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Abstract. By a suitable choice of the lapse, which in a natural way is connected 
to the space metric, we obtain a hyperbolic system from the 3 + 1 system of 
Einstein equations with zero shift; this is accomplished by combining the 
evolution equations with the constraints. 

Introduction 

The success of the temporal gauge in Yang Mills theory for proving existence 
theorems (cf. [17, 18, 7]) has led us to look for an analogous gauge in general rela- 
tivity~ It is well known that neither normal gaussian coordinates, nor other 
arbitrary choices of lapse and shift lead to a hyperbolic evolution system for the 
conjugate unknowns 9u and pU. However this system is very useful in numerical 
computations of space time models [16] as well as in certain quantization 
procedures ([2, 1]). 

We show here that if we call "temporal gauge" a choice of time lines 
orthogonal to the space sections (choice always possible in a globally hyperbolic 
manifold) the conjugate unknowns satisfy a hyperbolic evolution system if we 
choose the lapse appropriately. The local existence and global uniqueness 
theorems 1, under their most refined form (cf. [-6, 4-I) can then be deduced with the 
help of the usual machinery constraints - Bianchi identities. The explicit geometric 
expression of the evolution system gives a better light to study global problems. 

Let us remark, for numerical relativists, that the choice of lapse we propose 
with zero shift, has the merit to make stable the solution of the Cauchy problem, a 
property which could be useful in their constructions of dynamical models. 

1. The 3 + 1 Equations 

We recall the Einstein equations in the 3 + 1 form (see [15, 8, 1]), or the review 
article [-9]). Let S x IR denote the space-time manifold; we choose the time-lines 

1 A different approach which also does not use harmonic coordinates is due to DeTurk (preprint) 
that introduces an assigned 2-tensor 
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orthogonal to the space sections (zero shift2). Then the space-time metric is given 
by 

(4)g~dx~dx~ = - -  0~2(dx°) 2 --]- giflxidx ~ , (1) 

the "conjugate momentum" of 9u is the contravariant 2-tensor, 

P = K -  g trK< = )pi j  = KiJ_  giiK~ ' (2) 

where K denotes the second fundamental form of the submanifold t = const. 
Putting j~= @/Ox °, we have 

0 i~ = ~(2U J -  9UP), (3) 

where P = P~. 
The Einstein equations in vacuum are 

~t~  _ (4)R~/~ _ l ( 4 ) g ~ f l  (4) R = 0. 

The evolution part is given by (i = 1, 2, 3): 

1 "i" i • ij X~= - - ( p  J + D DJc~--9 dc~)+ LiJ + s ij, 
o~ 

where 

(4) 

L i j -  2pikpj k _ ~ppii_ ½9~JphkPh k + ¼gUp2, (5) 

S u =- R i i -  ½gUR. (6) 

Here R ij and R are the Ricci curvature and the scalar curvature of the space metric 
9u; D denotes the covariant derivative with respect to the metric gij and 
A = gUDiDj is the usual Laplacian. 

The constraint part, which does not contain second derivatives with respect to 
the time variable, is 

=--- ~ DiP ij , (7) U o 

212 ( R -  PiJPIj+ I P2 ) . (8) ZOO 

2.  T h e  H y p e r b o l i c  S y s t e m  

Lemma. The following identity holds 

~ij + o~2(oizjo + oJ~iO _ giJDkzkO ) ~ cdpi j  + ½(DID J_ 9i~A) (ap) + HiJ, (9) 

where H ij is a given function of  9 hk, :¢, of  their derivatives of  order at most 2, of phk 
and of its derivative of order at most 1. Furthermore H ij is analytic/f 9 = det (glj) ~- O. 

2 Analogous results can be obtained with a nonzero given shift. For an intrinsic formulation of the 
evolution problem with an arbitrary shift, see the papers by G. Caricato (e.g. [3]), that used the 
technique of "projection" due to C. Cattaneo [4] 
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Proof  A straightforward calculation shows that the principal terms - of order two 
in  phk _ of the x ° derivative of S i j -  R i j -  ½9 ij are given by : 

~ij ~_ c~(A PiJ - DiDkp jk - DJDk Pik + giJDhDkPhk + ½(D~D~P- g~JA P)). (10) 

Then by exploiting the identity (7) we obtain (9). 

Theorem. The equations 

2 iJ -1- o~2(DiY-, j° + DJE i° -- QUOh~,h° ) ----= 0 ,  (11) 

with the relation (3) between pij and giJ, form a strictly hyperbolic system in the 
unknowns U j, and g~J, ~" the lapse ~ is chosen such that it satisfies the equation 

~(0~-- l gl /2)/~xO ~--- O. 

The "dependence domain" o f  the solutions is determined by the isotropic cone o f  the 
space metric (1). 

Proof  From (4) we get 

2 ij - - - P ~ + S~J + (9~Jd - D~D ~) (ct - 1 dO + MiJ, (12) 

where M ij depends only on g hk, ~ and their derivatives up to the second order, phk 
and their derivatives of order t. 

Taking into account (9) we get 

~i j  Jr- o~2(DiS jO -{- DJS  i° - giiDhShO ) 

- o t [ Z ] P i J + ( g i J A - D i D  j) - ~ P  - t - M i J + H  ij, (13) 

where []  is the hyperbolic operator:  

1 ~2 
E ] -  A. ~2 (~X02 

We note that if ~ is such that 

2ct- 2& = p ,  (14) 

then the principal terms in (13) reduce to - a F ] P  ij. 
As P = ct- i 9-10, Eq. (14) can be written 

g -  i 0 = 2e-  ida, (15) 

which, because of the condition c~>0, has the solution 

ct = e -  i /2gi /2,  (16) 

where e = det(eij), e~i arbitrarily given Riemann metric on S. 
With this choice the system (3), (11) becomes a quasi-diagonal hyperbolic 

system 

~giJ = (e-  l g) l /2(2pU- giJP) (17) 
~x ° 

[:]U ~ -- (e 9 - 1)l/2(MiJ + H ij) = O, (18) 
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whose characteristics at a point are the isotropic cone and the time axis. This axis 
being interior to the cone, the cone determines the propagation. 

Remark 1. The system can be written as a third order system in the unknowns g9 i j, 

principal part [ ] l ~ ( g g i J ) l ,  with because 

1 
U J -  2~ c~x ° (9ggJ)" 

Remark 2. Condition (16) coincides, for the time-lines orthogonal to the space 
sections, with the harmonicity condition of time-like index : 

f ~ F ~  = 0. 

Remark 3. The hamiltonian constraint (8) cannot be used as the other constraint to 
obtain hyperbolicity: the principal part of/~ is a linear differential operator acting 
on the principal terms of the other constraints. 

We need to verify that every solution of the system (17)-(18) is a solution of the 
Einstein system. This will be accomplished by use of the following: 

Theorem 2. Let  g~J and U j verify the hyperbolic system (17), (18), then the Einstein 
tensor Z ~p, corresponding to the metric 

- ~ ( d x ° )  ~ + g J x ~ c l x  i ,  ~ = l / g / e ,  

verifies a linear hyperbolic homogeneous system. 

Proof  By Bianchi identities (V denotes covariant derivation with respect to the 
metric g~) we have 

V~Z'~-0. (19) 

Equation (18) says that the metric -0~2(dx°) 2 +gijdx~dx j with ~2 =e-19,  verifies 
the equations : 

~ij + c~Z(DiZjo + oJziO _ giJOhy_)o ) = O. (20) 

Hence also 

D j{ Z ij + o~2(Di~ jO + DJU ° - giJDhrhO) } = O . 

So using (19)we obtain: 

Z]Z i° + f ~ =  0, (21) 

where f ~ is a linear form in r ~p and DkZ h°. The system formed by (20), (21) and the 
identity: 

Vo Z°°  + V~U ° = 0 ,  

is a strictly hypel-bolic system in the unknowns Z ~p, analogous to the one of the 
preceding section, which moreover is linear and homogeneous. 
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3. Existence for Einstein Equations 

Let S be a C ~° manifold, equipped with a properly Riemannian metric e, regular, 
that is (cf. [6]) we suppose e is C ~, has an injectivity radius on S (for the 
exponential map) strictly positive and has null curvature outside of a compact set. 
We call H~ a space of tensor field f over S, which are square integrabte as well as 
their generalized covariant derivatives in the metric e of order k<s,  which we 
denote by ~kf 

AS in [3] we denote/~s, E~ the (Banach) spaces of tensor fields over S x I:  

N w (I, 
l<=k<__s O<=km=s 

and (G o bounded continuous tensors) 

E~(S x I) = { f l f~  C°(S x I), ~f~/~s-x (S x I)}. 

Theo,em3. Let be Cauchy data on S o = S  × {0} such that ° is 
uniformly positive definite (with respect to e) on S O and: 

~g~H~_I  ' Po~H~_l,is f i ~H~_2 ,  with s>3 .  

Then : i) There exists an interval I such that the hyperbolic system (17), (18) admits a 
solution f J s  E~(S x I) uniformly positive definite, P*Je Es_ 1, having the prescribed 
initial data. This solution is unique. 

(ii) I f  moreover the Cauchy data verify Z ~ = 0  on S o, then the solutions of (17), 
(18) also verifies Z~P--0 on S x I. 

Proof. i) It is a theorem on hyperbolic equations, which may be obtained by 
refining the methods of Leray [13] in a manner analogous to the one used in [3]. 
The energy estimates for the linear case can be obtained in multiplying by a 
hyperbolic second order expression, with characteristic cone which separates the 
temporal axis from the isotropic cone. 

ii) It is a consequence of the uniqueness of the solutions of the Cauchy 
problem for hyperbolic equations and of Theorem 2; the Z ~p being zero for x ° = 0 
by hypothesis, and also 2 i° because of Bianchi's identity V02~°~+ ~jzji=o con- 

sidered at initial time. 

Theorem 4. Let (% K) be initial data for Einstein equations on a regular riemannian 
manifold (S, e). We suppose 

"le C ° and uniformly positive definite, 

07eH~_I, K~H~_ 1 , s>3.  

Then, if the constraints are satisfied, there exists an Einstein space time (S x I, g), 
geE~, development of the initial data set (S, % K). 

Proof It is an immediate consequence of Theorem 3, after remarking that, if we 
denote by g~] and Kio i the image of the contravariant tensors associated with ~/and 
K by the diffeomorphism S ~ S  o = S  x {0} CS x R, and set 

~o = (e- tgo)l/z, 

the equation 2;~=0 (cf. [7]) determines/~.  
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Remark  1. 7he metric g c o n s t ru c t ed  o n  S x I is o f  the  fo rm : 

ds 2 = - e -  l g(dx°)2 + gijdxidx j ,  

with  9ij u n i f o r m l y  b o u n d e d  a n d  posi t ive  defini te  wi th  respect  to e~j. T h u s  (S x I,  g) 
is g loba l ly  hyperbol ic ,  wi th  S O a C a u c h y  surface (cf. [9]). 

Remark  2. The  geomet r ica l  (physical), g loba l  u n i q u e n e s s  t h e o r e m  (cf. [9]) c an  also 
be p roved  in this context ,  b u t  the p r o o f  seems to requi re  m o r e  regular i ty  t h a n  wi th  
the  use of  h a r m o n i c  maps .  

4. Equivalent H3~erbolie Systems 

The  lower  te rms  M ij + H ij t ha t  a p p e a r  in  (18) a re  ex t remely  compl ica ted ,  b u t  if we 
choose  Kij  or  K~ as u n k n o w n s  ins t ead  of U j, we o b t a i n  s impler  hype rbo l i c  
systems. F o r  ins tance  let 

ki~ = c~Ki~, a, = ~ -  1~i~, f.j) =f~j +f~, ,  

if a = ( e - l g )  1/2, we h av e :  

Oij = - 2k~;, 

V-lkij + 3kh(iRj) h - 2Rihjmkhm -1- 2 k R i j -  2a(~D j ) k -  4kDia j 

- kh(iDj)a ~' + 2ahD(~kj)h -- ahDaki j -  2ahD(ik~h - 3kaia j 

- 4c~- 2kihkjmkhm 

=- 2k,(z (4)R J) + 2k(4)Rij 6*) " 2 0 -- R i j - D ( i { ~  Zj)}.  

A n  express ion  us ing  K[  has been  g iven in  [10].  
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