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Abstract. Let H = -  A + V on /z(;y), where V(x), x~7/, are i.i.d.r.v.'s with 
c o m m o n  probabi l i ty  distr ibution v. Let  h(t)= I e-"Vdv(v) and let k(E) be the 
integrated density of states. It  is proven: (i) If h is n-times differentiable with 
h(J)(t) = O((1 +J t I) -=) for some c~ > 0, j = 0, 1 . . . . .  n, then k(E) is a C" function. 
In particular,  if v has compac t  suppor t  and h(t) = O((1 + I t[) -=) with c~ > 0, then 
k(E) is C °.  This allows v to be singular continuous.  (ii) If  h(t) = O(e -~l~t) for some 

> 0 then k(E) is analytic in a strip abou t  the real axis. 
The  p roof  uses the supersymmetr ic  replica trick to rewrite the averaged 

Green 's  function as a two-point  function of a one-dimensional  supersymmetr ic  
field theory which is studied by the transfer matr ix  method.  

1. Introduction 

The one-dimensional  Anderson model  is given by the r a n d o m  Hami l ton ian  H =  
H o + V on/2(Z),  where 

(l-Iou)(x) = ~(u(x + 1) + u(x - 1)) 

and V(x), x~Z, are independent  identically distr ibuted r a n d o m  variables with 
c o m m o n  probabi l i ty  distr ibution v. We will denote  by h its characterist ic function, 
i.e., h(t) = S e-i~Vdv(v). 

Let A be an interval in ?7, we will denote  by H a the opera to r  H restricted to I2(A ) 
with bounda ry  condit ion u(x) = 0 for x not  in A. 

The integrated density of states, k(E), is defined by 

k(E) = lim # {eigenvalues of  H a  < E}. 
IAI~ce 
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It is a consequence of the ergodic theorem that for almost every potential the limit 
exists for all E and is independent of the potential [14]; k(E) is always a continuous 
function [5]. Under some mild condition on v k(E) was shown to be log-Holder 
continuous [6] and Holder continuous on compact intervals [7]. 

Without restrictions on v we cannot expect too much more regularity. There is an 
argument of Halperin (see [8]) that shows that when v = ½6(v) + ½,~(v - a), given any 
ct > 0 one can choose a so that k(E) is not Holder continuous of order ~; in particular 
it gives examples where k(E) is not C I. 

Further results have required v to be absolutely continuous with respect to 
Lebesgue measure, say dr(v) = F(v)dv. If F is bounded, Wegner [9] proved that k(E) 
is absolutely continuous with a bounded derivative. This has been extended by 
Maier [10] to F ~ L  p, p > 1. If ~vZF(v)dv < oe, Lacroix [11] has shown k(E) is C ~. 

Constantinescu, Fr6hlich and Spencer [ t 2] proved that if F is analytic in a strip 
of certain width, then k(E) is real analytic for IEf large enough; Ifv is Gaussian they 
proved that for large disorder k(E) is a real analytic function of E. Carmona [4], 
using an idea of Molcanov, gives a simple proof that if l h(t)[ < C'e-cl~l, where C' < C, 
then k(E) is analytic in a strip; this holds for v Gaussian for large disorder. Another 
argument for the same result due to Simon can be found in [12]. 

Using the supersymmetric replica trick and a cluster expansion Klein and 
Perez [13] showed how to use decay properties of h(t) and its derivatives to 
derive differentiability for k(E) for either large disorder or large IEI; they also 
obtained analyticity results. Their methods have strongly influenced this article. 

Recently, Simon and Taylor [8] proved the surprising (at least at first sight) 
result that ifdv(v) = F(v)dv, where F has compact support and F~L~(~)  = {f~Ll(~)[ 
there exists 9ELl(N) such that O(t) = (I + tz)~/zf(t)}, with ct > 0, then k(E) is C °. They 
also conjectured that it should be enough to require that (I + t2)~/Zh(t) be bounded 
for some e > 0, and that the hypothesis of compact support should not be essential. 
As they remarked, there are singular continuous v satisfying this condition (see [27, 
Theorem XII.10.12] and [28]). 

In this article we prove Simon and Taylor's conjecture. We also prove analyticity 
results for the density of states. 

Our condition will be stated in terms of h, the characteristic function of v. We will 

only be interested in h(t) for t > 0 (of course, h ( -  t) = h(t)) and we will only consider 
the right-hand side derivatives at t = 0. 

We will now state our results. 

Theorem 1.1. Let n > 1. I f  h is ( n - 1 ) - t i m e s  differentiabte for  t >-0 with h ~"-1) 
absolutely continuous, and (1 + Itt)'h(i)(t) is bounded for some ct > 0  and j = 0 ,  1, 
2 . . . . .  n, then k(E) is a C"function of  E. 

Corollary 1.2. Let (1 + [ t l)~h(t) be bounded for  some c~ > O. I f ~ Iv in + ~ dv( v) < ~ for some 
e > 0 k(E) is C". In particular, i f  v has finite moments o f  all orders k(E) is C~. 

Our result on analyticity is 

Theorem 1.3. I f  e~ltlh(t) is bounded for some ~ > 0 then k(E) is analytic in a strip 
[ImEI < ~i for  some ~1 >0.  

We approach the density of states thru the Green's function of H. Let G(x,y;z)= 
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( x l ( H  - z) -1 [y) where x, y~Z, Im z > 0. Then (e.g., [4,14]) G(z)= ~(G(0, 0; z)) is 
the Borel t ransform of dk(E), i.e., 

f dk(E) 
G(z) = " K~-  z '  

and we have: 

i) G(E + i0) = limG(E + iq) exists for a.e. E~R,  

ii) if dk .... denotes the absolutely continuous part  of the measure dk, 
dk .... 1 

- I m G ( E + i 0 ) ,  
dE n 

iii) dksing -- dk - dk .... is supported by 

{E~R]lim Im G(E + itl) = oo}. 
~.o 

Thus Theorem 1.1 and 1.3 follow from 

Theorem l.4. Let n > 1. I f  h is ( n -1 ) - t imes  differentiable for t 2 0  with h ("-1) 
absolutely continuous and (1 + [tl)'h~)(t) is bounded for some c~ > 0 and all j = O, 

1 . . . . .  n, then G(E + i0) = lim G(E + itl) exists for all E ~ R  and is a C"-  1 function of  E. 
nlo 

Theorem l.5. I f  e~mh(t) is bounded jor some a > 0  then G(z) has an analytic 
continuation to Im z + ~1 > O for some ~1 > O. 

We will now describe the strategy of our  proof. Let  A, = { - l, - l + 1 . . . . .  0 . . . . .  l}, 
H~ = HA,, and 

Gt(z) = E((01(H, - z)-  110) )  , 

SO 

G(z) = lim Gt(z) for Im z > 0. 

In Sect 2 we will use the supersymmetric replica trick [15-18]  to rewrite G,(z) as a 
two-point  function of a one-dimensional supersymmetric field theory. We will 
introduce a supersymmetric transfer matrix and do explicitly the integration over 
the ant icommuting variables. This will give us 

Gl(z) = 2i S { [(TB(z))t l]  (r 2) } 2fl(r2; z)rdr, (1. i) 
0 

where fl(r; z) = h(r)e i~', B(z) denotes the opera tor  multiplication by fi(. ; z), and T is 
the opera tor  given by 

o( 

( T f ) ( r  2) --  - -  2 S J o ( r s ) f ' ( s )  sds,  
0 

where Jo is the Bessel function of order  zero. This opera tor  is studied in Sect. 3. 
Since the proof  of Theorem 1,5 is simpler, we give it first on Sect. 4. Recall Gt(z)-~ 

G(z) as l ~  oo for Im z > 0. It will be easy to see that under  the hypothesis of 
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Theorem 1.5 G~(z) can be analytically continued to Im z + c~ > 0 and (1.1) still holds. 
We show that (1.1) yields bounds on Gt(z), uniformly on l, so an application of Vitali's 
Theorem gives Theorem 1.5. 

Section 5 contains the proof of Theorem 1.4. We first show that for large 1 (TB(z))q 
has n derivatives with good decay properties at infinity. This uses the Calderon- 
Lions method of complex interpolation. The theorem is stated in Sect. 5 but proved 
in Sect. 6. In addition, we show that in this Sobolev-type space TB(z) has 1 as an 
algebraically simple eigenvalue with a gap in the spectrum. If ~(-; z) is the 
corresponding eigenvector, we will conclude that 

G(z) = 2i ~ ~(r2; z)Zfl(r2; z)rdr. 
0 

Since our estimates will have uniformity properties in z, we will be able to let 
11 = Im z ~ 0 and obtain the conclusions of Theorem 1.4. 

Corollary 1.2 is proven in Sect. 7. 
Notes. 1) If dv/dv has an analytic continuation to a strip with decay at infinity, 
analyticity of the density of states can be derived [31] from formula (IX.5) in [32] 
and by the methods [29] of [8]. 

2) Rene Carmona has shown us a manuscript by March and Sznitman [30] with 
related results. In particular they obtain formula (1.1) by probabilistic methods. 

2. A Supersymmetric Transfer Matrix 

The supersymmetric replica trick [15-18] says that, if xl ,  x2e Az, Im z > 0, 

al(xx, x2;z) = ( xl l(Hl -- z)- 1[ x2 ) 

=iS O(x')~(x2)exp { - i x= ~-I ~(x)" [ (Ht - z)~ ] (x) } DtcI)' 

where 4~(x) = (qS(x), 0(x), ~(x)), •(x)sR 2, O(x), iff(x) are anticommuting "variables" 
(i.e., elements of a Grassman algebra), 

cI)(x). ~(y) = d?(x)-c~(y) + ½(~(x)t~(y) + ~(y)O(x) ), 

and 

l 
D~@= H d*(x), where d(D(X)=l dlff(x)dl~t(x)d2~)(X) 

x= -I  7~ 

(see [29, 18, 13, 20, 21, 22]). Notice that Se- ~(x)*(X)dq~(x) = 1. 
Since we are working with a finite lattice the above formula is fully rigorous. To 

compute functions of 0, q7 we expand in power series that terminate after a finite 
number of terms due to the anticommutativity. All {ip(x), ~(x); x = -  l . . . . .  l} 
anticommute. The linear functional denoted by integration against d~(x)dO(x) (it is 
not an actual integral) is defined by 

S (ao + a l O ( x )  + a2ff(x) + a3~(x )O(x )  )d~(x )dO(x)  = - a3. 

To simplify our notation, we will write ~(x)2 = qb (x)-q~(x), qS(x)2 = q~(x). 4~(x). 
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Recalling the definition of H~ we have 

{ ' Gt(xl,x2;z )=iStp(xl)o(x2)ex p --i ~ V(x)4)(x)2 +iz ~ @(x) 2 
X = - - l  x =  - - l  

'f } - - i  ~(x)-@(x + 1) DrqL (2.1) 
X = - - l  

Let us first assume that ~[vldv(v)< oo. This implies that h is continuously 
differentiable with a bounded derivative. Since in this case 

[. ely '~2dv(v) = S e- ~4'2 + ¢;q'~dv(v) 
= S e-*~*2(1 _ iv~O)dv(v ) = h(q52) + h '(42)1~ = h(~ 2 q- t ~ 0  ) = h(~Z), 

we can average over the random potential  in (2.1) to obtain 

I 1 ; i S O(xOff(x ) fl(~(x)2;z)exp - i  ~ (x ) '~ (x  + 1) Dl~,  
x = - - l  x = - - l  

(2.2) 

where fl(r; z) = h(r)e i~'. 
By an approximat ion argument  we have 

Theorem 2.1. Let the characteristic function h be absolutely continuous with a bounded 
derivative. Then (2.2) holds for Im z > 0. 

Since in this article we are interested in the density of states we will now take 
x~ = x 2 = 0, but our  methods  work for general x 1, x 2 and give exponential  decay 
for limf_(G(xl,x2; E + itl) ). 

q ~ 0  

So let 

l 

Gt(z ) = E(Gz(O, O; z)) = i S ~9(0)~(0) 1] fl(@(x)Z; z) 
x = l  

i } .exp - i  ~ CP(x).q)(x+ 1) Dt~.  
x = - - l  

We now introduce a supersymmetric transfer matrix: let 

and let us define the opera tor  T on supersymmetric functions (e.g., [20]) by 

(TF)(g~ 2) = ST(q~I, @2)F(~)d~2.  

Let us denote  by B(z) the opera tor  multiplication by fl(.; z), i.e., 

(B(z)F)(q)2) = fl(~2; z)F(452). 

Then (2.3) can be rewritten as 

G,(z) = i S @(0)~(0)fl(O(0)2; z) { [ (TB(z))q ] (q~(0) 2 ) }2dq~(0). 

We now perform the integration over the ant icommuting variables tp(0), ~(0) and 
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G,(z) =- i  ~/3(¢(0)2; z) { [( TB(z))tl ] (¢(0) z) }d2¢(0), 

(Tf)(¢~) = __1 S e-'Oro2f'(qb~)d2¢2 • 
7r  

Here we used the fact that if 

F(¢2) = f ( ¢ 2 ) + f , ( ¢ z ) ~ p ,  

then 

(TF)(q) 2) = (Tf)(¢ z) + (Tf)'(¢2)~0. 

If we now change to polar coordinates (2.4) and (2.5) become 
oo 

G~(z) = 2i ~ { [ ( TB(z) )q](r2) } 2 fl(r2; z)rdr 
0 

and 

where 

(Tf)(r 2) = - 2 ~ Jo(rs)f'(s2)sds, 
0 

(2.4) 

t" - i s cosO  ~:~ Jo(s ) 1 2~ = ; - J e  av 
Z7¢ 0 

is the Bessel function of order zero. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

3. Some Harmonic Analysis on [0, ~ )  

We will now study the operator T given by (2.7). By an integration by parts, 

(Tf)(r 2) =f(0)  + (Rf)(r2), 

where 

(3.1) 

oo 

(Rf)(r 2) = r ~ J_ l(rs)f(s2)ds. (3.2) 
0 

We recall that the Besset functions of integral order n can be defined by 

J . ( s ) = ( - l ) " s " ( d ) "  Jo(s), n = 0, 1 . . . . .  

J . ( s )=(-1)"J_ . ( s )  for n =  - l, - 2  . . . . .  

where Jo(s) is given by (2.8). 
T and R can be expressed in terms of Hankel transforms, which are defined by 
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(e.g., [23, 24]) 

H,(g)(r) = S (rs)tlZJ,(rs)o( s)ds 
0 

for n~Z. 
It  is easy to see that  II H.(g)II ~ < 2/n I1 g II 1, and there is a Plancherel  theorem for 

Hanke l  t ransforms [23] on L2([0, ~ ) ,  dr): II H.(g)H 2 = II g N 2. I t  follows from the Riesz 
convexity theorem that  one has a Hausdorf f -Young inequality for Hanke l  
transforms: 

IIH,(g)llv, M Ilgllv for 

Thus  (2.7) and (3.2) can be rewritten as 

1 1 
1 < P < 2 ,  p + ~ 7 =  1. 

rX/Z(Tf)(r 2) = - 2Ho(sl/2f'(s2))(r), (3.3) 

r -  l t2(Rf)(r  2) = H _  t(s-llZf(sZ))(r).  (3.4) 

We have the following general formula  for derivatives of Hanke l  t ransforms 
[243: 

d m 
r n + l / 2  _ _  (Fro-n-l/2 ir ( r d r )  O())=Hn((-s)m[Hn-m(O(t))(s)])(r) 

for n = 0, 1, 2 . . . . .  and also for n = - 1 if g(0) = 0. Thus  

( _  2)mr,. +k- ll2(Qf)(m)(r2 ) = ( _  2)kH,+k_ x(S" +k- llZf(k)(s2))(r ) (3.5) 

holds with Q = R for m = 0, 1, 2 . . . . .  k = 0, 1, 2 . . . . .  and for Q = T with m = 0, 1, 
2 . . . . .  k = 0 ,  1, 2 , . . . ,  and r e + k >  1. 

So we are led to define the Hi lber t  spaces: 

"Ygo = {f :  [0, oo) --* C measurable;  ]1 f 1[1o = II r -  1/2f(r2) 112 < zt) }, 

9( f .={ f : [O ,  o o ) ~ C  continuous;  f is ( n - D - t i m e s  differentiable on (0, oo) with 
f t . - 1 )  absolutely cont inuous with 

IIISlII. = < oo} 
m = l k = O  

for n = 1, 2 . . . . .  and  

~ ' ~ ° = ~ , ~ 0 , ~ ° =  { f ~ , ; f ( 0 ) = 0 }  for n =  1 ,2 , . . . .  

I t  follows f rom (3.5) that  T is a uni tary opera to r  on ~ ,  for n = 1, 2 . . . . .  and R is 
uni tary  on ,~o  for n = 0, 1, 2 . . . . .  In addit ion (3.1) says that  T = R on ~ o  for n > 1; in 
part icular  T leaves ~ o  invariant.  

Let us now denote  by B the opera to r  mult ipl icat ion by fl~o;/t~t. Then (TB)q is 
well defined. It also follows that  r -  ll2fl(r2)~L1, so by (3.4) Rfl is well defined and a 
bounded  cont inuous functions with (Rfl)(O) -- O. Thus  if we apply (3.1) I times we get 

(TB)ll = (I + R B  + (RB) 2 + . - -  + (gB)t)l. (3.6) 
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For  later use we rewrite (3.6) as 

(TB)q = 1 + RB + (I + RB + ... + (RB) ~ 2)(RB)21, (3.7) 

and 

(TB)~I = (TB)I + (I + RB + ... + (RB) t -  2)(RB)21. (3.8) 

If only assume that fl(r2)EL °~, we still have RB as a bounded operator  on ~((o. 
The following lemmas wilt be of importance.  

Lemma3.1 .  Let fl(r2)ffgP([O, oo), dr), 
tl/~(r ~) tl~- 
Proof. Let f e J g o .  Then 

where 2 < p < ~ .  Then [J(RB) 2 I]~e ° 

[[[(RB)2f I[[o = t l IBRBf 111o = It r -  1/2fl(r2)(RBf)(r2)1t2 

<= II fl(r z) Hp l[ r -  1/2(RBf)(rZ) l] (1/2 - -  l / p )  - I  

=< II fl(r 2) lip I[ r -  1/2(Bf)(r2)[1(1/2 + l/v)- ~ 

= II fl(r2) tlp It r -  1/2fl(r2)f(r2)11(1/2 + l/p)-' 

< IlNr2)ll2pHr-1/Zf(rZ)ll2 = [I/~(r2)Npz Ilfllo. • 

Lemma 3.2. Suppose fl is a continuous function such that (1 + rZ)~/2 fl(r 2) is bounded jor 
some 7 > 0. Then (RB)21 e ~ o .  

Proof  It follows that  rl/Zfl(r2)eL q for all 1 < ql < q < 2, where ql depends only on ?, 
and /3(rZ)eL p for all large p. Thus r-1/2(R~)(rZ)sL¢, where 1/q + 1/q'= 1, and 
r -  1/2fl(r2)(Rfl)(rZ)eL 2. • 

4. Proof of Theorem 1.5 

We first assume that h is also absolutely cont inuous with h' bounded,  so Theorem 2. t 
applies and we have, from (2.6) and (3.6), that  

Gt(z)=2i!~[k~=o[(RB(z))kl](r2)~ fl(r2;z)rdr for I m z > 0 .  (4.1) 

By an approximat ion argument  we can now extend (4.1) to h as in the hypothesis 
of  Theorem 1.5. 

Since fl(r2; z) = h(rZ)e izrz, and e'r2h(rZ) is bounded  with ~ > 0, we can use the right- 
hand side of  (4.1) to analytically continue Gl(z) to Im z + c~ > 0. 

oo 

Since I h(t) t < 1 for all t ~ 0, there exists 2 < p < oo such that  ~ (h(r 2) f d r  < t. Since 
0 

e~r2h(r2)~L v for z < c~, we can select 0 < z < c~ such that H e~r2h(r2) lip < 1. 
It now follows from (4.1), (3.7), Lemmas  3.1 and 3.2 that  Gt(z) is uniformly 

bounded in l and in z for Im z + z > 0. It follows from Vitali's Theorem that G(z) is 
analytic for Im z + z > 0. • 
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5. Proof of Theorem 1.4 

Under the hypothesis of Theorem 1.4, fl(r; z) = h(r)e izr is (n - 1)-times differentiable 
for r > 0 with ill"- 1)(r; z) absolutely continuous, and, if Im z > 0, (1 + rZ) ~/2 fltJ)(r2; z) 

is bounded, j = 0, 1 . . . . .  n, for some ~ > 0. As before B(z) will denote the operator 
multiplication by fl(" ; z). Notice that B(z) is a bounded operator on aft,., leaving w o  
invariant, for Imz ~ 0 and m = 0, 1 . . . . .  n. 

We will need more. We will need that applying RB(z) repeatedly takes Yfo 
to ~ o .  

Theorem5.1. Let fl(r) be ( n -  1)-times differentiabte with fl~"-i)(r) absolutely con- 
tinuous, such that (1 + rZ)~12 flti)(r 2) is bounded, j =O, 1,... ,n, for some ~>0.  Let B be 
the operator multiplication by ft. Then there exists ko depending only on 7, such that for 
all k > ko, (RB) k is a bounded operator from ~ o  to ~vt°°. Furthermore, if tiff; z)= 
fl(r)e ~zr and B(z) is the corresponding multiplication operator, the norm of  (RB(z) ) k as 
an operator from dig o to 31f ° is uniformly bounded for Im z > 0 and bounded Re z. 

If 7 > 1 (e.g., if the probability distribution v is the uniform distribution on a 
bounded interval) it is not hard to prove this theorem. But for small ~ it requires the 
Calderon-Lions method of complex interpolation, so we will postpone it to the next 
section. 

Let g(t) be a real valued C ~° function with compact support on R such that 
g(t)= 1 for It[ ~ 1. Let ha(t)=g(t)h(t), hE(t)= h(t)-hl(t) ,  and let flj(r;z)= hjr)e ~z', 
j = 1, 2. Then 

tiff;z) = fll(r;z) + fl2(r;z) and fll(r;z)eYg,, l12(r;z)EYfo 

for Im z > 0 .  
Recall that (3.8) holds for Im z > 0, so we have 

(TB(z))'I = Tfli(z ) + Rfl2(z ) + (I + RB(z) +. . .  + (RB(z)) l- 2(RB(z))21 (5.1) 

for Im z > 0 .  
By Lemma 3.2, (RB(z))21 e ~'~o for Im z > 0, and the right-hand side of (5.1) is well 

defined for Im z > 0. 
Now let us pick ko from Theorem 5.1. It follows that 

(TB(z))l+kol = (TB)k°rfll(z) + (RB(z))k°[nflz(Z) 
+ (T + RB(z) +. . .  + (nS(z)) l- 2)(RB(z)21] (5.2) 

is in ~ ,  for Im z > 0 and the right-hand side is a continuous function of z, Im z > 0, 
with values in ~¢F,. We have proved the first part of 

Lemma5.2. There exists 1o such that for l> lo(TB(z))llso~, for Im z > 0 ,  is a 
continuous function of  z with values in jfo and can be extended by continuity to 

Im z > O. Furthermore ~(z) = lim ( TB(z) )l l exists in o ~ f o r  Im z ~ O, the convergnece 
l- '* c~ 

being uniform in Im z > 0 with bounded Re z. 

Proof. The lemma follows from (5.2) and Lemma 3.1. Just notice that 
[]fl(re;z)]lp< I]h(re)]]p for Im z > 0 ,  and that d]h(re)]]p< 1 for p large enough. • 
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Notice that  L e m m a  3.2 and (2.6) tell us that  

G(z) = 2i ~ ¢(r2; z)Zfl(rZ; z)rdr, (5.3) 
0 

and G(z) is a cont inuous  function of z for Im z > O. This is Theorem 1.4 for n = 1. 
L e m m a  3.2 and its p roof  also tell us that  TB(z)~(z) = ~(z) and 4(0; z) = 1. In fact 

we have more: 

L e m m a  5.3. Let I m  z > O. Then 1 is an algebraically simple eigenvalue for T B(z) in ~ ,  
with correspondin9 unique eigenvector ¢(z) normalized by ~(0; z) = 1. Furthermore, the 
direct sum ~ff, = C~(z)G o'¢g ° diagonalizes TB(z) in the Jorm TB(z) = 6o~(Z) @ RB(z), 
where 6o(f) =f(0) .  In addition, the operator norm of (RB(z)) 2 in ~ o  is bounded by a 
constant < 1 uniformly in Im z ~ 0 and bounded Re z. 

Proof. If f e g , ,  then f =f(0)~(z) + [ f - f (O)¢(z) )]  and f - f ( O ) ~ ( z ) s ~  °. 
Thus 9 r g . = C ~ ( z ) ~ g  °. The l emma now follows f rom Lemmas  5.2, 3.1, and 
Theorem 5.1. I I  

To  finish the p roof  of  Theorem 1.4 for n > 2, we must  show that  G(E + iO) is a 
C" -  a function of E. F r o m  (5.3) we have 

G(E + i0) = 2i (M~(E),  B(E)M~(E)), (5.4) 

where 

oo 

( U, V ) = S u(r2)v(rZ)r- 1dr 
0 

is a cont inuous  bitinear form on 0 and  M is the opera to r  mult ipl icat ion by the 
function r a/z, i.e., (Mu)(r z) = ru(r2). 

Let us fix EoeR, ~ > 0, and let 

z~ = sup{ II(RB(E)) z II,~o; I E -- Eot < 6} < 1 

by L e m m a  5.3. Let Y denote the circle {z~C; [z - l r = ½(1 - Zo)}, 4o = ~(Eo). Then 

(5.5) 

for [ E - E o ]  < 6 .  
Since E ~ TB(E) is a cont inuous  function with values in LP(3ef,), the space of 

bounded  linear opera tors  on J r , ,  it follows f rom (5.5) that  E--,  ~(E) is cont inuous  
with values in o~¢¢~,. 

Now,  TB(E) is not  differentiable as a function with values in ~ ( J ~ . ) ,  but  it is as a 
function with values in ~ ( W , ,  3/f,_ 2), the space of bounded  linear opera tors  f rom 
J r ,  to ovf,_ 2, as long as n > 2, and d/dt TB(E) = iTM2B(E). So it follows from (5.5) 
that  ~(E) is cont inuously differentiable with d ~ / d E ( E ) ~ , _ z .  

More  generally, if 2k < n, TB(E) is k times cont inuously differentiable with 

d ~ 
(dE) k TB(E)= ikTmZkB(E)~Sa(W,, ~ , _  2k), 
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and it follows from (5.5) that ¢(E) is k-times differentiable with dk/dE k ~(E)~t~,,_ zk. 
It now follows from (5.4) that G(E + iO) is a C 2k function of E if 2k < n. 
But we can do better, in fact we will show G(E + iO) is C"-  1. 
To do so notice that R is self-transpose with respect to ( ,  > on ~ o ,  i.e., 

( R f ,  g)  = ( f ,  Rg)  for f ,  a e ~ o .  

Similarly, B(E) t = B(E), the transpose being with respect to ( ,  > on J (o ,  so 

(RB(E) )t = B(E)R, [(z - RB(E))- 1-]t = ( Z  - -  B(E)R) -1 

We also recall that T = R if f(0) = 0. 
From (5.4) and (5.5) we get, for t E - Eo[ < c~, 

1 
G(E + iO) = ~ 2 i  ! dz ! dz' ( MK(z, E)¢ o, B(E)MK(z', E)¢ o ), 

where K(z, E) = (z - TB(E))- 1. 
If n = 2, it is not hard to see that since ~oEYF2, 

G(E + iO) = ~ S dz ~ dz' {2 ( K(z, E)TiM2B(E)K(z, E)¢ o , M2 B(E)K(z ', E)¢ o ) 
dr~ zrc ir r 

+ ( MZK(z, E)~o, iM2B(E)K(z ', E)~o ) }, 

a continuous function of E. 
The same procedure can be used for general n. For  an operator valued function 

A(E), let ,4 eA(E) = 1/e(A(E + e) - A(E)). 
When we compute lim Ae(dk/dE k) G(E + iO), we must move some operators from 

e ~ O  

one side to the other of the bilinear form ( , )  using the transposed operators. We 
illustrate the procedure in the following term that appears in A e (d/dE) G(E +/0): 

2 (MK(z ,  E + e)T(A~B(E))K(z, E)TiM~B(E + e)K(z, E + e)~o, Be+eMK(z', E + e)~ o).  

(5.6) 

In this case ¢oeJf3 .  We cannot just take the limit as e ~ 0  for the vector 
appearing on the right-hand side of ( , )  because the vector to which the last 
operator  T would be applied would not necessarily be in ~¢~o since AeB(E)--', 
iM2B(E), and we may only have ~oe~f  3. But (5.6) can be rewritten as 

2 ((AeB(E))K(z, E)TiMZB(E + e)K(z, E + e)~ o, 

TK(z, E + e)'M2B(E + e)K(z', E + e)~o ). (5.7) 

The rearrangement is legitimate since all vectors are in the right spaces. We can 
now take the limit as e ~ 0 and obtain 

2 ( iMB(E)K(~, E) TiM2B(E)K(z, E)¢ o , MTK(E,  z)tMZB(E)K(z ', E)~ o >. 

The same procedure can be applied to all terms appearing in Ae 
(dk/dE k) G(E + i0), k < n - 2, to give existence and continuity of 
(dk+ 1/dEk+ 1) G(E + iO). This proves Theorem 1.4. • 
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6. Proof of Theorem 5.1 

The proof  will proceed by induction on n. 
I fn  = 0, there is nothing to prove  since RB is a bounded  opera to r  f rom ~fo  to ,Xeo 

(notice that  the theorem makes  sense for n = 0, the hypothesis  being simply that/~(r) 
is a bounded  measurable  function). 

So let us assume the theorem is true for n - 1, n > 1; we will prove  the theorem is 
then true for n. 

We are going to use repeatedly the Calderon-Lions  interpolat ion theorem 
[25, 26]. We will use the nota t ion  lit, 0 < t < 1, for the interpolat ing spaces between 
V o and V 1 . We will write V~ ~) = V, VI m) = the t °' interpolat ing space between VI m- 1) 

s 
and 1/1. In what  follows S: V ~  W or V ~ W mean  tha t  S is a bounded  opera to r  from 
V to W. For  all spaces V o and Va between which we will interpolate  we will have 
I: V 1 --, V o. We start  by introducing the following spaces: 

Xo = Yo = Zo = ~'~o, Z1 = ~ o ,  

and 

X 1 = {f:[O, o e ) ~ C  measurable;  t[(1 + rZ)"/2r-1/Zf(r2)lt2 < oe}, 

II, = {f:  [0, oc) ~ C (n - 1)-times differentiable on (0, oe) with f ( " -  1) absolutely 

continuous;  ~ II rk- 1/2f(k)(r2) l[ 2 < 00}. 
k=O 

We can identify the interpolat ing spaces X t [26]: 

X t = {f :  [0, oe) ~ C measurable;  II (1 + r2)n'/2r- '/2f(r2)II 2 < oo}, 

F r o m  (3.5) we have 

R R R R 
Xo--* Y o ~ X  o, X,-+ Y,-+X,, 

R R 
so we conclude that  Xt--* Yt--* Xt for all t e [0 ,  1]. Recall R 2 = I. 

R B R 
Let us write o = 7/n and notice that  X o ~ X o ~ X ~  Y~. 

We now interpolate between the Y's and  the Z's.  Let  S(~) = e¢2B(1 + r2) ("- ;)n/2 for 
Re ~ [ 0 ,  1]. Then S(0): Y0 ~ Zo and S(1) = Y1 ~ Z1 by the hypothesis  on [/. It  is easy 
to see that  S(~) satisfies the hypothesis  of Theorem IX. 20 in [25], so we can conclude 
tha t  S(t): Y~--,Zt for t~[0 ,1] .  Tak ing  t = o-, we get B: Y ~ Z , .  

We have so far shown that  (RB)2:Xo ~ Z,. Since (RB)2:Z1 ---, Z1, we have that  
(RB)4:Xo ~ Z ~  ). Reiterating the argument ,  we get that  (RB)2": X o ~ Z~ "). 

N o w  let Wo 0 _ 0 ~ , _  ~, W 1 By the induction hypothesis  there exists kl such 
that  (RB): Zo ~ Wo and, of  course, (RB)k~: Z ,  ~ W,. It  follows (RB) k~ + 2m: Xo ~ W~,). 

N o w  let D be the ope ra to r  defined by (Df)(r 2) =f'(r2), and let 

lit = {f:[O, o e ) ~ C  measurable;  Ilr"-l+t-1/2f(r2)ll2 < ~} ,  
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where 0 < t _< 1. If k = 0, 1 . . . . .  n - -  l ,  O k : W 0 -'~ V0,  Dk: W1 ~ V1, so it follows that  Dk: 

W~" ~ V ~ --tT " 

But we can identify V(~ ") [26]: V~"J={f :  [ 0 , ~ ) ~ C  measurable;  

II r" -"  -°~"- "~f(r  ~) I1~ < ~} .  
So we choose m such that  (1 - a)"  < 7. I f f eW~") , f (k )~V~ ") for k = 0 ,  1 . . . . .  n -  1. 

Thus  (Bf)tk)ev~ for k = 0 ,  1 . . . . .  n - t .  It  follows f rom (3.5) that  (RBf)(k)~v~ for 
k = 1, . . . ,n.  

N o w  let f ~ X  o, Then (RB) k~ + 2" f~  W~"), so 

((RB)k~+2"+lf)(k)~v 1 for k =  1, . . . ,n.  (6.1) 

On  the other  hand, R B : X o - ~ X  o, so 

B(RB)k, + 2" + l f c V1" (6.2) 

F r o m  (6.1) and (6.2) we conclude that  B(RB) k' + 2,.+ 1 f e j f , ,  and hence is in j f o ,  
so (RB) k' + 2,, + 2 f~j t~o for all f ~ X  o = ~ o .  

If fl(r; z) = fl(r)e ~ ,  B(z) the corresponding mult ipl icat ion opera tor ,  it is easy to 
check in the p roof  that  we get the desired uniformity in z for the no rm of 
(RB(z)) ~. • 

7. P roof  of  Corollary 1.2 

Corol lary  1.2 follows from 

L e m m a  7.1. Let (1 + Itl~)h(t) be bounded for some ~ > 0 and let ~lvl"+~dv(v) < o0 for 
some e > O. Then h is n-times differentiable and there exists 6 > 0 such that 
(1 + Itl)6h(J)(t) is bounded for j = O, 1,. . .  ,n. 

Proof. We will show that  there exist 6 > 0 such that  (1 + [tl)6h("~(t) is bounded.  Let  
Z(v) be a C °~ function such that  Z(v)= v" for Iv[ _< 1, Z(V)= 0 for Iv[ __> 2, and Iz(v)l __<2 
for all v. Fo r  R > 0 let ZR(V) = R"z (R-  Iv). 

For  any k__> 0 there exists Ck < ~ such that  if )~(t)= ~e-ir'z(v)dv, [)~(t)[ __< 
Ck(1 + [t[k) -~. It  follows that  

[2R(t)l _--< CkR"~(1 + Rklt[ ~) ~ (7.2) 

Since h(")(t) = ( - i)" ~ v"e- it~dv(v), we have that  for R > 2 

We have 

t h(")(t)- ( - i)" ~ ZR(v)e-U~dv(v)t = t ~ ( v " -  ZR(V))e-it~dv(v)I 
Iv l>R 

< 2 ~ fvl°dv(v) <__2R-~Slvj"+'dv(v). 
Ivl > R 

y XR(V)e-'t~dv(v) = (2n)- 1 ( ~ ,  h)(t) = (2g)-  1 ~ G(s)h(t - s)ds 
Isl < ~/2 

+ (270-1 S ZR(s)h( t -v s)ds. (7.3) 
]s]>t/2 
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We now use (7.1) to estimate each term; we have 

] ~ 2g(s)h(t-s)ds[ <DkRn(1 + Itl) -~, 
tstNt/2 

and 

(7.4) 

I ~ ~g(s)h(t-s)dsl<CkR "+1 S (l+Rklslk)-lds<D'kR"(RIt]) l-k, (7.5) 
Is[ > t/2 Isf>- t/2 

where  D k a n d  D~, are  f ini te  if  we t ake  k > 1. 
F r o m  (7.2), (7.3), (7.4) and  (7.5), we get  

ih(~)(t)[ ~ gaR-~ + g2Rn((1 + i t t ) -~  + ( R l t l ) l - k ) ,  (7.6) 

with K~ and K2 finite constants depending on k > 1. Fix k. Then for fixed t pick R = 
R(t) = I tl -~. It is clear from (7.6) that we can pick an appropriate  ~ > 0 to get the 
desired result. • 
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