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Summary. This paper  examines the dynamic behavior of optimal consumption and 
investment policies in the aggregate stochastic growth model when utility depends 
on both consumption and the stock level. Such models arise in the study of 
renewable resources, monetary growth, and growth with public capital. The paper 
shows that there is a global convergence of optimal policies to a unique stationary 
distribution if (a) there is sufficient complementari ty in the model, or (b) if there is 
sufficient randomness in production. Two examples illustrate the possibility of 
multiple stationary distributions. In one, multiple stochastic steady states exist for 
a generic class of production and utility functions. 

1. Introduction and preliminaries 

The optimal growth model when utility depends on both consumption and the stock 
level has proved useful for analyzing a variety of important  economic problems 
related to renewable resources, monetary growth, and growth with public capital. 
This paper investigates the long run behavior of optimal consumption and 
investment processes for such problems when production is stochastic. The results 
extend Nyarko  and Olson 1-1991] and provide conditions on technology and 
preferences that are sufficient to guarantee the global convergence of optimal 
consumption and investment to a unique stationary distribution. This question is 
non-trivial since Kurz 1-1968] has shown that multiple optimal steady states can 
exist when utility depends on both consumption and the stock. 1 

* We thank Professors Jess Benhabib and R. Robert Russell for helpful discussions and 2 referees for 
constructive suggestions. 
i Majumdar 1-1982] and Majumdar and Mitra 1-1991] consider a deterministic version of the problem, 
while Brock and Mirman [1972] and Mirman and Zileha [-1975, 1977] examine the stochastic case where 
utility depends solely on consumption. Mendelssohn and Sobel [1980] examine the problem of 
convergence in a model similar to ours, hut their results follow from assumptions imposed directly on 
the Markov transition kernel that governs the evolution of optimal resource stocks. In somewhat related 
work, Mirman and Spulber [1984] examine a renewable resource model that assumes uniqueness of the 
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We show that  there exists a unique s ta t ionary distr ibution when the utility 
function exhibits (i) complementa r i ty  between consumpt ion ,  investment,  and 
output ,  and (ii) a form of balanced growth complementar i ty .  Examples  are given to 
illustrate the existence of mult iple stochastic steady states when the sufficient 
condit ions are violated. We also show that  a model  with multiple opt imal  s ta t ionary  
distr ibutions can be t ransformed into a globally convergent  model  simply by 
in t roducing sufficient randomness  into product ion .  This suggests that  highly 
variable economies  may  be less subject to dependence on initial condit ions than  
economies  with small product ivi ty  shocks. Proofs are relegated to the end of the 
paper.  

The model  used in this paper  is essentially that  developed in N y a r k o  and Olson 
[1991-1. A brief descript ion is given here, a n d  the reader is referred to that  paper  
for more  details. The  resource stock, consumpt ion ,  and investment  are denoted by 
Yt, ct, and x~, respectively, where xt = Y t -  G. G r o w t h  in the resource stock is 
governed by the produc t ion  function, Yt+ 1 =f(xt ,  rt+ ~), where r, is an i.i.d, s tochastic 
process with (common)  probabi l i ty  measure  7. The utility of an agent  depends on 
both  the resource stock and consumpt ion ,  and is denoted by U(c~,y~). Given an 
initial stock Y0 > 0, the agent  maximizes  the discounted sum of utility over  time, 
where 6e(0, 1) is the discount  factor. The  product ion  and utility functions are 
assumed to satisfy the following restrictions th roughou t  the paper.  

T.1. Fo r  all r, f (x ,  r) is strictly increasing in x. 
T.2. f is concave in x. 
T.3. Fo r  all r, f (0 ,  r) = 0 while f (x ,  r) > 0 if x > 0. 
T.4. The first and second derivatives o f f (x ,  r) in x exist and are cont inuous  in (x, r). 
T.5. There  exists a y such that  f (x ,  r) < x a.s. for all x > )7. 
T.6. I f f  is stochastic (i.e., the distr ibution of r is nondegenerate)  then there exists 

no x > 0 and y >__ 0 such that  ~({rl f (x ,  r) = y}) = 1. 
T.7. yoe(0,fi] .  
U.1. U(c,y) is nondecreasing in y. 
U.2. U(c, y) is concave in (c, y). 
U.3. U(c, y) is twice cont inuously  differentiable. 
U.4. U ~ +  U~y<O. 
U.5. Ucy---0. 
U.6. U(c, y) is strictly increasing in y a n d f ( x ,  r) is strictly concave in x for each r, or 
U.6'. U(c, y) is strictly concave. 

S tandard  dynamic  p r o g r a m m i n g  arguments  imply the existence of s ta t ionary  
opt imal  consumpt ion  and investment  policy functions c t = C*(yt) and X*(y 0 = 
y~-  C*(y~). Fur thermore ,  the following functional equat ion  holds: 

V(y) = Max  U(c, y) + 6~ V( f (y  -- c, r))7(dr). 
O<_c<y 

limiting distribution. In contrast, the analysis in this paper emphasizes assumptions on primitives of the 
model. For a further discussion of the related literature the reader is referred to Nyarko and Olson [1991]. 

The global convergence of optimal policies derived in this paper contrasts with the cyclic or chaotic 
behavior studied in Benhabib and Nishimura 1-1985], Majumdar and Mitra 1-1991], and Nishimura and 
Yano [ 1991 ]. These papers all utilize a deterministic framework in which our condition U.4 is violated. 
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Given the assumptions above, it is well known that V(y) is nondecreasing, concave, 2 
and that the optimal policy functions are uniquely defined and continuous in y. 
Under U.4 and U.5 the optimal investment and consumption policy functions are 
strictly increasing and nondecreasing, respectively (Nyarko and Olson [1991, 
Theorems 2.3 and 2.4]). 

Let y*, c* and x* denote the optimal output, consumption, and investment, and 
let U c and Uy denote derivatives of U with respect to c and y. It is assumed that the 
optimal consumption and investment policies are interior so that the following 
Euler equation holds: 3 

Uc(c*,y*)=6E{I-U ~c* ~,* 1)+ U ~c* ~* ~lr'r r ~ L C ~, t + l ' J t +  y ' ,  t + l ' J t + l l A d ' ,  t ~  t + l I ) "  

It is important  to note that utility is not necessarily monotone in c as is typical 
in renewable resource models where higher consumption levels require more effort. 
Even so, optimal consumption always occurs in a region of U that is increasing in 
c, i.e., optimal consumption is less than or equal to that which would be chosen by 
a myopic decision-maker. 

2. Uniqueness of the limiting distribution under complementarity conditions 

The convergence of optimal processes to a stationary distribution is characterized 
in Nyarko  and Olson [1991, Theorem 2.5]; however, questions about  the number  
of stationary distributions and whether optimal processes converge locally or 
globally are not addressed in that paper. In this section we focus on assumptions 
on the utility function that are sufficient to imply the global convergence of optimal 
processes to a unique stationary distribution from all inital resource stocks. Assume: 

U.7. There exists a j7 > 0 such that for all y >_ ~, Uc(c, y) = 0 implies U r > 0, where 
O < c < y .  

U.8. For all y > 0, 0 < c < y and 2 > 1 such that Uc(c, y) > 0 and U~(2c, 2y) > 0, 

u # ,  y) > w~(,~c, ~y) 
U~(c, y) - V~(2c, 2y)" 

T.8. f ( x ,  r) is strictly concave in x. 

Assumption U.7 is needed to rule out the possibility of U attaining a maximum 
at c' and, at the same time, being independent of y at c'. U.8 can be interpreted as 
a complementari ty condition on the decision maker 's  preferences as consumption 
and output increase along a balanced growth path between c and y. - Uy/U, is the 
slope of indifference curves of U. Hence, U.8 implies that indifference curves for U 
have decreasing slopes as the stock level and consumption increase along a ray 
through the origin in (y, c) space. Assumption U.8 is satisfied if utility is stock 

2 If U(c, y) is strictly concave, then this result can be strengthened to show that V(y) is also strictly 
concave. 
a This is true if the usual Inada conditions are imposed on U. It also imposes the implicit requirement 
that U is not everywhere decreasing in c. 
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independent  so that  Uy---0 for all (c, y). In  addition, it does not  rule out  the 
possibility tha t  Uc = 0 for some (c, y).4 One class of  utility functions that  satisfies all 
of, our  assumpt ions  including U,7 and U.8 is the class U(c, y) --- c~y ~, where 0 < ~ < 1, 
0 < fl < 1, and  �9 +/~ < 1. All our  assumpt ions  are also satisfied if utility is 
independent  of  the stock. 

The following definitions are used in characterizing the convergence of  
opt imal  processes. Let f ,,(x) = min,  f (x, r), f ~(x) = max,  f (x, r), X~(x) = X*( f ,,(x) ), 
XM(X ) = X * ( f M ( x ) )  , Z m = rain {x > OIS,~(x) = x}, z~ = max  {x > OIXM(x) = X}, X,, = 
max {x > 0[Xm(x) = x}, x M = min  {x > OIXM(X) = x}. In  addition, let Ym = fm(xm) 
and  YM = f~(x~}. A unique s ta t ionary  distr ibution exists if xm < x~a. If x,, > XM, 
there are at  least two s ta t ionary  distr ibutions and  there m a y  exist m a n y  s ta t ionary 
dis tr ibut ions in the interval  (x, , ,x~)  (see N y a r k o  and  Olson [1991] for a further 
discussion). 

T o  avoid t roublesome anomalies  we assume: 

T.9. There  exists a0  > 0 such that  X,~(x) > x for all xe(0,  0). 

T.9 prevents  the opt imal  stock process f rom converging over  t ime to zero even if 
the worst  state occurs  a t  each date. Sufficient condit ions on the primitives of the 
model  for T.9 are: 

T.9(a). limx-~o f~(x, r ) =  ~ for all r ( Inada  condi t ion on f ) .  
T.9(b). Either r is d rawn from a finite set, or  f (x ,  r) is ordered in r and the m i n i m u m  

shock has positive probabil i ty.  

Define r t = ( r ,  . . . . .  r~) and  for each t and r '  define Xt(xo,r ')= 
X*( f ( . .  X*( f (X*( f (xo ,  q)) ,  r~)) . . . . .  r,)). Let Fo be any distr ibution function for xo. 
F t is defined to be the dis tr ibut ion function for x, generated by  the transi t ion 
equat ion Xt(xo, r'). We now state the main  result of  this section. 

Theorem !.  I fU.7-U.8 and T.8- T.9 hold in addition to the assumptions of Section 1, 
then Ft(x) converges uniformly in x to a unique stationary distribution, F~(x), 
independently of the initial stock Yo- In addition, the support of F~o is a subset of 
[x,,,x~,]. 

I t  is known  that  mult iple  s teady states m a y  exist if the p roduc t ion  function is 
not  concave (see M a j u m d a r  et al. [1989]). The  two examples  below show that  
mult iple opt imal  s teady states m a y  exist if all our  assumpt ions  (including concavi ty  
of  product ion)  are satisfied except U.7 and U.8. 

Example 1 - Violation of U.7 leads to multiple optimal stationary distributions 

Assume the utility function is independent  of y, strictly concave in c, and let U(c) 
reach a m a x i m u m  at c' with Ur > 0 for c < c' and  Uc < 0 for c > c'. Fur ther ,  let O(x) be  
any function that  satisfies assumpt ions  T A - T . 5  and T.9(a) such that  l i m ~  ~ g'(x) = 0 

* 4.8 hoMs for significant classes of utility functions including the class of all homothetic utility 
functions. A larger class is the class of all utility functions homothetie to a point in the region 
O = ((c, y)egl21c <_ y, c < 0}. This is a subset of the class of quasihomothetic or affine-hornothetic reward 
functions (see Blackorby, Boyce, and Russell [1978]). 
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and for some x' > c', 9(x') > x' + c'. Fix any k > Max {x'/o(x' - c'), 1}. Let f (x,r) be 
any stochastic production function obeying T. 1-T.9(a, b) with fr,(X) = min, f ( x ,  r) = 
ko(x ). This defines a large class of production functions. For  every production 
function in this class, Nyarko  and Olson 1-1990] prove that there are multiple 
optimal stationary distributions, provided the discount rate is sufficiently small. 5 

Example 2 - Violation of  U.8 leads to multiple optimal steady states 

Define U(c,y)= 1 6 y -  1 / 2 ( c -  24) 2. Then Uc = 2 4 -  c, Uy = 16, Uy r = Ucr = 0, and 
U c c = - 1 .  U is nondecreasing in y and concave, U.1-U.7 are satisfied, but 
Ur(2c, 2y)/U,(2c, 2y)=  16 / (24-  2c) so U.8 is violated. Assume that f ( x ) =  10x 1/2. 
One can check that when 5 = 0.10, the Euler equation is satisfied when (Yt, xt, ct) are 
any one of the three stationary triples (y, x, c ) =  (10.4695, 1.0961, 9.3734), (29.2739, 
8.5696, 20.7043), or (65.2567, 42.5843, 22.6723). Maintaining any of these three 
triples as a steady state is feasible and the transversality condition holds, so each is 
an optimal steady state. 6 

3. Sufficient variability in production implies the existence 
of a unique stationary distribution 

In this section we show that even if the sufficient conditions of Section 2 fail, a model 
with a unique stationary distribution can be obtained through a sufficient 
"stretching out" of the randomness in the production function. 7 

Let {fk(x, r)}~o= o be a collection production functions. Assume: 

T.10. For  each k, fk(x,  r) satisfies assumptions T.1-T.5 and T.9. 
T. 11. For  each x > 0, limk-~ ~o Max, fk(x ,  r) = oo. 
T.12. For  each x > 0, limk-~oo ESfk(x,r)/Ox = o0. 
T.13. For  each x > 0 and k > O, f k ( x )  <_ fOm(X ). 

Assumption T. 11 implies that the production function becomes arbitrarily large 
in the best state while T. 13 ensures that in the worst state the production function 
is uniformly bounded above. This formalizes the notion of "stretching out" the 
production function. Assumption T.12 is an additional assumption that requires 
that the expected marginal product becomes arbitrarily large. To further illustrate 
the need for T. 13 consider production functions defined by fk(x,  r) = k f (x ,  r) where 
f ( x ,  r) obeys T.I -T.5 .  This class of production functions involves a simple change 
of units so the limiting behavior of optimal policies should not vary with k. Such 
classes are ruled out by T.13. 

Theorem 2. Let { fk(x, r)}k~__ 0 be a collection production functions satisfying T.I O- T.13. 
Suppose that the utility function obeys all assumptions of  section I (but not necessarily 

s This derivation is available from the authors on request. 
6 The transversality condition is lim,~ ~o 3tUc(c *, y*)x* = 0. In Example 2, the transversality condition is 
satisfied since Uc(c* , y*) and x* are both constant and positive at the three steady states. 
7 This idea is similar to the notion of "very stochastic" employed in Majumdar, Mitra, and Nyarko 
[1989]. 
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the assumptions of section 2). Then for all k sufficiently large the model with production 
function fk(x, r) has a unique non-trivial stationary distribution and the conclusions of 
Theorem 1 hold. 

Theorem 2 implies that the convergence properties of models with monotone 
transition functions depend substantially on the degree of randomness in the model. 
It shows that enough variability in production forces the long run behavior of 
optimal processes to be independent of initial conditions. This suggests that the 
existence of multiple stationary distributions depends on whether the economy is 
subject to technology shocks that have large or small variation. The resolution of 
thic question is an issue for further theoretical and empirical investigation. 

4. Proofs 

The proofs of both theorems are accomplished through a series of subsidiary 
lemmas. Proofs of these lemmas are given in Nyarko and Olson [1990] and can be 
obtained from the authors on request. 

Proof of Theorem 1. Assume x,, > x M. Define c m = C*(ym) and cM = C*(yu). From 
the definition of X,, and the fact that Xm is a fixed point of Xm, it follows that 
X*(ym) = X * ( f  ~(Xm)) = X,.(Xm) = Xm. Hence, Xm and Cm are optimal investment and 
consumption from Ym" Similarly, xM and cM are optimal investment and consump- 
tion from YM. 

Lemma 1.1. l f  x~ > x M, then for all r, YM > f(XM, r), Ym <<- f(Xm, r), cu > C*(f(xM, r)), 
cm < C*(f(Xm, r)), and Ym > YM and c,, > cM. 

Lemma 1.2. Under U.7, Uc(cm, Ym) > 0 and Uc(c~t, Y~t) > O. 

Lemma 1.3. I f  x,, > xM and U.7 holds, then 

U,(c~,y~) U~(c~,ym) < 
Uc(c~,y~,) Uc(c~,ym)" 

Lemma 1.4. Xm > x u  implies c~/ym < cM/YM. 

Lemma 1.5. l f  xm > xu  and U.8 holds, then 

Ur(CM, YM) >_ Ur(c,,, Y,,) 

Ur Y~t) Uc(cm, Ym)" 

The proof of Theorem 1 follows from the fact that Lemmas 1.3 and 1.5 contradict 
each other. Thus, it cannot be that x~ > xu. //  

Proof of Theorem 2. 

Lemma 2.1. Fix any production function f (x, r) that satisfies T.10. I f  E f '(xM, r) > 1/6 
then U(c,y) attains its global maximum at a unique ~ > 0  and C*(fm(XU))= 
C*( f  M(x~t) ) = 6. 

Lemma 2.2. Let {i f (x ,  r)}k~ o be a class of production functions obeyino T.10-T.13. 
Suppose further that for all k, the model with the production function i f (x ,  r) has more 
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than one non-trivial stationary distribution. Then, a) E3fk(x k, r)/OX > 1/6 for all k 
sufficiently large, where x k is defined in a similar manner as Xu for the model with 
production function fk(x, r); and b) l i m ~  ~ x~  = 0. 

N ow let {fk(x, r)}~= o be a class of production functions satisfying the hypotheses 
of Lemma 2.2. From Lemmas 2.1, 2.2(a) and T.13 it follows that for k sufficiently 

- _  * k k k k ~ 0 k <_ f ,,,(XM) k ~ and using large, 0 < c -  C ( f  ,,(XM)) _ f ,,,(XM). Taking limits as 
Lemma 2.2(b) then implies that 0 < ~ _ f ~  = 0, which is a contradiction. / /  
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