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PREDICTION ERROR 
ESTIMATION METHODS* 

Lennart Ljung 1 

Abstract. This contribution describes a common family of estimation methods for system 
identification, viz, prediction-error methods. The basic ideas behind these methods are 
described. An overview of typical model structures to which they can be applied is also 
given, as well as the most fundamental asymptotic properties of the resulting estimates. 
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likelihood, convergence, asymptotic covariance, closed loop identification. 

1. Basic idea 

System identification is about building mathematical models of dynamical sys- 
tems using measured input-output data. This can be done using a number of  
different techniques, as evidenced in this special issue. Prediction-error methods 
(PEMs) are a broad family of  parameter estimation methods that can be applied 
to quite arbitrary model parameterizations. These methods have a close kinship 
with the maximum likelihood method, originating from [4] and introduced into 
the estimation of  dynamical models and time series by [2] and [1]. 

This article describes the basic properties of PEMs, applied to typical models 
used for dynamical systems and signals. See [5] or [8] for thorough treatments 
along the same lines. 

Some basic notation is as follows. Let the input and output to the system be 
denoted by u and y, respectively. The output at time t will be y(t), and similarly 
for the input. These signals may be vectors of  arbitrary (finite) dimension. The 
case of  no input (dim u = 0) corresponds to a time series or signal model. Let 
Z N = {u(1), y(1), u(2), y(2) . . . .  u(N), y(N)} collect all past data up to time N. 
For the measured data, we always assume that they have been sampled at discrete 
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time points (here just enumerated for simplicity). However, we may very weit 
deal with continuous-time models, anyway. 

The basic idea behind the prediction error approach is very simple. Describe 
the model as a predictor of the next output: 

~m(tlt - 1) = f ( z t - 1 ) .  ( i) 

Here Yrn (tit - i) denotes the one-step ahead prediction of the output, and f is an 
arbitrary function of past, observed data. 

Parameterize the predictor in terms of a finite-dimensional parameter vector 0: 

~(dO) = f ( Z  t-~, 0). (2) 

Some regularity conditions may be imposed on the parameterization, see, e.g., 
Chapter 4 in [5]. 

Determine an estimate of 0 (denoted 0N) from the model parameterization and 
the observed data set Z N, so that the distance between ~(1 [0) . . . . .  ~3(Ni0) and 
y(1) . . . . .  y (N)  is minimized in a suitable norm. 

If the above-mentioned norm is chosen in a particular way to match the as- 
sumed probability density functions, the estimate 0N will coincide with the max- 
imum likelihood estimate. 

The PEM has a number of advantages: 

| It can be applied to a wide spectrum of model parameterizations (see Sec- 
tion 2). 

| It gives models with excellent asymptotic properties, due to its kinship with 
maximum likelihood (see Sections 4 and 5). 

| It can handle systems that operate in closed loop (the input is partly deter- 
mined as output feedback, when the data are collected) without any special 
tricks and techniques (see Section 4). 

It also has some drawbacks: 

o It requires an explicit parameterization of the model. To estimate, say, an 
arbitrary linear, fifth-order model, some kind of parameterization, covering 
all fifth-order models, must be introduced. 

�9 The search for the parameters that gives the best output prediction fit may 
be laborious and involve search surfaces that have many local minima. 

2. Model parameterizations 

The general predictor model is given by (2): 

~ ( t l o )  = f ( z  ~ ~,o). 
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To give a concrete example, the underlying model could be a simple linear differ- 
ence equation: 

y( t )  + a l y ( t  - 1) + . . .  + a,,y(t  - n) = b lu( t  - 1) + . . .  + bmu(t - m).  (3) 

Ignoring any noise contribution to this equation, or assuming that such a noise 
term would be unpredictable, the natural predictor becomes 

~(tlO) = - a l y ( t  - 1) . . . . .  a n y ( t -  n) + b lu( t  - 1) + . . o  + bmu(t - m) 

0 = [ a l  . . .  an b l .  

which COITesponds to 

f ( Z  t - l ,  0) = 0rq)(t)  

= [ - y ( t -  1) . , .  

(4) 

bin] r , (5)  

- y ( t - n )  u ( t -  1) .. 

(6) 

, ( t  - m)]  r . 

(7)  

It is natural to distinguish some specific characteristics of  (2): 

| Linear time-invariant (LTI) models, f ( Z  t-1 , O) linear m Z t - l ,  and not 
depending explicitly on time, which means that we can write 

f (Z  t - l ,  O) = Wy(q,  O)y(t) + Wu(q, O)u(t) (8) 

t - I  t -1  

= ~ Wy (k )y ( t  - k) + ~ wu (k)u( t  - k) (9) 
k=l  k=l  

for some LTI filters Wy and Wu that both start with a delay. Here, q is the 
shift operator. 

�9 Linearregression models, f ( Z  t-~ , O) linear in 0, but possibly nonlinear in 
Z. Clearly (3) is both a linear model and a linear regression model. 

| Nonlinear models, f ( Z  t-1 , O) is nonlinear in Z. 

We shall comment  on these cases more in the following sections. 

2.1. Linear models 

The linear predictor model (8) is equivalent to the assumption that the data have 
been generated according to 

y( t )  = G(q,  O)u(t) + H(q ,  O)e(t), (10) 

where e is white noise (unpredictable), and H is monic (that is, its expansion in 
q - ]  starts with the identity matrix). We also assume that G contains a delay. The 
equivalence can be seen by rewriting (10) as 

y( t )  = [I - H - ]  (q, O)]y(t) + H -1 (q, O)G(q, O)u(t) + e(t) .  
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The first term on the right-hand side only contains y( t  - k), k < I, so the naturai 
predictor of y (t), based on past data, will be given by (8) with 

W y ( q , O )  = [I - H - I ( q , O ) ] ,  Wu(q ,O)  = H - l ( q , O ) G ( q , O ) .  (1i) 

I t  wilt be required that 0 are constrained to values such that the filters H - ~ G  and 
H - I  are stable. Note that the parameterization of G and H is otherwise quite 
arbitrary. For example, it could be based on a continuous-time, state-space model 
with known and unknown physical parameters in the matrix entries: 

~(t) = A(O)x(t) + B(O)u(t) (12) 
y( t )  = C x ( t )  4- v( t ) .  (13) 

Here the states x may have physical interpretations, e.g., positions and velocities, 
and 0 COtTesponds to unknown material constants, etc. Sampling this model and 
then converting it to input-output form gives a model of the type (10), where G 
depends on 0 in a well-defined (but possibly complicated) way. 

2.1.1. Linear  black-box models. 

Sometimes we are faced with systems or subsystems that cannot be modeled 
based on physical insights. The reason may be that the function of the system 
or its construction is unknown, or that it would be too complicated to sort out 
the physical relationships. It is then possible to use standard models, which by 
experience are known to be able to handle a wide range of different system 
dynamics. 

A very natural approach is to describe G and H in (10) as rational transfer 
functions in the shift (delay) operator with unknown numerator and denominator 
polynomials. 

We would then have 

B(q)  b tq  -nk + b2q - n k - I  + .  �9 + bnbq -nk-nb+l  

G(q ,  O) - F(q~  -- 1 4- f l q  -1 4 - ' "  4- f n f q  =nf (i4) 

Then 

77(t) = G(q ,  O)u(t)  (15) 

is a shorthand notation for the relationship 

rl(t)+ f i r l ( t  - 1) + . - .  + fn f r l ( t  - n f )  

= b l u ( t  - nk)  + . . .  + bnbu(t - ( n b +  nk - t)). (16) 

Here, there is a time delay of nk  samples. 
In the same way, the disturbance transfer function can be written as 

C(q)  l + Clq I + . . . + Cncq-,W 
H ( q ,  O) - D(q~) -- I + d l q  -1 + . - .  + d ,~q  -nd" (t7) 



PREDICTION ERROR ESTIMATION METHODS 15 

The parameter vector 0 thus contains the coefficients bi, ei, di, and fi of the 
transfer functions. This model is thus described by five structural parameters: 
rib, nc, rid, n f ,  and nk and is known as the Box-Jenkins (B J) model. 

An important special case is when the properties of the disturbance signals 
are not modeled, and the noise model H ( q )  is chosen to be H(q)  = 1; that is, 
nc = nd = 0. This special case is known as an output error (OE) model because 
the noise source e(t) = v(t) will then be the difference (error) between the actual 
output and the noise-free output. 

A common variant is to use the same denominator for G and H: 

--Ha F(q)  = D(q)  = A(q)  = 1 + alq -1 §  + anaq . (18) 

Multiplying both sides of (14)-(17) by A(q)  then gives 

A(q)y ( t )  = B(q)u( t )  + C(q)e( t ) .  (19) 

This model is known as the ARMAX model. The name is derived from the fact 
that A ( q ) y ( t )  represents an AutoRegression and C(q)e( t )  a Moving Average 
of white noise, while B(q)u( t )  represents an extra input (or with econometric 
terminology, an eXogenous variable). 

The special case C(q) = 1 gives the much-used ARX model (3). 

2.2. Nonlinear models 

There is clearly a wide variety of nonlinear models. One possibility that allows 
inclusion of detailed physical prior information is to build, nonlinear state space- 
models, analogous to (12). Another possibility, sometime called "semiphysical 
modeling" is to come up with new inputs, formed by nonlinear transformations 
of the original, measured u and y, and then deal with models, linear in these new 
inputs. A third possibility is to construct black-box models by general function 
expansions. 

2.2.1. Nonlinear black-box models 

The mapping f can be parameterized as a function expansion, 

d 

f ( Z  t - l ,  O) = Z~kZ([3k(~o( t )  -- Yk)), ~p(t) = q)(Zt-1). (20) 
k=l 

Here, ~) is an arbitrary function of past data. However, in the most common case, 
~o is given by (7). Moreover, z is a "mother basis function," from which the actual 
functions in the function expansion are created by dilation (parameter fi) and 
translation (parameter ?/). For example, with ~c = cos we would get a Fourier 
series expansion with/3 as frequency and ?/ as phase. More common are cases 
where x is a unit pulse. With that choice, (20) can describe any piecewise constant 
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function, where the granularity of  the approximation is governed by the dilation 
parameter ~q. A related choice is a soft version of a unit pulse, such as the Gaussian 
bell. Alternatively, z could be a unit step (which also gives ptecewtse constant 
functions), or a soft step, such as the sigmoid. 

Typically, ~c is in all cases a function of  a scalar variable. When ~0 is a column 
vector, the interpretation of the argument of ~c can be made in different wm s: 

| If  fi is a row vector./7 ((p - ?/) is a scalar, so the term in question is constant 
along a hyperplane. This is called the ridge approach, and is typical for 
sigmoidal neural networks. 

| Interpreting the argument as [1~o - }, tb as a quadratic norm with the positive 
semidefinite matrix/7 as a quadratic form gives terms that are constant on 
spheres (in the/3 norm) around g. This is called the radial approach. Radial 
basis neural networks are common examples of this. 

| Letting ~c be interpreted as the product of  z-functions applied to each of the 
components of qJ gives yet another approach, known as the tensor approach. 
The functions used in (neuro-)fuzzy modeling are typical examples of this 
approach 

See [5, Chapter 5] or [7] for more details on this interpretation of basis funcuons. 

3. Estimation techniques 

Once the model structure, i.e., the parameterized function . f (Z t, 8) has been 
defined, and a data set Z N has been collected, the estimation of the parameter 
8 is conceptually simple: Minimize the distance between the predicted outputs 
(according to parameter 0) and the measured outputs, 

0 N -~- arg mjn VN(8) (21) 

N 
V~v(8) : E e(y(t) - f ( Z  t - i ,  8)). (22) 

t= l  

Here ( is a suitable distance measm'e, such as ((e) = Hell 2, The connection to 
the celebrated maximum likelihood method is obtained by a particular choice of  
norm: Assume that the data are produced by the mechanism 

y(t) = f ( Z  t-I , 8) + e(t), (23) 

where {e(t)} is a sequence of independent random variables with probability 
density function p(x). Then, with g(x) : - l o g  p(x), the criterion (22) is the 
negative logarithm of the likelihood function for the estimation problem :(apart 
from 8-independent terms). This makes 0N equal to the maximum likelihood 
estimate. 
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3.1. Numerical issues 

The actual calculation of the minimizing argument can be complicated, with sub- 
stantial computations, and possibly a complex search over a function with several 
local minima. The numerical search is typically carried out using the damped 
Gauss-Newton method. For a scalar output and ~(e) = �89 2, this takes the form 

g ( i + l )  : 0(i)  _ [~iRzl~i 

~?i = v ~ ( g o )  
N dVN(O) 1 

v / v ( o )  - - ~ - ~ ( y ( O  - ~(~lO))~(t, o); 
dO N t=J (24) 

O 
~(t, 0) = ~ ( t l o )  

1 N 
Ri = V~(O (i)) ~ ~ ~ O(t, g%CJ(t,  ~(o). 

t= l  

Here/~i is a scalar, adjusted so that the criterion VN(O (i+~)) < VN(O(i)). 
A thorough discussion of numerical issues of this minimization problem is 

given in [5, Chapter 10] and in [3]. 

4. Convergence properties 

An essential question is: What will be the properties of the estimate resulting from 
(21)? These will naturally depend on the properties of the data record Z N. It is in 
general a difficult problem to characterize the quality of 0N exactly. One normally 
has to be content with the asymptotic properties of 0N as the number of data, N, 
tends to infinity. 

It is an important aspect of the general identification method (21) that the 
asymptotic properties of the resulting estimate can be expressed in general terms 
for arbitrary model parameterizations. 

The first basic result is the following one: 

0X --~ 0* as N -+ oo, (25) 

where 

0* ----- arg n~in Eg.(e(t, 0)). (26) 

That is, as more and more data become available, the estimate converges to that 
value 0* that would minimize the expected value of the "norm" of the prediction 
errors. This is in a sense the best possible approximation of the true system 
that is available within the model structure. The expectation E in (26) is taken 
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with respect to all random disturbances that affect the data and it also includes 
averaging over the input properties. This means, in particular, that 0* will make 

(t [0") a good approximation of y (t) with respect to those aspects of the system 
that are enhanced by the input signal used. 

The characterization of the limiting estimate can be more precise in the case of 
a linear model structure. We distinguish between the cases of open- and close& 
Ioop data and in the remainder of this section will assume that the system is single- 
input, single-output. 

4.i. Linear systems: Open-loop data 

Suppose that the data actually have been generated by 

y(t) = Go(q)u(t) + v(t), (27) 

where u and v are independent. This means that the input u has been generated in 
open loop, i.e., independently of y. Let ~ ,  (o)) be the input spectrum and ~v(o)) 
be the spectrum of the additive disturbance v. Then the prediction error can be 
written 

1 
eF(t, O) = H(q, O)[y(t) - G(q, O)u(t)] 

1 
-- H(q, O) [(G0(q) - G(q, O))u(t) 4- v(t)]. (28) 

By Parseval's relation, the prediction-error variance can also be written as an in- 
tegral over the spectrum of the prediction error. This spectrum, in turn, is directly 
obtained from (28), so the limit estimate 0* in (26) can also be defined as 

O* = argli~n[f~_ {Go-  Go[Z gou(~ z do) 

(29) 

4- ~v(o))/tHol2 do) . 
T( 

For brevity, here we used Go = G(e ic~ 0), etc. 
If the noise model H(q, O) = H.(q) does not depend on 0 (as in the OE 

model), expression (29) thus shows that the resulting model G(e i~176 0") will 
give that frequency function in the model set that is closest to the true one, in a 
quadratic frequency norm with weighting function 

Q(o.)) = ~u(o))/lH,(ei~176 (30) 

This shows clearly that the fit can be affected by the input spectrum ~ and the 
noise model H,. 
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4.2. Linear systems: Closed-loop data 

Assume now that the data has been generated from (27), but the input has been 
partly determined by output feedback, e.g., as 

u(t) = r(t) - Fy(q)y(t). (31) 

Moreover, the noise is supposed to be described by 

v(t) = Ho(q)e(t), (32) 

where e is white noise with variance L. The reference (set point) signal r is 
supposed to be independent of the noise e. Using this fact, together with Parseval's 
relation as above, gives the following result: 

O*=argmin [~r[Iao+ Bo-ao l2*u  + l H o -  Hol2q/el/IHol2dco, (33) 
o J-re 

Bo = (Ho - Ho)~ue/CPu (34) 

�9 ; = )~ - i , e . 1 2 / , u  (35 )  

Here ~ue is the cross spectrum between e and u, which in the case of (31)-(32) 
will be 

Fy(ei~ i~~ 
Cbue(O)) = -;~ (36) 

1 + Fy(ei~~ 

The result (33) contains important information: 

| If  there exists a 00 such that H0 = Hoo and Go = Goo, then this value is 
always a possible convergence point. If  qb~ > 0 Vco (which, according to 
(36) means that u cannot be determined entirely from e by linear filtering), 
then this is the only possible convergence point. 

| If  Ho cannot achieve the value H0 (e.g., if 14o is fixed as in an output error 
model), and ~ue 7 ~ 0, then there is a bias pull Bo away from the true transfer 
function Go. It is consequently necessary that the noise model also can be 
correctly described in the model structure in order to obtain an unbiased 
transfer function estimate in the case of closed-loop data. 

However, the main conclusion is that the PEM, applied in a straightforward fash- 
ion, paying no attention to possible feedback effects, will provide unbiased esti- 
mates whenever the true system is contained in the model set. The only require- 
ment is that the input u should not be formed from e only by linear time-invariant 
filtering. 

where 
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5. Asymptotic distribution 

Once the convergence issue has been settled, the next question is: How fast is r.he 
limit approached? This is dealt with by considering the asymptotic distribution of 
the estimate. The basic result is the following one: If {e(t, 0")} is approximately 
white noise, then the random vector ,,/N(0N -- 0") converges in distribution 
to the normal distribution with zero mean, and the covariance matrix of 0N iS 
approximately given by 

Po = )~[E~(t)gtr (t)] - l ,  (37) 

where 

)~ = Eea(t, 0") 

d ^  
~( t )  = ~y(t[O)lo=o~. 

(38) 

This means that the convergence rate of 0N towards 0* is 1/~/N. Think of 
as the sensitivity derivative of the predictor with respect to the parameters, it is 
also used in the actual numerical search algorithm (24). Then (37) says that the 
covariance matrix for 0N is proportional to the inverse of the covariance matrix of 
this sensitivity derivative. This is a quite natural result. 

The result (37), (38) is general and holds for all model structures, both linear 
and nonlinear, subject only to some regularity and smoothness conditions. These 
results are also fairly natural and provide the guidelines for all user choices in- 
volved in the process of identification. Of particular importance is that the asymp- 
totic covariance matrix (37) equals the Cramdr-Rao lower bound if the distur- 
bances are Gaussian. That is, PEM, give the optimal asymptotic properties. See 
[5] for more details. 

6. Use of prediction error methods (PEMs) 

The family of PEMs has the advantage of being applicable to a wide variety of 
model structures. It also handles closed-loop data in a direct fashion and gives the 
best possible results (minimal covariance matrix), provided the model structure 
contains the true system. The approximation properties when the true system 
cannot be achieved in the model structure are also well understood. 

Several software packages that implement these techniques are available, e.g., 
[6], and many successful applications have been reported. 

The main drawback of the PEMs is that the numerical search in (24) may 
be laborious and require good initial parameter wtlues. For multivariable, linear 
black-box state space models it is therefore very useful to combine the use of 
PEMs with what are called subspace methods, (e.g., [9]). 
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