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Abstract. We exhibit a class of quasi-periodic unbounded potential in the v- 
dimensional discrete SchrSdinger equation, for which the spectrum is only 
pure point, with exponentially localized states and a dense set of eigenvalues in 
IK 

Introduction 

In a recent paper Fishman et al. [7] gave a solution of the SchrSdinger equation 

T(n + i ) + 'P(n-- 1) + ,~. tan rc(x -- nco) T(n) = E 7.'(n), (1) 

where co is an irrational number, x~lR and 2 >0. Actually, provided co satisfies a 
diophantine condition, they gave an explicit expression of the eigenfunctions 
which turns out to decrease exponentially, and an implicit expression for the 
corresponding eigenvalues, leading to a dense set in the spectrum. 

This result was interesting both because the solution was complete and also 
because there is no continuous part in the spectrum. Examples of discrete non-self- 
adjoint operators with only pure point spectrum were already known by Sarnak 
[113. However in the self-adjoint case, with a bounded quasi-periodic potential we 
expect in general that aside from the pure point part there is a singular continuous 
spectrum. This seems to be the case for the almost Mathieu equation: 

T(n + 1) + T ( n -  1) + 22 cos 2 ~ ( x -  nco)T(n) = E T(n), (2) 

where it has been proved by Bellissard et at. [2] that if 2 is big enough, and co 
satisfies a diophantine condition 

Vn, m e Z ,  n ~ = O ,  Inco+mI~ 7 inl~, o'> 1, (3) 

* On leave of absence from the "Accademia dei LinceF' Roma, Italy 
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most of the spectrum is pure point. However if x is chosen very close to the set 
{rico + re;n, ms 2g}, namely if there is an infinite sequence %, p, of integers such that 

1 
Ix-q.co-p.l< - -  n=  1,2, (4) 

a tunneling effect may occur which may give extended states. 
The same phenomena is observed if co is a Liouville number such that an 

infinite sequence exists for which 

1 
[q,co- Pn[ < [nlq~, n = 1, 2, ..., (5) 

In this situation Gordon [8] and Avron and Simon [1] proved that there is no 
eigenvalue, all the states are extended, and the spectrum is singular continuous. 

It is therefore interesting to find a class of potentials for which only pure point 
spectrum arises. 

The existence of such potentials was recently proved via the inverse spectral 
method and solving the small divisor problem by Craig [5]. 

In a sense the inverse method allows an easier control of resonances at large 
distance, but the price to pay is that the potential itself is not explicitly known, 
even though the method is constructive. In the same way P6schel [9] using the 
Craig method is able to construct a large class of limit periodic potentials with 
pure point spectrum, and dense family of eigenvalues in a set which can be 
essentially a Cantor set of zero Lebesgue measure, or a full interval. 

In our work we consider the direct problem. We construct a class ~ of quasi- 
periodic functions having singularities, containing the Fishman et al. and the 
Sarnak examples for sufficiently large coupling, for which the Schr/Sdinger 
operator" 

e ~ 7~(n -e )+V(x -con)7 ; (n )=E~(n) ,  ne~g ~ (6) 
lel=l 

has only pure point spectrum at small e with exponentially localized states, and a 
dense set of eigenvalues in the real line. In Eq. (6), V is a function in the class 
and is periodic of period 1, x is a real number, and if n=(na, ...,%)~2~ ~, then 

Inl= ~ In~l, 
, = i (7) 

v 

con  .~ 2 CO ~ " nt~ " 

Here co is a v-dimensional vector obeying a diophantine condition: 

7 37>0 ,  a > v  Jcon+mj> l~(g Vine;g, ns;g ~. (8) 

Of course the diophantine condition is essential. Otherwise we expect a singular 
spectrum to occur [1, 7]. 

As in [2] we use essentially techniques based on the Kolmogoroff, Arnold 
Moser method, see also [6, 10]. 
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It has also been used by Craig; however we can perform estimates for the direct 
problem because of the properties of the potentials in the class N. 

Essentially Ve~ has the property that 

r g ( x -  con)- V ( x -  com)l- 1 ~ K i n -  ml ~ . (9) 

This diophantine estimate is exactly the condition needed in a perturbation theory 
to avoid a tunneling effect at large distance. 

The paper is organized as follows. In the first section we describe the class 
and its properties. In the second one, we introduce the technical machinery, 
namely an algebra of holomorphic kernels. A wider algebra has already been used 
by Craig [5], but these algebras occur naturally in almost periodic Schr6dinger 
operators as pointed out by Bellissard and Testard [3]. The third section is 
devoted to the precise exposition of the results. The last section concerns the proof 
of the main theorem. 

I The Class 

If R >0, ~'~R denotes the set of period 1 holomorphic bounded functions on 

~R = {zE (17, I J ~ z [  < R} ,  

equiped with the sup-norm 

(I.1) 

Then ~a  is the set of period-one meromorphic functions d on ~R such that there is 
a constant C > 0 with 

Jd(z)-d(z-a)l>C[la[l,  VaelK V z e ~  R (I.3) 

with the notation: 

aEIR, ]Jail = infla+m[.  (I.4) 
m~2~ 

R > 0  
Then IdlR is defined as the biggest possible value of C in (I.3). ~ is then 

Examples of elements of ~ are the following: 

Example i (Sarnak [11]). 

Then 

d 1 (z) = exp 2iaz. 

[dl[R ~4exp(--  2ztR). 

Example 2 (Fishman et al. [7]). 

d2(z ) = tan~zz, 

with 

[d21R > 2(cosh 2~R)- 1. 

0.5) 

(I.6) 

IlfJlR : sup tf(z)i • (I.2) 
ze~R 
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The set ~R is not a linear space, however, we get immediately: 

Lemma 1.1. I f  d c ~  R then 2 d ~  R, V2~II~, 2:t:0 and 

I,tdlR = 1211dlR. (1.7) 

On the other hand ~ is stable under some perturbations:  

Lemma 1.2. Let d be in ~R and g be in ffgR" I f  R > 0 > 0 is such that 

IlgllR <eldlR, (I.8) 

then d + g ~ R _  e and 

lid + glR-e-]dlR-el  <=O-tl[gllR • (I.9) 

Proof  By (I.8), the function 

cp(z) = d(z) - d(z - a) + g(z) - g ( z -  a) (I. 10) 

never vanishes. For  

Ig(z) -g(z-a) l  < 
sup ~gz (z) , (I.1 1) 

Ilall = z ~  

using the Cauchy formula, if ze @s-e  we get 

~zz (z) < ! 2i~1 (z'-g(Z')z) 2 dz',  (I.12) 

where ? is any path contained in D R and enclosing z. Thus:  

~(z)  < I~P 
= 2re dist(z,7) 2 ]]g][e" (I.13) 

Since zc D R_ ~o, we get dist(z, 7) > 0 and choosing 7 as the circle of radius ~ around z 
we get : 

ddgz R-~ N -01 IlgllR • (I.14) 

Thus, if ]]g]lR<ld]RO, (p(z) never vanishes. On the other hand 

[ . ,- [ , :p(z)[ I d ( z ) - d ( z - a ) l  dg 
l n I  - -  ~-~ d z  ' [z~R_~ Ilall inf < R-o (I.lS) ~ - ~  Ilall 

which gives (1.9) 
If f is holomorphic in some domain of (12 we note:  

f*(z )  =37(2). (I.16) 

Lemma 1.3. Let f be holomorphic on D o. We assume f = f *  and 

[f(z)-f lz ')] > C l z -  z'[, Vz, z' ~ ~, (1.17) 

where C > 0 .  Then if d 6 ~  R, d=d* ,  there is R e > 0  such that f odc~Ro  and 

If°diRe > CldIRQ. (1.18) 
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Proof Since Imd(z)~0 as Imz-~0, there is R e > 0  such that if I Imzl<R o then 
[Imd(z)f < ~. Therefore if ze @RQ, fod(z) is well defined and meromorphic. 

Now:  
[ fod ( z ) - f od ( z -  a)[ ~ C[d(z)- d ( z -  a)[ > CId[R~Tlal[. (I.19) 

Example 3. T a k i n g f ( z ) = z + i z  3 and d 2 as in Example 2, we get'  

f od(z) = tannz + ½tan ~ ~rz 

and 

IfodlR>0 for R small enough. 

Lemma 1.4. I f  de~a,  d=d*, there is a unique x~[-0, 1[ such that the real poles of d 
are : {x + n, ne 2g}. Moreover d is strictly monotonic in each interval [x + n, x + n + 1 I- 
and the set of values of d(z), zelR is the real line IK 

Proof. If d had no pole on IK then its restriction on IR would be ~1. Since 

Id(x)- d ( x -  a)l > [dl R Ii all, Va~ IK the first derivative d_ d dz on IR would be strictly 

monotonic. But this is impossible because d has period 1. Thus d has real poles. 
Since d is meromorphic, there is only a finite number of them in each interval of 

length 1. Let 0 < x  1 < x  2 __< ... < x ~ <  1 be the poles in [0, 1[-. We claim that N =  1. 
For  d is certainly strictly monotonic in each interval ]x~,x~+~[ (with the 

convention x N + ~ = x ~ + l  ). Then, for a given seN, there are y~, Y2 . . . .  ,Y~; 
Yi e ]Xi, Xi+ 1 [ such that d(yl) = s and clearly if N > 1, IlYi- Yl + 1 [I > 0 for some i. This 
is contradictory with (I.3). 

II. The Algebra of Holomorphic Kernels 

For r>0 ,  R >0  and v~N, we denote by 9/R .... (or ~[.a,,. if no confusion arises) the 
set of kernels m=(m(z ,n) )ne~  ~, Ze~R, where for each n~g  v, the map z~m(z ,n )  
belongs to 24fR, and 

IImHR.r= sup ~]m(z,k)je d~l (ILl) 
zeNR k~ 

is finite. Then 9,IR,~ is a Banach space. 
Let now co be a v-dimensional vector 

co = (col . . . . .  co~) ~ 1a~-  

we denote by co-n the inner product 

(II.2) 

~, co, G, and 
# = l  

For  n=(n 1 ..... G)eZ*', 

In[= ~ IG]. 
# = 1  

The vector co is rational if there is n # 0 in 7/~ such that co. ne?Z. Otherwise it is 
irrational. In the later case the set of points {co-n + m; nz 7Z v, mz 7Z} is dense in IW. 

There is a set of full-Lebesgue measure of vectors in IR v for which there are 
7>0,  o->v 

(II.3) IIco'nll _>- inl~. 
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In this case co is called diophantine. On the other  hand, co is called a Liouville 
vector, if it is irrational and if there is an infinite set (G)k>__o in 2g ~ for which 

1 
lice'nil < [nkj k • (II.4) 

Giving ceEIW, we define in 9.1R, ~ an algebraic stucture by: 

(m 1 • m2) (z, n)= ~ ml(z, l )m2(z-  col, n -  I). (II.5) 

A simple calculation shows that 

lira 1 -m~ IIG, r < Ilmlll~, , • Ilm211~, ~ . (11.6) 

An involution is given by 

m*(z, n) = m ( 2 -  con, - n). (II.7) 

If we define a new norm by 

IlmllR,,  = M a x ( l l m l l ~ , r ,  I lm*] l~ ,r) ,  ( II .8)  

then 9IR, ~ becomes a Banach , -algebra denoted by 91~,~. 
Of course ~I~,, increases when R and r decreases. 
Examples of elements of 9.1~,,. are given as follows: 
(i) if 9e  Jt~R, then g can be considered as an element of  W~,,. by putt ing:  

g(z, n) -- g(z)~5~, o- (11.9) 

Such a kernel is called diagonal. 
(ii) If e e g  ~, u~ is the kernel 

u¢(z,  n) = 6. ,  ~. (II. 10) 
One can easily see that 

(a) u o = 11 is an identify, 

(b)  U * % = U e U *  =11 , Ve~7Z', (II.11) 

(C) Ue lle2=Uel+e2, gepe2  eT/~, 

(iii) the Laplace kernel is then given by 

A =  ~ u~. (II.12) 
e;tel=l 

A canonical set of representations of 9.I~,r in 12(~ v) is given by 

H~(m) ~(n) = ~ m ( z -  con, l -  n) ~(l),  (II. 13) 
lEiO, 

where ~r-lel2(TZv), Z e ~  R and me  9.I~,,. 
We can check immediately:  

(i) HH~(m)[[ <l[ml{R,~, VZ~@R, 

(ii) H~(ml - m=) = H~(ml) H=(m2), (II. 14) 

(iii) H~(m*) = H~(m)*. 
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In particular, any diagonal element of 9.1~, ~ gives rise to a multiplication operator, 
i.e. a diagonal matrix on 7/~. 

In view of our problem one will extend H~ to NR by means of unbounded 
operators. Namely, if de ~R, we define @~(d) to be the set of vectors qJe 12(;g ~) such 
that 7'(n)=O whenever z - t o o  is a pole of d, and ~,[d(z-nco)gl(n)]2<+co. 
Then if ~ ( d )  

if d(z-con) is finite and 

Hz(d ) 7J(n) = d ( z -  no) ~(n) (II.15a) 

H~(d) ~(n) = 0 otherwise. (II. 15b) 

If d=d* ,  then H~(d) is self adjoint when zEIR. 
We remark that for all z except on a countable set, N~(d) is a dense subspace of 

12(7/). Whereas if z is such that for some no, (which is unique by Lemma 1.4), z -  con o 
is a pole of d, ~ ( d )  is dense in the hyperplane ~P(n0) = 0. In this latter case, it is not 
difficult to see that if P,0 denotes the projection on this hyperplane, it commutes 
with any operator of the form/ / , (d  + m) me 9.I~,,, and the results of the next section 
have an obvious extension to this case. 

We shall consider the set NR,~ obtained from 9.1R, ~ adding the elements of ~R" 
In this set-up, if Ve~  R the Schr6dinger operator given by Eq. (6) of the 

Introduction can be seen as the operator H~(A + V). 

III. The Main Results 

Theorem 1. Let given R >0, r>O, coEIR v satisfying the diophantine condition: 

7 
[Ico-nl[>~ with y>0 ,  a > v  Y n ~  ~. (Ill.l) 

I f  Ve ~R, there is a positive constant ~c, depending on R, r, Y, a and [V]R only, such 
tha t / f  m~9.Ia. ~, ItmllR r<~c there exists an invertible element u 9.1R, r and VeeR~ 2 
with 

(1) u(V+ m)u-  1 = f/, 

(2) Max( l lu -  11IIR/Z, r/2, ]J u-  1 _ 111j a/2, r/2) < K1Jlm]la, r, 
(III.2) 

(3) V - % ~ R / 2  and ][V--V]IR/2<Ka]Im]IR,,., 

I PI~/2 > ½1VIR. 
I f  in addition m + V is selJ:adjoint, then u is unitary and 1/= V*. 

As a first consequence we note: 

Corollary 1. Let m and V as in the previous theorem. Then the operator 
H~ = H_.(m + V) has a complete set of eigenvectors which are exponentially localized. 
The corresponding eigenvaIues are the set 

{~'(z-con); n e ; ~ ;  z -con  is not pole of V}. (III.3) 
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Remark. The completeness of the set of eigenvectors may be understood in the 
hyperplane defined by ~(d) .  The domain does not depend on m. 

Corollary 2. Let  m and V as in Theorem 1 with in addition m =m*, V= V*. Then 
Vx~ IR, H~ = H~(m + V) is self-adjoint ; its spectrum is IR, and it is only pure point. All 
its eigenvectors are exponentially localized. 

Some Applications 

1) If one considers one of the examples treated by Sarnak where V(z) = exp 2ircz, 
the operator 

H~ 7*(n) = eA 7* + e 2i~(z- ~')m 7*(n) (III.4) 

has only point spectrum for e II A IlR, r < ~c, with exponentially localized eigenstates. 
The special case 7 = 1 and 

HxT*(n ) = ~7*(n- 1) + e2ir~(x-n~)7*( n) , (III.5) 

where e is a diophantine number in IR, is interesting because, Sarnak, [10], proved 
that if e < 1 the spectrum is pure point with exponentially localized eigenstates, 
whereas for e > 1 we have only an essential spectrum, with eigenfunctions being of 
Block wave types. Moreover, if e<  1 the spectrum is the unit circle S 1, whereas if 
5> 1 it is equal to le[S 1. 

One could also prove (Bellissard [4]) that if e = 1 the spectrum is the unit disk. 
Sarnak's result is now a consequence of Theorem 1 (Corollary 1). 

2) The SchrSdinger operator of Fishman et al. belongs to the class described in 
Corollary 2 provided e II A JlR.~ < ec" 

Proof  of  Corollaries i and 2. Corollary 2 is an immediate consequence of 
Corollary 1 and Lemma 1.4. Let us now prove Corollary 1. 

By Theorem 1, there is an operator U z = II~(u) such that (at least formally): 

U~H~U~ ~ = V~( = H~(f/)). (III.6) 

Clearly ~ is a multiplication operator, and therefore the eigenvalues are 

{[/(z-con),nE;gV, z - c o n  is not a pole of ~z}. (III.7) 

We remark that since V-~7~ JY~R/2, the poles of ~" coincide with the poles of V in 

@RIa" 
Since [/e~a/z one gets 

][/(z- con)- ) ( z -  coI)l ~2> t~Z]R/2 iI O)" (l-- H)tl, (III.8) 

and therefore each eigenvalue has multiplicity one. The corresponding eigenstate 
is given by 

T,(1) = U 2 ~ 6 ,(I) = u -  l ( z -  lco, n -  l) (III.9) 

[here 5,(I)= c~J. Since u l e 9.I~,~ we get an exponential decreasing 

-21~-ll ] 7-'~(1)] < [ju- ~ [1R/2,~/2 e (III.lO) 
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However, (III.6) is not well defined. Indeed the left hand side is defined only on the 
domain U]a~(V). Clearly ~ ( V )  and @~(f~) coincide thanks to Theorem 1, (3), 
and from (III.6) one gets" 

~e U2 ~ ( v )  

because U~ is bounded. Thus: 

I [ ~ [ L < + o e  <* ~ P ~ ( f / ) ,  (III.1t) 

U~- ~ ~ ( V )  C ~ ( V ) .  (III. 12) 

In much the same way one gets H~= U]lf/~U= on U ~ ( V )  and one finds: 

U~@=(~) = U~@~(V) CN=(V). (III.13) 

Thus ~ ( V )  is invariant by U~. Therefore the eigenstate given by (III.9) belongs to 
~=(V) and since U~ has a bounded inverse, they are complete [dense in the closure 
of ~ (V) ] .  

IV. The Proof of Theorem 1 

Let V, m be as in Theorem 1. Without loss of generality we can assume 

re(z, O) = 0 .  (IV. 1) 

For  otherwise the function m(z,O) can be absorbed in V 
We define a kernel w as follows : 

if n=O,  w(z,O)=O, 
(IV.2) 

m(z,n) 
if n=t=0, w(z,n) = - -  

V ( z )  - V ( z -  ~ - n )"  

Lemma IV.1. For any 6>0,  w e ~ , ~ _ ~  and 

c(,~) 
I{WI{R,r- a < ya~[VIR llmllR,~- (IV.3) 

Moreover, /f m = m*, V= V*, then w = - w*. 

Proof. It is enough to estimate [[w[l~,,._ a. We get [thanks to V e ~  R and Eq. (III.1)] 

1 
Iw(z'n)[d~ a)>l< i-VlRyl ,~z- ~ [nl~e-al"llm(z'n)[e~l"l" (IV.4) 

n ~ Z  v 

Since 
C(a) a" 

= e  - ° - -  (IV.S) 

one gets immediately (IV.3). The end of the lemma is easy to check. 

Lemma IV.2. One has 
eW(V+ m)e- w = V+ ~ ,  (IV.6) 

with ~e~I~ ,. a, V6>0 and 

IlmllR,~ ~---< IrmllR,~llwIIR,~-ae 21r'< . . . . .  (IV.7) 
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Proof Using Definition (IV.2) of w one sees that 

Aw(V)-wV- Vw=m. 
Thus, 

(IV.S) 

Since at each 
parameters" 

Vo=V, m o = m  , and Vz+l=~,n l l+ l=fnt .  (IV.15) 

step estimates must be checked we introduce the following 

r R 
6 t =  2t+2 , ~ t =  2 t + 2 .  (IV.16) 

This choice is given to get ~,6~=2,  o~Ql = R .  
0 

Now we define r l, Rt by: 

ro=r, No=R, 
_ ~  _r r 

r l + l  = r l  l - -  2 + - -  

R R (IV.17) 
2z+1, RI+I =Ri--0Z = ~- + 2t+~. 

e":(V÷m)e-"= V+ ~ A~(V)/k!+ ~. A,k,-1(m)/(k - i)! 
k=l  k=l  

-- v+ ~ A~(m)/(k- 1)!(k+ 1)- V+~. (W.9) 
k=l  

Since w~ ~ , r _  a and m~ 9.1~, rC~l~, r-  a, ~ belongs to 9.I~, ~_ 0 once it is proved that 
the series converges. But this is easy to check since: 

]lAw(m) llR,,-a < 2 [Iwl[R,r-~ Ilml[R:-~, (IV. 10) 
and therefore 

I)-nll = k=~A~(m)/(k-1)'(k+l). =<llwtlR, r ~ mlRr_ae211"ll~'~-~. (IV.11) 

We now define 17 and fn as follows: 

f/fz) = V(z) + C.(z, o), 

re(z, n) = ~(z, n) if n 4= 0, 

= 0 otherwise. (IV.12) 

Then, thanks to Lemma 1.2 we get: 

Lemma IV.3. If  R > Q > 0 is such that 

tl~11~-,.-o<olvlR, (Iv.13) 

then l /~R-e  and l[ffa[lR'~-~ >0 ,  
[V]R -~ = I VIR (IV. 14) 

The strategy now is very simple. Starting from V6 ~R and mE~I~,~ satisfying (IV.l), 
we get V~ ~R-~, ga~ 2l~_ ~,~_ a satisfying again (IV. 1), provided the estimate (IV. 13) 
is true. We thus proceed recursively by defining a sequence (Vt, m~)t=o, I with: 
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We assume that  if l < L  we have been able to construct  Vz, m ~ using (IV.15) with 

[Imzl[R,,r = h ,  Vtm ~ ,~ ,  I V ~ [ R = 4 > ½ d o = I V [ R .  (IV.18) 

We want  to construct  V L + ,, m L +,  using (IV. 15). First  of  all, w L + a is constructed via 
Eq. (IV.2) and we get (Lemma  IV. l ) :  

C(a) 2~(L + 2) 
IIWL+ I IIRL, rL+ I ~ 7rOdL eL" (IV.19) 

F r o m  L e m m a  IV.2: 

C(a)2<L+ z) e 2 exp [{2C!a) s~(L + 2)g ~-I (IV.20) 

In view of the L e m m a  IV.3 we need the constraints  

R d  L 
eL+ 1 < 2L+2, (IV.21) 

and 

(i) 

(ii) 

We shall choose A by:  

2L+2 
dE + 1 > d r - -  eL + 1 R (IV.22) 

In order  to solve this set of  recursive est imates let us introduce the sequence 

1 
" 8°A "2' (IV.23) ~/o>0,  A > 0 ,  t h =  A2O(t+s)tt/o ) . 

We check immediate ly  (the p roof  is left to the reader). 

L e m m a  IV.4. t/l sat is f ies  the recursion relat ion:  

th + 1 = A 2 <l + 2)/,]? . (IV.24) 

L e m m a  IV.5. (i) I f  tl o < (8°A)- 1 then lira r h = 0. 
l~cO 

(ii) I f  in addition 11 < 4 - ~, then 

2°(z+ z)th< t ,  g l > 0 .  (IV.25) 

Let  us define G as the m a x i m u m  value of r/o such that  : 

t/° __< (8OA)1 ,  t/o < 4 - ° ,  
(IV.26) co 

R d Z 2i+ l t h<  
i=o - 2  o'  

A -  C(,,) 2 [4C(~)~ 
?r ~ do exp l-}r-~o]. (IV.27) 

L e m m a  IV.6. A s s u m e  that  17o = eo < G, and that  i f  1 < I <-L, one has:  

(i) e~ < ~h, 

1 z 
y" 2t+ it/, (ii) d t >  do - R i= o 

(IV.28) 
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Then,  eL + l and alL+ 1 sat is fy  again (IV,28). 

P r o o f  Since eL_--<t/L, using Lemma IV.5 one gets: 

2 °(L+ 2)(~ L ~ 1. (IV.29) 

Moreover, by (IV.28) and (IV.26) we have: 

do 
d L > ~-.  (IV.30) 

Thus from (IV.20), (IV.24), (IV.27) we obtain: 

< A2(L+ 2)%2 < A2(L+ 2~,,2 (IV.31) ~ L + I =  = 'IL ~ I ~ L +  I • 

From (IV.22) we get: 

2L+ 2 L+ t 

dr ~ + ~ > dr.,_ - R -  tie + ~ > do _ ~ 2 ~+ ~ tIj. (IV.32) 
i = o  R 

As a conclusion if ~ < e  c the sequence (Vz, mt) exists and since 

R r 
R~_> ~-, r ,> ~, gl, (IV.33) 

lim {Iml{!R/g,r/2"~O, (IV.34) 
I+eJo 

l--1 

Vz(z ) -  V(z)= ~, ffai(z,O)=g,~,,~R/2, V1, (IV.35) 
i=0 

and ~ ' - V = l i m g  z exists in YfR/2" For each l~N 

V~ + m t = uz( V + m ) u [  z (IV.36) 

with 

ul = e,*,e,*Z-1.., e,*, (IV.37) 

If V*= V, m*= m, u~ is unitary. 
Thanks to (IV.19) this product converges as l--, oD to u~O,I~/2.~/2 and 

!IIA+-I--~IHR/Z,r/2 <~ {IV&'llIRz,rz exp t)VtHR,,~ ' < K - % .  (IV.38) 
/ = i  t= 

Finally, the estimate (IV.26)-(IV.28) gives: 

I PI~/2 >= 51VlR.t (IV.39) 

This achieves the proof of Theorem 1. 
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