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Abstract. One of the central problems in the mathematical theory of turbulence 
is that of breakdown of smooth (indefinitely differentiable) solutions to the 
equations of motion. In 1934 J. Leray advanced the idea that turbulence may 
be related to the spontaneous appearance of singularities in solutions of the 
3 - D  incompressible Navier-Stokes equations. The problem is still open. We 
show in this report that breakdown of smooth solutions to the 3 - D  
incompressible slightly viscous (i.e. corresponding to high Reynolds numbers, 
or "highly turbulent") Navier-Stokes equations cannot occur without break- 
down in the corresponding solution of the incompressible Euler (ideal fluid) 
equation. We prove then that solutions of distorted Euler equations, which are 
equations closely related to the Euler equations for short term intervals, do 
breakdown. 

Introduction 

The purpose of this paper is twofold: first to discuss the relationship between the 
breakdown of smooth solutions to incompressible three-dimensional Euler and 
Navier-Stokes equations; and secondly to present blow-up results for distorted 
Euler equations. 

Both the Navier-Stokes equations and the Euler equations possess local (in 
time) smooth solutions. Moreover, as the viscosity vanishes the solutions to the 
Navier-Stokes equations converge uniformly on a short time interval to the 
solution of the Euler equation [5, 7]. Adapting the method of Kato [5] and using a 
very simple ODE lenn~a, we prove in Sect. 1 that as long as the solution to the 
Euler equation is smooth the solutions to slightly viscous Navier-Stokes equations 
with the same initial data are smooth. 

Sections 2 and 3 are devoted to blow-up results for distorted Euler equations. 
Differentiating the Euler equations one obtains a quadratic equation for the 
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Jacobian matrix of the velocity vector: 

0U 
~ -}-(U" V)U-}- U 2 = P , 

( 
where u is the velocity vector, U = \ ~ x J  and P = \~x[xi~xi ] with p the pressure. 

One can use the incompressibility condition Tr U = 0 to express P in terms of 
U. Passing to Lagrangian coordinates, the differentiated Euler equations become 

OU 
c~-t- + U2 + R(t) (Tr U 2) = 0, (0.1) 

where R(t) is a matrix of singular integral operators with time varying kernels. 
What we call the distorted Euler equations are obtained from the above form of the 
genuine Euler equations by replacing R(t) by R(0): 

0U 
0t + U2 + R(0) (Tr U 2) = 0. (0.2) 

Although these equations are good short time approximations of the Euler 
equations, the blow-up arguments have no direct bearing on the Euler equations. 

In Sect. 2 we discuss the periodic case and we show, by a localization argument 
reminiscent of the one in [2], that a large class of initial data lead to breakdown of 
the solution of(0.2). The conditions on the initial data do not involve any largeness 
assumption but exclude Jacobians. Another drawback in the periodic case is the 
fact that incompressibility, Tr U=0 ,  is not preserved. This fact is due to the 
nonvanishing of the mean of Tr U 2, but it is not the maj or reason for the blow-up. 
(One can modify slightly the equations in order to preserve the constraint Tr U = 0 
and still prove breakdown.) Moreover, in the whole space case Eqs. (0.2) do 
preserve incompressibility. Section 3 treats solutions of the distorted Euler 
equations in the whole space. Foias found [4] that if the initial data for (0.2) have 
the form 

Uo(x ) = ]30(Ixl) ( I -  n~(x)) , (0.3) 

/ \ 
where n is the dimension and ~(x)= [xixj l  \ ix12 j i,j = 1 ..... n, then this form is retained 

by the solution U(t, x) of(0.2) and leads to a simple equation for the scalar quantity 
]/. We generalize slightly his result by allowing U o to possess an antisymmetric 
part, corresponding to the vorticity. We obtain a system of integro-differential 
equations for two scalar quantities ]3(t, r) (corresponding to the size of the 
deformation tensor) and 7(t, r) corresponding to the modulus of the vorticity. For 
y - 0  we recover the Foias equation. The success of the reduction in the number of 
variables and unknowns is due to a covariance property of Eq. (0.2) with respect to 
an action of O(n). We prove breakdown for solutions starting from initial data of 
the special form 

Uo(x) = flo(lxl) ( I -  3re(x)) + yo(lxl)~ x. 
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If one takes the antisymmetric part of the three-dimensional distorted Euter 
equations and if one identifies 3 x 3 antisymmetric matrices J with the vectors 
given by J = co x ,  one obtains the equation 

&o 
- -  = Uc0,  (0.4) & 

which is the analogue of the vorticity equation for incompressible Euler flows. 
In [3] the simple one-dimensional model equation for the three-dimensional 

vorticity equation 

&o 
- -  = coH¢o (H = Hilbert transform) (0.5) 
0t 

was suggested. The breakdown of solutions to (0.2) is very similar to that of 
solutions to (0.5): The quantity corresponding to the deformation tensor [the 
symmetric part of U in the case of (0.2), Hco in the case of (0.5)] becomes infinite in 
regions when the quantity corresponding to the vorticity (denoted co in both cases) 
is zero. 

1. A C o m p a r i s o n  Resul t  

Let us consider a solution v of the incompressible Euler equations 

~[ + (v. V)v = Vp + f 

divv=0 (1.1) 

v(0,.)=Vo 

in either N 3 or T 3 (the three-dimensional torus). In this section we prove that as 
long as v(t, .) is smooth, the solutions to slightly viscous incompressible Navier- 
Stokes equations having Vo as initial data are smooth. 

We use the notation H"  for the Sobolev spaces H " =  Hm(IR 3) [respectively 
H ' =  Hm(T3)] and (',')m, t1" I1,~ for the corresponding scalar products and norms. 

Theorem 1.1. Let v=v(t, x) be a solution of (1.1) for O<_t< T, satisfying 

IIv011m+2<~ for some m>3,  (1.2) 
T 
S I V XVlLoodt< o0. (1.3) 
0 

Then there exists Vo=V o T; tlvollm+2, S Iv x vlL~dt such that, for every 0 < v < v  o 
0 

the solution to the Navier-Stokes equation 

& +(u. V)u=vAu+ V q + f  

div u = 0 (1.4) 

u(0,-) = Vo 
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is smooth on [0, T]. More precisely 

sup Ii u(O - v(O I!,~ < VTm (1.5) 
te[O,T] 

T 

for some ?,,, depending on T, llVolI,,+2, ~ IV x vlL~dt. 
0 

Let us emphasize here that T is not assumed to be small. Instead it is assumed 
that v(t) belongs to H "+2 for t e [0, T]. Indeed, assumption (1.3) was proven by 
Beale et al. [1] to be a sufficient condition for higher regularity. Their result can be 
stated as follows 

T 
Theorem 1.2 (Beale et al.). Assume S IV x vlr =dt < oe. Let s > 3, Vo ~ H ~. There exists 

0 
T 

a constant c depending on T, s, ~ IV x VlL~dt, flVot[~, such that 
0 

IIv(t)ll~e for t N T .  (1.6) 

In order to prove Theorem 1.1 let us consider the difference w = u -  v. Then w 
will satisfy 

~w 
f t  - v A w + ( v .  V)w+(w.  V)v+(w. V)w=vAv+ Vr 

divw = 0 (1.7) 

w(0 , . )=0 .  

We take the scalar product of (1.7) with w in H m, m > 3  and use 

I((v. V)w, w),,I =_< e~, II ~' I1,, IL w IL ~, (1.8) 

l(w. Vv; w)mI_-< c,,llvll~+ a Ilwll~ (1.9) 

for v E H  re+l, divv=0,  w ~ H  re+l, d ivw=0  (see [5]). 
Using the fact that - v(A w, w),, > O, we obtain 

d 
dt Ilwll~< vllAvll" +c'AIvL"+ ~llwll'~ + cmllwll2m" (1.10) 

Let us multiply (1.10) by e x p ( - c m i  ]lvn~+ lds) and consider the 

y= tlwllm exp ( -Cm ! ]lvtl~ + lds) . 

We obtain the inequality 

dy <vF( t )+Gy z 
Ji 
y(O)=O 

(1.11) 
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with 

and 

t 

F(t) --= IIAvllmexp-cml [IVl]m_~ ldS (1.12) 
0 

T 

G=cmexpcm S Ilvllm+ ,dt. (1.13) 
0 

We shall make use now of an elementary lemma: 

Lemma 1.3. Let T>0,  G>0 be given constants and let F(t) be a nonnegative 
continuous function on [0, T]. Let v o be defined by 

1 
Y0 = T (1.14) 

8 TG ~ r(t)dt 
0 

Then, for every 0 < v ~ v  o, every solution y>=O of (1.11) is uniformly bounded on 
[0, T] and 

. 3 T 

y(t)<Mln {~T~,12v ! F(t)dt } . (1.15) 

Proof of Lemma. Let us define e by 

~= Min {4T~,16v2G ( !  F(t)dt) 2} • 

dy 

(1.16) 

We divide (1"11) by ( 1 +  ~/e- Y) :(1 ~-~ 2<=vF+e'WeintegratebetweenO 

and t: 

1 >_> -eT-vr~F(t)dt. (1.17) 
o 

1 + y(t) 

. . _1~ / ~ r~ 1 /  7G . The choice e< a-f~d, implies eT<~  and, for V<Vo one has v!F(t)dt<- 4 

Indeed, if e = 16v2G F(t)dt the last inequality is an equality.and if e = 4T2G, 

it follows from 

~ - = Vo F(t)dt > v I F(t)dt. 
8TG o 

Thus (1.17) becomes 1 > 1 which implies (1.15). 
= 4  

1 + y(t) 
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We return to the proof  of Theorem 1.1. 
We apply Lemma 1.3 to (1.11) with F, G defined in (I.12), (1.13). We find v o 

T 
depending on T, m, S I[ v []., + 2dr such that, if 0 < v < Vo and as long as w(t) belongs to 

0 
H"  + 2, t < T, one has 

tlw(t)ll~<=7~v (1.18) 

T 
for some 7m depending on T,m, ~ Ilvll~+2dt. 

0 
Using standard calculus inequalities one can find bounds of the type 

I!w(t)ll~+ e < llv(t)llm+ 2 + I llVotl~+ 2 + ! [lf lt,~+2dtl exp(c ,~!  l[wll,~+ llvllmds ) • 

(1.19) 

Since the validity of (1.18) depends upon w(t) belonging to H m + 2 but not upon 
the size of IIw(011m+2, one can argue by contradiction and infer that IIw(t)llm+2 
cannot become infinite for t < T and that (1.18) is true for all t < T. We omit further 
details. 

2. Distorted Euler Equations 

In this section we prove breakdown of smooth solutions of a "semi-Lagrangian" 
version of the Euler equations. We start by recalling the Euler equation in IR" or T" 

Otui + ujOjui = Sip, j, i = 1 . . . .  , n; 

~iui=O (2.1) 

u(O, .)=u0(.). 

Here a~ = ~ ,  aj = ~ and summation convention is used. 

Differentiating (2.1) we obtain 

{ ~tU+(u.V)U+UZ=P 
Tr U = 0 (2.2) 

u(0 , . )  = u ,  

where U is the n × n matrix U = (0jth), i = 1, ..., n,j = 1, ..., n and P is the Hessian of 
the pressure P = (0~p), i,j = 1 . . . .  , n. The constraint Tr  U = 0 (incompressibility) is 
maintained if Tr  P = Tr  U 2. This means that p solves A p = Tr  U = , and therefore the 
matrix P can be expressed in terms of U: 

P = ( -  R~Ri(Tr U2)), i,j = 1,...,  n, (2.3) 

where R~ are the Riesz transforms defined by 

R~ = ( -  A)- 1/2~. (2.4) 
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Let us denote by R the operator acting on n x n matrix valued functions M = (m 0 ,  
i = l , . . . , n , j = l , . . . , n b y  

( Rm)i j = RiRk(mk j ) . (2.5) 

We identify scalar functions f with the matrices f .  I, where I is the n × n identity 
matrix. The (differentiated) Euler equations can be written as 

~, U + (u, V) U + U 2 + R(Tr U 2) = 0 

Tr U = 0 (2.6) 

u(0 , . )  = Uo(.). 

If one passes to Lagrangian coordinates in (2.6), that is, if one uses the change of 
~t 

variables ~ , x(t, ~) for x(t, ~) solving 

I dx 
Z =u( t ,x )  
x(0, ct) = ~, (2.7) 

the Euler equations (2.6) become 

cqtV+ V 2 + R(t) (Tr V 2) = 0 

Tr V= 0 (2.8) 

v(0, . )  = Vo, 

where V(t, ~)= U(t, x(t, e)) is the pullback of U and R(t) is the pullback of R 
through ~t: 

R(t)M = [R(M. (~t)-  1)]. ~t. (2.9) 

More precisely if kij(x, y) is a kernel for RiRj, a kernel for R(t)ij will be 

k~ j(cx, r) = kij(x( t , o0, x( t, fl) ) . 

(We used the well-known fact that determinant of Jaeobian of ~b t is one.) At t = 0 
the operator R(t) coincides with the Riesz operators R(0)=R;  this because 
x(0, ct)= ~. The distorted Euler equations are obtained from the genuine Euler 
equations (2.8) by freezing R(t) at t = 0 :  

{Ut + U 2 + R(Tr U 2) = 0 
U(O, .)= Uo. (2.10) 

Let us note that while (2.10) are valid approximations of (2.8) for a short time, the 
blow up arguments that we are going to give have no direct bearing on the Euler 
equations. 

Equations (2.1.0) are well-posed in a variety of spaces. For instance we can 
tl H 

consider the Sobolev spaces (H~) "2 of matrices with entries in H ~, s > ~. If s > 

H s are Banach algebras under pointwise multiplication; the operators Rj are 
bounded in H ~ (for any s, of course). We conclude that, if U is a solution of (2.10), 

d llgll~<c~tlgtl2~, 
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and the local existence and uniqueness of solutions of (2.10) follow in standard 
manner. 

We shall treat first the periodic case; we seek solutions to (2.10) which satisfy 
U(x + Le 3 = U(x) for any ei = (0 . . . . .  1 . . . . .  0) t and some L >  0. We may assume 
L = 1 without loss of generality. Alternately, we shall refer to U as being defined on 
the n dimensional torus T" = 1R"/Z ~. Let us denote, for a point x in T" by F~(x) the i th 
principal circle passing through x: 

F~(x )={yeT" l y j=x jmod t ,  j = l  . . . . .  n, j4:i};  i = t  . . . . .  n. (2.ti) 

Let us denote, for a matrix U, by S and J the symmetric and respectively 
antisymmetric parts of U: 

U + U* U -  U* 
S = 2 ; J = ~ '  where U* is the transposed of U. 

Theorem 2.1. Let U o be a smooth n × n matrix valued function on T" satisfying 
(i) Tr  Uo(x) = 0 for all x ~ T ~ 

(ii) There exists x o E T ~ and i, 1 <_ i <_ n such that 

suppJoc~(Xo)=O ( j o -  U°2U~- )  

and 

Uoudx~ <O (no summation). 
F~(xo) 

Then the solution of (2.10) having Uo as initial data breaks clown in finite time. 
More precisely the symmetric part of  the solution U(t, x) becomes infinite near 
Fi(xo) in finite time. 

Proof  Let us introduce first some notation. We denote for two matrices M, N by 
(M; N) the scalar product 

(M; N) = Tr  M N * .  (2.12) 

For  two matrix valued functions on T" we denote by (M,  N )  the scalar 
product 

(M,  N )  = S (M(x); U(x))dx.  (2.13) 
T n 

Let us first remark that the operator R is symmetric: 

( R M ,  N )  = (M,  R N ) .  (2.14) 

Let us break (2.10) into its symmetric and antisymmetric parts: 

OrS + S 2 + j2 + R(Tr U 2) = 0, (2.15) 

~fl + SJ + JS = 0. (2.16) 

We deduce from (2.16) that 

supp J(t , . )  C supp Jo.  (2.17) 
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Indeed, we can prove (2.17) by noticing that, for any fixed x ~ T", 

l d  
2 dt (J(t, x) ; J(t, x)) = Tr (SJ 2 + JXJ) = 2 Tr SJ 2 <__ 2re(t, x) (J(t, x) ; J(t, x)), 

where re(t, x) is the maximum of the absolute values of the eigenvalues of S(t, x). It 
follows from Gronwall's inequality that, as long as S(t, x) is smooth, if Jo(x)= O, 
J(t, x) = 0. Let ~b be an n x n matrix valued smooth function satisfying the following 
conditions: 

(a) supp~msuppJo  =0, 
(b) for every x e T", ~(x) is a symmetric, nonnegative matrix, i.e. ~b(x) = 7J(x) 2 

for some symmetric gJ(x). 
(c) R~,=0.  
(d) (So, q~) < 0. 
Let us postpone for the moment the construction of • and proceed with the 

proof. Taking the scalar product of (2.15) with • we obtain 

d ~- (S, ~ )  -]- (S 2, ~ )  • ( j 2 ,  ~ )  -F (n(Tr  ~-2), ~ )  = 0. (2.18) 

Now ( R ( T r U 2 ) , ~ b ) = ( T r U  2 , R ~ )  = 0  because of assumption (c) and of the 
symmetry (2.14) of R. Moreover, combining (2.17) and assumption (a), we deduce 
( j z ,  ~ ) =  0. Thus (2.18) becomes 

d 
dt (S, t~) + (S 2, ~ )  = 0 .  (2.19) 

t(S, ~)1 = ~T, Tr(S(x)~(x))dx <__ ~r" Tr(S(x)TJ(x)~(x)) dx 

<= ~ (Tr(S(x)TJ(x)) (S(x)TJ(x))*)'/2(Tr 7J(x)TJ(x))l/:dx 
T ~ 

= <(T~ Tr S(x)~(x)g/(x)S(x)dx)'/2(~T, Tr ~(x)dx) 1/2 

=(S2, q))'/g(~rTr~b(x)dx)l/2. 

Now 

It follows from (2.19) that 

d < 0 (2.20) (s, 
( S , ~ ) +  ~ Tr~(x)dx " 

T n 

We assumed in (d) that (S0, ~ )  < 0 and thus we infer that (S(t,.), q~) must become 

Trq~(x)dx 
- ~ for t not larger than T o - r- 

I(So, 
We are going to show now how one can construct • satisfying properties 

(a)-(d). Let us take a neighborhood V of Xo such that for y ~ V, Fi(y)c~suppJ0 = 0. 
Since Uoii(x ) = Sou(x), assumption (ii) implies 

I Soii(xol,..., x,..., Xo,)dx 
ri(xo)  
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is negative. We may assume that 

S o , < 0  for all y e V .  
r~(y) 

Let ~p(x)= ~p(x) 2 with ~p(x) a smooth function defined in T", independent of the i th 
variable (that is, constant on circles Fi(z ) for any z~ T ") with support in 
K--  ~J F/(y), and identically 1 on a set K 1 = U Fi(Y) for some x o ~ V 1 CC V. We 

y~V yeV1 
define ~(x) to be the n × n matrix having all entries equal to zero with the 
exception of the entry ~(x), set to be equal to ~0(x). Clearly properties (a), (b), and 
(d) are satisfied from construction. Condition (c) is satisfied for a matrix • if its 
columns are divergence free. In the constructed matrix the only nonzero column 
is the i th and 0~0(x)=0. This completes the proof of Theorem 2.1. 

3. Solutions with Spherical Symmetry 

In [4] Foias showed that Eq. (2.10) in the whole space P," admits solutions of the 
form U(t, x)= fl(t, [xl)(I-nrc(x)), where t is the identity matrix and re(x) is the 
projector on the direction x, 

(xixs~ 
n(x)=\[xl2/1 i , j = l , . . . , n .  (3.1) 

Moreover he obtained a simple equation for the scalar quantity fl which blows up. 
We shall generalize slightly this result, allowing antisymmetric parts in U(t, x). The 
main reason behind our desire to have nontrivial antisymmetric parts in U(t, x) is 
that they correspond to the vorticity in the case of genuine Euler equations. 

Let A be a rotation, A ~ O(n). We denote for a scalar function in IR", J; by f4 the 
composed 

fA(x) = f (Ax) .  (3.2) 

For a matrix valued function M we denote by MA the matrix with entries (MA)u 
= (Mu) A. We define the operations TA and TA on n x n matrix valued function as 

TAM = A -  1M AA , (3.3) 

RAM = (det A)A 1 M A A .  (3.4) 

Finally, for a matrix valued function U we define LA(U) by 

LA(U)=TA(S)+TA(J), where U = S + J ,  (3.5) 

S=½(U+U*), J=½(U-U*) .  Let us denote by N(U) the operator giving the 
distorted Euler equation in IR': 

N(U) = ~tU + U 2 + R(Tr U2). (3.6) 

Proposition 3.1. For any A E O(n), N is covariant with respect to L~: 

LA(N(U)) = N(LA U). (3.7) 
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Corollary 3.2. I f  the initial data U o is invariant with respect to A, i.e. if LA(U o) = Uo ,  

then the solution U(t, x) is invariant with respect to A, 

LA(U(t, . )) = U(t, . ) . (3.8) 

Proof of Proposition 3.1. Let us take the symmetric and antisymmetric parts of 
N(U), 

N(U) + N(U)* = c~tS + $2 + j2 + R(Tr U 2) (3.9) 
2 

N ( U ) - N ( U ) *  
=~f i  + SJ + JS.  (3.10) 

2 

Applying TA to (3.10) we obtain 

TA(N(U)~-~N(~T)*~ =O, TA J-~(TAS)(TAJ)-~-(TAJ)(T,AS)_.~ N(LAU)--(N(LAU))* 
2 

In order to check the TA covariance of the symmetric part of N(U) we make use of 
the well-known covariance with respect to rotations of the Riesz transforms ([6]) 

TA(Rf)=R(fA) (3.11) 
for any scalar function f 

We check now that Tr(LAU)2= (Tr U2)A . Indeed 

Tr (LA U) 2 = Tr ((TAS + 7"A J) 2 ) = Tr((TAS) 2 + (TAJ) 2) = Tr(TA(S 2 ) + TA(J2)) 

= T r A -  1($2 + J2)AA = T r ( S  2 + d 2 ) a  = (Tr U2)A . 

Applying TA to (3.9) we obtain 

= + + U) z) 

N(L A U) + (N(L A O))* 
2 

This proves the proposition. Corollary (3.2) follows from uniqueness of solutions 
of N(U) = 0. 

Let us restrict our attention for a moment to the case n = 3. Any antisymmetric 
matrix J defines uniquely a vector co e ][(3 such that Jv = co x v for any v 6 R3. Here 
co xv is the vector (co2V3--co3/.)2, co3/)I--coIU3, colV2--CO201) t and clearly co is 
determined by col =J32, o)2=J13, c°3=J21- The matrix j2 can be computed in 
terms of the vector co: 

j 2  = _ [col2(I - u~o), (3.12) (co,co j) 
where r ~ =  io21 z . 

We note here that if J(x) is the antisymmetric part of the Jacobian of a function 
u(x), i.e. J(x) =½(0jui- Oiuj), i,j = 1,2, 3, then co(x) =½(V x u) (x). If J(t, x) satisfies 
the antisymmetric part of (2.10), i.e. if 

~tJ + SJ + JS = O, (3.13) 
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then forming the quantities ~0(t, x) corresponding to J(t, x), we obtain from (3.13) 
the equation 

@tco = Sco . (3.14) 

This is the analogue of the vorticity equation in the case of Euler equations. 
Summarizing, Eq. (2.10) is equivalent in the three-dimensional case to 

gtS + S 2 q_ j2 _}_ R(Tr S 2 + Tr jz)  = 0 (3.15) 

coupled with (3.14), where j2 is given by (3.12). We can consider the system (3.14), 
(3.15) with jz  defined by (3.12) in any number of dimensions: S will be a n x n 
symmetric matrix and co an n vector. 

Proposition 3.2. Assume that the initial data for the system 

~tco = Sco, (3. i6) 

(,)t S _1_ 8 2 + j 2  -t- R(Tr (S 2 + j2)) = 0, (3.17) 

(o~imj'~ i , j= 1, . . . ,n are of the form where y 2 =  _[(Dl2( i_goj) ,  7~co = ~', ]col 2 ,]' 

x 
coo(X) = 7o(IXl) • ~ ,  X ~ R n ,  (3.18) 

So(x) = rio(lXl)(I-nrc(x)), re(x) 9iven in (3.1). (3.19) 

Then for as lon9 as the solution S(t, x), co(t, x) stays smooth, it has the form 

co(t, x) = 7(t, Ix]) 1-~1, (3.20) 

S(t, x) = r ig  Ixl) ( I -  n~(x)) , (3.21) 

where 7, fl are two scalar .functions satisfyin9 

n t r 

O,fl + r2 _ 72 - r" ! s"- 1 (nri2 _ 72)ds = 0 , (3.22) 
I 

~t7 + ( n -  1)Tfl = 0 ,  (3.23) 

7(0, r) = So(r), ri(0, r) = rio(r), (3.24) 

7(t, 0) = 7(t, oo) = 0 ,  fl(t, 0) = ri(t, oo) = 0 .  (3.25) 

Remark 1. The equation obtained by Foias is the particular case 7(t, r ) -  0 arising 
from 70 -= 0. 

Remark 2. In n =  3 initial data of the form (3.18), (3.19) are those which satisfy 
L A U  o = Uo, for all A e 0(3), TrUo =0. 

We start by computing R f  for a radial function. 

Lemma 3.3. Let f = f (r) be a smooth function defined for r> 0 decaying sufficiently 
at infinity ( for  instance f([x])eLlc~L 2 in ]R"). Then 

R f  = - [9I + kn] , (3.26) 
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where g and k are radial functions defined by 

1 r 
g(r) = -~ ! s" lf(s)ds, (3.27) 

n r 
k(r) = f ( r ) -  V ! s"- l f (s)ds . (3.28) 

Proof. Let us use the notation f ' =  ~fr' r = Ixl. Then 

~, f (r )  - - 6 i j +  ( ) 
"J = r ~ - -  " 

On the other hand 

A(o(r)6ij + h(r)xixj) = ( Ag + 2h)6ij + ( Ah + ~- ' )  xix j . 

Thus ~2 f (r) = A(g(r)6ij + h(r)xixj) if the system 

Ag + 2h = f ' ( r ) ,  (3.29) 
r 

(Ah+ = ( @ ) '  is solved. (3.30) 

Now (3.30) follows from (3.29) if 

(Ag) '+2h'=r Ah+ , i.e. if (Ag)'=(rh')'+nh'. 

This follows if A g = (rh)'+ n -  1 (rh). So (3.30) is a consequence of (3.29) if g '=  rh. 
r 

With this choice for g we solve (3.29): 

I t 

(rh)' + n -  1 rh + 2h = - -  
r r 

This gives (r"k)'= r"f' for k=  r2h. We obtain the formula (3.28) for k: 

k(r) = f ( r ) -  ~ i s"- l f (s)  ds. (3.31) 
o 

Then g'= i k .  In order to check (3.27), let us note that 
r 

( r i g + k - f ) ' =  n-k + k ' - f ' = O .  
r 

Thus, since all these functions vanish at infinity we obtain 

f =  ng+ k. (3.32) 
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Therefore (3.31) and (3.32) imply (3.27). We note that (3.32) follows also from the 
familiar RiRi f=  - f  (see [6]) by taking the trace in (3.26). 

Proof of  Proposition 3.2. We shall use the ansatz a~(t, x)=~(t ,  Ixl)~, S(t, x) 

= fl(t, I xi) ( I -  nrc(x)) and check that Eqs. (3.16), (3.17) give consistent equations for 
fl,7. Equation(3.16) becomes O,7=(1-n)f17, i.e. (3.23). Now S Z = f l 2 ( I - n n )  2 
= f12(I + (n 2 - 2n)n) because n z = n. Also j2 = _ 72(1_ n). Indeed ~zo = n(x) 
because x and 09 define the same direction. In order to proceed we put f ( r )  
=Tr (S  2 +j2) ,  and compute 

Tr(S z + j2) = f ( r )  = ( n -  t) [nil z - ,;z]. (3.33) 

According to Lemma 3.3 it follows that 

R(Tr(S 2 + j z ) )  = _ (gI + kn) (3.34) 

with g,k  defined by (3.27), (3.28) and f by (3.33). At this point Eq. (3.17) has the 
form 

( ~ t f l ) ( I - n n ) + ( f i z - T Z - g ) I  + ( ( n Z -  2n)fiz + ~,;z-k)n=O. (3.35) 

The only way in which (3.35) can possibly give a consistent equation for/~ is if it 
factors out (I-nrc),  that is if 

( n  2 - -  2n)fl 2 + 7 2 - -  k = - n(fl 2 -"~z _ g)- (3.36) 

But (3.36) is equivalent to 

(n - 1) (n[? - 7 2) = ng + k, 

which in view of (3.33) is nothing but (3.32) in disguise. Therefore Eq. (3.35) 
becomes 

(0,fl + f12 _ ~,2 _ g) ( I -  nn) = O, (3.37) 

which is satisfied if fl solves (3.22) because (3.27) and (3.33) imply 

n - -  r _ 1 n -  
g ( r ) -  ~ w - !  s l (n~2-~2)ds .  

We present now the blow-up argument. 

Theorem 3.4. Let us assume that beside the conditions (3.18) and (3.19) of 
Proposition 3.2 being fulfilled, the initial data for the system (3.16), (3.17) satisfy 
also 

7o(r)=0 for 0_<r_<R 1 for some R I > O ,  (3.38) 

flo(r)=0 for O < r < R  for some O < R < R 1 ,  (3.39) 
~tR 

S flo(r)r " - ldr<O for some 1<~, (ct near 1). (3.40) 
R 

Then the solution to the distorted Euler equations (3.16), (3.17) having 

~o0(x) = 7o(Ixt) x So(x) =/~0(Ixl) ( I -  n~(x)) 
IXl 
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for initial data breakdown in finite time. More precisely S breaks down near rxl = R. 

Proof. As proven in Proposition (3.2) the solutions are to(t, x) = 7(t, lxl) ~xl' S(t, x) 

= fig [x]) (I--  nr 0 with ?, co satisfying (3.22)-(3.25). Since (3.23) can be integrated, 

t 

7(t, r) = 7o(r) exp ~ (1 - n)fi(s, r)ds, (3.41) 
0 

it follows from (3.38) that 

;~(t,r)=0 for O<_r<_R~. (3.42) 

Therefore, for 0_< r_< Rl, Eq. (3.22) becomes 

n -  1 i s"- infl2(s)ds = 0. (3.43) a,fi + fi2 _ % ~ -  0 

Now we claim that from (3.43) it follows that property (3.39) is preserved by fi(t, r), 
t > 0, as long as both fi and 7 are smooth. Indeed multiplying (3.43) by fi(t, r)r ~- ~, 
and integrating between 0 and R one obtains 

1 d R R R ~ fi(t, r) 
2dt  ! fiz(t'r)r"-ldr+ ~ f is( t ' r )r"- ldr=(n-1)nS fi2(t'O)O"-I ~ dr 

0 0 q r 

o r  

1 d R ldr aS l [  ! ~Q)dQ-fi(t, ! = fiE(t, r)r ~- n(n-- 1) r) 2 dt fiE(t' r)r~- o dr. 

Thus 

d ~ fiE(t, r)r" - i  dr <_ 2 R fi(t, ~ as-- fl(t, - -  Max n(n -  1) O) fiE( t, r) r"- ldr, 
dt o - ~to,a] s 

and therefore, as long as fi is smooth, 

f f iE(t,r)r"-ldr<Ifi~(r)r"-ldrexpEi Max n ( n - 1 ) I  ds-fi(z,Q) dz, 
0 0 0 Ce[0 ,R l  k, q S 

and by (3.39) it follows 
R 

.[ fiE(t, r)r ~ - i dr = O, t > O. (3.44) 
0 

Let us take now e > 1 such that (3.40) is valid and e small enough such that 
aR<R1,  n ( n - 1 ) l o g e <  1. Integrating in (3.43) between R and aR we obtain 

d ~R aR 
- -  I fi(t, r)r"- 1dr + (1 - n(n -  1) loga) I fiE( t, S) sn- ids 
dt R R 

R 

<= n(n -- 1) loga S fiE( t, S) s~- lds = 0. (3.45) 
0 

Now 
aR 

I fiE(t, s)s ~- lds >= 
R 

R" c~"- 1 t, s)s ~- i ds . 
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It  follows that  

dt R -R~-~_i~ fi(t,s)s"-~ds <=0,  (3.46) 

and since 
aR 

S rio(r) rn- 1dr<O, 
R 

eR  

we conclude that  .[ fl(t, r)r ~- 1dr becomes - o e  for t no t  larger than 
R 

R"(~"- 1) 1 

n ( 1 - n ( n - 1 ) l o g ~ )  ~ flo(r)r,,_ l d r ' 

One  can easily obta in  a b low-up a rgument  for Eqs. (3.22), (3.23) at the origin if 
one drops the requirement  that  flo(0)=0. However ,  this would lead to functions 
S(t, x) which are not  defined at x = 0. 
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