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Abstract. Let Hp = -½A + V denote a Schr6dinger operator, acting in Lp(~V), 

1 < p <  oo. We show that tr(Hp)=a(H2) for all p~[1, oo], for rather general 
potentials V. 

Introduction. In [12, 13], B. Simon conjectured that a(Hp) is p-independent, where 
Hp = - ½A + V is a general Schr6dinger operator in Lp(~'). Partial results on this 
problem are contained in Simon [12], Sigal [10], Hempet, Voigt [5]. 

In the notations of Sect. 1, our main result reads as follows. 

Theorem. Let V =  V + -  V_, V± ~ O, where V+ is admissible, and V _ ~ I ~  with 
c,(V_) < 1. Then tr(Hp) = o'(H2) for 1 < p < oo. 

In addition, if2 is an isolated eigenvatue offinite algebraic multiplicity k of lip,for 
some p~[1, oo], then the same is true for all pE[-1, ~ ] .  

The proof of this result is contained in Propositions 2.1, 3.1, and 2.2. 
In Sect. 2 we prove the inclusion tr(H2) c tz(Hp), following ideas of Simon and 

Davies. 
In Sect. 3 we show that the integral kernel of(H E - z) -n, for ne N, n > v/2, defines 

an analytic ~(Lp(R'))-valued function on  p(HE) , which coincides with (Hp -- z)-" for 
z real and sufficiently negative. This implies tr(Hp) c o'(HE) , by unique continuation. 

A different situation, where an integral kernel determines operators with p- 
dependent spectrum, can be found in J6rgens [6; IV, Aufg. 12.11 (b)]; note that the 
kernel in J6rgens' example is the resolvent kernel of the differential operator 

d Ed 
dx-x x dxx on (0, oo), a t z - - - 2 .  

1. SehrMinger Operators in Lp(~ ~) 

First we recall briefly several facts concerning the semigroup associated with the 
heat equation. For brevity, we shall write Lp instead of Lp(~'), in the sequel 
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(analogously, C2 :=  C2(N~), etc.). For teC, Re t > 0, we define k,~L 1 by 

kt(x): = (2rot)- ~/2 exp ( -  Ix 12/20. 

For 1 < p < oe we define Uo,p(t)e~(Lp) (t~C, Re t > 0) by 

Uo,p(t)f : = k,*f (feLp), 

and further Uo,p(0 ) = I. For  1 < p < oo, Uo,p(. ) is a holomorphic semigroup of angle 
n/2; let - H 0 ,  p denote its generator. Further denote Ho,oo: = Ho,l*. 

Next we introduce the class of potentials V to be considered in this paper. 
Following Voigt [14], we define classes of potentials by 

g~ :=  {V~La,,o~;esssup j Ig~(x-y)llV(y)ldy< oo}, 
x~N v I x - - y l < l  

where 9v is the usual fundamental solution of ½d. Note that this class is slightly 
larger than the class K~ in Aizenman, Simon [1], Simon [13]. For V~g v we define 

cv(V):=lim(ess sup j I gv(x- Y) II V(y) ldy). 
• lO xE• v Ix-y]<c~ 

Obviously gv c Ll,l . . . . .  if for all ve~ ,  g l  = Ll,l . . . . .  if, and cl(V) = 0 for all V~/(1. 
A potential V > 0 will be called admissible if Q(Ho,2)~ Q(V) is dense in L2; cf. 

Voigt [14]. In particular, V > 0 is admissible if VeLl.lo¢(G ), where G = (~ c R ~ is 
such that R~kG is a (closed) set of Lebesgue measure zero. 

Throughout this paper we shall assume 

V = V + - V _ ,  V±>O, 
(1.1) 

V_ ~/(v with c~(V_) < 1, V+ admissible. 

In the following proposition we denote the truncation of V by 

V~"):=(sgn V)(IVI /x n) (heN). 

1.1. Proposition. Let V satisfy (1.1), and let 1 < p < o~. Then, for t > O, the limit 

Up(t): = s - lim exp ( -  t(Ho,p + V~"))) 

exists, and (Up(t);t > O) is a Co-semigroup on Lp. The Feynman-Kac formula 

Up(t)f(x)= E x { e x p ( -  i V(b(s))ds)f(b(t)) } 

holds for all fELp. 
Here, E x and b(') are as in Simon [13]; cf. Reed, Simon [9], Simon [11]. The 

proof of this proposition can be found in Voigt [ 14; Proposition 5.8(a), Proposition 
2.8, Remark 5.2(b), Proposition 3.2, Proposition 6.1(c)]. 

We denote the generator of (Up(t); t > 0) by - H p ,  for 1 < p < oe, and we shall 
henceforth write Up(t)= exp(- tHp) .  Also, H~ = H*. More detailed information 
about the operators Hp, in particular for p = 1, p = 2 can be found in Voigt 1-14]. 
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Note that H 2 is the form sum of -½A and V; cf. Voigt [14; Remark 6.2(c)]. (It 
follows from Devinatz [3; Lemma 4] that V_ is Ho,2-form small.) 

2. ~(H2) ~ ~(H~) 

In this section we show that interpolation, duality, and p-q-smoothing lead to the 
following result. 

2.1. Proposition. Let V satisfy (1.1). Then p( H p) c p(H2) for all pc[ l ,  ~ ] ,  and 

(H v - z)- 11Lp c~ L2 = (H2 - z)- 11L v ~ L2 (zep(Hp)). 

This result was stated in Simon [12, 13]. The argument given there was based on 
interpolation between the resolvents (H v -  z) -1 and (Hp,-z)  - t ,  for z~p(Hv)= 
p(Hp,). It is not immediate, however, that these resolvents coincide on Lp~Lp,, as 
can be seen from J6rgens' example mentioned in the introduction. This gap in 
Simon's argument was closed by E. B. Davies (private communication). Compare 
also Hempel, Voigt [5; Proposition 3.1]. 

Proof of Proposition 2.1. (i) (due to E. B. Davies) Let 1 < p < q < o~, t > 0. Then 
e-tnpe~(Lp, Lq); cf. Voigt [14; Proposition 6.3]. This implies 

e- tnpH v c Hqe- trip. (2.1) 

Assume additionally 2~p(Hv)c~ p(Hq). Then (2.1) implies 

(nq - 2)- le-tnp = e-tnp(Hv - 2)- 1. 

For t ~ 0 we obtain 

(Up - 2)- 1 I L v n Lq = (Hq - 2)- 1 I Lp c~ Lq. (2.2) 

(This holds also for q = Go because e-tnpfis o(L~, L1)-continuous for f s L  v c~ L~.) 
(ii) Let 1 < p < 2, lip +t /p '  = 1, and let 2ep(Hp) ( = p(Hp.)). Then (H e, - ,~)- 1 

I Lp c~ Lp, = (H v - 2)- z I Lp c~ Lp,, by (2.2).  The Riesz-Thorin convexity 
theorem implies that ( H ~ -  2)-z is continuous as an operator Rz on L2. 

For f eL2  nLp, (2.1) implies 

(n  z - )~)e-mp(nv - 2 ) - i f =  e-,npf. 

For t ~ 0  we obtain ( H 2 -  2) ( H p -  2 ) - l f = f .  This implies ( H 2 -  2)R~. = I, and 
hence 2sp(H2). • 

2.2.Pro0osition. Let V satisfy (1.1), and let 1 < p < ~ .  Assume that 2 is an isolated 
point of a(Hv). Then 2 is an eigenvalue of Up with finite algebraic multiplicity if and 
only if the same is true for H2. In this case, 2 is real and a pole of first order of the 
resotvents of Hi, and H 2, and the multiplicities of ,~ as an eigenvatue of lip and H2 
coincide. 

Proof Without restriction p < ~ .  (Duality for p = ~.)  Note first that the selfadjoint 
operator H2 can only have real eigenvalues which are poles of first order of the 
resolvent of H2. Now the assertions follow from Proposition 2.1 and Auterhoff [2; 
Theorem 1.5]; see also Hempel, Voigt [5; Theorem 1.3]. • 
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3. (r(Hp) c o'(//2) 

In this section we shall derive properties of the integral kernel of(H2 - z)-", for ne N, 
n > v/2, in order to show the following result. 

3.l.Proposition. Let V satisfy (1.1). Then p(Hz) ~ p(Hp), Jot all p~[1, oo]. 
The proof relies on the following two auxiliary results which will be proved 

below. 

3.2. Lemma. Let X be a Banach space, T a closed operator in X, p( T) ~ ~5. Then p( T) 
is the domain of holomorphy of ( T -  z)-", for n = 1, 2 . . . . .  

3.3.Proposition. Let V satisfy (I.I), and let n~N, n > v/2. 
(a) Then (H 2 - z)-" is an integral operator, for z~p(H2). 
(b) Let G(")(x,y;z) denote the integral kernel of ( H z - z ) - ' .  Then, for any 

K c ~ p ( H J  there exist constants C, tl > 0 such that 

[G(")(x,y;z)[ <Ce nix yl ( z ~ K , x , y ~ V ) .  

Proof of Proposition 3.1. By duality, it is sufficient to consider the case 1 < p < 2. Fix 
n~N, n > v/2, and let G(")(x, y; z) be as in Proposition 3.3. 

First we show that G (") (.,.; z) defines an analytic N(Lp)-valued function G~")(z) on 
p(H2). To prove this, we remark that for any qS, tpeC~, the mapping 

p(n  2) ~ z ~ ~ ~ G(")(x, y; z)c~(y)ff(x)dxdy 

is holomorphic. Furthermore, for any K ~ ~ p(Hz), there exists a constant C' such 
that 

II a~")(z) IleaL,) <-_ C' (z6g),  

by the estimates in Proposition 3.3(b) and Young's inequality (cf. Reed, Simon 
[9; p. 323). 

Next, the fact that e -m- coincides with e -m~ on LpC~Lz implies that G~")(z) 
coincides with (Hp - z)-" for z real and sufficiently negative. 

It follows by unique continuation that the domain of holomorphy of (Hp - z)-" 
contains p(Hz). Hence, p(Hp)~ p(H2), by Lemma 3.2 above. • 

Let us now prove the auxiliary results. 

Proof of Lemma 3.2. Clearly, (T - z)-" is holomorphic on p(T). Let spr(A) denote the 
spectral radius of an operator AeM(X).  From the well-known facts (cf. Kato 
[7; p. 27, p. 373) 

spr((T - ~)- 1)= inf II (T - 0 - "  II x/. 

spr((T - ~)- 1) > dist(~, a(T))-  1 (~p(r ) ) ,  

it is clear that t[ ( T -  0 - "  II > dist(~, a(T))-" (~p(T) ) .  • 
For several reasons, we include a proof of Proposition 3.3 (instead of simply 

referring to Simon [13; Theorem B.7.1 (c')]): The estimate given in [13; loc. cit.] is 

1 K c c p(H2) means: g compact and/( < p(H2) 
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not uniform for z ~ K  c = p(H2) (although one might be willing to believe that it 
must be true). Also, the proof of the (essential) Lemma B.7.11 in [13] is very sketchy, 
and it is our aim to give a complete proof of reasonable length. Finally, our proof will 
show that it is advantageous to consider (Hp - z)-", n > v/2, n ~ N, instead of arguing 
with (Hp - z)- 1 directly (which would be possible, but involve more estimates, like 
[13; Theorem B.7.2 (1), (2), (4)]). 

Since we shall have to consider e-tnp as an operator from Lp to Lq, q ~ p, we shall 
frequently drop the subscript p and simply write H = -- ½A + V, in the sequel. The 
proof will involve several steps, following rather closely the outline given in [13; 
proof of Lemma B.7.11]. For the remainder of this section, the assumptions of 
Proposition 3.3 are always assumed to hold. 

3.4. Lemma. Let 1 <= p <= q <= ~ ,  s o > O. Then there exist constants C = C(p, q, So), 
A = A~, q, So), such that for e ~ R ~, Iel < eo, t > 0, we have 

II e ' '~etae- ' '~ llp,q ~ C t-tea',  

where 7: = (v/2)(p- 1 _ q-  1). 

Proof (compare Simon [13; Lemma B.6.1]). Let e~R ~, [el < eo. Clearly, 

K,(x,y;t):=(2nt)-~/2e~'(x-r)exp( [x~tYl2) ,  

is the kernel of e~'~d~/2)ae -''~. By Young's inequality (cf. Reed, Simon [9; p. 32]), it is 
enough to estimate It K~(0, "; t)11~, for s: = (1 + q-  1 _ p -  1)- 1. Now, 

II g~(0,-; t)tl~ _-< ct-(v/2)(1-s-1)[ ~ e ~o'/tl'l -(s/2)l~tlZdtl] 1/s, 
R v 

and the term in square brackets can be estimated by 

eS~o'/~l"ldrl -}- ~ e -(s/4)l"12 d~l <= c'tV/2e 4se2t + c". • 
trt[ =< 4~: 0 . ~  It/I> 4, 0 .~-  

3.5,Proposition(compare [13; Eq. (BI1)]). For all l < p < q <  oo there exist 
constants C = C(p, q), A = A(p, q) such that for all t > 0 we have 

II e - 'H II,,~ ~ Ct-~eat, 
where ~ = (v/2)(p- 1 _ q - 1). 

Proof. This follows from Devinatz [3; Lemma 2] combined with duality and 
interpolation as described in Voigt [ 14; proof of Proposition 6.3]. Under the slightly 
stronger assumption c~(V)= 0 a simpler proof can be found in Simon [13; loc. 
cit.]. • 

3.6.Lemma (compare [13; Lemma B.6.2(b)]). Let 1 < c  <cv(V) -1, 1/c + 1/c'= 1. 
Then, for any eeR  ~, 

[I e"Xe-tne-~x Ilp,q < He -t(-(1/2)a+cV) Ilp,q ][ e l /C c'~.Xe(t/2)Ae-C,,.x Ilp,q .a/c' 

Proof. Let e~R ~ and write w (x )=e  "'~. Also, let hECf ,  g : = w - l h .  Factorizing 
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1Or= l hl~/~.lw-C'hl~/~', it follows by HSlder's inequality in function space that 

t(e-tHg)(x)[ < [(e-"-~li2)a+cV)rhl)(x)]ll~.[(e~tt2)alw-~'h[)(x)]li~'. 

Now, multiplying by [w(x)[, taking q~h powers and integrating, we obtain 

S l w e - ' n w -  lhlqdx < ~ [e -  '~-(1/2)A + < V ~ ] h l ] q U . [ w % . l Z ~ a  w-<'lht] q/¢'dx 

< {~(e-'(-(1/z~+~V~ihi)qdx}ll~.{~(w~'e('/2~aw-~'ihi)qdx}li~" ' 

which implies 

] lwe-mw-Xhl lq< [le-'(-(~le)~+~v) p,qXl<llhllll~llw~'e"lZ)aw-~'ll~{~'ilhll~l~'. • 

3.7. Proposition (compare [13; Theorem B.6.3]). Let  t < p < q < o g ,  c~>) ,= 
(v/2)(p- 1 _ q -  1), and So > O. Then, for  z real and sufficiently negative, there exists  a 
constant C such that 

II e**(g - z ) - ' e - ~ ~  llp,q < C (ee ~ ,  I~1-5 ~o). 
Proof. For  CeC~,  we have (with w: = e ~'~) 

CX3 

(H - z)-~(w - l dp) = c~ ~ e'Zt ~- 1e-re(w-  l dp)dt, 
0 

and hence 
oo 

II w ( n  - z)-~w - 1¢ Ilq < c, ~ II we - 'Hw-  1]l ~,~e'~t=- 1dr" H ¢ I1~ 
0 

oo 
l l c i l  wC'ettl2)aw-C' 11c" tz ~ -  = II,,q e t ldt '  il¢ lip < c= S II e-i(-(il2)zl+cV) p,~ 

0 

(by Lemma 3.6) 
~3 

<= c~ S [C1 t - ~e a 1~] lie [C2t - ~e a2t] llC'etZt~ - l dt" [I ¢ ][ p 
0 

(by Proposition 3.5 and Lemma 3.4) 

<= C3 7 t-~+~- leAt+rZdt" II ¢ lip < C,. II ~b lip, 
0 

provided A + z < 0. • 

3.8. Proposition. For any K c c p(H2), there exist eo = so(K)> 0 and a constant 
C = C(K, ~o) such that K c p(e~'~H2 e -  ~.x) for  [el < e o, and 

[I e~'~(H2 - z)- 1 e-  ~'~ 1[ = [] (e~XH2 e -  ~.x _ z ) -  1[[ ~ C (] el =< e o, zeK).  

Proof. As W~ contains the form domain of H2, the operators Os are [H2t 1/2- 
bounded and hence H2-bounded with relative bound zero (j = 1, . . . ,  v). This implies 

e~'~H2e -~'~ = H 2 + e 'V - ½ e  2, 

for at1 eeR ~. Now the identity 

(H z + e' V - ½e 2 - z)  = (I  + (e' V - ½e z) ( H  2 - z ) -  1) ( H  2 _ z) 
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implies the desired conclusion. • 
We can now finally proceed to the proof  of Proposi t ion 3.3. 

Proof of Proposition 3.3. Fix n~ N, n > v/2, and choose w real and so negative that, by 
Proposi t ion 3.7, 

11 e~"~( n - w)- "/2e -e.x IIx,2 + II e"X( H -  w)- n/2e- e.x II 2,~ --< C (3.1) 

for all I~1 < 1, with some constant  C. 
Now let K c ~ p(Hz) and z~K.  Taking rl th powers of the resolvent equat ion 

( n  z - z ) -  1 = ( H  z _ w ) -  1 + ( z  - w ) ( H  2 - w ) -  I (H z - z ) -  1, 

we obtain 

n n 

;=ok  J /  

To  prove Proposi t ion 3.3, it is clearly enough to show that, for any 0 < j  < n, the 
opera tor  

(H2 - w)-"(H2 - z) -s = (H2 - w)-"I2(H2 - z)-S(H2 - w) -'/2 (3.3) 

is an integral opera tor  with kernel G,s(x, y; z) satisfying 

IG,s(x,y;z)l < C.je-~.J Ix-yl (z~K,x,y~E~),  (3.4) 

with some positive constants C.j, ~.i" 
So let 0 < j  ~ n. By Proposi t ion 3.8, there exists % > 0 such that 

l Ie~'X(Hz-z)-ie-~x H < C' (le] <eo,z~K) .  (3.5) 

By (3.3) we have 

ee 'X(H2 - -  w ) - n ( H  2 - z)-  Je-~'~' = (ee 'X(H2 - w ) -  n / 2 e -  ~.x)(e~.~(H2 _ z)-Je-~'~) 

• (e*'X(H2 - w)-"/Ze-,.x), 

and hence it follows from (3.1), (3.5), that 

[le~'x(n2 - w)-"(n2 - z)-~e-~'Xlll,~ _-< C" (1~1 < eo,z~K) • 

Now it follows from a classical theorem of Dunford  and Pettis ([4; Theorem 2.2.5, p. 
348]; see also Simon [13; Cor. A.1.2]), that  the opera tor  e~~(Hz -w)  -" 
(H 2 - z ) - j e  -~'~ is an integral operator,  and its kernel G,~.~ (x,y;z) satisfies the 
estimate 

IIG,j,~(',';z)N~ < C"  (lel <eo,z~K) .  (3.6) 

In particular, the above statements apply to ~ = 0, and we see that  ( H 2 - w ) - "  x 
(H2 - z )  - i  is an integral opera tor  with L~-kernet  G,,(-, "; z); clearly, 

e~~x-r)G.j(x, y; z) = G.i,~(x, y; z). 

Therefore (3,6) implies 

e~ol~-YllG,j(x,y;z)l ~ C" (z~K). 1 
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