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I Introduction 

In a dynamic game the payoffs at equilibrium for the players will not in general 
be on the efficiency frontier. It is therefore important  to determine if a c o n s t r a i n e d  

efficiency can be achieved: i.e. if there exist equilibria of the game which give efficient 
outcomes over the equilibrium payoffs. We analyze this question in the context of 
games of joint exploitation of a productive asset, as in [2]. 

This note has also a second purpose. In the analysis of the existence of both 
first and second best for this class of games there is a natural requirement on the 
space of controls that is imposed in [2]: the productive asset must remain zero 
forever after taking the value zero once. When this additional restriction is 
introduced, the set of admissible paths is not closed, and the use of standard weak 
compactness results requires some additional care. We put in this extra care, 
proving the existence for both the first and second best under this additional 
restriction. The problem of existence of equilibria in stationary strategies for this 
type of game is a relatbd issue, still topic of current research: see [5] and [6] for 
some recent contributions. No symmetry conditions will be used in this paper. 

2 The model 

Our assumptions are the same as in [2]. We have two players with instantaneous 
concave utility functions ui, i = 1, 2, both continuous at zero, with ui(0 ) = 0, i = 1, 2. 
The players have a common discount rate p; the measure with density p e  - p s  is 
denoted/~. If we denote by c 1 and c 2 the consumption rates of the two players, 
the productive asset y reproduces at a rate f = m ( y ( t ) )  - el(t) - c2(t), with m concave, 
lipschitzian of norm M, and m(0) = 0. The Lipschitz condition is required to derive 
continuity of the value function at 0, as required in [2]: a Cobb-Douglas  production 
function m is enough to show that this condition cannot be weakened. 
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The two players have an upper bound on the consumption rate ?i, i = 1, 2. This 
bound is assumed to be large. In particular we require that supra(y)< min(gl, g2), 

y>0 
and that the pair of fast consumption strategies, given by ci(y) = gi, i = 1, 2 for every 
y, is a subgame perfect equilibrium. For the case they analyse (linear utility) 
Benhabib and Radner prove that this is the case in [2]. For our, more general, 
framework an easily checked sufficient condition is presented in Sect. 4 below. 

The action of each player is perfectly observable after z units of time, the 
detection delay. For any measurable pair of consumption paths c = (c1,c2) and 
initial capital stock Yo we denote by y(-, Yo, c) the solution of 

~9(y) = m(y(t)) - Cl(t ) - c2(t), y(0) = Yo. (2.1) 

As usual, (2.1) is assumed to hold in the almost everywhere sense. The economic 
interpretation of it requires that we impose the additional restriction: 

if y( t l ,  Yo, c )=  0 for some tl > 0, then y(t, Yo, c )=  0 for t > tl. (2.2) 

The restriction (2.2) is important. It is not implied by the condition m(0)= 0 and 
(2.1) above: so it has to be introduced to rule out paths of the asset which are not 
acceptable. Unfortunately it introduces a discontinuity which has to be treated 
carefully. To clarify the nature of the discontinuity, and explain how we deal with 
it, we introduce the stopping time 

to(y0) = min{t > 0: y(t, yo,c ) = 0}. (2.3) 

Notice that the integration of the instantaneous utility in the evaluation of the 
payoff is only allowed over the interval [0, tc(yo) ], which depends on c. But this 
dependence is not upper semicontinuous: we shall see later that the functional 
c~t~(yo)  is only lower semicontinuous. This precludes a direct application of 
standard upper semicontinuity arguments (we use these results in our proof: see 
[1] for a reference.) 

A pair of consumption paths c = (cl, c2) is admissible if a solution of (2.1) exists, 
~g > c~ > 0, i = 1, 2, and y(t, Yo, c) > 0 for t > 0. We denote by rg the set of admissible 
pairs. Any admissible consumption pair belongs to the product space L 2 • L 2 of 
pairs of measurable functions,/~-square integrable. The set cg is weakly compact 
in this space. We denote as usual with c , ~ c  the weak convergence of (c,) to c. 
Information about the weak topology can be found in [1]. The reader only needs 
to know what is presented in [2]. The First Best is in this context the solution of 

t~(yo) 
sup ~ (C~Ul(Cl) + (1 - ~)u2(cz))dl~ (2.4) 

0 

over the admissible consumption pairs; here ct~[0, 1]. 
The Second Best problem is the problem of determining the supremum in (2.4) 

over all consumption pairs which are outcome of subgame perfect equilibria. It is 
easy to prove that any such consumption pair can be supported as an outcome 
of the following tri99er strategies equilibrium: player i consumes according to cl 
until a defection is detected, and then consumes ~ forever. For a proof of this 
statement see, if necessary, I-3]. 
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Since trigger strategies are enough to support a second best outcome, the second 
best problem itself can be reduced to a maximization problem subject to the 
constraint that the value of defection from the second best pair is everywhere lower 
than its continuation value for each player. 

If at time t player 1 defects from the agreed consumption path Cl to the 
maximum consumption g~, this will produce a new pair g = (51, c2) defined by 
51(s) = q ( s )  if s < t, cl if s > t, and 52(s) = c2(s) if s < t + z, cz if s > t + z. Clearly 
the map from c to ~ is continuous in the weak topology. Now the value of defecting 
from c at time t for player 1 is 

t~((y(t ,yo,c))  

V~(C, t) =-- f ul(Cl)dp" (2.5) 
0 

3 The  ex i s t ence  result  

From the assumptions on m we derive that 

y(t, Yo, c) < eUty o for every c, and for every t > 0. 

We have immediately that if c,---c in cg then 

(3.1) 

lim y(t, Yo, c . )  = y(t, Yo, c) for every t > 0; 
n 

(3.2) 

t~ < liminft~.; (3.3) 

v~)(c, t) < liminfv~o(c,, t) for i = 1, 2. (3.4) 

The inequality (3.4) is an immediate consequence of (3.3). In turn, (3.3) follows 
from (3.2) and the fact that I)l < 2 max(gl,g2). Finally to prove (3.2) notice that 
if t < tc(yo) then condition (2.2) is not relevant, and (3.2) follows from weak 
convergence of c,. If t > t~(yo), then from (3.1) above y(t, yo, c,) < eM(~-tc(Y~ 
YO, C,); now use the previous result to establish (3.2). 

Consider now any function 'U: [0,51] x [-0,(~2]---~R +, increasing, concave, 
continuous at 0 with U (0, 0 )=  0. For a fixed interval I the functional 

c~U(c)d~ 
I 

is weakly uppersemicontinuous. 
We can now prove: 

t d y o )  

Lemma 3.1. The functional cv-~ ~ U(c)dp - V(c, t) is weakly upper semicontinuous 
t 

for every t >= O. 

Proof  Let t~ be defined by SU(~i,gz)d/l = e and f =  limsuptc . From (3.3) f >  t~. 
t E 
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Consider  first the case U (c) = c 1 + c 2. Then we have 

lim sup V(c., t) - V(c, t) 
n 

te n 

< l imsup  ~ U(c,)d# 
n tc 

m i n  (t,tr) 

< l imsup  ~ (m(y(t, y o , C , ) ) -  ~(t, yo,C,))d# + 
te 

< Cy(t, yo,C.) + 

for some positive number  C. The last inequality follows integrat ing by parts  
and using (3.1) above. Since y(t, yo,c,)--*O as c . ~ c ,  the claim is proved  in this 
case. In the general case the est imate U (c) < a + be for some a E R + , b e R  2 and the 
previous a rgument  give 

lim sup V(c., t) - V(c, t) < ~ + a(min(f,  t~) - to) 
n 

independently of b. Since a can be chosen arbitrari ly small, the p roof  is complete.  
Q.E.D. 

tc(yo) 
N o w  define vi(c, t) = ~ ui(ci)d#, the value for player i of the equil ibrium pair  

0 

(c x, c2) and the set 

J =- {c~C: vi(c, t) - rio(c, t) >= 0, for every t > 0, and i = 1, 2}. 

Then we have: 

L e m m a  3.2. J is weakly compact. 

Proof F r o m  (3.4) and (3.1), the functional c~--~vi(c,t) - vg(c,t) is weakly upper  
semicont inuous for every fixed t and i = 1, 2. So J is a weakly closed subset of ~ 

Q.E.D. 

F r o m  the previous results we now have: 

Theorem 3.3. First Best and Second Best solutions exist for the model described in 
sect. 2. 

Proof For  the First Best existence, choose U in (3.1) as U = ~ul + (1 - ~)u 2. For  
the Second Best, choose the same U and use weak compactness  of J .  Q.E.D. 

Remark 3.4. The Lipschitz conditon on m is not needed for the First Best existence: 
this condition can be for instance removed by considering the function m A ( y ) -  
min(Ay, m(y) ), applying the previous result and using the fact that an optimal solution 
is interior. 

4 Fast consumption equilibria 

We now turn to the issue, left open in sect. 2 above, of conditions under which 
the fast consumption strategies are a subgame perfect equilibrium. A first instance 
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of such conditions is provided in [2]: if the utility function is linear and m(y) - c2 < 0 
for every y, then the prodigal  pol icy (defined by c i ( y ) =  ?i, i =  1, 2) is optimal for 
player 1 and viceversa. 

It is reassuring to know that a similar conclusion holds for a larger class of 
utility functions. Some condition on the utility function is needed: it is enough to 
think of the example of a utility function which is satiated for values of consumption 
larger than some finite quantity. The same example shows that the form of the 
utility function around zero is not enough by itself to guarantee the result. Consider 
first the problem of the best response of the first player. He solves: 

T 

max S ul (c( t ) )d#( t )  (4.1) 
(T,c) 0 

subject to 

where 

.9(t) = m(y( t ) )  -- c2 -- c(t) 

y(0)  = yo 

T =  sup {y(t) > 0}. 
t > 0  

Since re(y) - ~2 < 0 for every y, it follows that T is finite for any control path 
c. In this framework, the optimal consumption path is characterized by the solution 
of the usual system of state and costate variables 

.9(t) = m(y( t )  ) - cz - c(t) (4.2) 

it(t) = [p - m' (y(t) ) ] q(t) 

y(O) = Yo 

together with the transversality condition 

u~ (c(T)) + q(T) [m(0) - c2 - c(T)]  --- 0 

which gives the boundary condition on the costate variable 

u,  (c( T)  ) 
q(T) = c2 + c(T) - m(0)" (4.3) 

The optimal consumption is given by: 

-- arg max {u x (c) + q(m(y)  - c2 - c)}. (4.4) 
cl>c>O 

From Eq. (4.2) it is clear that the maximum value of the costate variable q, 
say, is achieved at the value of y that solves 

m'(y )  = p. 

We call .9 this value. We now provide a simple estimate on ~. The stable manifold 
in the (q, y) space, for 0 < y < p, is described by the function ~ which solves the 
differential equation 

d?l dl ( p - - m ' ( y ) ) q  Ul(C1) 
q(0) = _ (4.5) 

dy  .9 m(y)  - -  C2  - -  C 1 '  Cl + c2 -- m(O)" 
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Since 

the solution Q of 

d?l < m'(O) 

dy = cl + c2 

d Q _  m'(O) 
Q, Q(0) = q(0) (4.6) 

dy cl + c2 

satisfies Q(p) > q(p). (See for instance Hale, J. [4, Theorem 1.6.1].) 
Solving (4.6) yields 

Q ( 9 ) = e x p ( m ' ( 0 )  9") ui(cl) 
\ C l  "~C2 / /Cl  - ] - c2 - -m(0 )"  

The value of Q0 ~) for the second player is similar: we write Qi0 ~) to distinguish 
among the two. 

We can now conclude 

Proposition 4.1 The pair of fast consumptions (Cl, c2) is a subgame perfect equili- 
brium if 

Q,(p) < u',(?,) i= 1,2. (4.7) 

Proof. Given the estimate of O(p) the optimal consumption for the fast player in 
Eq. (4.2) is always achieved at ~1; the same goes for the second player. Q.E.D. 

Remark 4.2. Let us discuss briefly some instance in which the condition of the 
proposition holds. I f  Uti(Ci) > O, i = 1, 2, then (4.7) holds for large p's. I f  u'i(c) > e > 0 
for every c, then the choice of a large ci will be enough. But also in the case, say, of 
ui(c) = c" if a > 1/2 and re(O) = O, it will be enough to choose ci to be sufficiently large. 
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