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ANtract. We show that for infinite-dimensional discrete-time positive systems 
the complex and real stability radii coincide. Furthermore, we provide a simple 
formula for the complex stability radius of positive systems by the associated 
transfer function. We illustrate our results with an example dealing with a simple 
type of differential-difference equations. 
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1. Introductory Remarks 

This work  is motivated by a paper  o f  Hinrichsen and Son on stability radii o f  
finite-dimensional discrete-time positive systems, see [HS]. The stability radius for 
linear systems, introduced by Hinrichsen and Pritchard, is a measure for the stabil- 
ity robustness o f  a stable system, see [HP]. It  is defined as the smallest (in norm) 
complex or  real per turbat ion which destabilizes the system. In  general, the com- 
plex and real stability radii differ. I t  is therefore natural  to investigate for which 
kinds o f  systems these two radii coincide. This note is a contr ibution to this prob- 
lem and is motivated by the following finite-dimensional result due to Hinrichsen 
and Son, see p. 13 o f  [HS]. Consider the discrete-time system x(t  + 1) = Ax(t),  

n x n  t ~ ]No, where A e IR+ . 

lRnxl andE ~ ll~qxn Theorem 1.1. Let A ~ ]Rnk xn with spectral radius r(A) < 1, D ~ _.+ , ~,+ . 
Furthermore, assume that N t  and Kq, IK = IE, IR, are provided with monotonic 
norms, that is, Ix[ --- lyl implies Ilxll - [[yll for every x ,y  ~ ]K t and Kq, respectively, 
where Ixl :=  (Ixel). Moreover, denote by a(s) =-- E(s I -  A)-ID the transfer func- 
tion associated to (A, D, E), by 

rK(A; D, E) :---- inf(llAll I A ~ ~(lxq, r(A + DAE) >_ 1) 
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the complex and real stability radius for K = fie, IR, and by 

IR lxq r(A + DAE) > 1} r+(A;D,E) := inf{l iAi l iAe + , 

the positive stability radius, respectively. Then we have 

1 
r r  = r~ (A;D,E)  = r+(a;O,E)  = IIa(1)l-----~" 

Our objective is to generalize this theorem to infinite-dimensional discrete-time 
positive systems. It turns out that some of the ideas behind the proof of Theorem 
1.1 can be generalized to the infinite-dimensional case. 

The key argument in proving the equality of the complex, real, and positive 
stability radii in infinite dimensions is that the complex stability radius can be 
approximated by the norm of one-dimensional destabilizing perturbations. Since 
one-dimensional operators on Banach lattices admit a modulus, the complex stabil- 
ity radius can even be approximated by the norm of one-dimensional positive 
destabilizing perturbations. This observation is essential in proving the equality of 
the three stability radii. 

A formula for the stability radius of positive systems, corresponding to the 
finite-dimensional counterpart in Theorem 1.1, can be proven using results of the 
Perron-Frobenius Theory for positive operators. This theory ensures that 
the spectral radius of a positive operator T is indeed a spectral value, but, unlike 
the finite-dimensional case, it is not necessarily an eigenvalue of T. Nevertheless, 
we prove a characterization of the stability radius for infinite-dimensional positive 
systems which corresponds to the formula in Theorem 1.1. 

We conclude this note with an example dealing with a simple type of differential- 
difference equations. 

Throughout this note we use the following notations. Let E r {0} and F ~ {0} 
be real or complex Banach spaces. Then ~ ( E , F )  := {T: E ~ F I T linear and 
bounded}, ~e(E) := La(E, E), and E / is the dual space of E. We denote all norms 
by I1" 11 (with one exception in Section 4). Commonly, for T e s we denote 
by p(T) := {2 e I~iR(2 , T) := ( 2 I -  T) -1 ~ s176 the resolvent set of T, by 
a(T) := il?\p(T) the spectrum of T, and by r(T) := supze~(T)I21 the spectral 
radius of T. Finally, N := {1,2, . . .},  No : = N u { 0 } ,  R+ := { x ~ R i x >  0}, 
r  := {2 ~ tEIRe 2 < 0}, and ID := {'~ ~ r I'll < 1}. 

2. Preliminary Results 

To make this note more self-contained we give a brief summary of the notions of 
Banach lattices, positive operators, and moduli of operators as well as some of 
their basic properties as they are needed. For further reading we refer to [M] 
and [S]. 

Banach Lattices 

Let E r {0} be a real vector space endowed with an order relation _<, that is, a 
reflexive antisymmetric and transitive relation such that the following properties 
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are satisfied: 

x < y =~ x + z < y + z, x ,y ,  z e E, (2.1) 

x < y =~ ex <ey ,  x, y e E ,  e~P,+.  (2.2) 

Then  E is called an ordered vector  space. Denote  the positive elements of  E by 
E + := {x E E Ix  > 0}, where, of  course, x > 0 means  0 < x. I f  fur thermore  the 
lattice property holds, that  is, if  

sup{x, y} e E,  x, y e E,  

then E is called a vector lattice. In other  words, if  for  every x, y e E there exists 
z e E such tha t  x ___ z, y _< z and for  every v e E satisfying x _ v, y < v it holds 
that  z _< v, then sup{x, y} = z. The  set E + fulfills the following "geomet r ic"  prop-  
erties: 

E + + E + ___ E +, R+E + ___ E +, E + n ( - E  +) = {0}. (2.3) 

In particular, E + is a convex cone in E. Conversely, every subset C of E satisfying 
(2.3) determines an order relation on E by 

x<_y :<:> y - x ~ C  

such that  (2.1) and  (2.2) hold. Moreover ,  if  E is a vector  lattice, the set E + is 
generating, tha t  is, it satisfies 

E = E + - E +. 

The following proposi t ion provides a character izat ion of  the vector  lattices 
a m o n g  all ordered vector  spaces in terms of  the "geomet r ic"  structure of  the cone. 
A p roo f  of  this result can be found on p. 28 of  [P1]. 

Proposition 2.1. Let E be a real vector space ordered by a cone C. Then the 
following assertions are equivalent: 

(1) E is a vector lattice. 
(2) For every x, y e E there exists z ~ E such that (x + C) n (y + C) = z + C. 

The  following r emark  indicates to which cones Theo rem 1.1 can be generalized 
in the finite-dimensional setting. 

Remark  2.2. I f  E -- ~.n is endowed with an order  relation generated by a cone 
C, Proposi t ion 2.1 states that  E is a vector  lattice if  and only if there exist n 
linearly independent  vectors v(k) = (v~k),. . . ,  Vn (~)) e IR n, k = 1 , . . . ,  n, such that  

C = { x = ( x l ' " " X n )  e ~ t ' n ~ x i v } k ) > - O ' k = l ' " " n }  " i = 1  

I f  E is a vector  lattice, the modulus of  x e E is defined by Ix[ :=  sup{x, - x } .  I f  
II �9 II is a n o r m  on the vector  lattice E satisfying the lattice norm property, tha t  is, if  

Ix l -  lyl Ilxll- Ilyll, x , y  e E ,  (2.4) 
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then E is called a normed vector lattice. The lattice norm property implies 
[[ Ix I [[ = ][x[[ for every x e E. If, in addition, E is norm complete with respect to 
[[ �9 [[, then E is called a Banach lattice. 

So far the concept of Banach lattices is restricted to real vector spaces. Since it is 
often necessary to consider complex vector spaces we extend the notion of Banach 
lattices to the complex case. For this extension all underlying vector lattices E are 
assumed to be relatively uniformly complete, that is, for every sequence (2n)n~N in 
IR satisfying ~n~=] 12n[ ~ IR and for every x e E and every sequence (xn)n~ in E it 
holds that 

n 

O <_ xn <_ 2~x ~ s u p ~ x i e E .  
hen/__-~ 

Now let E be a relatively uniformly complete vector lattice. The eomplexifiea- 
tion of E is defined by Er := E x E with the canonical addition and scalar multi- 
plication. It is frequently written as Er = E + rE. The modulus of z = x + ty ~ Er 
is defined by 

Iz[ = sup I(cos ~0)x + (sin ~0)y I e E. (2.5) 
0~_<2n 

The modulus is homogeneous, that is, I~zl = I~1 [z[ for every z e Ec and every 
~teC, and satisfies the triangle inequality [z1+z21 _<lZll+lz21 for every 
Z1, Z 2 ~ E c .  A complex vector lattice is defined as the complexification of a rela- 
tively uniformly complete vector lattice endowed with the modulus (2.5). If E is 
normed, then 

Ilzll " :  II Izl II, z e Er (2.6) 

defines a norm on E~ satisfying the lattice norm property (2.4). If E is a Banach 
lattice, then E~, endowed with the modulus (2.5) and the norm (2.6), is called a 
complex Banach lattice. 

Standard examples of Banach lattices with respect to their canonical order 
relations are if(K, IK"), K = C, IR, for compact Hausdorff spaces K as well as 
LP(~,  Z,/2) for arbitrary measure spaces (f~, Z, #) and every 1 < p < oo. 

Positive Operators and Moduli of  Operators 

Let E and F be real Banach lattices and T e ~e(E, F). If TE + c_ F +, then T is 
called positive (T _> 0). By S _ T we mean T - S _> 0 for S e ~ ( E ,  F). 

Every N-linear map T e 5r has a unique C-linear extension Tr 
~ ( E r  Fr given by 

To.z:= Tx + tTy, z = x + ty e Er 

An operator T ~ .La(Er Fr is called real if TE c_ F. An operator T ~ ~ ( E r  Fr 
is called positive (T_> 0) if T is real and TE +c_ F +. We introduce the 
denotations ~ r t (Ee ,F r  := {T e . .~(Er162 real} and ~ + ( E r 1 6 2  := 
{ T  e ~q~(Ec, Fr > 0}. The cone 5~+(Er is closed in 5e(Er162 however, 
it is in general not generating. For T e ~+(E~:, Fr we emphasize the simple but 
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important fact 
IlTII = sup IlTxll. (2.7) 

x ~ E  + 
llxll- 1 

An operator T ~ s  possesses a modulus if IT] := s u p { T , - T }  ~ s  
in the canonical order relation of &?(E,F). It can be shown that, if 
suptzl_<xlTz I ~ F for every x ~ E +, then T possesses a modulus IT I and 

ITIx= sup ITzl, x ~ E  § (2.8) 
Izl --- x 

Since E is generating we have that I Zl ~ ~ + ( E ,  F). 
Let T e 5e(E~, F~). If  SUpz <x]Tz ~ F for every x ~ E +, then it holds by linear 

extension that T I e s Denote 5r := {T e s 
L#(Er162 We have ITxl < ITI Ixl for every T ~ Aall(Ec, Fc) and every x ~ E r  
as well as ITxl <_ Tlxl for every T E s and every x ~ E~. The lattice 
norm property (2.4) implies that 

IlZll --- II IZl II, T ~ &all(Ec, F , ) .  (2.9) 

Remark 2.3. In the finite-dimensional setting the above described notions have 
the following meaning. If  E = ~_rn and F = ]R n, then, of course, Er = C m and 
Fr : tE". Moreover, s m, tE n) : s (tErn, tEn) and for T : (t/j) E t~p(tEm, tEn) 
we have  IZl = (It/jl). 

3. Discrete-Time Systems 

In the rest of this paper let U, X, and Y denote complex Banach lattices as well as 
A ~ ~e(X), D ~ ~ ( U ,  X),  and E ~ L#(X, Y). We consider the infinite-dimensional 
discrete-time system 

x(t  + 1) = Ax(t),  t ~ No. (3.1) 

Definition 3.1. System (3.1) is called positive if A E 5r + (X). 

Stability Radii 

Recall that system (3.1) is called exponentially stable or power stable if there exist 
e > 1 and 0 < p < 1 such that 

IIA'II - c/~', t ~ N0 .  

It is well known that the exponential stability of system (3.1) is equivalent to 
r(A) < 1, see p. 516 of [P3]. 

In this note we consider affine perturbations of the form 

A ~ A + DAE, 

where the perturbations A are of three different types: 

a e ~r U), a e ~eR(Y, U), a e ~+(Y,  U). 
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Now we study a measure of robust stability of linear systems, the stability 
radius. Let A e ~ ( X )  be such that r(A) < 1. We define the complex, real, and 
positive stability radii of A by 

and 

re (A; D, E) = 

r~ (A; D, E) = 

r+ (A; D, E) = 

respectively, where we set 

re(A; 

inf(llAll [A ~ ~ ( Y ,  U), r(A + B A g )  ~ 1), 

inf{NAll IA ~ ~o~(y ,  U), r(A + D A E )  > 1}, 

inf{llA[I IA ~ ~ + ( Y ,  U), r(A + DAE) ~ 1}, 

inf 0 := or. Obviously 

D,E) < r~(A;D,E) < r+(A;D,E). (3.2) 

Let G(s) := E ( s I -  A)-ID e s Y), s e p(A), denote the transfer function 
associated to (A, D, E). In proving the main results of this paper we use the fol- 
lowing characterization of the complex stability radius. It is proven on p. 267 of 
[WH]. 

Proposition 3.2. Let Ae~LP(X) be such that r ( A ) < l ,  D e ~ e ( U , X ) ,  and 
E ~ s Y). Then 

1 
re(A; D, E) - maxl [ G(s) ll " (3.3) 

Isl=l 

Remark 3.3. In the proof of the previous proposition it is in particular shown 
that there exists a sequence (An)neN in 5r Y, U) such that 

(1) rank An = 1, n e N, 
(2) 1 < r(A + DANE), n e IN, and 
(3) IIA, II Z rc(A;D,E), n -+ ~ .  

Equality of  the Complex and Real Stability Radii 

In the next two lemmata we state the main arguments for proving the equality of 
the complex and real stability radii for positive systems. 

Lemma 3.4. Let T ~ 5e(Y, U) be such that rank T = 1. Then T e ~1.1 (y ,  U) and 
IITII = II IZr II. 

Proof. Since T is of rank one there exist a e Y~ and u e U such that 

T = a |  

that is, Ty = a(y)u for every y ~ Y. In order to prove that T ~ ~q~l.!(y, U) it 
remains to show that supN_<ylTz I ~ U for every y e Y+. However, this is immedi- 
ate since 

]Tzl = [a(z)u] = la(z)l ]u I <_ []a]] I]zl] ]u] ~ I]a]] ]IY]] ]u], 
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where we have used that [z < y implies z < [y , that is, the lattice norm prop- 
erty (2.4). In particular, we have that a e ~ e  ( Y, C). 

It remains to show the identity IITII = II ITI II. Applying (2.8) we obtain 

ITly - -  sup  IZzl = sup la (z ) l  lul = (LaI(Y))Iul, y c r§  
Izl-<y Izl <Y 

that is, ITI = lal | lul. A s s u m e  for a moment that Ilall = II lal II. Then 

[IZll = Ila | nil = Ilal[ Ilu[I = II [al II [1 In[ II = II IZ111, 

and the proof is complete. 
In order to prove the identity [Jail = [I lal II it remains to show that [I[a[ II - I[al[, 

see (2.9). Using (2.7) and (2.8) we have 

II lal II = sup  I la l (y) l  = sup  s u p  [a(z) l  = s u p  sup  la (z ) l .  
Y ~ Y+ Ilrll ~ 1 Ilyll~l ~1~ + z _<y y~ r§ Izl-y 

Therefore, there exist sequences (Yn)n~N in Y+ and (z,,)n~N in Y satisfying 
][yn[[ _< 1 and ]z~[ <_ Yn such that, for an e > O, 

[1 [a[ [[ - e _< ]a(Zn)[, n large enough. 

For [zn[ < Yn the lattice norm property (2.4) implies Ilznll -----IlYnll -- 1 and we 
obtain 

II lal II - ~ - [a(zn)l <_ sup  la (z ) l  = Ilall- 
Ilzll-< 1 

This completes the proof. �9 

Lemma 3.5. Let S ~ .~+(X) and T ~ LP(X) be such that ITxl ~ Slxl for every 
x ~ X. Then r(T) <_ r(S). 

Proof. 
Thus 

117~xll -< [[Snlxl I[ < IlSnll II Ixl II = IIS"ll IIx[I, x c X ,  

that is, IlZnll _< Ilsnl[. Hence 

r(Z) = lnim ]lznll 1In ~ 1"1111 ~ I]sn[I 1In = r (S ) .  

We are now in a position to prove the first main result of this note. 

Let n ~ N. Since [Tx I < Six [ we have that ITnx[ < Sn]x[ for every x ~ X. 

Theorem 3.6. Let A c ~ + ( X )  be such that r(A) < 1, D~cP+(U,X) ,  and 
E ~ 5f + (X, Y). Then 

r r  = r ~ ( a ; D , ~ )  = r + ( a ; D , e ) .  

P r o o f i  Suppose that rr < oo, as otherwise there is nothing to show. It 
remains to prove r+(A; D, E) <_ rr D, E), see (3.2). By Remark 3.3, there exists 
a sequence (An)hEN in Sa(y, U) such that rank An = 1 and 1 < r(A + DANE) for 
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every n s N and for an e > 0 it holds that [[An[I < rc~(A;D,E) + e for every n large 
enough. Furthermore, according to Lemma 3.4, we have that An ~ ~['l(y, U) for 
every n e N. Using the positivity of D and E we obtain 

I(A + DAne)x[ < lax I + IOAnEx[ < Alx [ + OlAngx I 

<_ Alxl + D]Anl IExl <_ Alxl + OlAnlElx[ 

=(A+Olanlg)lxl, x E X ,  n~N.  

Now we know by Lemma 3.5 that 

1 <_ r(A + Dane) <_ r(A + DIAnlE), n s N .  

Therefore, [Anl e ~e+(Y, U) also destabilizes A. Finally, using again Lemma 3.4, 
it follows, for an e > 0, that 

r+(A;D,E) < I[ IAnl II = [[An[[ _ re(A;O,E) +e,  n large enough. 

This completes the proof. �9 

A Formula for the Complex Stabifity Radius 

Next we derive a simple characterization of the complex stability radius of 
positive systems using Proposition 3.2. The following proposition concerning the 
Perron-Frobenius Theory for operators can be found on p. 248 of [M]. 

Proposition 3.7. Let T ~ Ae+(X). Then." 

(1) r(T) e a(T). 
(2) g ( L  T) _> 0r  > r(T). 

Remark 3.8. The proof of part (1) of the previous proposition shows in particular 
that there exist a sequence (2re)mEN in ~ and an x ~ X + such that 2m ~ r(T) and 
II(2mI- T)-lx[I--+ Do fo rm --* oo. 

Lemma 3.9. Let A ~ ~+(X),  D ~ s and E ~ L~a+(X, Y). Furthermore, 
let 21,22 ~ 1R be such that r(A) < 21 <<_ 22. Then [16(22)[I -< I[a(,h)[[. 

Proof.  Let r(A)< 21 < 22. By Proposition 3.7(2) we have R(21 ,A)> 0 and 
R(22, A) > 0. Using the resolvent equation for operators we obtain 

R ( 2 1 , A )  - R ( 2 2 , A )  = (J~2 - 21)R(21,A)R(22, A) ~ O, 

that is, 0 < (221 - A) -a < (2aI - A) -~. Multiplying this inequality by E from the 
left and by D from the right--recall that D and E are positi evevevC-~we have that 
0 _< G(22) < G(21). Since 

[[a(,h)ul[ ___ Ila(22)lul II -< IIG(2,)Iul l[ -< [Ia(2x)l111 lul II = [[G(2x)[I Ilull, u e u,  

the proof is complete. �9 
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We are now prepared to provide a formula for the complex stability radius of  

positive systems. 

Theorem 3.10. Let A e~,cP+(X) be such that r (A)< 1, D eL,  a+(U,X),  and 
E ~ L,e+(X, Y). Then 

1 
r~(A;D,E) = IIG(a)I[. 

Proof. Suppose that rr (A;D, E) < 0% as otherwise there is nothing to show. By 
(3.3) it remains to prove that 1/lla(1)ll- re(A;D,E) .  Consider the sequence 
(An)n E N in ~e ( Y, U) given in Remark  3.3, that is, rank A n = 1 and 1 < r(A + DANE) 
for every n e N and for an e > 0 it holds that IIAnll - r r  + e for every 
n large enough. Furthermore, according to Lemma 3.4, we have that An e 
~ l ' l ( y ,  U) for every n e N.  This implies An := A + D[AnIE > 0 for every n e N. 
Now fix n e N. By Remark  3.8 there exist a sequence ()'n,m)mEN in IR and Xn e X + 
such that 2n,m l r(An) and l[(2n,mI - An)-lxn][ ~ oo for m ~ oo. Define 

(J,n,mI --  A n ) - l x n  

Xn,m := l[(2n,mi_ An)_lxnI[. 

Then it follows from 

( r ( A n ) I  - A n ) x n , m  = ( r ( A n ) I  - ,~n,mI)Xn,rn + (~,n,m I --  A n ) x n , m  

Xn 
= ( r ( A n ) I  - ~,n,mI)xn,m -q- ll(2n,mi _ An)_lxn] I 

that II(r(An)I - An)xn,mll --+ 0 for m --* oo. Define zn,m := (r(An)I - An)xn,m. Since 
1 <_ r(A + DANE) the operator (r(An)I - A) - I  exists and we have 

(r(An)I - A)-lDlAnlgxn,m = Xn,m - -  (r(An)I - A ) - l z n , m  . (3.4) 

Multiplying this equation by E from the left and setting Yn,m := Exn,m we obtain 

G(r(An)) IAn[Yn,m = Yn,m --  E(r(An)I - A ) - l z n , m  �9 

Note that there exists c > 0 - -which  may  depend on n - - such  that c < [[Yn,m[[ for 
every m large enough. This can be seen as follows. Assume that Yn,m ~ 0 for 
m ~ oo. Then also the left-hand side of  (3.4) tends to zero for m ---+ ~ .  This 
implies that 

Ilxn,mll - ][(r(an)I - A ) - l z n , m [ [  ~ [[Xn,m - ( r ( a n )  I - A ) - l z n , m l l  ---+ O. 

Since I[xn,mll = 1 for every m e N and [[(r(An)I -A)-lZn,mll ~ 0 for m ~ m, this 
cannot happen. 

Therefore, for every m large enough 

[lYn,m - - E ( r ( A n ) I -  A ) - l z n , m [ [  ~ I lG(r (An) )[[  II IAnl I1" 
IlYn, ll 
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If  m --+ oo we have 

1 <_ IlG(r(An))ll  II [An[ II, 

which can be verified as follows. Since 

1 [IE(r(An)  I - A)-lZ..m[I _ IlY.,m - E ( r ( A n ) I  - A)-Izn,m[I 

IlY.,mll IlYn,mll 

<-- IfG(r(An))l l  Jl fAn111, 
it is sufficient to show that [IE(r(An)I  - A)-lZn,m[[/[lYn,m[[ ~ 0 for m ~ oo. How- 
ever, this immediately follows from the definition of  Zn,m and 

[]E(r(An)I  - A)-aZn,mll ]]E(r(An)I  - A )  -a 1[ 
Hyn,mH - c I[z.,mll. 

Now Lemma 3.9 implies [[G(r(An))[[ <_ [[G(1)[]. Finally, by Lemma 3.4 we 
obtain that, for an e > 0, 

1 1 
HG(1)[-----~ < IIG(r(An))II -< II IA, III = IIAnII -< r r  + ~, n large enough. 

This completes the proof. �9 

Remark 3.11. If A e La+(X) is assumed to be compact, then the proof of 
Theorem 3.10 becomes much easier, since in this case r(An) is an eigenvalue of 
An, see p. 250 of  [M]. The positivity of  D and E is necessary in proving Theorems 
3.6 and 3.10 since for nonpositive D and E these results are already wrong in the 
finite-dimensional setting, see p. 14 of [HS]. 

4. An Example 

Let A1,A2~-IR nxn, r > O ,  and ~0ecg([-r,0],F,.n). Furthermore, let X : =  
cg([0, r], ]R n) be endowed with the supremum norm [[. [1~ and the canonical order 
relation. We consider the infinite-dimensional discrete-time system 

x~+l = A x k ,  k e No, (4.1) 

with initial state xo(t)  = ~o(t - r), t e [0, r], and A e ~ ( X )  defined by 

( A x ) ( t )  = eAltx(r)  + eA' ( t -~)A2x(r)  dr,  t ~ [O,r]. 

System (4.1) can be considered as a model of the differential-difference equation 

~(t) = A l z ( t )  + A2z ( t  - r), t e IR+, (4.2) 

where z(  t) = r  t), t ~ [ - r ,  0], using the transformation 

x~(. ) := z ( k r -  r + .)llo,rl ~ x ,  ~ ~ No. 
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The unique solution o f  system (4.2) is given by z(t) = ~0(t) for t ~ [ - r ,  0] and 

Ito e A~ (t-Z)A2z( ~ z(t) = eA"~o(O) + - r) dz, t ~ IR+, (4.3) 

see p. 6 of  [P2]. 
In the following subsections we show that  the notions of  positivity and stability 

are consistent for  systems (4.1) and (4.2). 

Positivity 

We define when a system of  type (4.2) is called positive. 

Definition 4.1. System (4.2) is called positive if, for  every positive initial condi- 
t ion ~o e cg([-r,  0], IR~_), the corresponding solution z satisfies z(t) ~ Nn+ for  every 
t ~ IR+. 

Recall that  a matr ix M = (au) e IR n• is called a Metzler matrix if  a/j > 0 for 
nxn i r  A matr ix  M ~ ~n• is called positive if  M e ~ +  . 

Proposition 4.2. System (4.2) is positive i f  and only i f  A1 is a Metzler matrix and 
t l x n  A2 E F.~+ . 

Proof.  Assume that  system (4.2) is positive, that  is, for every ~0 ~ cg([-r,  0], R~_), 
the corresponding solution z satisfies z(t) ~ R~_ for every t ~ R+.  Choose ~0 such 
that  ~01[_ r -r0] = 0 for some 0 < r0 < r. Thus the second term of  the r ight-hand side 
of  (4.3) vanishes for  every t ~ [0, r - ro], and therefore eAlt~o(O) ~ IR~ for every 
t ~ [ 0 , r -  r0]. Since this holds for  every ~0(0) ~ R~_ we have that  eAl te  IR~_ • for 
every t ~ [0, r - r0]. N o w  assume that  a/j < 0 for  some i ~ j ,  that  is, A1 = (aij) fails 
to be a Metzler matrix. Since 

! e A l t  = ! I  ~ t k - 2  k 
+ A1 + t ---~-.A 1 

t t k=2 

it follows immediately that  for t < r - r0 sufficiently small the element in the ith 
row and j th column of  the r ight-hand side matr ix  remains negative. This is a con- 
tradiction to e A~t ~ IR~ • for every t ~ [0, r - r0] and hence A1 is a Metzler  matrix.  

Next,  choose ~o ~ cg([-r,0],P-,~_) such that  ~o(0)= 0. Then  the positivity of  
system (4.2) implies that  

1 1 t eA~(t_Z)A2z( T _ r) dr  ~ IR~_, t > 0. (4.4) 
t o  

It  is easily verified that  the expression in (4.4) tends to A 2 z ( - r )  ~ Rn+ if  t ~ 0. 
n• This holds for  arbi trary z ( - r )  = q~(-r) e IR+. Hence A2 E IR+ . 

In order  to prove the converse implication we argue as follows. Since A1 is a 
nxn that  is, e (cl+Al)t Metzler  matr ix there exists c > 0 such that  cI + A1 ~ R+ , = 

eCte A~t ~ IR~_ • for every t ~ R+.  Therefore,  we obtain e A~t e IR~_ • and the asser- 
t ion immediately follows f rom (4.3). �9 
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A characterization of positive systems in a more general setting than system (4.2) 
can be found on pp. 224 and 225 of [N]. Using the previous proposition it is 
obvious that the positivity of system (4.1), that is, A ~ s (X ) ,  is equivalent to the 
positivity of system (4.2). 

Stabi l i ty  

For system (4.1) it is shown on p. 7 of [P2] that 

a ( A )  = {2 ~ C [ det(2I - e (A~+I/2A2)r) = 0}  k9 (0}. 

In particular, every nonzero 2 ~ o-(A) is an eigenvalue of A. Recall that system 
(4.2) is exponentially stable if and only if {p ~ C [ det(/d - Aa - Aze-#r)  = 0} ___ 
C_, see p. 190 of [BC]. 

For 2 = e#r we have that ]2] < 1 is equivalent to e (Re~')r < 1 and this is true if 
and only if Re/~ < 0. Hence, by using the Spectral Mapping Theorem, we obtain 

{2 ~ C[det(2I - e (A~+(1/'~)a~)r) = 0} ___ D r {2 ~ 11212 ~ a(e(A~+(1/'t)'a2)r)} ~ D 

.r {e/~r ~ C le zr ~ e a((A~+A:e-~')r)} ~_ D 

r {fl ~ (1~ [ d e t ( / 2 / -  A 1 - A2 e-pr) = 0)  ___ r  

This shows that system (4.1) is exponentially stable if and only if system (4.2) is 
exponentially stable. 

Comput ing  the Complex  Stabi l i ty  Radius  

We compute the complex stability radius of system (4.1) with respect to the 
unstructured perturbation form A ~ A + A, that is, D = E : I. We only consider 
the scalar case, that is, n = 1. Setting A1 : al and A2 : a2 we obtain 

( A x ) ( t )  = ea'tx(r) + [0, r]. 

Conditions on al and a2 for the exponential stability of the operator A can be 
found on p. 444 of [BC] where a complete characterization of the exponential 
stability of scalar systems (4.2) is derived. Furthermore, from Proposition 4.2 we 
know how to choose al and a2 for A to be positive. From this it follows that A is 
exponentially stable and positive if and only if 0 _< a2 < -aa .  Assume in the fol- 
lowing that this condition on al and a2 is satisfied. This implies that ( I -  A) -1 
exists and according to Theorem 3.10 we have to compute [[ G(1) [I = 1[ (I - A)-I [[. 
Obviously, 

I]( I - A) -1 l[ = sup 11(I - A ) - l Y I I ~ .  
y E ~1 ([0,r],R) 

/lyll ~ -< 1 

Now let x ~ cgl([0, r], R). Then differentiation of y := ( I  - A ) x  ~ cgl([0, r], IR) 
yields 

Yc(t) - (al + aE)x(t)  = jp(t) - a ly ( t ) .  (4.5) 
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Solving (4.5) by variation of  constants we obtain 
t d 

x ( t ) =  e(al+a2)t ( x(O) -']- j0fe-(al+a2)Z(--Y(r'~\dz " " - aly(r) )dz )  = ( (I - A)-ly)(t). 

(4.6) 
Since x(0) - y ( 0 )  = (Ax)(O) = x(r), equality (4.6) shows 

x(r) = e(am+az)r (X( O ) + Ii e-(a~+a2)~ ( dy(v)  - aly(v) ) dz) 

d r dr) : + -'=- e-(al+a2)Zy Z e(ax+az)r(X(O) I'odr ( ( ))dz + a2 I'oe-(a'+a2)TY(Z) 
/ 

= e(al+a2)r (x(O) + e-(al+a2)ry(r) - y(O) + a2 Jl e-(al+a2)Zy(r) dr ) 

-7- e(al+a2)r (x(r) + e-(al+a2)ry(r) + a2 Ji e-(al+a2)Zy(r) dr ) . 

Hence 

1 ( aEe(al+a21r[re_(a~+a2~y(r) dr) x(r) - 1 e(a~+a2) r y(r) + 
- -  JO 

Using (4.7) the norm of  (I - A)-ly can be computed in the following w a y :  

II (I  -  )-lyll 

=max0___t_<rl e(al+a2)t (x(O) + Itoe-(al+a2)r ( ff--~ y('c) - aly(r))d'c) ] 

e(al+a2)t(x(O) t d t 
= o~t_<rmax ~, +Io-d-~z(e-I~+a2)~y(z))dr+a2Joe-(~'+~2l~y(z)dr) 

= o_<tmax_< rl e(al+a2)t(x(O)+e-(al+a2)ty(t)-y(O)+a2Jtoe-(al+a~)~y(z)dz) 

( y(r) e(al+a2)r tr 
max e (al+a2)t 1 1 O<t<rl \ __ e(al+a2) r [- a2 --~e(----'~l+a2)r J0 e-(al+a2)~Y(r) dr 

+ e-(al+a2)ty(t) + a2 Ii e-(al+a2)ZY(r) dr)  " 

Thus, for y - 1 we obtain 

[[ ( I  - A) -1 I1 = max e (a~+~)t 1 - e(~+a2) ~ ~- a2 1 ~ e(a~+---~2) ~ Jo e-(a~+a2)~ dr O<~t<r 

= max e(aa+a2)t a2 I- 1 
O<_t<_r 1 -- e( al+a2)r al + a2 

1 al 
1 - e(al+a2) r + al + a2 

(4.7) 
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and, finally, 

1 
r e ( A ; I , I ) =  ] _ e(a~+a:) r 

al ~-1 
+ 

A. Fischer 

5. Concluding Remarks 

Future research is necessary to extend the results o f  this note to the more  general 
class of  multiperturbations A ~-~ A + Ein=l DiAiEi  as considered in p-analysis. For  
finite-dimensional systems this has been elaborated in [HS]. The continuous-t ime 
counterparts  o f  Theorems 3.6 and 3.10 are subject o f  current research, see IF]. 

Acknowledgments. The author  would like to thank Luc Habets  and Fabian  
Wir th  for several useful comments  as well as Uwe Stroinski for the suggestion 
that  the condit ion o f  Dedekind completeness o f  the underlying spaces could be 
omitted. 

References 

[BC] R. Bellman, K. L. Cooke; Differential-Difference Equations. Academic Press, New York, 1963. 
[F] A. Fischer; On stability radii of infinite-dimensional continuous-time positive systems. In 

preparation. 
[HP] D. Hinfichsen, A. J. Pritchard; Real and complex stability radii: a survey. In: D. Hinrichsen, B. 

MArtensson (eds.), Control of Uncertain Systems, pp. 119-162. Birkh/iuser, Boston, 1990. 
[HS] D. Hinrichsen, N. K. Son; Stability radii of positive discrete-time systems under aft-me parameter 

perturbations. Report No. 373, Institute for Dynamical Systems, University of Bremen, 1996. 
[M] P. Meyer-Nieberg; Banach Lattices. Springer-Verlag, Berlin, 1991. 
[N] R. Nagel (ed.); One-Parameter Semigroups of Positive Operators. Springer-Verlag, Berlin, 1986. 

[P1] A. L. Peressini; Ordered Topological Vector Spaces. Harper & Row, New York, 1967. 
[P2] K. M. Przyhaski; Infinite-dimensional discrete-time equations as models for linear systems with 

time delay. Reprints of the 2nd IFAC Syrup. on Distributed Parameter Systems, Warwick, 
1977. 

[P3] K. M. Przyhaski; Stability of linear infinite-dimensional systems revisited. Internat. J. Control 
48, 513-523, 1988. 

[S] H. H. Schaefer; Banach Lattices and Positive Operators. Springer-Verlag, Berlin, 1974. 
[WH] F. Wirth, D. Hinrichsen; On stability radii of infinite-dimensional time-varying discrete-time 

systems. IMA J.. Math. Control lnform. 11, 253-276, 1994. 


