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Abstract. A class of two dimensional completely integrable models of statisti- 
cal mechanics and quantum field theory is considered. Eigenfunctions of the 
Hamiltonians are known for these models. Norms of these eigenfunctions in 
the finite box are calculated in the present paper. These models include in 
particular the quantum nonlinear Schr6dinger equation and the Heisenberg 
X X Z  model. 

I. Introduction 

A lot of two dimensional models have been solved by means of the Bethe Ansatz, 
see for example [1-5]. The recently formulated quantum inverse scattering 
method (QISM) [6, 7] disclosed the algebraic nature of these solutions. An 
interesting problem is the study of perturbations of these models. Such a study 
requires the knowledge of the norms of eigenfunctions in the finite box. Gaudin 
studied this problem for the quantum nonlinear Schr6dinger equation [8] and 
made the remarkable hypothesis that the norm of the eigenfunction is equal to 
some Jacobian. A similar formula for the norm of the eigenfunction in the 
Heisenberg X X Z  model was presented in [9] by Gaudin et al. Authors of I-9] 
emphasized that the arguments given in their paper do not really constitute a 
proof. In the present paper these formulae are proved and a more general result 
is obtained. The norms are calculated for any exactly solvable models with the 
R matrix either of the X X X  model or of the X X Z  Heisenberg models. 

The contents of the paper are as follows. In Sect. 2 the main formulas of QISM 
are presented. The proof of the norm formula is long, so in Sects. 3 and 4 the final 
formulas are given. In Sect. 5 the explicit expression for the anticipated answer is 
examined. We prove that this expression is characterized uniquely by some of its 
properties. In the rest of the paper these properties are proved for the norms of 
Bethe wave functions themselves. As the calculation of the norm itself is 
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complicated, the scalar product of two different wave functions is examined at first. 
So in Sect. 6 the description of the scalar product is presented. Note that our 
approach to the description of the scalar products is close to that of [10]. The 
properties of the scalar product announced in Sect. 6 are proved in Sect. 8. In the 
proof a special case of the 6 vertex model is used. This model is constructed in Sect. 
7 and represents the main point of the paper. The knowledge we have of the 
properties of the scalar product permits us to demonstrate the necessary properties 
of the norm. So in Sects. 9 and 10 the proof of the formula for the norm, 
announced in Sect. 4, is completed. 

2. Notations 

First of all let us remind the reader of some notations of the QISM. Eigenfunctions 
of the Hamiltonian of the physical system are constructed by means of the 
monodromy matrix of an auxiliary linear problem T(2). In our case T(2) is a 2 x 2 
matrix, its matrix elements being quantum operators, which depend on the 
spectral parameter 2: 

(2.1) T(2) = \C().) D(2)/" 

Commutation relations between these matrix dements are given by the formula: 

g(2, #) (T(2)®I) (I® T(#)) = (I x T(#)) (T(2) x I)g(2, #). (2.2) 

Here I is the unit 2 x 2 matrix, R(2, #) is a 4 x 4 matrix with c-number elements. 
Another way of writing (2.2) is 

R~p(2, #) T~(2) Te(# ) = T~(#) T~(2)R~e(2, #). (2.3) 

This means that T~(2) is a 2 x 2 matrix which acts on the 2 dimensional space with 
index a and Tp is a matrix which acts on the space with index fi(a #fi). The matrix 
R~p acts in the tensor product of these two spaces. We shall deal with R matrices of 
the following form: 

f(#, 2) 0 0 

i 1 g(#, R(2, #) = g(#, .,a 0 1 

0 0 

For models of the X X Z  type : 

f(#, )0 

(2.4) 

sinh(2- # + 2iq) i sin 2t/ 
f(,l, #) = sinh()~- t/) ' 9(2, #) = sinh(2-- #)" (2.5) 

For models of the X X X  type : 

f(2, #) = ( 2 -  # + iI0/(2- #), g(2, #) = i~c/(2- #). (2.6) 

Here 2, # are spectral parameters and t/, ~c are coupling constants. It is known that 
(2.6) is the limiting case of (2.5). One must replace 2, #, t / in (2.5) by 

e2, ~#, ~r/, (2.7) 
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and let e~0.  In the notation (2.3) the R matrix (2.4), (2.5) looks like 

R~p(2, #) = [s inh(#-  2 + #/)/sinh(#- 2)] cos t/. 1~1~ 

+ [/(sin t/). cosh(/ t -  2 + i~7)/sinh(#- 2)] a~@ (2.8) 

+ i[sin Dl/sinh(#- 2)] (a]a;  + %+ o'~) ; 

2¢ -+ = ~r ~ _ i~ 2 . 

Here o-~,~ are the standard Pauli matrices in the spaces with indices c~ or fl 
respectively. Let us write down the commutation relations (2.3) for the R matrix 
(2.8) explicitly: 

[A(2) + D(2), A(#) + D(#)] = 0, (2.9) 

[B().), B(#)] = 0, [C(2), C(#)] = 0, (2.10) 

A(#)B().) = f(#, 2)B().)A(#) + g()., #)B(#)A().), (2.11) 

D(#)B().) = f(£, #)B(Z)D(#) + g(#, ).)B(#)D().), (2.12) 

C().)A(#) = f(#, ).)A(#)C().) + g()., #)A().)C(#), (2.13) 

C()OD(I~) = f(2, #)D(p)C().) + g(#, ).)D().)C~), (2.14) 

[C().c), B(),')] = O(). c, 2") {A(2C)D(). ") - A(ZB)D(ZC)} 

= g().c 2,) {D().,)A(2C) _ D(2C)A(Z,)}. (2.15) 

Other important objects in QISM are the pseudovacuum 10) and the dual 
pseudovacuum (0l. These are vectors in the quantum space with the following 
properties : 

C().)[0) = 0, A(2)[0) -- a(2)]0), D(2)]0) = d(R)[0) 
(2.16) 

(OIB().) =0 ,  (0IA().) = a(R)(0l, (01D().) = d().)(0[. 

Here vacuum eigenvalues a().) and d().) are c number functions. The space in which 
the operators A().), BOO, C().) and D().) act is constructed in Appendix A. Note that 
a().) and d(2) are arbitrary differentiable functions. The norms and scalar products 
in question are functionals of these a().) and d(2). We shall vary a().) and d().) and 
study the dependence of scalar products on these functional arguments. 

The Hamiltonian of the physical system in question is expressed by means of 
the transfer matrix t(#)= A(#)+ D(#). The Hamiltonian and the transfer matrix 
have common eigenfunctions which are constructed as follows. Put 

~pN({2j}) -- B(2,)...B().N)[0>, (2.17) 

and suppose that 2j satisfy the system of the transcendental equations (TE): 
N 

[a().,)/d().ff] ~ [f().,,).~)/f().j, Z,)J = 1. (2.18) 
j = l  
j :4= n 

Then *&v({).j}) is an eigenfunction of t(#) with the eigenvalue: 
N N 

0(#) = a(#) I ]  f ~ ,  ).j) + a(#) I~ f().j#). (2.19) 
j=  1 .i=1 

Here N is called the number of particles. 
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Notice that 

g,~{2j}) = (01C(21)...C(2N) (2.20) 

is a dual eigenfunction for t(#): 

~N({2j}). t(/z) = 0(#)t~N({2j} ) (2.21) 

with the same eigenvalue (2.19). Eigenfunctions (2.17), (2.20) can be called Bethe 
wave functions. We consider the case of all different 2j. If two of them coincide 
(2, =22) the following phenomena take place. The limiting form (21-+2a) of the 
system (2.18) contains ( N -  1) equations, the number of different 2j is also N -  1, 
but an additional equation appears [11]: 

. d lna(21) . .  ~ d 1 f0q,2~) t~/~, ~ -z j=2_ . ,3d-~ l  n ~  ~-4ctg(2tl)=0. (2.22) 

Since the number of equations exceeds the number of 2j, the solution does not 
generally exist. 

Finally let us present two remarks. First of all new variables 

N 

qo K = i ln[a(2K)/d(2K)] + i ~ In [f(2K, 2j)/f(2j, At) ] K = 1 .. . . .  N (2.23) 
j # K  

are convenient. For example the system (2.18) takes the form 

(PK = 0 (rood 2rt). (2.24) 

Secondly below we shall use the monodromy matrix 

Ty(2)= [ yA(2) yB(2) ~ (2.25) 
\y-* C(2) y - l D ( 2 ) ] '  

for any complex y, and has the following vacuum which satisfies Eq. (2.2) 
eigenvalues 

a,(2) = yaO0,  dr(2 ) = y -  1 d(2). 

Now we are able to formulate the main result of the paper. 

(2.26) 

3. Expression for the Norm in the XXX Type Models 

For  models with an R matrix of the form given by (2.4), (2.6) the scalar product of 
an eigenfunction (2.17) and dual eigenfunction (2.20) is equal to 

N 
o, = } 

• I~I K__Hlf(2~,2K)I(010)detN{&PK/O2j}. (3.1) 
j= l jgi~' J 



Calculation of Norms of Bethe Wave Functions 395 

Here the OK are the variables (2.23) and the set of the 2j is a solution of the system 
(2.18) (2.6). The derivatives can be written in the explicit form 

~o K =SK j[ .  ~ , a(2~) N 2~C } 2~C (3.2) 

Formula (3.1) can be used to calculate the norm of the eigenfunction (2.17) if the 
following properties are valid. Hermitian conjugation must act as follows: 

B+(2)= + C(2), 10} + =(01. (3.3) 

The set of 2j must be invariant under complex conjugation : 

{X j} = {2#}. (3.4) 

In this case by means of (2.10) we have 

(0rB + (2~)...B+(2N)B(20...B(2N)I0> = (+_ 1)N<01C(20...C()@B()~I)...B(2N)I0 > . 

(3.5) 

The formula (3.1) is similar to formula (4.1) given in the next section. We shall 
first prove the latter and then in the end of Sect. 10 we shall discuss how to pass to 
formula (3.1). 

Several examples of the application of (3.1) may clarify matters. Consider for 
example the norms of the eigenfunctions for the quantum nonlinear SchrSdinger 
equation. The model was treated by means of QISM in [12, 13]. The Hamiltonian 
is equal to 

L 

H = ~ dx(~p 2 ~p~ + ~c~p + ~p + tp~) [~o(x), ~p + (y)] = 6(x - y). (3.6) 
o 

The monodromy matrix has the following property: 

o -1T+(2)a ~ = T(2), B+(2) = C()~). (3.7) 

Here the cross means Hermitian conjugation of the quantum operators. It does 
not transpose T(2) as a 2 x 2 matrix. The commutation relation of T(2) is given by 
the R matrix (2.4), (2.6). The pseudovacuum coincides with the usual Fock 
vacuum. The vacuum eigenvalues are equal to 

a(2) = exp{ - i2L/2}, d(2) = exp{i)~L/2}. (3.8) 

Properties (3.3) and (3.4) are valid. To write down the trace identities it is necessary 
to construct the following asymptotic expansion: 

In [(A(2) + D(2)) ~-~i~exp {i2L/2}1= K= ~1 2-KCK' (3.9) 

The Hamiltonian (3.6) is equal to 

H = (i~:)- ~ C 3 + C a + ixC~/6 (3.10) 
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due to the results of [14]. The eigenvalues of H are equal to ~22. The square of the 
norm of the eigenfunction (2.17) is equal to 

(0pB+(ZO...B+(2N)B(41)...B(2N)I0)=xN [I 1+ 
j > K =  1 (~'K U"~' j) 2" 

l= 1 (Zk-- 2l) 2 + g2" -- (ZK-- 2j) 2 -t- K 2 (3.11) 

due to the formulas (3.1), (3.2) and (3.5). To obtain the norm of the coordinate 
wave function an explicitly known factor must be extracted, see [15]. When this is 
done one sees that the norm is equal to the determinant in (3.11). In this way we 
prove the hypothesis stated by Gaudin in [8]. 

The formula (3.1) can be applied to other models. For example norms in 
the X X X  model can be calculated. In [16, 17] the quantum lattice nonlinear 
SchriSdinger equation was constructed. In this model the norms can also be 
calculated by means of (3.1). 

4. Expression for the Norm in the XXZ Type Models 

For models with an R matrix of the form given by (2.4), (2.5) or (2.8) the scalar 
product of the eigenfunction (2.17) and dual eigenfunction (2.20) is equal to 

(OlC(20...C(Zu)B(40...B(2u)[O)=(sin2q) u {j_l~ 1 a(4j)d(2j)} 

j : l  

Here the )tj satisfy the system of transcendental equations (2.18), (2.5). The Jacobi 
matrix can be written down in the explicit form 

0qg~=6Kj~i d lna(RK)+ N sin4t/ 
02~ ( d2~: d(2r) l_-~a sinh(2 K-  Z l + 2it/)sinh(Z K -  2 l -  2it/)J 

sin4t/ (4.2) 
sinh(2~- Z j + 2it/)sinh(Z K - 2~-  2it/)" 

It would seem that (4.1) has pole whenever two 2j coincide (21 =22). Remember 
that this can hardly ever happen owing to the addition of the new Eq. (2.22) to the 
system (2.18). But if, by chance, this system has a solution, the limit of (4.1) is finite. 
Indeed, formally (4.1) has a pole of second order as 21--,22. So the structure of the 
singular part is as follows 

a2. (21 _ 22 )- 2 + al .  (Z 1 _ 22 )- 1 (4.3) 

One can show that a 2 is proportional to the left hand side of (2.22) and therefore 
a2=0.  While a 1 is zero owing to the symmetry of (4.1) under the permutation 
41---~Z 2 (see the next section). The whole paper is devoted to the derivation of 
formula (4.1). 
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Let us calculate the norms for the X X Z  model. The Hamil tonian of the model 
is 

M 

H =  ~ 1 i 2 2 cos2t/(a~a3+ (4.4) [ a r a ~ +  1 + 1)]. 1 -~- f f K G K +  1 - -  
K = I  

This model was treated by means of QISM in [7]. Its monodromy matrix is given 
by 

r(2) = LM(2)...L1(2). (4.5) 

Her L r is the weight matrix for the 6 vertex model 

s inh(2-  it~a3), - i(sin2t/)o-~ 
LK(2) = - i(sin2t/)a~, sinh0o+ i t /a~) " (4.6) 

This monodromy  matrix has the following property at real t/: 

T+(~) = a 2 T ( 2 ) a  2 , B+(2) = - C(2). (4.7) 

Its communicat ion relations is given by R matrix (2.4), (2.5}. The pseudovacuum is 
s tandard:  

M M 

IO> = l-I T j,  (OI = 10> + = [ I  (T j). (4.8) 
3=1 j = ~  

The notations Tj and Sj denotes vectors 

T=(~), ], =(o) (4.9) 

at the j site of the lattice. The vacuum eigenvalues are 

a(2) = sinhM(2-- it/),  d(Z) = sinhM(2 + it/). (4.10) 

Properties (3.3), (3.4) are valid, at  least in the limit M--* oo. The trace identities look 
like 

- 2i sin 2t/. ~-~ In [A(/~) + D(p)] [u = - i~ - 2M cos 2t/. (4.11) H 

The eigenvalues of H are 
N 

4 ~ (cospj-cos2t / ) ,  (4.12) 
j = l  

where 
exp {ip} = sinh()~- it/)/sinh(2 + it/). (4.13) 

By means of (3.5), (4.1), (4.2) and (4.10) the square of the norm of the eigenfunction 
(2.17) can be calculated: 

(0[B+ (2t).. .B + (2N)B(2~)...B(2n)10) = (sin 2t/) s 

• s sinhM(2J-- it/) sinhM(2j + itl) K>~i= i sinh(2j-- 2 K + 2it/) s inh(2 j -  2 K -  2tq) 
sinh 2 (2j - 2~) 

,4,4, 
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Here the function of two variables ;/(2, ~/) is defined as follows: 

)/(2,17) = sin 2q/sinh(2- ir/)sinh(2 + i~/). (4.15) 

Formula (4.14) for the norm of the coordinate wave function was presented in [9] 
and explicitly verified by direct calculations for N = 2, 3. Notice that the norm 
formula for the X X X  model may be obtained from (4.14) in the limit (2.7). In the 
papers [17], [18] the lattice quantum sine-Gordon model was constructed. The 
norms in this model can also be calculated by means of (4.1). 

5. Properties of the Jacobian 

Our aim is to prove (4.1). We shall see that it is valid even if (3.3)-(3.5) are not valid. 
Let us introduce the value 

(01C(21) 'B(2N)[0) (5.1) •.C(2N)B(20.. 
I I , ~ . . . ; t N I I  N = N N , 

which is proportional to the scalar product of the eigenfunction (2.17) and dual 
eigenfunction (2.20). In (5.1) the values 2j satisfy the system (2.18). The formula 
(4.1) is equivalent to 

[121...AN 1[ N = detN{~(P~/~Aj} • (5.2) 

During the proof we shall put (0[0)= 1. 
Let us first of all study the properties of the Jacobian on the right hand side of 

(5.2). The most important ones are as follows. The Jacobian is a symmetric 
function of all 2j. For the proof it is sufficient to interchange the position of two 
lines and two columns. 

Let us remind the reader that the vacuum eigenvalues a(2) and d(2) are 
arbitrary functions. This permits us to consider the values 

Xp:i ln(a(  p)l o \ \ ]  (5.3) 

as variables independent of 2j, see Appendix B. These variables can change freely 
at fixed 2j. We shall study the dependence of the Jacobian on Xp. Let us 
reformulate the symmetry property. The Jacobian is invariant under simultaneous 
replacement 2K~--,2 j and XK,,-~X j. Due to (4.2) the Jacobian is a linear function in 
X1 

detN{c~q~K/~2 J} = UaX 1 + V 1 . (5.4) 

Values V I and U~ are Xl-independent. They depend on all other X,, P = 2,..., N 
and on all 2j. Due to the symmetry the Jacobian is a linear function in each Xp. The 
coefficient U 1 in (5.4) is equal to another Jacobian 

Ul=detN_l{~3£oK/c~)~j}, K , j = 2  .... .  N,  (5.5) 

., f i ( 2 K ) . . L ,  f(2K,2j) 
~o~=~md(~K) ~-z 2, m - - - - ,  (5.6) 

fi(2) = a(2)-f(2, 21) , d()~) = d(2)f(21, 2). (5.7) 
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So U 1 differs from the initial Jacobian by removing the first line and first column 
and by  replacing the vacuum eigenvalues a(2) and d(2) by 4(2) and 2(2) [see (5.7)]. 
This is a direct consequence of (4.2). Notice that  in (5.6) 2j, j = 2, ..., N are solutions 
of a reduced system of TE 

N 

[a(2.)/~/(.L.)]  I ~  I f ( 2 . ,  2j)/f(2j, 2 . ) ]  = I ,  n = 2 . . . .  , N .  (5.8) 
1=2 
j an  

The Jacobian is equal to zero at all Xp = 0 and 22 fixed : 

detN{~°K/02~}]xp = o = 0, p = 1,..., N .  (5.9) 

Indeed 

det~{&p/a,~y}lx = o = det MjK, 

and by means of (4.2) and (4.15) we have 

MjK = ~ {z~l Z(2K--2;, 2t/) } -- Z(2K-- 2j, 2q). 

This matrix has an eigenvector with zero eigenvalue: 

N 

Z %Kv =o, v =l. 
K = I  

So d e t M = 0  and (5.9) is proved. 
At last 

d a(2 0 
det 1 {~?~0J~2K} = X  1 = i ~ l n  d()ol) . (5.10) 

It is clear that 1121 ...2NIIN , see (5.1), must  possess the same properties. We shall 
prove the following. 

Theorem. To prove formula (5.2) it is sufficient to prove that 1121...25]1N has the 
following properties. 

1) It  is invariant under simultaneous replacement 

2K~--~2 J and X~:*--~Xj. (5.11) 

2) It  is a linear function in X 1 (5.3) 

I IX,  . . . ,  2N[IN = g l  "X 1 -t- g 1 . (5.12) 

3) The coefficient U 1 is equal to 

U I  = 11)'~2, -" ", /~N" ' N-l"m°a (5.13) 

It  is given by formula (5.1) in the case of N -  1 particles. Thej)article corresponding 
to 21 is removed and a(2) and d(2) are replaced by fi(2) and d(2) [see (5.7)]. 

4) I t  is equal to zero at all Xp = 0 and 2j f ixed 

II;.....,;,NIIN=0 and X v = 0 ,  p = l  . . . .  , N .  (5.14) 
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5) For the one particle state 

1141111 = 2 1 .  (5.15) 

The proof goes by induction in the number of particles starting from N =  1 
[-compare (5.10) and (5.15)]. Assume that (5.2) is already proved for N = 1, ..., q -  1. 
We shall show that it is valid for N = q. Let us consider the value 

Aa = 1121,..., 2q[la- detq(3~PK/O2) • (5.16) 

It is a linear function in X1, see (5.4), (5.12). The derivative with respect to X 1 is 
equal to 

2 mod - -  deto_ 1 {t~q)K/02j} (5.17) OAa/DX1=]I22 . . . .  , q q-1 

see (5.5), (5.13). The right hand side is equal to zero due to the inductive 
assumption. So OAJOX 1 = 0 and Aq is X 1 independent. Due to the symmetry (5.11) 
Aq does not depend on any of Xp. But due to (5.9) and (5.14). 

Aq=O at Xp=0 ,  p = l  . . . .  ,q. (5.18) 

So Aq = 0 identically. So (5.2) is valid for N = q, which concludes the proof of the 
theorem. In the remaining part of the paper we shall prove that H21...2N[ [ [see 
(5.1)] possesses the five properties mentioned in the theorem. 

6. Description of the Scalar Products 

We begin with the study of the scalar products in the generic case 

<01C(2C)...C(2C)B(2B)...B(2~)I0>. (6.1) 

All the 2 c and 2~ are assumed to be different and independent; in general they do 
not satisfy any equation. The left hand side of (4.1) is a particular case of (6.1). We 
shall deal only with the R matrix (2.8). By means of (2.9)-(2.16) one can calculate 
(6.1) completely. For example, 

(01C(2C)B(2B)[o> = 9(2 c, )fl) {a(2C)d(2 R) - a(2~)d(2C)}. (6.2) 

Let us try to characterize (6.1) for any N. Notice that after the calculation each 2~ 
and 2c must become either the argument of a(2) or of d(2). In this way each term in 
the expression for (6.1) corresponds to some partition of the set 

S N = {2 c . . . .  ,2 g, 2~,..., 2g} = {2c}u{2 B} (6.3) 

into two disjoint subsets {2 A} and {2D}: 

{An} c~ {2 D} =0 ,  {2A} U {2 D} = S  N . (6.4) 

Let us denote the number of elements in the subset {2 A} by cardA and for 
{2 D} cardD (cardA + cardD = 2N). So we have : 

(0]C(2C)...C(2C)B(2B)...B(2B)I0) 
{{2C} { ~ B } / c a r d A  c a r d D  

= Z Ku~{2a } {2o}j I-[ a(2y) l~ d(2KD) " (6.5) 
pa r t i t i ons  j = 1 K = 1 
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The coefficients K N are some explicit functions of all the 2, constructed by means 
of f and O (2.5), independent of vacuum eigenvalues. We claim that the only 
nonzero elements in (6.5) are those for which 

card A = cardD = N.  (6.6) 

Indeed let us apply formula (6.5) for the monodromy matrix (2.25), depending on 
arbitrary ye C. The left hand side of (6.5) is manifestly y independent, while on the 
right hand side each term is multiplied by the factor exp{cardA-cardD)-lny}. So 
the y independent terms are characterized by (6.6). All other terms must vanish. 
Let us rewrite (6.5): 

N N 

<oj 2 /n (6.7) 
j = l  K=I p .r , i t io . s ,= l  , \ { ; A }  { a n } / .  

The number of terms in the right hand side is equal to C~ .  In the explicit 
expression for K the following intersections are essential: 

{aa} n {a c} = {aAC}, {2D} ~ {a c } = {2 nc} 
(6.8) {a A} ~ {a'} = {,~A,}, {a n} n {a"} = {a"}. 

Obviously one has following trivial identities: 

{a~c}u{~,}  ={zA}, {~c}u{anc)={ac}  
(6.9) {,~nc}~ {an~) = {an}, {,~A"}u {,~n,) = {a~}. 

The number of elements in the subsets (6.8) satisfy the following identities: 

n = card(DC) = card(AB), card(AC) = card(DB) = N -  n. (6.10) 

An example of the partition in (6.7) is 

{h A} = {2c}, {2 n) = {aB}. (6.11) 

In this case we have 

{2 ~c} = {2c}, {2 AR} = 0, {2 nc} = 0, {2 DB} = {aB}, n = 0. (6.12) 

We shall call the term in (6.7) corresponding to this partition the highest term. In 
Sect. 8 we shall demonstrate the following properties of K N. First of all the highest 
K is equal to 

~Nk{aC} {aB}] =QN({af}'{ac}) .= K=x(-I sinh-~(2~ -'~c) . (6.13) 

Here QN is a function of 2N variables, which is symmetric separately in all 2~ and 
in all 2 c. QN depends on an individual af for fixed values of the remaining variables 
as follows: 

QN({aB}, {2c}) = e-(N- ~)~y. PN- ~(ea~) • (6.14) 

Here PN-1 is a polynomial of degree (N-1) ,  with coefficients depending on all 
other variables. Similarly Qu depends on individual 2 c as follows: 

QN({aB}, {ac}) = e (N- 1)zfq3 N_ l(e- 2"~c), (6.15) 
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where /3N_ 1 is another polynomial of degree (N-1 ) .  The most remarkable 
property is the following. If one of the 2 B coincides with one of 2 c, say 2~ = 2 c, our 
QN is expressed in terms of QN- 1 with 2~ and 2 c removed 

{2j })[xf = ;f  = ( -  i sin 2q) sinh(2~- 2 c -  2it/) 

N 

• { j ~ = 2 s i n h ( 2 ~ - 2 c - 2 i q ) } Q N _ l ( { 2 ~ , l } , { 2 c ,  l}). (6.16) 

Notice that Q1 has already been calculated in (6.2) 

Q 1 = - i sin 2r/. (6.17) 

Due to the symmetry of QN it can be reduced to QN- ~ in all points 2 c = 2~. One can 
show that all these properties fix QN in a unique,way. 

An arbitrary coefficient in (6.7) is expressed as follows: 

K~N ~{~IA} {~D}/ : 7ON ~{;A} {~D}/[¢:11 K : I  (6.18) 

Here the Laurent polynomial ~s is equal to 

For  n see (6.10). The double product in the third factor on the right hand side 
means that 2J )c runs through all the set {2Pc}, and 2r~ c in an independent way runs 
through all the set {2AC}. The last factor has a similar meaning. So we have 
completed the full description of the scalar products. We shall prove these 
formulas as follows. In the next section we shall construct a special case of the 6 
vertex model with a lot of free parameters. We shall apply formula (6.7) for this 
model and choose parameters in such a way that all terms, except one, on the right 
hand side will be equal to zero. This will allow us to investigate the properties of an 
individual coefficient K w Notice that scalar products for the X X Z  model itself 
were studied in [10]. 

7. Special Case of the 6 Vertex Model 

We shall consider the inhomogeneous generalization of the monodromy matrix 
(4.5). Namely we assume the spectral parameter in the L matrix (4.6) to be site 
dependent 

s inh(2-  v K -  i t /~) ,  - icr~. sin 2t/ 
LK(2 -- vr) = -- i ~  sin 2t/, sinh(2 - v K + it/or 3) 

= cos r/- sinh(2 - vK)- ia 3. a~- sin q. cosh(2 - vK) 

- i sin2~(a-.  ~ + a ~. cry). (7.1) 
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The  m o n o d r o m y  matr ix  

T(2) = LM(2-- VM)...L1(2-- v l) (7.2) 

obeys the commuta t i on  relations (2.3) with the R matr ix  (2.8). The pseudovacuum 
is the old one, see (4.8). The  vacuum eigenvalues are now equal to 

M M 

a(,~) = F[ sinh(2 - v j -  it/), d(2) = 1~ s i n h ( 2 -  v~ + it/). (7.3) 
j = l  j = l  

Such an inhomogeneous  general izat ion was used for example  in [19-21].  
Let  us consider the special state 

B(2M)...B(2010) • (7.4) 

Here  the number  of  the particles [of  the B(2)] is equal to the number  of the sites in 
the lattice N = M. Below we shall write N instead of M. All 2j in (7.4) are free. In  
Appendix  C it is shown tha t  in the state (7.4) all spins are overturned,  see (C.9), 

B()@...B(2jlO) -- O. Z N . (7.5) 

Here  Z N is a c -number  and 

The  definition of Z N is 

N 

f2: I] (~j). (7.6) 
j=1 

N 

ZN({h), {VK}) : ~ I] B(A)" I0>. (7.7) 
j=l 

Several representations for Z N are given in Appendix D. Let us study the 
properties of the Z N. Due to (2.10) Z N is symmetric in all ,I~. Z N depends on 
individual 2~ as follows (all other variables kept fixed): 

Z N = exp{ -- ( X -  1))o~}P N_ l(eaZ~). (7.8) 

Here  PN-1 is a po lynomia l  of  degree N - 1 ,  with coefficients dependent  on all 
o ther  variables. Indeed, one can see by inspection that  B(2) depends on 2 like (7.8). 
F r o m  representat ion (D.21) one can see that  Z x depends on vj in an anlogous 
fashion. Z s is symmetr ic  in all U" ZN depends on an individual v i as follows: 

Z N = exp{(N - 1)vfl/3 N_ l (e -  2v j). (7.9) 

Here  f in-  1 is ano ther  polynomial  of  degree N - -  1. Fo rmu la  (D.24) shows that  if 

vl = ) h  +i t / ,  (7.10) 

then Z N can be expressed in terms of Z N_ 1 with h and 21 removed : 

ZN({2~}, {Vj})t,~_ ;.~ : i, : -- i sin 2t/ sinh(21 -- v~-- it/) 

N 
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Due to the symmetry of Z N, similar formulas are valid in all points v x = iq + 2p. For 
N = I  

Z I =  - isin2r/. (7.12) 

In the next section we shall use this model to study the coefficients in the formula 
(6.7). Notice that the norm of the highest eigenvector of the transfer matrix (7.2) 
was calculated for the very special set of v K in [10]. 

8. Proof of  the Formula for the Scalar Product 

Let us calculate the scalar product of the state (7.4) and the dual state 

<0]C(2C)...C(2sc), N = M  (8.1) 

in the inhomogeneous 6 vertex model by means of formula (6.7). We shall try to 
choose the free parameters vj to annihilate all terms on the right hand side of (6.7) 
except one. Put e.g. 

v j = , U + # l .  (8.2) 

Now the vacuum eigenvalues (7.3) are equal to 

N N 

a(2) = l~ s inh(2-  2~-- 2it/), d(2)  = l~ s inh(2-  2~). (8.3) 
j = l  j = l  

As d(2 c) = 0 all 2 c must become arguments of a(2). So on the right hand side of (6.7) 
only the highest term remains: 

N N 

(0l 1-I C(2c) I-I B(2f)lo> 
j = l  ' = 1  

=KN~{2c} {2s} ] x 1-I 1-[ s inh( i~-2C) 's inh(2C-2C-2iq)  - (8.4) 
j = I K = I  

Let us calculate the left hand side 

<01 H c(2~) H B(,~)I0>= <01 C(2C)a a B(,~f)10> 
j = l  / = l  j = l  

= ZN({2c}, {)oc + #/}) ZN({,:~} ' {2c+ it/}). (8.5) 

Here we have used the formulas (7.5), (7.7) and (D.17). The first factor on the right 
hand side of (8.5) can be calculated by means of (7.11) 

N N 

ZN({2c}, {2 c + it/}) = I-I l-I sinh( 2 c -  2 c -  2it/). (8.6) 
K=Ij=I 

Combining (8.4)-(8.6), we obtain 

= sinh- (2 K -  2j) ZN({2 , }, {2, + vl}). (8.7) '~Nl{2 c} {,~}J ~j=: K = ,  

If we change the notations 

B C - -  B Q,,({:., }, {,~: }) = zN({2j }, {;~f + id), (8.8) 
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then it will be obvious that (8.7) and (6.13) coincide. Also properties (7.8)-(7.12) 
turn into properties (6.14}-(6.17). In this way we have proved all the properties of 
the highest term and of QN. 

Let us discuss now an arbitrary coefficient in (6.7). We fix the partition 
corresponding to one of the terms in (6.7) {2A}, {2 D} and choose 

This leads to 

Vj=2~+i~.  ( 8 . 9 )  

N N 

a(2)= 1-I sinh(2--2A--2it/), d(2)= I-I s inh(2-2]) ,  (8.10) 
j=l j=l 

and so d(2 A) = 0. All the 2 9 must become the arguments of a(2), Therefore the only 
nonzero term on the right hand side of (6.7) just corresponds to the fixed partition 

I) n .(z)p0>-- 
j = l  / = i  K = l j = I  

N 

.{K~ 1 i~sinh(2~_2~)} .~ [{2 c} {2"}] (8.11) 
j = l  " /~N t { x A }  { 2 D } ]  " 

Let us calculate the left hand side 

N N 

(01 l-] C(2c) I ]  B(2f)10) = Zu({2c}, {2 f + iyI)ZN({Xf}, {X ] + iq}). (8.12) 
j = l  l = 1  

Since the intersections {2 Ac) and {2 A~} are nonempty simultaneously, the right 
hand side of (8.12) can be transformed by means of (7.11). We obtain 

N N 

<01 I-I C(Ac) 1-I B(2~)IO> = Q,({2Dc}, {)P~})QN_,({RD~}, {Axe}) 
j = l  / = 1  

t j =  1 K =  1 J I.jaDCKsAC J 

• {KIND, j~I~] sinh(2~"- 2A"-- 2it/) } . (8.13) 

Here we use the notations (8.8), (6.8), (6. t0). If we combine (8.11)-(8.13), we obtain 
(6.18), (6.19). In this way we finish the proof of all the formulas given in Sect. 6. 

9. Norm of an Arbitrary State 

Thus far we have described the general scalar product. To obtain the formula for 
the scalar product of the eigenfunction and its dual (4.1) we just do two steps. First 
of all we must let 2 c tend to 21 in (6.7) in order to have the expression for the scalar 

C__ B product of an arbitrary wave function and its dual. Secondly we must let 2j - 2j 
=2j  tend to a solution of the system of TE (2.18), (2.5). In this section we shall 
make the first step gradually. Let 

2 c ~  ~s _ ~ (9.1) 
1 "~1 - - ' ~ 1  
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while all the other £c and 2g are fixed. We are interested in the dependence of the 
limit on the vacuum eigenvalues. There exist four types of terms on the right hand 
side of (6.7) which have different behavior in the limit (9.1). 

1) Terms corresponding to partitions with the following properties 2ce {2a}, 
Ale {2A}. These terms have finite limit and their dependence on the vacuum 
eigenvalues of argument 21 is the following: a2()~1). 

2) Terms corresponding to the partitions 2ce{2D}, 2~e{2D}, whose de- 
pendence is d2(~1). 

3) Terms corresponding to the partitions 

2% {2A}, 2re {2V}. (9.2) 

We use following enumeration: 

I~C__~A__~AC )B__~D__,~DB (9.3) 
i - -  " ~ i  - -  " ~ I  ~ *~i -- "~I -- *"i " 

These terms have a pole in the limit (9.1) due to the factor 

sinh - 1(2D -- 2~) = sinh- 1(2,~ - 2 c) (9.4) 

in the expression for K N (6.18). Let us calculate the residue. The terms of the third 
type are summed up to give 

/~2c 2c~ r~B )m~ N 
C B t 1~ j J  " a()q)d()q)~KN c AI /{~l,~j J t);l';:JS/)l, jJ/j=21-I a(2])d(2~). (9.5) 

Here j = 2, ..., N and the summation is carried out by partitions of 

SN-1 = {2~ c t } w {2~* 1} (9.6) 

into two disjoint subsets {2¢,1} and {2j D 1}, for which 

cardA = cardD = card C = cardB = N -  1 

[compare with (6.3), (6.4), (6.6), and (6.7)]. 
To calculate the residue we shall rewrite K N from (9.5) by means of (6.18) 

N I( iD - 2c) 1-[ sinh- I()oB _ )~¢) KN=sinh-X(J~f -j~c) 1-[ sinh- 
K=2 ) t,j=2 

- {j=I~2 I~I sinh-t,~K--/~,,(rC, I~{2A } . (9.7) ,:= { ;2} 

In Appendix E it is shown that :~AC ~DB **a 1 = t~ I , then rc u is reduced to rc N_ 1 with 2 c and 
2~ removed. Finally we have for the singular part of each K N in (9.5) 

KN-+-i(sin2~l)sinh- {K:2 f()-~, ~0 .B-2c) 1--1 3°OfOq,)'D)}KN-, ({)'c.1} 

(9.8) 

Here we use the notation (2.5), (6.18) and formula (E.2). By means of (6.7) one can 
show that the singular part of the sum (9.5) is proportional to the scalar product 
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for N -  1 particles 

) N N 

- / s i n  2q. s inh(2f-  2c) "(0[ j--~2'= c(2C) ~=2I~ B(2~)10) m°d . (9.9) 

Here "rood" means that during the calculation of this scalar product we must put 

A(2)I0) = a(2)[0), a(2) = a(2)f(2, )h), 
(9.10) 

D(2)I0) =&)010>, 3(,~) = d(2)/(21, 2). 

Before analyzing the finite part of these terms, let us study the terms of fourth type. 
4) These terms correspond to the partitions 

2ce {2v), 2 ~  {2A}. (9.11) 

These terms have the same denominator (9.4), see (6.18). The singular part of the 
sum of these terms is calculated in just the same manner, by means of (E.5). This 
part is equal to 

a(2~)d(2C) N N 
/sin 2t/- sinh(2f - 2c) "(01 j_[I2 C(2 c) 1 =I-[2 B(~) [0 )  m°d (9.12) 

and cancles (9.9) exactly. 
Now we are in a position to calculate the finite part of terms 3) and 4). We must 

use l'H6pital's rule. After calculating the indeterminacy one sees that the sum of 3) 
and 4) depends on the vacuum eigenvalue with argument 21 either as a(21), d(21) or 
as a'(21)d(21), a(20d'(,~ 0. To calculate the coefficients of the last two terms is very 
simple. It is just the same as to calculate the residues (9.9), (9.12). The answer for 
the terms with derivatives is as follows: 

N N 

i sin2tl[a'(2Od(,~l)- a(21)d'(21)]. (01 I-I c(2c) [ I  B(2f)t0) =°a. (9.13) 
j = 2  1=2  

Thus we can write down the dependence of the scalar product in the limit (9.1) on 
the vacuum eigenvalues of argument '~1 in the explicit form 

N N 

(01 [I c(,~c) [I B(2~)[0) = E. a2(~1) -I- F. d2(21) + V. a(20d(2 0 
j = l  l = 1  

+ U.a(21).d(20d-~ln[a(20/d(20]. (9.14) 

The coefficients E, F, V, U are independent of vacuum eigenvalues of argument 21. 
The last one is equal to 

N N 

U = i sin 2~/(0] 1-[ C(2c) l~ B(~'~)[0) m°d (9.15) 
j = 2  l = 2  

[see (9.13), (9.9), (9.10)]. 
Just now we can do the first step all at one. We let )oc-+2']=2j. Here all the 2j 

are different. It is easy to check that the results of the previous analysis will not be 
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broken down. So the scalar product of the wave function and its dual is equal to 

N N 

<01 1~ C(21 1] B(21)tO>=E'a2()q)+~"d2(21) + P'a(Z0d(21) 
1 = i  i = i  

+ (]a(21)d(21)d@lna(2t)/d(2t). (9.16) 

U are independent on vacuum eigenvalues of The coefficients /~, i~, P and 
argument 41 and 

N N 

b' = i sin 2~/<0[ 1-I C(2j) l~ B(21[0> re°a- (9.17) 
j = 2  j = 2  

Here "mod" means (9.101. This is the end of the first step. In the next section we 
shall do the second step. Namely we shall make )L 1 the solution of the system of TE. 

10. Proof of the Norm Formula for the Eigenstates 

Let us rewrite (9.16) in a form close to (5.1) 

N N 

<01 IF] C(21 1-[ B(21]0) 
i=1 i=1 _ a(2i) r,, ~ =L1 ~ + E l  d(21) 

(sin2t/)N/l~a(2,)d(2t)lf I ]  f(21,2K)} a0o,) 
I.l= 1 J I.j~K= 1 

(10.1) 
, . d 1 a(21) 

+ Va + u l '  d~]-i n d(~i) ' 
where 

N N 

<0] H C(£j) 17[ B().)[O> m°a 
U 1  = j = 2  j = 2  (10.2) 

(sin 2t/) u-* a(X,)d(2, f(21, 2g 
l ) I . j*K=2 

Here we use (9.10), (9.9). Now let 2 i become a solution of the system of TE (2.18). 
By means of 

N 

a(21) /d (21)  = H f()~a, 2,)/f(21, 2)  
j = 2  

the dependence of the first two terms on the right hand side of (10.1) on a(2~) and 
d(2i) may be eliminated. The dependence on X a = id ln[a(2a)/d(;tl)]/d) q [see (5.3)] 
can not be eliminated by means of TE, see Appendix B. So the value of 
lid,1 ..... 2utlu in (5.1) depends on vacuum eigenvalues of argument 21 only by 
means of X 1 

I[,L,--., 2ullN = V~ + U1X~, (10.3) 
where 

, ; ~jmod (10.4) U s  = II22, -. . ,  "~N[IN-- 1" 

Here we use (10.1), (10.2), and (9.10). 
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Now we are in a position to check all the five properties of the theorem in Sect. 
5. The symmetry property 1) is obvious from (2.10). The property 2) is proved by 
(10.3). The third one is proved by (10.4). The fourth one is proved in Appendix B 
[see (B.3)]. To prove the fifth one we must consider the limit 2 ~ 2  c in (6.2) and use 
the definition (5.1). Thus our argument is now complete. We have proved formulas 
(5.2) and (4.1). The proof of the formula (3.1) is similar. From a formal point of 
view one does not even need a separate proof as all formulas for the R matrix (2.6) 
can be obtained directly from formulas for the R matrix (2.5) in the limit (2.7). 

Appendix A. Construction of the Quantum Space 

We shall show that a monodromy matrix, which satisfies relation (2.3) with the R 
matrix (2.8) and possesses arbitrary a(2) and d(2), can be constructed. A nontrivial 
problem is to construct T(2) which possesses arbitrary ratio a(2)/d(,~). Indeed, 
under multiplication of T(2) by an arbitrary c number function v(2) the vacuum 
eigenvalues are changed as follows: a(2)~v(2)a(2), d(2)~v(2)d(2). 

In the beginning we shall show that the models known from the literature give 
us a rich set of a(2)/d(2). First of all let us give an example of two models with the 
same R matrix but with different vacuum eigenvalues. The monodromy matrix of 
the lattice sine Gordon model (LSG) is equal to 

T(2) = Lu (2)...L a (2), (A. 1) 

as in (4.5). The statistical weight L(2) was constructed in [17, 18]. It depends on the 
spectral parameter 2, the coupling constant r/ and on the step of the lattice r: 
L(2)-= L(2, 0, r). The vacuum eigenvalues are equal to 

a(2) = [1 + 2r cosh(22 + 2it/)] M, d(2) = [ 1 + 2r cosh(22- 2iq)] M . (A.2) 

Thus the monodromy matrices of the 6 vertex model (4.5), (4.6) and of the LSG 
(A.t) possess the same R matrix (2.8), but different vacuum eigenvalues (4.10) and 
(A.2). 

Let us show that by means of the LSG model we can construct the TOO, for 
which a(2)/dO0 depends on an infinite amount of parameters. Indeed T(2) for the 
inhomogeneous lattice is equal to T(2) = LM(2-- v~, t/, rM)...L1(2-- vl, t/, rl). Here 
the spectral parameter and the step of the lattice are site dependent. For this 
monodromy matrix we have 

a(2) M 1-1 + 2r K cosh(22 + 2i~/- VK) ] (A.3) 
d(2) - 1 )  1 [i--+ 2r K cosh(22- 2#1 - VK) ]" 

The r K and VK, K =  1,..., M are free parameters. We shall achieve our aim if 
M ~ .  

Now let us give the full solution of the problem by means of an algebraic 
scheme independent of the models. We shall construct the quantum operators 
A(/~), B(#), C(#), and D(kt) at fixed a(2) and d(2); First we shall construct the space in 
which these operators act. The basis vectors are 

~vu({2j} ) = B(2N)...B(2t)[0 ) . (A.4) 
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Here N varies from 0 to oo and all the 2j are free. The whole space consists of the 
linear combinations of the basis vectors. We shall define all four operators by 
means of their action in this space. The action of these operators on the basis 
vectors can be calculated by means of (2.9)-(2.16). Operator B(#) acts as a raising 
operator. The action of the operator A(#) is well known [6] 

A(p)B(21)...B(2N)I0 > = A. B(2,)... B(2N)I0> 
N N 

+ ~ A,.B(#) 1-I B(2j)]O>, (1.5) 
n = l  j = l  

j:~ n 

N N 

A = a(#) 1-I f(#, 2j), A. = a(2.)g(20, #) 1-] f(2., 2j), 
j = l  j = l  

j * n  

as well as that of the operator D(#) 

D~IB(2 ~ 1...B(2N)]0 } = A. B(21 )...B(2u)t0> 
N N 

+ 2 /].-B(#) 1~ B()@0>, 
n = l  j = l  

j ~ n  
N 

71= d(#) 1-[ f(2j#), fl. = d(2.)g(#, 2.) I ]  f(2j, 2.). (A.6) 
j = l  j * n  

Operator C(#) acts as a lowering operator 

N N N N 

C(#) I ]  B(2j)I0> = ~, M,, [ [  B(,tj)10> + ~, MK,B(#) [] B(,~j)I0>, (A.7) 
j = l  n = l  j4:n K>n j # K , n  

1 1 

where 
M. = g(#, 2.). a(#). d(2.) I ]  f(2j, 2.)f(#, 2j) + g(X., #)a(2.)d(#) 

j t n  

" 1-[ f(2j, #)f()% 2j), 
j ~ n  

tJ*  '" 1 

+ d(X,)a(2K)g(#,)~,)g()~z, #)f(2K, 2,) l 1~1 f(;tj, 2,)f(2~, ;Q . (1.8) 
t-f,° 

In this way the action of our operators on any vector in the quantum space is 
defined. By means of direct calculations one can show that all equalities containing 
in the relation (2.3) are valid. 

The dual vacuum (01 can be defined as a linear functional in the space 
constructed above. The main properties of this functional are as follows : 

N 

<010>=1, <0 I~B(Z j ) I0>=0 ,  for N ~ I .  
j = l  

Then the second line of (2.16) can be simply proved. Commutation relations (2.10), 
(2.t3), (2.14), and (2.16) permit one to prove (2.21). 

where 
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Appendix B. The Norms at Xp=O 

Notice that in Appendix A we showed that operators A(#), B(#), C(#), O(#) can be 
realized in the case of arbitrary a(2) and d(2). Let 2j be a solution of TE (2.18). We 
shall show that the variables 

• d 1 a(Zg) XK=,  ~ nd~K) (B.1) 

are 2~ independent. They can change freely at fixed 2j. Indeed, let us choose the 
new function ~(2)/d(2), which coincides with old one only in the points 2j: 
a(2,)/d(2,) = gt(2,)/d(2,). The set of 2j satisfy also a new system of TE 

N 

[a(2,)/~/(2,)] 1-I [f(2,,  2j)/f(,~j, 2,)3 = 1, (B.2) 
j = l  
j~n 

but the variables X K are changed. 
Let us use this transformation to prove (5.14) 

112,,...,,~Nllu=0 at X v = 0 ,  p = l  ..... N.  (B.3) 

We construct the new function as follows: 

a(2)/d(2) = a(/lyd(2~),  if 2 j -  S < 2 < 2 + S. (B.4) 

It is constant in some vicinity of each 2j. Since all the 2j are different, let us choose 

4S = rain t2 j -  2~;l. (B.5) 
j * K  

In other regions a(2)/d(2) must be smooth (see Fig. 1). Let us calculate the 
1122, . . . ,2NIl u for the vacuum eigenvalues. As all X~=0 ,  now, we have 

II 21..-2NIl °ow = II 21...2N II °l~lxp = 0- (B.6) 

So to prove (B.3) it is sufficient to show that the scalar product of the eigenfunction 
and its dual 

(0IC(20...C(2N)B(21)...B(2N)I0) = 0  (B.7) 

for the new values ~(2) and d(2). Notice that now not only the 2j are solutions of 
(B.2) but 

2 j ( y ) = 2 j + y ,  - s < y < s  (S.8) 

I ,L 

Fig. I ~'1 ~'2 

old 
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are also solutions of (B.2~ due to the fact that f(2,, 2i) depends only on the 
difference 2 , - 2  i and fi(2)/d(2) are constants in this region. We shall see that the 
scalar product 

N N 

<01 l~ C()'i) 1-I B(2i + y)10> = G(y) (B.9) 
j = l  i=1 

is equal to zero at any 0 < y < S, - S < y < 0. Indeed, the object 

N N 

<01 l-[ C(q) [A(#) + D(#)] [ I  B(21 + y)[O> (B. 10) 
j = l  1=1 

can be calculated in two ways. Either [A(#)+ D(#)] goes to the left or to the right. 
As both states are eigenstates we have two expressions for (B.IO) 

where 
0(#, {2;})G(y), or 0(#, {2j + y}). G(y), (B.11) 

N N 

0(#, {2j}) = a(#) I-I f(#, 2i) + d(#) 1~ f(2i, #), (B. 12) 
i = i  j=~ 

see (2.19). As 0(#, {2i})#0(#, {2j+y}) at y +0  we have G(y)=0 at y #0. As the 
scalar product (B.9) depends on y in a continuous way we have G(0)=0 and 
therefore (B.7), (B.3), and (5.14) is valid. 

Appendix C. Eigenvalue of S a on the Bethe States 

6 vertex model. We discuss the inhomogeneous 
component of the total spin 

The operator of the third 

M 

Z G (c.1) 
K = I  

is important. The pseudovacuum (4.8) and the state ~2 (7.6) are its eigenstates 

$310> =MI0>, S3~2= -MY2. (C.2) 

Any state (A.1) with free 2j is an eigenstate of S 3 

M 

S3 I-[ B(2j)j0> = ( M -  2N)10>. (C.3) 
j = l  

See for example [22]. For completeness we shall give the proof. We use the identity 

[LK(2), a a + a3] = 0, (C.4) 
and locality 

[Lr(2),~r~]----O at K #I. (C.5) 

Let us calculate the commutator 
M 

[T(2), S 3] = ~, LML M_ 1.. "LK+ 1 ILK, 63] LI¢ 1...L1 
K = I  

M 

= - 2 L M ' " [ L K ,  a3 ]  ' . . L I  = - [T (2 ) ,  0"3], (C.6) 
K= I  
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Here 0 .3 is not a spin operator but a 2 x 2 matrix. From (C.6) we have 

[B(2), S 3] = 2B(2). (C.7) 

Combination of this formula and (C.2) gives us (C.3). Let the number of B(2) be 
equal to the number of the sites in the lattice N = M .  Then (C.3) gives 

M 

S 3 ~ B(2~)I0)=-MIO).  (C.8) 
j = l  

Comparison with (C.2) leads to 

M 

1~ B(2j)10> = Z N. O. (C.9) 
j=l 

Here Z N is a c number. 

Appendix D. Construction of the General Version of the 6 Vertex Model 

The inhomogeneous 6 vertex model has the following weight matrix: 

L~K(  2~ - -  V K) = COS ~/-sinh(2~ - v r )  - i sin q-cosh(2~ - v K)a3  cr~ 

- i s i n Z q ( a ; a ~  + a +  a[ ~ ) .  (D.1) 

This statistical weight corresponds to the lattice vertex with the same index (see 
Fig. 2). The matrix indices of the £h space correspond to spins on the horizontal 
edges (a~, b~), while the matrix indices of the K th space correspond to spins on the 

tl K 
/ 

aa t b~ (L~K) 
QKbK 
a~ b~ / 

Fig. 2 b K 

vertical edges aK, b K. Before constructing the model itself we shall mention some 
properties of the L matrix. Its commutation relations are given by (2.3) 

R~p(2~, 2~)L~ (2~- vK)LpK(2 ~ -  vK) = L~K(2t~-- vK)L~K(2 ~ -  vK)R~t~(2~, 2~), (D.2) 

with R matrix (2.8). One can change the position of the vertical and horizontal 
spaces 

R K t ( v  l, v K ) L ~ r ( 2  ~ - -  v r ) L ~ ( 2  ~ - -  vl) = L~z(2  ~ - -  v t )L~K(2  ~ - -  vr)RKI(VtV~: ) . (D.3) 

If v K -  2~ = iq, the L matrix is especially simple 

L ~ r (  v K - 2~ = itl) = - i sin 2t l  l I  ~r  . (D.4) 

Here H-is the permutation matrix 

r t  ~ (  ~ K ~,~) = ~ K . ~ ~ . (D.5) 
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Here ~ and ~ are two-component c-number vectors. The index shows the space in 
which this vector is situated. Then the L matrix (D.1) has two simple eigenvectors 

L~K(2 ~ -  v~) (T~TK) = sinh(2~- v K - it/) ( ~ K )  
(D.6) 

L~K(2 , -  vr) ($~lr) = sinh(2~ - v K - i~) (I~IK) • 

Here we use the notation (4.9). The last property of L is 

a r G  ] = 0 .  (D.7) 

We shall construct the inhomogeneous 6 vertex model following [23]. Let us 
consider an inhomogeneous square lattice with N lines and N columns (see Fig. 3). 

Fig. 3 

Each 2~ corresponds to a horizontal line, and each v K corresponds to a vertical 
line. The statistical weight (D.1) is associated to the intersection of the eth and K th 
lines• The summation is carried out over the spins on the interior edges• This 
summation is reduced to the matrix multiplication of the L operators in the 
corresponding spaces. The spins on the boundary of the lattice are fixed. The 
boundary consists of four lines. We denote spins on each of these lines by ~(vj), 
F(2~), d(vj), l(Z~) correspondingly (see Fig. 4). 

Fig. 4 

~'(V 3 ) . . . .  ~'(VI ) 

ta l  r¢x ) 

3 ) . . .  ff(v I ) 

The partition function is equal to: 

• L~K(2 ~ -  VK) F(2~) d(vj) . (D.8) 
~¢=1 K = I  

In this product L , K  stands to the left of Lpl if Nc~ + K > N f l  + I. If c¢ +fl and K +l  
these L commute. If e =/~ or K = 1 they are multiplied as matrices in this space. We 
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shall use the transfer matrix method to rearrange the partition function. Let us 
collect the L matrixes along the horizontal lines 

/A(2~) B(2~) / 
T~(2~)= H L~K(2,--VK)= • (D.9) 

~=~ \C(2,) D(2~)J 

Here T~ is represented as an explicit 2 x 2 matrix in c~ th space. This T coincides 
exactly with the monodromy matrix (7.2), (7.1). In terms of T~ the partition 
function is equal to 

{dO1 } I~  {fOe } 
Z N = a(vi) (~2~)T~().,)~(2,,)) d(vj) . (D. 10) 

Ct=I 

Notice that ~2~)T~(2~)~(2~) is a scalar in the ~ space. To have another representation 
for Z N let us collect the L matrixes along the vertical lines 

Y (A(v) B(vi) t 
"Cj('Vj) = H L~j('~o~ - Vd) = (D.11) 

~=1 \C(vs) D(vj)]" 

Here z~ is represented as an explicit 2 x 2 matrix in j space. The commutat ion 
relations of ~j are 

RKI(V,, vx)"c~(vr)z,(v,) = Zt(Vt)ZK(VIORKI(Vt, Vr), (D.12) 

with the R matrix (2.8), due to (D.3). In terms of z(vj) the partition function is equal 
to: 

(D.13) 

The following boundary conditions are of special interest for us: 

(D.14) 
F(2~) = is,  d(VK) = TK" 

In this case 
~ N N 

Z u =  (~=[I ~.j)(fI  1 1"~) {SI  1 ~L~r (Z~- - vK)} ( jH  Tj)(~=I~I ,L~). (D.15) 

Due to (D.IO) we have 

ZN({2~}, {vj}) = OB(2N)...B(Ra)10). (D.t6) 

Here we use T~T~(A)$==B(A) and notations (4.8), (7.6). Notice that (D.16) and (7.7) 
coincide, as the number of the sites in the lattice coincides with the number of B(2). 
One can show that 

zN({,~}, {vs})= <01c(zl)...c(zN)m. (D.17) 
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Indeed, let us introduce the opera tor  

N N 
v =  17I (,0 H 4 .  e=l K=I 

This opera tor  has two properties:  

[ U' I~Ic~=lK=l ~I L°~K(]Ccz--VK)I=O' 
Here we use (D.7). So 

V. E. Korepin 

(D,18) 

U z = 1. (D.19) 

z~=(F[,!.?(I]D v L~,,,: u ) ~,) 

n (n+,) (D20) 

which leads to (D.17). To manifesl the vj dependence of  Z u, let us use repre- 
sentation (D.13). By means of  Sjvj(v)~j = C(v) we obtain 

zN({,~}, {b}) = (0tc(vN)...c(v,)n. (D.21) 

This means that Z u is symmetric in all vj due to (2.10). 
Let us show at last that  if v 1 - 2 1  = it/, then Z N is reduced to Z N_ 1 with 21 and 

v 1 removed. We have by means of  (D.4) 

L 1 l(vl - .a. 1 = it/) = - i-sin 2t/. H 11. (D.22) 

Notice that  this L is the one farthest to the right in the product  (D.15). Let us 
calculate 

The vector on the right hand  side is the eigenstate of  all the Ll j (2  , - v ) ,  j = 2, .., N,  
see (D.6). It is also an eigenstate of  all L,1(2 ~ -  vl), ~ = 2 . . . . .  N for the same reason. 
After application of  all L i j  and L~I to the right hand  side of  (D.23) we have 

{A } ZN({2~}, {vfl)l,.~ _ < = in = - i sin 2t/ sinh(21 - v ~ -  it/) 

( " 1 N  
m 

( ~ = 2 )  

Appendix E. Properties of the Scalar Products 

In Sect. 6 the properties of  the coefficients in the formula for the scalar product  
(6.7) are given. Here we shall give some corollaries. Let {2 Ac} and {5~ °B} be 
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nonempty sets as in (9.2), (9.3). Let us study the limit 

AC )De 21 (E.1) 

Then from (6.19) and (6.16) we have 

~N ~{2¢ } {2~}] = ( -  isin2t/) sinh(2~- 21 - 2it/) sinh(21 - 2A-- 2i~/) 

/ {2c* ~} {2J~* 1 }) (E.2) 

Similarly if {2 AB} :t=0 and {2 pc} #:0 we shall use the following enumeration: 

The interesting case is 

oc ~aB ~ (E.4) 

The formulas (6.19) and (6.16) lead to 
N 

rcN~{2)4 }/{2c, {2o}] : ( - { 2 ~ } t  isin2tl)(jH_2sinh(2,_AA_2itl)sinh(2~?_)ol_2# @ 
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