for 
the Hough transform was not directly concerned 
with accuracy, but simply the recognition of line 
segments. The patent was motivated by analysis of 
bubble chamber photographs of subatomic particle 
tracks, which contain a large amount of noise, and 
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Figure 4. The Hough transform for points (xi, Yi) and a (p, 0) parameter space. 

proposed specific circuitry of amplifiers, delays, 
signal generators, and so on to perform what we 
now call the Hough transform in an analog form. It 
is as the technique has been implemented digitally, 
and applied in various applications such as machine 
vision and robot guidance, that the issue of accu- 
racy has become important. 

Since', it will be useful later, we mention here that 
the Hough transform is closely related to the Radon 
transform. [See, e.g., Deans (1983)] The Radon 
transform of a function f(x, y) is defined as 

= f~ f(x, y)6( 0 - xcos 0 - y sin 0) dx dy 
,Y 

(2) 

where L(O, O) is a line at angle 0 and distance p from 
the origin. Thus, the Hough transform is the (dis- 
crete) Radon transform of the edgel image (Deans 
1981). For a (binary) edgel image a column of 0 of 
the Radon or Hough transform is a projection of the 
image at the given 0. Also, for any 0 

all possible p 
H(p, 0) = constant 

= the total number of edgels (3) 

As mentioned earlier, noise in the (x;, Yi) and the 
quantizations of P and | cause a spreading of the 
peak in H(p, 0). Other factors also influence the 
peak, and numerous authors have considered issues 
related to the accuracy of the Hough transform. In 
Cohen and Toussaint (1977) the authors model the 
combined effect of background noise and the geom- 
etry and extent of a circular retina (for our case, the 
image array) on the values accumulated in H(p, O) 
and suggest a useful method for "standardizing" 
the counts in H(p, O) by normalizing by the ex- 

pected mean and standard deviation at each cell to 
improve the peak finding. Similarly, the analysis in 
Maitre (1986) considers the detection of straight 
lines in rectangular retinas and derives a signal-to- 
noise ratio based on the line length, the spread of 
points about the true line, and the number of line 
points and noise points. In Hunt et al. (1988), detect- 
ing lines using the Hough transform is done using a 
likelihood ratio of the two hypotheses--(1) the im- 
age contains some line and (2) the image does not 
contain a l ine--and uses a statistical approach that 
takes into account the length of the line at (p, 0) 
(i.e., the effect of the geometry of the retina) and an 
a priori probability distribution of lines in the image. 
Brown (1983) describes inherent noise and bias in 
H(p, O) due to multiple instances of features in an 
image and describes the complementary Hough 
transform, which attempts to reduce interference 
between different peaks, especially for radially 
symmetric objects. Ballard (1987) describes a form 
of locally linear interpolation on the Hough array to 
achieve high accuracies when moving from low- 
level continuous data to high-level discrete data in 
the context of neural models for perception. This is 
one of the few papers specifically proposing inter- 
polation on H(O, 0). Recently, an anti-aliasing 
method, treating Hough space H(p, O) as a sampled 
signal and applying a Nyquist-like criteria to recov- 
ery information, provides a digital signal processing 
approach to analyzing the accuracy of the Hough 
transform (Kiryati and Bruckstein 1988). 

Sklansky (1978) proposed a geometric construc- 
tion allowing the object parameters to be repre- 
sented in x-y  space, and in Shapiro (1978) the au- 
thor uses this construction to propose bounds for 
the spread in the computed parameters (the "solu- 
tion region") as a function of the bounds on the 
errors in the (xi, y;). In contrast to his work, we use 
a different noise model (Gaussian versus absolute 
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bounds) and different approach (analytic versus ge- 
ometric). We propose smoothing and interpolation 
in Hough space to achieve high accuracy, whereas 
he determines the quantizations (i.e., accumulator 
cell size) to be on the order of the spread that can 
occur from points from a single line and then takes 
those quantizations as the achievable accuracy. 
One result is that our algorithm uses all the points in 
a line, whereas Shapiro's solution region depends 
only on the line end points. 

Several techniques for improving the Hough 
transform accuracy use gradient information, which 
is often available with each edgel. Using gradient 
direction (Kimme et al. 1975; Ballard 1981; Shein- 
vald 1989) a constrained Hough transform can be 
computed. This typically saves significantly on the 
computation cost. In addition, it improves the accu- 
racy by keeping both noise points and points from 
intersecting lines (which are near the point of inter- 
section) from influencing the peak location. Gradi- 
ent magnitude may also be used (Ballard 1981; Van 
Veen and Groen 1981; Davies 1987). The magnitude 
is used to determine the amount by which H(p, O) is 
incremented. This allows strong edge points, as- 
sumed to be the most accurate, to contribute heav- 
ily to the result. These are valuable methods, pri- 
marily affecting the accumulation of H(p, 0). They 
can be used together with the techniques we will 
describe, which address the accumulation and, in 
particular, interpolation in H(p, O) to achieve 
higher, sub-bucket accuracies. 

Other approaches, such as the fast Hough trans- 
form (FHT) (Li et al. 1986) and the adaptive Hough 
transform (AHT) (Illingworth and Kittler 1987), are 
coarse-to-fine iterations that can be run until a pre- 
specified resolution in the parameters is obtained. 
These methods are efficient ways of accumulating 
and finding the absolute peak in H(p, 0), and if the 
centroid weighting of the AHT is considered, find- 
ing a sub-bucket peak. The main features of our 
approach are a smoothing of the accumulated array 
and an interpolation to a sub-bucket peak location. 
It does not search for the absolute integer peak, but 
rather, for an interpolated, smoothed peak that we 
claim is more accurate. 

In a useful paper Van Veen and Groen (1981) 
consider the influence of the quantizations Ap and 
A0, the quantization of the image, and the width of 
the line segment on the Hough transform. They ana- 
lyze ideal (thin) and thick lines, but not noisy lines. 
They derive formulas specifying peak spread in 
Hough space for a given line length and quantiza- 
tion and suggest searching for peaks in H(p, O) over 
a sliding window. We use their results and extend 
them for the case of noisy lines and to sub-bucket 
accuracy. Gordon and Seering (1986, 1988), al- 

though they consider least squares fitting and not 
the Hough transform, investigate the accuracy of 
finding straight lines in digital images. Their papers 
contain a good balance of theory, simulation, and 
experiments. We will evaluate the results we ob- 
tained from the Hough transform using a similar 
methodology. 

Many other references and issues can be cited. 
Our emphasis is on the following questions: 

1. How significant are the three error sources listed 
previously and how can the compensation for 
them be made? 

2. What is the accuracy achievable using the 
Hough transform with such compensations? 
How does it compare with that from other tech- 
niques, specifically least squares? 

3. How should Ap and A0 be chosen and what ef- 
fect do they have on the accuracy of the results? 
Can interpolation be used to achieve accuracies 
better than 2xp and 2x0, and if so, what type of 
interpolation? 

4 High Accuracy Estimation of Line 
Parameters from Hough Transform 

We begin by considering how the peak spreads in 
H(p, O) and then give methods for estimating the 
true peak location in the presence of this spreading. 

4.1 The Spreading of the Peak in H(p, O) 
Van Veen and Groen (1981) show that for a given 
A0 and an ideal thin line of length L the worst-case 
spread of the peak H(p, 0) along the p coordinate is 

sp = L sin(h0/2) (4) 

In terms of buckets of O the worst-case spread is 

= IL sin(h0/2)] 
s o ~ j + 2 (5) 

where [z] indicates the largest integer strictly 
smaller than z. If noise is present that spreads the 
estimates of the points from the line a perpendicular 
distance up to b away from the line, or in the case of 
a thick line (e.g., after thresholding the gradient) 
whose width is 2b, then the worst-case spreading is 

s o = L sin(A0/2) + 2b cos(A0/2) (6) 

and in hp units 

sp = [-[L sin(A0/2)+ 2b cos(hO/2)j] + 2  (7) 
2xp 



Niblack & Petkovic: Accuracy of Hough Transform 93 

J 

Y 

lint 
COl 
at 

Figure 5. The spreading 
of the peak in p due to 0 
sampling and to noise. 

The important conclusion from these formulas is 
that there is not necessarily a single "peak  bucke t"  
in H(p, O) corresponding to the points along a given 
line. This, however ,  is a common assumption. 

The two cases (with and without noise) are illus- 
trated in feature space and in parameter  space in 
Figure 5. These  are easily visualized using a projec- 
tion (or Radon transform) of  the line edgels. Larger  
values of  Ap reduce the spreading in units of  AO but 
result in loss of  accuracy.  Smaller values increase 
the spreading and also the computational cost and 
sensitivity to noise. Similarly, larger values of A0 
increase the worst-case spreading and also result in 
loss of  accuracy.  

The numeric example in Figure 6 shows a case 
where the peak spreads across several values of p. 
It was computed from a set of  200 noisy points from 
the line with p = 25 and 0 = 30. The noise was 
Gaussian with zero mean, O'noise -- 1, and for the 
Hough array, A O = 0.1 and 40 = 0.1. The example 
is also a case in which the absolute maximum (the 
value 22 at O -- 24.9, 0 = 29.9) does not give the 
correct  p and 0 estimate. 

The preceding paragraphs describe the spreading 
in p. Now consider the spreading in 0. Figure 7 
shows a noise-free line segment of  length L and the 

29.5 30,0 30.5 

I I I 
7 6 6 9 5 4 10 5 7 12 6 

24.50- 3 6 10 11 8 8 5 12 5 5 4 
6 10 5 12 11 13 15 10 5 4 7 
3 4 6 9 12 12 11 5 9 7 6 
5 4 9 7 14 14 10 13 8 6 7 
7 4 8 13 22 17 14 8 12 9 6 

25.00- 2 8 8 16 I I  17 14 19 12 10 5 
6 8 17 11 14 9 12 11 8 8 8 
7 13 10 12 6 17 14 7 13 4 5 
7 4 8 8 15 12 13 12 5 10 3 
5 12 3 7 12 13 11 11 7 8 6 

25.50- 9 2 7 7 5 11 13 8 9 7 7 
5 3 6 9 14 10 11 5 9 I 10 

Figure 6. A portion of H(p, 0) showing the peak spread and 
wrong solution if simple maximum is used. The corect solu- 
tion is 0 = 30 and p = 25. The maximum occurs at 0 = 29.9 
and p = 24.9. 

swaths defined by the Hough transform for two suc- 
cessive values of  0. The line segment fits completely 
within a single swath for both 0' s, so that the peak is 
spread in the 0 direction. To have a unique peak, Ap 
must be sufficiently small. The worst  case for this 
type of  ambiguity occurs when the 0 of  the line 
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Figure 7. A case where all points fall in a single p bucket of 
different values of 0. This causes the peak to spread in the 0 
direction. 

exactly matches one of the O's in 19. In this case we 
must have 

Ap < L sin(A0) (8) 

to ensure that we can identify the correct 0, and this 
equation provides an approximate upper bound on 
the size of Ap. This is in case of no noise. Noise 
along the line makes the problem less severe by 
spreading the points over adjacent buckets, and the 
limit given by Eq. (8) can be relaxed. 

4.2 Selecting the Quantizations Ap and AO of  
H(p, O) 

To compute the Hough transform, ranges of p and 0 
and the quantization Ap and A0 must be selected for 
H(p, 0). These parameters affect the memory size, 
processing times, and final accuracy of the com- 
puted parameters. As shown in Eq. (4) to (8), the 
values of Ap and A0 combine to influence the 
spreading of the peak so that they cannot be se- 
lected fully independently, which is a common 
practice. 

Many implementations use fixed quantizations, 
such as Ap = 1 and A0 = 1, as well as a fixed range 
for p and 0. Hardware requirements may impose 
restrictions. For example, in Leavers and Boyce 
(1986), H(p, 0) is equal to an n x n frame buffer in 
which Hough transforms of n x n images are to 
be accumulated. This leads to A o = X/2 and A0 = 
180/n. Other cases assume the accuracy of the com- 
puted values ofp  and 0 are directly given by Ap and 
A0; for example, they assume the final p is accurate 
to within +-Ap/2. And in cases where noise in the 
input points is considered some authors suggest se- 
lecting Ap and A0 to be comparable to the peak 
spread caused by the noise (Shapiro and Iannino 
1979). 

We will assume no hardware-based restrictions 

and that the quantizations can be freely selected. 
Computationally, a fine quantization plus a large 
range for the parameters requires a large array and 
much processing. Quantizing 19 to 0.1 over the range 
0 to (512 x ~/2), and quantizing 0 to 0.1 from 0 ~ to 
180 ~ requires 724/0.1 x 180/0.1 = 12.5M elements 
in H(O, 0), which is excessive. In industrial prob- 
lems, a prior information such as mechanical fixture 
accuracy may be available and can be used initially 
to limit the p and 0 ranges. This was the case for our 
tests where we knew the true values and therefore 
limited the array to a few units around the true solu- 
tion. Another way to keep a manageable array size 
is a coarse/fine approach (Li et al. 1986; Illingworth 
and Kittler 1987), which iteratively decreases A 0 
and A0 as the peak is localized and the ranges of p 
and 0 are reduced. The main point for us is that in 
either case the use of fine quantizations is computa- 
tionally feasible if they are necessary. 

We started by selecting fine (i.e., small) values of 
A 0 and A0 in order to investigate the accuracies we 
could obtain. We use Eq. (6) to help ensure that the 
choices for Ap and A0 were compatible, given the 
noise characteristics and the length of line to be 
found. The intent was to have a spread near the 
peak in the 0 direct that was in the range 6-12. In 
this way, the form of the spread is preserved, which 
we need for our later interpolations. Also, we 
wanted to satisfy the maximum p requirement of 
Eq. (8). (In typical runs this requirement tends to 
give a smaller A 0 than Eq. (6) and hence a larger 
peak spread, but this causes no problems.) These 
equations provided approximate guidelines for the 
relation between Ap and A0, and we rounded them 
to convenient values. We ran with these values, 
accumulating H(p, O) and interpolating to sub- 
bucket locations of H(p, O) to find line parameter 
estimates with accuracies better than Ap and A0. In 
subsequent runs we used coarser values of A0 and 
A0 to determine if the sub-bucket interpolation can 
still produce the high accuracies, thus saving on 
array size and processing time. 

Specifically, for the fine quantizations we started 
with the goal of obtaining an accuracy in 0 of -+ 0.1 ~ 
and chose A0 = 0.05 ~ From Eq. (7), assuming a 
minimum line length L = 100 and O'noise = 1, to get a 
peak spread of 6-12 Ap buckets, we would have A 0 
of approximately 0.5. But the maximum Ap from 
Eq. (8) is 0.087. Because of the noise, we were safe 
in increasing this slightly, and the value we used 
was 0.1. Other runs with coarser quantization val- 
ues used Ap = 0.4, A0 = 0.25; Ap = 0.5, A0 = 0.5; 
and A O = 1, A0 = 1. In all cases we chose A0 and 
then used Eq. (7) and (8) to guide the selection of 
Ap. 
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Figure 8. Methods of updating H(p, 0) given a noise model nO(p). 

4.3 Accumulating H(p, O) 
Given 2,p, A0, and the input points, the next step is 
to accumulate H(p, 0). This can be done in various 
ways. The most straightforward is for each (xi, yi) 
and for each 0 in 19, compute p from Eq. (1), round it 
to the nearest p in P, and increment the correspond- 
ing element of H(p, 0). This loses the fractional 
information in p. 

To reduce this rounding error, the increment 
value (typically I), can be distributed over a region 
in H(p, 0). This has been suggested by various au- 
thors (Shapiro 1978; Thrift and Dunn 1983; 
Galkowski and Galkowski 1986; Ballard 1987). One 
way is to distribute the increment over the nearest 
cells in a column (of constant 0) by, say, a linear 
distribution as follows. Let (xi, yi) be one of the 
points, tet 0 be a value in 19, and let Pexa~t = Xi COS 
0 + yi sin 0. Then if P~ow and Ph~gh are consecutive 
values of P such that Plow -< Pexact ~ Phigh, then incre- 
ment H(plow, 0) by an amount proportional to Phigh - 
Pex~t and increment H(phigh, 0) by an amount pro- 
portional to Pexact- Plow. These two methods, round- 
ing Pexact and incrementing the corresponding H(p, 
0) bucket, and linearly distributing the increment to 
the buckets for plow and Phigh, are compared in the 
simulations given later. 

Other increment methods are also possible. 
Given a noise model for the (xi, Y0, the increment 
value can be distributed about its true sub-bucket 
location based on the model. As an example, let 
no(p) be the noise in the p estimate at angle 0 given 
point (xi, yi), Figure 8a. If Pexact is as above, then an 
exact updating of H(pj, 0) can be done by incre- 
menting with 

f pjpy+ Ap/2 
-Ap/2 no(p - p . . . .  t) d~ (9) 

as shown in Figure 8b. This is expensive computa- 
tionally. A less expensive but still precise method is 
to update with 

no(Pj - 0 . . . .  t )  ( 1 0 )  

y 

0 

x II 

Figure 9. Noise in p resulting in noise from Yi at angle 0. 

See Figure 8c. We discuss below [Eq. (11)] a related 
smoothing applied to H(p, O) after all values have 
been accumulated. 

4.4 Finding the Peak in H(p, O) 
Assume now that we have accumulated H(p, O) by 
some method. Instead of taking the coordinates 
(Pm, Om) of its maximum as the solution param- 
eters, we want to achieve higher accuracy by com- 
pensating for the two remaining error sources: the 
peak spread and the quantizations Ap and A0 in the 
set P • 19. We model the spread in the peak based 
on a model of the noise in the points (xi, Yi). This 
noise, which is assumed to be in one coordinate 
only (the y; for 0 in [45 ~ 90~ is further assumed to 
be Gaussian with zero mean and variance 2 O ' N o i s  e . 

[See also Niblack and Petkovic (1986) where we 
also modeled the noise by a uniform distribution of 
unknown spread and found the spread by an itera- 
tive technique]. For a given 0 the Gaussian distribu- 
tion in a Yi induces a Gaussian distribution in the 
corresponding estimate of p with o-~ = O'noise sin 0, 
shown in Figure 9. As mentioned previously, ide- 
ally one would take each point (xi, Yi) and for each 0 
in (9 compute the corresponding floating point Pexact 
as Pexact = X/ COS 0 + Yi sin 0. Then for each p in a 
neighborhood of Pexact in P update the bucket H(p, 
0) by an amount derived from the noise model. With 
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the Gaussian noise model the exact update factor 
[Eq. (9)] becomes 

1 (p+ap/2 e_(O,_o,x~o,i/2~ do' 
~/~O"p J p-&p/2 

or, sampling at the bucket centers [Eq. (10)], it be- 
comes 

mum for each column ml We now fit a Gaussian in 
the 0 direction, using the points (Om-1, Hm-1), (Ore, 
Hm) and (Ore+l, Hm+l), and find its maximum, giving 
0peak. At 0p~ak, which in general falls between two 
columns in H(p,  0), we linearly interpolate between 
the two surrounding values of OHM to get Ppeak, giv- 
ing the final interpolated result (Ppe,k, 0peak). 

~/2-'~O'p 
- -  e-CO' - p~x~ot)/2,~ (11) 

To reduce the computation, we accumulate the 
H(p,  O) array and perform the "noise spreading" as 
a subsequent step. That is, we spread accumulated 
values instead of accumulating spread values. The 
spreading is identical to what would be done for 
each individual point, and is done by convolving 
each value with 

1 e_02/2~ 

The convolution is done as a one-dimensional spa- 
tial convolution in the p dimension along columns of 
0. The value used for cr 0 is an approximation that 
includes both the Gaussian noise coming from the 
noise in the Yi, and the non-Gaussian spreading of 
the peak due to the line length and quantization 2~0. 
It is computed as 

L cos(A0/2)| sin 0 (12) sin(2~0/2) + ] 
~r~ = 2 J 

5 Simulation Results 

We ran extensive simulations to evaluate the accu- 
racy of the methods. The simulations compare the 
accuracy of four methods of computing p and 0: (1) 
using least squares, (2) smoothing H(p, O) and inter- 
polating to the finalp and 0 as described, (3) taking the 
centroid about the peak, and (4) taking the absolute 
peak. The centroid was included in the simulations 
since it has been suggested as a means of getting 
sub-bucket accuracy. For our tests, to compute the 
centroid, we took the weighted average of all cells 
in H(p, 0) around the peak whose value was greater 
than or equal to 80 percent of the peak. (We initially 
used 90 percent as the threshold, a value used in 
Illingworth and Kittler (1987), but this gave less ac- 
curate results. In general, the centroid method is 
sensitive to the threshold chosen.) 

The main simulations used "nice" data, points 
from a single line with Gaussian zero-mean noise, 
Additional simulations considered various other 
cases: uniformly distributed noise, multiple noisy 
lines, and several types of pattern and non-zero- 
mean noise. The main simulations used 

After the convolution the coordinates of the 
quantized peak (Pm, Om) are found by direct search. 
We were initially concerned that multiple maxi- 
mums would occur and checked for these. None 
was detected in any of our simulations, due in part 
to the fact that each 0 column is convolved with a 
different Gaussian (the sin 0 term). And although it 
cannot be proved that only a single maximum will 
occur around the peak for a given line, our smooth- 
ing method should remove multiple peaks if the 
noise model and parameters are reasonably accu- 
rate. 

Once the quantized peak is found, the coordi- 
nates of the final peak are found by a set of one- 
dimensional interpolations, first in the p direction 
along columns of 0 and then in the 0 direction. In 
each of the three 0 columns Ore-l, Om, and 0,~+1 we 
fit a Gaussian to the eight points surrounding the 
maximum in the column. From the fitted Gaussians 
we have the location Prim and value Hm of the maxi- 

�9 (2x0 = 0.05, Ap = 0.1), (2x0 = 0.25, Ap = 0.4), and 
(A0 = 0.5, Ap = 0.5), and (A0 = 1, 2xp = 1). 

�9 Angles 0true from 45 ~ to 90 ~ Each angle was deter- 
mined as 0true = 45 + i + U(0, 0.5), i = 0, 1 , . . . ,  
45. U(0, 0.5) is uniformly distributed noise in the 
range +0.5 ~ . In this way we avoid any systematic 
error that would result from having only integer 0 
values. 

�9 Line lengths L of 100, 200,300,400, and 500. We 
defined points (xi, y~) at each successive integer 
value ofx and to keep the line length constant, the 
number of points per line varies as L sin 0. 

�9 No noise and zero-mean Gaussian noise in the Yi 
with O'Nois e = 0 . 5  and O'Nois e ~" 1.0. 

�9 Yi values rounded to integer and y; kept as floating 
point. 

�9 Two ways of accumulating the array H(p, 0); lin- 
ear distribution of the increment value to the two 
surrounding p buckets, and incrementing (by 1) 
only the nearest p bucket as described in section 
4.3 "Accumulating H(p, 0)." 
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Figure 10. The error in a line was computed as A/L. 

Initially three values of Ptrue were used: 15.00, 
15.25, and 15.33. The last two were chosen to fall 
between buckets of p in H(p, 0). No significant dif- 
ferences were noted in the results for the three val- 
ues, so the first and last were dropped and only the 
one value, p = 15.25 was used. 

In each simulation (i.e., each set of parameters 
/)true, 0true, L, hp, A0, rounded/floating point Yi, and 
with or without linear distribution), if O'Noise = 0, we 
performed a single trial, computing estimates Pedge 

and 0edge from each of the four algorithms. If O'Noise 
0, we performed 50 trials generating different ran- 
dom noise samples each trial. This produced 50 esti- 
mates fledge and 0edge. For each of these we com- 
puted the average error in the resulting lines as 
follows. Let Xmin and Xmax be the minimum and maxi- 
mum of the input xi. Then the error e in a given line 
is A / L  where A is the area between the true and 
computed line between Xmin and Xmax, and L is 
Xmax - Xmin, as shown in Figure 10. This removes 
the dependence of the error on the coordinate sys- 
tem origin. 

For all runs the value of o- o used to control the 
Gaussian convolution [Eq. (12)] was equal to O'Nois e 
for the cases using exact (floating point) y coordi- 
nates, and to O-Noise + 0.5 when y was rounded to 
integer as an approximate compensation for the 
noise due to the rounding. 

The simulation software is written in C. One set 
of simulations over all angles and all line lengths, 
with 50 noise samples of a fixed O'No~se, took about 
nine hours of CPU time on an IBM 4381 (about 4.5 
MIPS). 

Selected graphical results from the simulations 
are shown in Figures 11 to 19. In all the graphs 
results marked with ..... are from least squares, 
with " + "  from the H(p, 0) smoothing and interpo- 
lation, with "V"  from the centroid around the peak, 
and with " •  from the absolute peak. 

Figure 11 has a set of plots of the average error in 

the computed lines for the four different Ap and A0 
quantizations. The patterns shown in the figure are 
true of essentially all the cases we ran and demon- 
strate one of our main conclusions--that proper 
smoothing and interpolation can significantly im- 
prove the accuracy. Taking the absolute peak in the 
Hough array as the solution consistently gives the 
largest errors, the centroid is more accurate, and 
the smoothing and interpolation method is even 
more accurate. Least squares fitting, for this case of 
zero-mean noise, is the best. [Our least squares 
results agree with those reported in Gordon and 
Seering (1986, 1988). 

The results from Figure 11 are for zero-mean 
noise with O-Noise = 1.0, full precision Yi coordinates. 
Corresponding results for rounded yi are shown in 
Figure 12. The differences in these two figures, as in 
other subsequent figures, are due to the algorithm 
differences and not to the random noise since the 
random noise generator was started with the same 
seed in the different cases. The most noticeable dif- 
ference is the spikes that occur at various angles in 
the centroid and absolute peak methods. These will 
be discussed later. In other respects, particularly 
the accuracy of the smoothing and interpolation 
methods, the results are essentially unaffected by 
the rounding. A third set of results is shown in Fig- 
ure 13, corresponding to Figure 11 but the zero- 
mean uniform noise of spread -+2. The Yi were ex- 
act. Here again, the smoothing and interpolation 
algorithm was the most accurate with one excep- 
tion: For fine quantizations (Figure 13a) the 
smoothing and interpolation method became less 
accurate as the angle increased from 45 ~ to 90 ~ . In 
this case the peak of the Hough array is spread 
because the slope of the curves p = x cos 0 + y sin 0 
that intersect at the peak, given by Op/O0 = - x  sin 
0 + y cos 0, becomes small as 0 approaches 90 ~ in the 
case of small x (our data was centered around x = 
0). At the same time, the fine quantizations of Ap 
and A0 and wide spread of uniform noise in the yi 
give few counts in each bucket of H(p, O) and hence 
a low signal-to-noise ratio. Several columns of H(p, 
0) (i.e., several values of 0) all have similar values 
and the interpolation is fitting a Gaussian to an es- 
sentially constant value, giving lower accuracy 
results. Thus, coarser quantization in Ap and A0 
actually improved the results. In all the previous 
cases we used linear distribution of the increment. 

The results of Figure 11 are summarized in Fig- 
ure 14, which shows the effect of the quantizations 
Ap and A0 on the computed accuracy. This is our 
second main result, and shows that fine values of Ap 
and A0 are not necessary, but that the interpolation 
can be used to achieve very high accuracies when 
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Figure U. Average line errors for four quantizations of AO and AO. (a) Ap = 0.1, AO = 0.05; (b) Ap = 0.4, AO = 0.25; 
(c) Ap = 0.5, z~O - 0.5; (d) Ap = 1, AO = 1. Statistics were computed over 50 trials at each angle, updating H(p, O) by linear 
di~ribution, oN~- ~ = 1.0, full precision Yi, L = 309, p = 15~25. 

using "coarse" 4p and A0, The sub-bucket interpo- 
lation is valid over a range of quantizations, and 
accuracies much higher than the bucket sizes can be 
obtained. 

Figure 15 has plots summarizing results over dif- 
ferent line lengths. Plots are given as a function of 
line length for average line error over all angles, 50 
trials per angle. These are all from runs with zero- 
mean noise with ~ . ~  = 1.0 in 3% ~ = 0.5, A0 = 
0.5, H(p,  O) increment by linear distribution, and y~ 
kept as floating point. The general pattern shown in 
these plots was true for other runs with noisy data 
using other values of Ap and 40, with exact versus 
rounded h ,  and with linear distribution of H(p, 0) or 
updating by !. Characteristic of  these plots are er- 
rors decreasing with line length (the more points, 
the better the estimates) and an ordering in the ac- 
curacy of the methods, from best to worst, of least 

squares, Hough array smoothing and interpolating, 
centroid, and directly selecting the (first) maximum 
in the Hough array. 

5.1 Special Cases 
There are a few special cases, Figure I2, which was 
derived from rounded y;, has an irregular angular 
dependence, with spikes nero" 45 ~ 63 ~ and 90 ~ Sim- 
ilar spikes were noticed in Gordon and Seering 
(t986, t988), These spikes are at 0 values corre- 
sponding to line slopes m = Ay/Ax,  where Ax and 
Ay are in the ratio of 0:1, 1:1, and 2:1. Near these 
slopes the effect of rounding Imisy coordinates can 
produce larger errors. When the quantizatJons 4p 
and A0 are very fine (as in Figure !2a), the counts 
are spread over many ceils so that the signal-to- 
noise ratio is low. Combined with the rounding, this 
can cause the maximum to occur at an incorrect 
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Figure I2. Average line errors for four quantizations of zip and AO. Same as Figure 11 but rounded h -  (a) zip = O,1, ziO = 
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location, or multiple mmxima can occur in which 
case we take the first one, tn either case the result is 
large errors. An exmnple is shown in Figure 16, 
where the rounding causes a (relatively) large error 
in a computed p value at certain 0's, and this causes 
a large error in the final interpolated p value. The 
smoothing methods and least squares fitting are 
much less susceptible to this problem. In other re- 
spects (e.g., no trends) the plots for integer h are 
similar to those for exact y; in Figure 11, 

Another special case is shown in Figure 17. This 
is the case of  no noise and shows the inherent error 
in the methods, such as that due to approximations 
in the linear distribution and interpolation schemes, 
Plots show the average line error for both exact and 
rounded Yi. These were computed from one trial 
(since there was no need for averaging) with A O = 
0.1, A0 .--- 0.05, and H(O, 0) incremented by linear 

distribution, The errors are extremely small, often 
less than 0.04 for all methods at the fine quantiza- 
tions used. The small but noticeable negative bias 
for short lines is due to picking the first maximum 
when multiple maximums occur. 

Figure 18 shows the effect of removing the linear 
distribution during the accumulation of H(p, 0). 
Compare this with the plots in Figure t5. These are 
for identical runs, but for Figure 18 we did not use 
the linear distribution but incremented the Hough 
array with 1. The linear distribution improves the 
average line error, although it is quite small regard- 
tess. This was also true for plots with y~ rounded to 
integer and for the different values of  Ap and A0, 

Finally, we show a plot with non-zero-mean 
noise. In all plots thus far the noise (if present) has 
been zero mean, and the least squares method is the 
most accurate. As a reminde~ of the utility of the 



100 Nibtack & Petkovic: Accuracy of Hough Transform 

1.2 

m 
0 
mr 
rr" 

0.8 
L~ 
Z 

LU 
(9 

0.4 
LU 
> 
< 

A 

50  60 70 80 90  

(a )  O 

t ,2  

o 
C~ 

LL~ 

UJ 
> 
< 

m 

r r  

m ~ 0 8  

7 ~ 

< 0 4  <~ r r  
ILl 
> > 
< < 

50 60 70 80 90 
(c) o 

t.2 

0~8 

0,0 50 60 70 80 90 
(b) 6) 

o ~ LEAST SQUARES 
+ ~ ~MOO3HING/INTERPOLATING 
V = fJENT~OID 
• = t~BSOLUTE PEA~ 

5 0  60  7 0  80  90  
( d )  e 

Figure 13, Average line errors for four quantizations of Ap and AO. Same as Figure 11 but zero,mean uniform noise of 
spread • (a) Ap = 0.1, AO = 0.05; (b) Ap = 0.4, AO = 0,25; (c) zip = 0,5, A0 = 0.5; (d) Ap = 1 and AO = l .  

< 

< 

O: 

< 
~C 

= A~SOI~UTE PEAK 

05 

04  

03 

O0 

Ap=O 1 
~ 0=0'05 

y J ~  

/ 
/ , j J  

Ap=04 
A0=025 A0=0.5 A0=~ 

Figure 14, Summary plot of the effect of varying Ap and 
AO. 

m" 
O 
r r 0 4  
cr 

z Q.3 
Z~ 

O 
< 0.2 
n.' 
ILl 
> 
< 01 

-F = ~MOOTHING/INTERPOLATIN~ 
05  ~7 = CENTROID 

~_ x == A~$OLUTE PEAK 

1 O0 2O0 300 400 500 

L~NE LENGTH 

Figure 15. Average line error as a function of  the line 
length. Ap = 0,5, AO = 0.5, update of H(p, 0) by linear 
distnfmtion, r = L0, full precision Yi, P = 15.25. 



Niblack & Petkovic: Accuracy of Hough Transform 101 

True  l i ne  

02 - ~ ' ~ ' ~ ' ~ "  _ _ . 

Loca ted  l i ne  
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interpolating using poor values from line at 02. 
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Figure 17. Errors inherent in the algorithm. Results are 
from runs with no (extra) noise added toyi. AO = 0.1, A0 = 
0.05, update ofH(p, 0) by liner distribution, trNoi~ = 0, p = 
15.25. 

Hough transform and its robustness to many types 
of  noise, we show an example in which two 
"mouseb i t e s "  were added to the input points. The 
runs were identical to those shown in Figure 11, but 
for each line (of length 300) the y value in two sec- 
tions of  length l0 was offset by +4. The results are 
shown in Figure 19. The Hough methods are essen- 
tially unaffected,  whereas the least squares method 
is not. 

6 Experimental Results 

The accuracy of  any high precision measurement  
system will depend on all components:  mechanical,  
optical, electronic,  and algorithmic. We wanted to 
avoid such issues as optical and electronic distor- 
tion, shading problems, and synchronization be- 
tween camera and digitizer, so we relied mostly on 
the simulations. Our experimental  results serve to 
illustrate and compare  the methods,  rather than to 
give absolute accuracy figures. 

The images we used were obtained using an 
Olympus microscope with VSP model SC505 CCD 
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Figure 18. Removing the linear distribution. All other pa- 
rameters are as those for Figure 15. 

n o : LEAST SQUARES 
oh ~ + : SMOOTHING/ INTERPOLAT ING 

0 ,5  ko / "  "O~ n o ? = CENTROID  
~ "o~ , /~  / (X  x : ABSOLUTE PEAK 

J 

E < 0.2 ~ %. ~.~ -~ ~ , v ~  v 
uJ 

0,0 I 510 I i i ; i I I r 
60 0 80 90 

0 

Figure 19. Results when "mousebite" noise is added. All 
other parameters are as those for Figure 15. 

camera, attached to a Matrox MVP-AT vision 
board installed in an IBM PC AT. We neglected the 
slight shading problems in the images. The camera/  
electronics aspect ratio was carefully calibrated by 
repeated measurements  of  several widths on a high 
precision target. The x and y pixel dimensions were 
measured separately to give 0.8367 microns per 
pixel in x and 0.8734 in y. When digitizing, synchro- 
nization was provided by the camera. In order to 
avoid blurring and j i t ter  errors due to possible syn- 
chronization problems between the camera and dig- 
itizer, (l) the images were not frame averaged and 
(2) we performed relative measurements  such that 
we use distance or angle between two lines in the 
same frame. It was assumed that the objects are 
planar, so that no 3-dimensional calibration was 
done. 

Two targets of  chrome-on-glass patterns were 
used. For  0 measurements  the target was a pattern 
of  stripes of  thin lines at 100 micron spacing. For  0 



102 Niblack & Petkovic: Accuracy of Hough Transform 

Figure 20. Targets used in experiments. (a): p target. (b): 0 

target. 

Table 1. The 12 mesurements d for the distance between 
two (nominally) parallel edges 100 microns apart  a 

L G C A 

1 100.27 100.31 99.97 99.5 
2 100.31 100.32 100.50 99.5 
3 100.29 100.29 99.98 100.50 
4 99.94 99.93 99.87 99.53 
5 100.01 100.00 100.16 99.55 
6 99.92 99.92 99.79 99.45 
7 100.08 100.08 100.12 99.89 
8 100.11 100.11 99.98 99.92 
9 99.89 100.01 100.11 99.84 

10 99.85 100.08 99.97 100.53 
11 100.14 100.01 99.99 100.56 
12 100.01 100.17 100.20 100.55 

the target was a microscope eyepiece with cali- 
brated angular lines at 10 ~ intervals. For the 0 target 
we did not have exact manufacturer's specifica- 
tions. Figure 20 shows the targets. 

Once digitized, the images were processed as fol- 
lows: 

Mean 0.068 0.103 0.053 -0.057 
o- 0.153 0.136 0.176 0.445 

a The columns show measurements from least squares (L), 
smoothing and interpolation (G), centroid (C), and absolute 
Hough peak (A). At the bottom are the mean and standard devia- 
tion for d - 100. Values are in microns. 

1. Compute the vertical gradient with a [ -1 ,  0, 1] 
operator. 

2. Take only the positive gradient and manually 
threshold at approximately 50 percent of the 
peak gradient. In this way we only extracted 
leading edges of the target. 

3. Extract the (x~, Ye) coordinates of the 
thresholded edgels, calibrate them by multiply- 
ing by x and y calibration constants (microns per 
pixel in the x and y directions), and input them to 
the programs used in the simulations. 

For p measurements we took images of the target 
at angles 0 of approximately 90 ~ 75 ~ 64 ~ and 45 ~ 
At each angle an image was taken, the target 
slightly shifted, and another image taken. This was 
repeated again to give three images at each of the 
four angles, or 12 measurements in all. The images 
were thresholded, giving lines that had a length of 
about 270. They were from 2 to 4 pixels wide, and 
so we used b = 1.5. We chose A0 = 0.25, and from 
Eq. (5) we chose At) = 0.5 to give a maximum 
spread at the peak of 6-12 buckets. This is below 
the maximum Ap given by Eq. (8), so it is accept- 
able. 

The distance d between lines was taken as the 
main measurement and its mean ~/ and variance 
from 100 microns (o-2(d - 100)) were computed for 
each of the four methods--least  squares fit, 
smoothing and interpolation of 1t(0, 0), centroid, 
and simple maximum in Hough array--for each of 
the 12 measurements. To avoid the dependence of 19 
on the coordinate origin and 0, we computed the 

distance measurement as the distance along the line 
normal to the average angle of two lines and that 
passes through the centroid of the set of (xe, ye) of 
both lines. Because two edges are measured, the 
variance of the p estimate is approximately half the 
distance variance. The results (in microns) are 
given in Table 1. 

All methods (except simple maximum) provide 
approximately the same accuracy. The least 
squares fit was probably influenced by the nonsym- 
metrical noise in the thick lines after thresholding 
the gradient. The accuracy is within the range pre- 
dicted by the simulation. 

For the 0 measurements we took five images of 
the angular target, Figure 20b. Each image was 
taken after the target had been slightly moved 
(translated and rotated). We obtained seven mea- 
surements since two images contained two usable 
measurements. The main measurement was the an- 
gle between two lines, and we assumed that the 
least squares fit gave the best estimate since we did 
not have the exact target specifications. Lines were 
approximately 300 pixels long and 6 to 7 pixels 
wide. We used A0 = 0.25, Ap = 0.5, and b = 3, 
corresponding to the line half-width. We compared 
results from the three Hough methods by comput- 
ing their mean and standard deviation with respect 
to the least squares values. These are shown in Ta- 
ble 2. The standard deviation again has to be di- 
vided by 2, which brings this measurement within 
the range of results predicted by simulation. 
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Table 2. The seven mesurements of angle a 

L G C A 

1 10.261 10.273 10.226 10.5 
2 10.186 10.189 10.184 10.0 
3 10.354 10.359 10.320 11.0 
4 10.451 10.453 10.443 10.25 
5 10.195 10.192 10.163 11.5 
6 10.121 10.166 10.158 9.5 
7 10.142 10.164 10.193 9.75 

/ 
Mean 0.0123 -0.003 0.113 

0.0153 0.0326 0.621 
Figure 21. The spatial filter corresponding to the Gaussian 
projection domain filter. 

The columns show measurements from least squares (L), 
smoothing and interpolation (G), centroid (C), and absolute 
Hough peak (A). At the bottom are the mean and standard devia- 
tion of the difference of the measurement with respect to the 
least squares measurement. Values are in microns. 

7 Spatial Filters Equivalent  to the 
H ( p ,  0) Filters 

The smoothing port ion of  the method we have pre- 
sented essentially describes a filter that is applied to 
the columns of Hough space H(p, 0) as a prepro- 
cessing step before finding the peak. In many cases 
an operation in projection space has a correspond- 
ing filter in image space (Deans 1983; Hinkle et al. 
1987), and we can ask the question: Is there an 
equivalent spatial domain filter that can be applied 
directly to the image data to produce the same 
result that we get by applying the projection space 
filter to H(p, 0). The answer is yes, and the spatial 
filter is shown in Figure 21. A derivation is given in 
the appendix. The filter is surprising in its simplic- 
ity, but, in fact, it is what would be expected from 
the y-axis-only Gaussian filters we are applying in 
projection space. 

8 Conclusions 

We have described several sources of  error  in the 
standard Hough transform and have proposed 
practical methods to overcome them. The methods 
yield very  high accuracy estimates of straight-line 
parameters ,  significantly higher than generally rec- 
ognized as possible from the Hough transform. The 
error  due to rounding p during accumulation of  H(p, 
0) is negligible in most  cases, but errors due to peak 
spreading and the quantization of p and 0 are not. 
For  the main error,  due to the spreading of  the 
peak, we presented a method that preprocesses the 
Hough array to greatly reduce this error. For  the 
error  due to the quantization of  p and 0 in H(p, O) 

we described an interpolation that results in final 
accuracies that can be much better  than Ap and A0. 
We also suggested several guidelines for selecting 
Ap and A0. 

The methods are based on the geometry of the 
spreading of  the peak in H(p, O) and on straightfor- 
ward interpolation schemes. We do not claim that 
the methods are optimal, but we demonstrated their 
validity in extensive simulations and in selected ex- 
periments on real targets. Their  use significantly im- 
proves the accuracy of  the results as compared with 
the standard Hough transform, making them very 
close in accuracy to least squares even for the case 
of Gaussian zero-mean noise, where least squares is 
optimal. Compared with the standard method of 
taking the absolute peak in the Hough array, the 
new methods give considerable improvement ,  re- 
ducing the error  in the computed line, as we mea- 
sured it, by factors from 3 to 10. 

Least  squares and robust least squares are highly 
accurate and suitable for many cases. However ,  in 
particular cases of background or other  non-zero- 
mean noise, the modified Hough transform and ro- 
bust least squares performed much bet ter  than least 
squares whereas in cases of  multiple lines the 
Hough transform accurately identified one of  the 
lines while even robust least squares fit an incorrect 
" av e rag e"  line. In general, including situations 
with multiple lines and various types of noise, our 
experience suggests that some combination of 
Hough transform and least squares or robust least 
squares is the best  ch o i ce - - fo r  example,  an initial 
Hough transform, including peak smoothing, to 
identify the relevant points, followed by least 
squares on those points that contribute to the peak. 
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Appendix: Derivation of Equivalent Spatial 
Filters 

To begin, we state several standard results. The 
first are summarized from Rosenfeld and Kak (1982, 
pp. 365-370). Let F(u, v) be the 2-D Fourier trans- 
form of f ( x ,  y) expressed in rectangular coordi- 
nates. Then by definition of the inverse Fourier 
transform 

ff:f+  f (x,  y) = -~ F(tt, v)e  j21r(ux + vy) du dv 

If F(u,  v) is expressed in polar coordinates as F(o~, 
0), the inverse transform is 

c~l~ c+l~ F(o~, O)we j2~( . . . .  o+y sin0)do) dO fix, y)= 
JO J U  

(13) 

fo Fio , O)loJleJ'2~~ . . . .  O+ysinO, do) dO 

The Slice Theorem associated with the Radon 
transform relates the Fourier transform of a 1-D 
projection of f ( x ,  y) to a slice through the 2-D 
Fourier transform. In particular, if So(w) is the 1-D 
Fourier transform of the projection Po(P) off(x,  y) 
at angle 0, F(u ,  v) the 2-D Fourier transform, and 
F(oJ, 0) the slice of F(u,  v) at angle 0, then the Slice 
Theorem states that 

So(oo) = F(o~, O) (14) 

Combining the Slice Theorem with the polar form of 
the inverse Fourier transform, Eq. (13), and doing 
some manipulations to change the limits of integra- 
tion, we obtain 

projection domain filter by g. What we are looking 
for is a filter h (x, y) such that 

f (x,  y) = h (x, y)*f(x, y) 

where f ( x ,  y) is our original image, f ( x ,  y) is the 
image corresponding to the projections filtered by 
g, and * represents convolution. In other words, for 
a given filter g applied to the (continuous) Hough 
space H(p ,  0), f ( x ,  y) is given by 

f(x,  y ) =  fo f+-2 S~176176176176 . . . .  O+ysinO) doJ dO (18) 

where S0(o~) is the Fourier transform of the 0 
column of H(p ,  0), or equivalently the projection 
Po(P) off(x,  y) at angle 0, filtered by g. That is, 

So(w) = F(go(p)* Po(p) ) 

where/r  is the Fourier transform operator. By the 
convolution theorem for the Fourier transform, 

So(cO) = Figo(p)) x F(Po(p)) = Go(oJ) x So(w) 

where Go(w) is the Fourier transform of go(P). For 
the Gaussian filters we used 

1 e - p 2 / ( 2 ( o  - sin 0) 2) 

go(P) - X/~cr  sin 0 

so that from (17) 

Goio~) = e - (2~~ sin 0(o)2/2 = e -Tr ( (X/~o"  sin 0)w) 2 

Then we can write Eq. (18) as 

f ix ,  y ) =  fo f+s S~176176176 . . . .  O+ysinO) doJ dO (15) f(x,  y ) =  fo f+-== Ge(~176176176 . . . .  o+ysino) dw dO 

Two additional equations we will use are taken from 
Bracewell (1978). These are the formula for a partic- 
ular integral yielding the delta function: 

f+~ e -j2~xs ds = 8(x) (16) 

and the (inverse) Fourier transform of a Gaussian 
with a particular scaling: 

f +~ e -Tr(V~rt)z e -j2~rxt dt - - -  e -x2a~2 (17) 

Now we are ready to derive the spatial domain filter 
corresponding to the projection domain filter we de- 
fined in the body of the paper. We will denote the 

By the Slice Theorem 

sin0)  &o dO 

Changing the limits of integration (which we can do 
because Go(oJ) = Go (-~o)), we obtain 

f2 '~ fo ~ Go(~o)F(w, O)we Jz'~~ . . . .  o+y sin o)dw dO fix, y) 

which is the inverse Fourier transform of 
[GO(oJ)F(o~, 0)], or 

f(x,  y) = F-l[Go(w)F(oJ, 0)] 
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Again, by the Convolution Theorem 

f(x, y) = F-I(Go(cO))*F--I(F(co, 0)) = g-l(Go(w))*f(x, y) 

This says tha t f (x ,  y) is g ivenf (x ,  y) convolved with 
/-~l(G0(co)), or that F-l(Go(co)) is the spatial filter we 
are trying to find. The inverse polar Fourier  trans- 
form is 

F-l(Go(aj)) 

=f2~'foCoe-~((',/~sinO)~,)ZeJ2"~,4xcoso+ysino)dcod 0 

Making the change of  variables u = co cos 0, v = co 
sin 0, we get 

F-l(G~176 = f +~ f ~-+2 e-~'~176176 eJ2~(xu+yv) du dv 

Using Eq. (17) for the first term and Eq. (16) for the 
second, this reduces to 

1 e (-y2/2~ 8(x) 
F-l(G~176 X/~o- 

This is the spatial filter h(x, y) we want. It is shown 
in Figure 21, and clearly corresponds to the y-axis 
Gaussian filters we are applying in projection space. 
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