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Abstract. We show that for infinite-dimensional discrete-time positive systems
the complex and real stability radii coincide. Furthermore, we provide a simple
formula for the complex stability radius of positive systems by the associated
transfer function. We illustrate our results with an example dealing with a simple
type of differential-difference equations.
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1. Introductory Remarks

This work is motivated by a paper of Hinrichsen and Son on stability radii of
finite-dimensional discrete-time positive systems, see [HS]. The stability radius for
linear systems, introduced by Hinrichsen and Pritchard, is a measure for the stabil-
ity robustness of a stable system, see [HP]. It is defined as the smallest (in norm)
complex or real perturbation which destabilizes the system. In general, the com-
plex and real stability radii differ. It is therefore natural to investigate for which
kinds of systems these two radii coincide. This note is a contribution to this prob-
lem and is motivated by the following finite-dimensional result due to Hinrichsen
and Son, see p. 13 of [HS]. Consider the discrete-time system x(z + 1) = Ax(¢),
t € No, where 4 € R}*".

Theorem 1.1.  Let A € R?*" with spectral radius r(4) < 1,D e R, and E e RY".
Furthermore, assume that XK' and K9, K = €, R, are provided with monotonic
norms, that is, |x| < |y| implies ||x|| < ||y| for every x,y € K and K, respectively,
where |x| := (|x;]). Moreover, denote by G(s) := E(sI — A)™'D the transfer func-
tion associated to (4, D, E), by

rk(4; D, E) ;= inf{||A]| | A e K™, r(4 + DAE) > 1}
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the complex and real stability radius for K = €, R, and by
r.(4; D, E) := inf{||A|| |A e R}, r(4 + DAE) > 1}
the positive stability radius, respectively. Then we have

1
el

Our objective is to generalize this theorem to infinite-dimensional discrete-time
positive systems. It turns out that some of the ideas behind the proof of Theorem
1.1 can be generalized to the infinite-dimensional case.

The key argument in proving the equality of the complex, real, and positive
stability radii in infinite dimensions is that the complex stability radius can be
approximated by the norm of one-dimensional destabilizing perturbations. Since
one-dimensional operators on Banach lattices admit a modulus, the complex stabil-
ity radius can even be approximated by the norm of one-dimensional positive
destabilizing perturbations. This observation is essential in proving the equality of
the three stability radii.

A formula for the stability radius of positive systems, corresponding to the
finite-dimensional counterpart in Theorem 1.1, can be proven using results of the
Perron—Frobenius Theory for positive operators. This theory ensures that
the spectral radius of a positive operator T is indeed a spectral value, but, unlike
the finite-dimensional case, it is not necessarily an eigenvalue of 7'. Nevertheless,
we prove a characterization of the stability radius for infinite-dimensional positive
systems which corresponds to the formula in Theorem 1.1.

We conclude this note with an example dealing with a simple type of differential-
difference equations.

Throughout this note we use the following notations. Let E # {0} and F # {0}
be real or complex Banach spaces. Then ¥ (E,F):={T: E — F|T linear and
bounded}, ¥ (E) := Z(E,E), and E’ is the dual space of E. We denote all norms
by || - || (with one exception in Section 4). Commonly, for 7" € #(E), we denote
by p(T):={AeC|R(A,T):= (Al - T) € Z(E)} the resolvent set of T, by
o(T) := C\p(T) the spectrum of T, and by r(T) := sup,.,r)|4| the spectral
radius of T. Finally, N:={1,2,...}, Ny:=Nu {0}, R, :={xeR]|x > 0},
C_.:={1eC|Rei<0},andD:={1eC||i] < 1}.

rC(AaDvE) = r]R(AvD,E) = r+(A7D,E)

2. Preliminary Results

To make this note more self-contained we give a brief summary of the notions of
Banach lattices, positive operators, and moduli of operators as well as some of
their basic properties as they are needed. For further reading we refer to [M]
and [S].

Banach Lattices

Let E # {0} be a real vector space endowed with an order relation <, that is, a

reflexive antisymmetric and transitive relation such that the following properties
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are satisfied:
X<y => x+z<L£y+z x,y,z€eE, (2.1
x<y = ox<ay, x,yeE, aecR,. (2.2)
Then E is called an ordered vector space. Denote the positive elements of E by
E*t :={x € E|x = 0}, where, of course, x > 0 means 0 < x. If furthermore the
lattice property holds, that is, if
sup{x,y} € E, x,yekE,

then E is called a vector lattice. In other words, if for every x,y € E there exists
z € E such that x < z, y < z and for every v e E satisfying x < v, y < v it holds
that z < v, then sup{x, y} = z. The set E™ fulfills the following “geometric” prop-
erties:

Et+ETcE™, R.Et cET, Etn(-E™) = {0}. (2.3)

In particular, E* is a convex cone in E. Conversely, every subset C of E satisfying
(2.3) determines an order relation on E by

x<y < y—xeC

such that (2.1) and (2.2) hold. Moreover, if E is a vector lattice, the set E* is
generating, that is, it satisfies :
E=E*-E*.
The following proposition provides a characterization of the vector lattices

among all ordered vector spaces in terms of the “geometric” structure of the cone.
A proof of this result can be found on p. 28 of [P1].

Proposition 2.1. Let E be a real vector space ordered by a cone C. Then the
Jfollowing assertions are equivalent:
(1) E is a vector lattice.

(2) For every x,y € E there exists z € E such that (x+ C)n(y+ C) =z+C.

The following remark indicates to which cones Theorem 1.1 can be generalized
in the finite-dimensional setting.

Remark 2.2. If E =1R" is endowed with an order relation generated by a cone
C, Proposition 2.1 states that E is a vector lattice if and only if there exist n
linearly independent vectors v® = (v ... 15,®) e R" k =1,...,n, such that

n
C= {xz(xl,...,xn)eIR" Zx,-v,(k) >0, k= 1,...,n}.
i=1

If E is a vector lattice, the modulus of x € E is defined by |x| := sup{x, —x}. If
|| - || is a norm on the vector lattice E satisfying the lattice norm property, that is, if

<yl = lxl<lyl, xyek (2.4)
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then E is called a normed vector lattice. The lattice norm property implies
[l1x] || = ||x| for every x € E. If, in addition, E is norm complete with respect to
|| - |I, then E is called a Banach lattice.

So far the concept of Banach lattices is restricted to real vector spaces. Since it is
often necessary to consider complex vector spaces we extend the notion of Banach
lattices to the complex case. For this extension all underlying vector lattices E are
assumed to be relatively uniformly complete, that is, for every sequence (4,), . i
IR satisfying Y -, |4s| € IR and for every x € E and every sequence (x,), . in E it
holds that

n

0<x, </px = supr,-eE.
neN 729

Now let E be a relatively uniformly complete vector lattice. The complexifica-
tion of E is defined by E¢ := E x E with the canonical addition and scalar multi-
plication. It is frequently written as E¢ = E + 1E. The modulus of z = x + 1y € E¢
is defined by

|zl = sup |(cos @)x + (sin @)y| € E. (2.5)
0<p<2n
The modulus is homogeneous, that is, |az| = |«||z| for every z € E¢ and every
x€ @, and satisfies the triangle inequality |z; + z2| < |z1]| + |22| for every
21,22 € E¢c. A complex vector lattice is defined as the complexification of a rela-
tively uniformly complete vector lattice endowed with the modulus (2.5). If E is
normed, then

Izl =1zl z e Ea, (2.6)

defines a norm on E¢ satisfying the lattice norm property (2.4). If E is a Banach
lattice, then E¢, endowed with the modulus (2.5) and the norm (2.6), is called a
complex Banach lattice.

Standard examples of Banach lattices with respect to their canonical order
relations are 4(K,K"), K = C, R, for compact Hausdorff spaces K as well as
L?(Q,Z, i) for arbitrary measure spaces (Q, X, 4) and every 1 < p < o0.

Positive Operators and Moduli of Operators

Let E and F be real Banach lattices and T € & (E,F). If TE* < F*, then T is
called positive (T > 0). By S< Twemean T — S > 0 for S € #(E, F).

Every R-lincar map T € ¥ (E,F) has a unique C-linear extension T¢ e
#(Eg, Fg) given by

Tez .= Tx + 1Ty, z=x+1wye Eg.

An operator T € & (Eg, Fg) is called real if TE = F. An operator T € Z(Eg, F¢)
is called positive (T =0) if T is real and TE™ < F*. We introduce the
denotations ¥R(Eg, Fe) :={T € &(Ec, F¢)|T real} and ¥*(Ec,Fg):=
{T € L(E¢, Fc)|T = 0}. The cone ¥t (E¢, F¢) is closed in Z(E, F¢), however,
it is in general not generating. For T € ¥*(Eg, F¢) we emphasize the simple but
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important fact
|T|| = sup || Tx||. (2.7)

xeE*
=<1

An operator T € £ (E, F) possesses a modulus if |T| := sup{T,-T} € ¥(E,F)
in the canonical order relation of Z(E,F). It can be shown that, if
SUp|;|<«|Tz| € F for every x € E*, then T possesses a modulus |7 and

|T|x = sup |Tz|, xeE™ . (2.8)

|zl <x

Since E is generating we have that |T| € Z*(E, F).

Let T € £ (Eq, Fe)- If sup),,|Tz| € F for every x € E¥, then it holds by linear
extension that |T| e £+ (EC,FC) Denote Z(Eg, F) := {T € #(Ec, Fe)||T| €
P(Eg, Fg)}. We have |Tx| < |T| |x| for every T € £M(Eg, F¢) and every x € E¢
as well as |Tx| < T|x| for every T € Z*(Eg, Fg) and every x € E¢. The lattice
norm property (2.4) implies that

ITI <IITlll,  Te2Eg, Fe). (2.9)

Remark 2.3. In the finite-dimensional setting the above described notions have
the following meaning. If E =R"™ and F = R", then, of course, E¢ = €C” and
Fg = €". Moreover, Z(C",C") = £/(C”,€") and for T = (t;) e Z(C",C")
we have |T| = (|t;]).

3. Discrete-Time Systems

In the rest of this paper let U, X, and Y denote complex Banach lattices as well as
Ae #(X),De #(U,X),and E € £(X, Y ). We consider the infinite-dimensional
discrete-time system

x(t+1) = Ax(1), t € No. (3.1)
Definition 3.1. System (3.1) is called positive if 4 € £*(X).

Stability Radii

Recall that system (3.1) is called exponentially stable or power stable if there exist
¢>1and 0 < B < 1 such that

4] < B, te No.

It is well known that the exponential stability of system (3.1) is equivalent to
r(4) < 1, see p. 516 of [P3].
In this note we consider affine perturbations of the form

Aw> A+ DAE,
where the perturbations A are of three different types:

Ae Z(Y,U), Ae #R(Y,U), Ae (Y, U).
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Now we study a measure of robust stability of linear systems, the stability
radius. Let 4 € £(X) be such that r(4) < 1. We define the complex, real, and
positive stability radii of A by

re(4; D, E) = inf{||A]| [A e Z(Y, U), r(4 + DAE) > 1},
rr(4; D, E) = inf{||A|||A e ZR(Y, U), r(4 + DAE) > 1},

and
ro(4;D,E) = inf{||A| |A e Z*(Y, U), r(4 + DAE) > 1},

respectively, where we set inf () := oo. Obviously
re(4;D,E) <rr(4;D,E) <r.(4;D,E). (3.2)

Let G(s) := E(sl —A)"'De £(U,Y), s € p(A4), denote the transfer function
associated to (4, D, E). In proving the main results of this paper we use the fol-
lowing characterization of the complex stability radius. It is proven on p. 267 of

[WH].

Proposition 3.2. Let Ae L(X) be such that r(4) <1, De L(U,X), and
Ee Y(X,Y). Then

(3.3)

Remark 3.3. In the proof of the previous proposition it is in particular shown
that there exists a sequence (A,), . in Z(Y, U) such that

(1) rank A, =1, neN,
(2) 1 <r(A+DALE), neN, and
(3) |As|l { re(4;D,E), n — co.
Equality of the Complex and Real Stability Radii
In the next two lemmata we state the main arguments for proving the equality of

the complex and real stability radii for positive systems.

Lemma3.4. Let T e #(Y,U) be such thattank T = 1. Then T € £M(Y, U) and
I = 7]l

Proof. Since 7 is of rank one there exist a € Y’ and u € U such that
T=a®u,

that is, Ty = a(y)u for every ye Y. In order to prove that T e £M(Y,U) it
remains to show that sup, ., |7z| € U for every y € Y. However, this is immedi-
ate since

|T2| = la(z)u| = la(2)| |ul < llall l|z]} |u| < llal] ]| lu],
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where we have used that |z| < y implies ||z|| < ||y||, that is, the lattice norm prop-
erty (2.4). In particular, we have that a e & l'|(Y, ).

It remains to show the identity | T|| = || |7 ||. Applying (2.8) we obtain
|T|y = sup |Tz| = sup |a(z)|[u| = (la|(W)|ul, ye¥T,
|lz{<y |lzl<y
that is, |T'| = |a| ® |u|. Assume for a moment that ||a|| = || |a| ||. Then
T = lla @ ull = llall llull = [Hal Il | el | = 17|}

and the proof is complete.
In order to prove the identity ||a|| = || |a| || it remains to show that || |a| || < ||4]|,
see (2.9). Using (2.7) and (2.8) we have

Ilal |l = sup |lal(y)| = sup|sup |a(z)| | = sup sup |a(z)].
yeYt yer+||z| <y ye¥™ |z|<y
lyl<1 lyll<t <1

Therefore, there exist sequences (yn),.n in Y and (z,),. in Y satisfying
llyvall <1 and |z4| < y» such that, for an ¢ > 0,

lalll — & < la{z,)|, n large enough.

For |z,| < y, the lattice norm property (2.4) implies ||zn|| < ||yn]| <1 and we
obtain
[alll — & < |a(za)] < Hsﬁlp1 la(z)| = [|al|.
z|| <
This completes the proof. |

Lemma 3.5. Let Se ¥7(X) and T € ¥ (X) be such that |Tx| < S|x| for every
x€X. Then r(T) < r(S).

Proof. Let n e N. Since |Tx| < S|x| we have that |T"x| < S"|x| for every x € X.
Thus
ITxI] < \S™el [F< IS™[[ el | = 1S™ [ Ixll, — xe X,

that is, || 77|| < ||S™||. Hence
T ny1/n : nyl/n _
A(T) = lim |7|"" < Tim [|S"]"" = x(S), m
We are now in a position to prove the first main result of this note.

Theorem 3.6. Let Ae T(X) be such that r(4) <1, De £*(U,X), and
Ee 7(X,Y). Then

re(4;D,E) =rr(4;D,E) =r(4;D,E).
Proof. Suppose that r¢(A4; D, E) < <0, as otherwise there is nothing to show. It

remains to prove r(4; D, E) < r¢(4; D, E), see (3.2). By Remark 3.3, there exists
a sequence (A,),.n in £(Y, U) such that rank A, = 1 and 1 < r(4 + DA,E) for
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every n € N and for an ¢ > 0 it holds that ||A,|| < re(4; D, E) + ¢ for every n large
enough. Furthermore, according to Lemma 3.4, we have that A, € (¥, U) for
every n € N. Using the positivity of D and E we obtain

|(4 + DALE)x| < |Ax| + |DALEX| < A|x| + D|AEx|
< A|x| + D|A,| |Ex| < A|x| + D|A,|E|x|
= (A + D|A,|E)|x|, xeX, nelN.
Now we know by Lemma 3.5 that
1 <r(A+ DALE) <r(A+ D|A|E), neN.

Therefore, |A,| € Z1(Y, U) also destabilizes 4. Finally, using again Lemma 3.4,
it follows, for an & > 0, that

ri(A4; D, E) < || |A] ]l = l|An]l < re(4; D, E) +e¢, n large enough.

This completes the proof. |

A Formula for the Complex Stability Radius

Next we derive a simple characterization of the complex stability radius of
positive systems using Proposition 3.2. The following proposition concerning the
Perron—Frobenius Theory for operators can be found on p. 248 of [M].

Proposition 3.7. Let T € #*(X). Then:
(1) n(T)ea(T).
(2) R(4,T) > 0< 1 > (T).

Remark 3.8. The proof of part (1) of the previous proposition shows in particular
that there exist a sequence (4s),,. in R and an x € Xt such that 4,, | r(T') and
[ (dud — T) " x|| = o0 for m — 0.

Lemma 3.9. Let Ae ¥7(X), De ¥*(U,X), and E € ¥*(X,Y). Furthermore,
let 21,42 € R be such that H{A) < A < Ay. Then ||G(4)]| < ||G(41)]-

Proof. Let r(A4) < A1 < 4. By Proposition 3.7(2) we have R(A;,4) >0 and
R(4;,A4) = 0. Using the resolvent equation for operators we obtain
R(A1,4) — R(A2,4) = (A2 — A)R(A1,A)R(Jp, 4) = 0,

thatis, 0 < (1o — A)™' < (MI — A)~!. Multiplying this inequality by E from the
left and by D from the right—recall that D and E are positive—we have that
0 < G(42) < G(41). Since

1GU2)ull < [GU) Ml | < IGADIW | < NGADIHul | = [GEAD N I, ue U,

the proof is complete. n
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We are now prepared to provide a formula for the complex stability radius of
positive systems.

Theorem 3.10. Let Ae £ (X) be such that r(A) <1, De £ (U,X), and
Ee 2% (X,Y). Then

1
re(4; D, E) = e

Proof. Suppose that r¢(4; D, E) < oo, as otherwise there is nothing to show. By
(3.3) it remains to prove that 1/|G(1)|| < re(4; D, E). Consider the sequence
(An), . in Z(Y, U) givenin Remark 3.3, thatis, rank A, = 1and 1 < r(4 + DA,E)
for every n € N and for an ¢ > 0 it holds that ||A,|| < re(4; D, E) + ¢ for every
n large enough. Furthermore, according to Lemma 3.4, we have that A, e
LMY, U) for every n e N. This implies A4, := 4 + D|A,|E > 0 for every ne N.
Now fix #n € N. By Remark 3.8 there ex1st a sequence (Anm)men in R and x, € X+
such that A, ,, | r(4,) and || (Apml — A,) x| — oo for m — co. Define

(Angmd — A,,)_
|(Zamd — An)—lxn”-

nm =

Then it follows from

(r(An)I — An)Xnm = (F(An)] = dngud )X + (Angmd — An)Xnm
Xn

= (r(dn) = Anmd ) Xnm + —
| (Anmd ~ An) 1xn”

that ||(r(4p)] — An)Xnm| — 0 form — co. Deﬁne Znm = (r(An)] — Ap)Xnm. Since
1 < r(4 + DA,E) the operator (r(A,)I — A)7! exists and we have

(r(An)I — A " D|A| Expm = Xnm — (r(An) — A) ™ Zn . (3.4)
Multiplying this equation by E from the left and setting y,» := Expn,» We obtain

G(r(4n))|Anlynm = Ynm — E(r(A.)I — A)_lzn,m-

Note that there exists ¢ > 0—which may depend on n—such that ¢ < ||y,n| for
every m large enough. This can be seen as follows. Assume that y,, — 0 for
m — oo. Then also the left-hand side of (3.4) tends to zero for m — co. This
implies that

l|%nm| — [l (r(An)] — A)_lzn,m“ < || xnm — (r(4n)] — A)_lzn,m” — 0.

Since ||xy|| = 1 for every m € N and ||(r(4,)] — A) "z, ]| = 0 for m — oo, this
cannot happen.
Therefore, for every m large enough

|ynm — E(r(4n) — A)‘lzn,m”
Hyn,m”

<G4 1AL}
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If m — oo we have

1< [|G(r(An))I[ | 1AA] 1],

which can be verified as follows. Since

_ | E(r(An) ~ A)_lzn,m”
”yn,m”

lynm — E(r(An)] — A)_lzn,m”
nml|

<G AW,

it is sufficient to show that ||E(r(4,)] — A)'lz,,,m”/ﬂy,,,mn — 0 for m — c0. How-
ever, this immediately follows from the definition of z,,, and
NECAN = A) " znm]| _ |EC(A)] - 47|
< [1Z,ml-
[yl ¢
Now Lemma 3.9 implies ||G(r(4,))| < ||G(1)|. Finally, by Lemma 3.4 we
obtain that, for an ¢ > 0,

1 <

1 1
< < |Ax || = ||As|| € re(A4; D, E) + ¢, n large enough.
This completes the proof. n

Remark 3.11. If 4 e #"(X) is assumed to be compact, then the proof of
Theorem 3.10 becomes much easier, since in this case #(4,) is an eigenvalue of
Ap, see p. 250 of [M]. The positivity of D and E is necessary in proving Theorems
3.6 and 3.10 since for nonpositive D and E these results are already wrong in the
finite-dimensional setting, see p. 14 of [HS].

4. An Example

Let A;,A,e R™" r>0, and ¢e%(-r0,R"). Furthermore, let X :=
%(]0,r], R") be endowed with the supremum norm || - ||, and the canonical order
relation. We consider the infinite-dimensional discrete-time system

Xpy1 = Axg, k e Ny, 4.1)
with initial state xo(t) = ¢(t — r), t € [0,7], and 4 € £ (X) defined by
(Ax)(t) = eMx(r) + J; %) 4, x(7) db, te0,7].
System (4.1) can be considered as a model of the differential-difference equation
2(t) = A12(t) + Azz(t — 1), teR,, - 4.2)

where z(t) = ¢(t), t € [, 0], using the transformation
xi(+) = z(kr —r+-)|jp, € X, k € No.
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The unique solution of system (4.2) is given by z(f) = ¢(¢) for t € [-r, 0] and

!
2(t) = eM'p(0) + J eI gyn(z ) dr,  teR., 43)
0
see p. 6 of [P2].
In the following subsections we show that the notions of positivity and stability
are consistent for systems (4.1) and (4.2).

Positivity
We define when a system of type (4.2) is called positive.

Definition 4.1. System (4.2) is called positive if, for every positive initial condi-
tion ¢ € ¢([—r,0],R%}), the corresponding solution z satisfies z(z) € R’ for every
te ]R+.

Recall that a matrix M = (a;) € R™" is called a Metzler matrix if a; > 0 for
i #j. A matrix M € R™" is called positive if M € R}*".

Proposition 4.2.  System (4.2) is positive if and only if Ay is a Metzler matrix and
Az € IRT;_X”.

Proof. Assume that system (4.2) is positive, that is, for every ¢ € €([—r,0],R"}),
the corresponding solution z satisfies z(7) € R’ for every z € R.. Choose ¢ such
that ¢| _, _,,) = 0 for some 0 < ro < r. Thus the second term of the right-hand side
of (4.35 vanishes for every ¢ e [0,7 —ro), and therefore e/1'p(0) e R”. for every
t€[0,r — ro]. Since this holds for every ¢(0) € R”, we have that e’t’ e R7*" for
every ¢ € [0, 7 — rg]. Now assume that a; < 0 for some i # j, that is, 4; = (ay) fails
to be a Metzler matrix. Since

leA” = lI—i— A+ tiﬁjAk
t t =L

it follows immediately that for ¢ < r — ry sufficiently small the element in the ith
row and jth column of the right-hand side matrix remains negative. This is a con-
tradiction to e/1’ € R’*” for every ¢ € [0,r — ro] and hence A; is a Metzler matrix.

Next, choose ¢ € €([—r,0],R}) such that ¢(0) =0. Then the positivity of
system (4.2) implies that

1 t
= e Ayz(r —r) dre R”, t>0. 44
t)o "

It is easily verified that the expression in (4.4) tends to A,z(—r) e RY if £ — 0.
This holds for arbitrary z(—r) = ¢(—r) € R’,.. Hence 4, e R}*".

In order to prove the converse implication we argue as follows. Since A4; is a
Metzler matrix there exists ¢ > 0 such that cJ + 4; € R}", that is, eld+At —
e“ett € R™" for every t € R.. Therefore, we obtain e”t* ¢ RY” and the asser-

tion immediately follows from (4.3). |
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A characterization of positive systems in a more general setting than system (4.2)
can be found on pp. 224 and 225 of [N]. Using the previous proposition it is
obvious that the positivity of system (4.1), that is, 4 € £ (X), is equivalent to the
positivity of system (4.2).

Stability
For system (4.1) it is shown on p. 7 of [P2] that
o(A) = {4 e C|det(A — e“*1/24)y = 0} | {0}.

In particular, every nonzero A € o(4) is an eigenvalue of 4. Recall that system
(4.2) is exponentially stable if and only if {u e C|det(ul — 4; — Are™#) =0} =
C_, see p. 190 of [BC].

For / = e# we have that |4| < 1 is equivalent to e®®#" < 1 and this is true if
and only if Re u < 0. Hence, by using the Spectral Mapping Theorem, we obtain

{% e C|det(Al — eA+1/DLNy — 0} =D <« {ieCldea(e* /PR cD
o {e"eC|et g’ Athe™Ny c p
= {ueClueco(di+4e™)}cC
< {ueCldet(u] —4; — Are™) =0} = C_.

This shows that system (4.1) is exponentially stable if and only if system (4.2) is
exponentially stable.

Computing the Complex Stability Radius

We compute the complex stability radius of system (4.1) with respect to the
unstructured perturbation form A4 v A + A, that is, D = E = I. We only consider
the scalar case, that is, n = 1. Setting 4] = q; and 4; = a; we obtain

1

(A%)(1) = e'x(r) +J e Dgox(c) dr, e [0,r].

0
Conditions on a; and a; for the exponential stability of the operator 4 can be
found on p. 444 of [BC] where a complete characterization of the exponential
stability of scalar systems (4.2) is derived. Furthermore, from Proposition 4.2 we
know how to choose a; and a; for 4 to be positive. From this it follows that 4 is
exponentially stable and positive if and only if 0 < a; < —a;. Assume in the fol-
lowing that this condition on a; and &, is satisfied. This implies that (I — A)"1

exists and according to Theorem 3.10 we have to compute ||G(1)|| = ||(I — 4)™|.
Obviously,
- =" sup  [(T=4)"
ye®' ([0, R)
¥l <1

Now let x € €'([0,7],R). Then differentiation of y := (I — 4)x € ¢!([0,7], R)
yields
X(0) — (a1 + a2)x(2) = y(1) — a1y(1). (4.5)
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Solving (4.5) by variation of constants we obtain

x(f) = el@+a) (x(O) + J; e (@tam)T (%y(r) - aw(r))dr) = ((I - A)7'y)).

(4.6)

Since x(0) — = (dx 0) = x( ), equality (4.6) shows

a1+az)r< e ~(@ta)e ( _V(T) —aU/(’L'))d‘L’)

a1+a2>r( (e~@ra)y (7)) dr + azJ e~ (@ta)ty () dr)

0
— plata)r (x (0) + e~ lmta)r, (1) = y(0) + a2 J' e_(a1+az)ry(1:) d’f)
0
0

Hence

s
x(r) = —ﬁ ( (r) + agelatedr L e~(atay (7) dr). 4.7)
Using (4.7) the norm of (I — A)‘1 y can be computed in the following way:
I =47l

plarta) (x(O) + J; e—(ata)T (; y(z) - al)’(f)> )

= max

0<i<r
(mtar)e ‘d (a+az) ' (a1+a2)
— a,+az 0 — —~aiy+az )t —\a1+a)t
e R COM P LS e Ol
) t
= max [e{@+a)! (x(O) +e~@taty(r) — p(0) + azj e~ @ta)ry () dr)
0<t<r 0
(a1 +a)r r
= (@ tax)t y(r) e —(a1+az)t
OHSIIa;(r ¢ (] — elata)r +a 1 — el@+a)r 0 e T y(f) dt

t
+ e‘(a1+az)ty(t) +ay -'. e —(a1+a)t (‘L') d‘L’)
0

Thus, for y = 1 we obtain

17— 4)7| = [max

0<t<r

(@+a)t e(a1+a2)r T (arar)e p
¢ 1 — elm+a)r T 1 — el@+a)r 0 € T

e~ +a@)r d1->

t
+ e—(01+a2)t + azj
0

= max —
OStsr|1 —ela+a) g 4a,

_ 1 a
TT—c@rar o v a

e (@ +a)t ay ’
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and, finally,

1 a \!
rC(Aylyl) = (1 — elaita)r +a1 +a2> ’

5. Concluding Remarks

Future research is necessary to extend the results of this note to the more general
class of multiperturbations 4 — A4 + E?:l D;A;E; as considered in u-analysis. For
finite-dimensional systems this has been elaborated in [HS]. The continuous-time
counterparts of Theorems 3.6 and 3.10 are subject of current research, see [F].
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