
Formal Aspects of Computing (1992) 4:376-408
@ 1992 BCS Formal Aspects

of Computing

A Layered Semantics for a Parallel
Object-Oriented Language*

Pier re A m e r i c a I a n d J a n R u t t e n 2

1Philips Research Laboratories, Eindhoven, The Netherlands
2Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

Keywords: Object-oriented programming; Denotational semantics; Parallelism;
Complete metric spaces

Abstract. We develop a denotational semantics for POOL, a parallel object-
oriented programming language. The main contribution of this semantics is an
accurate mathematical model of the most important concept in object-oriented
programming: the object. This is achieved by structuring the semantics in layers
working at three different levels: for statements, objects and programs. For each
of these levels we define a specialized mathematical domain of processes, which
we use to assign a meaning to each language construct. This is done in the
mathematical framework of complete metric spaces. We also define operators
that translate between these domains. At the program level we give a precise
definition of the observable input/output behaviour of a particular program,
which could be used at a later stage to decide the issue of full abstractness. We
illustrate our semantic techniques by first applying them to a toy language similar
to CSP.

1. Introduction

In the design of a programming language, a formal study of its semantics can be of
considerable advantage [Ame89c]. First of all, the conciseness and mathematical
elegance of the formal semantic definition of a language is a very good measure
of its conceptual integrity. If the basic concepts of a language or the way in which
they are combined are not well chosen, then an attempt to describe the meaning

*This paper describes work done in ESPRIT Basic Research Action 3020, Integration.
Correspondence and offprint requests to: Jan Rutten, Centre for Mathematics and Computer Science,
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.

A Layered Semantics for a Parallel Object-Oriented Language 377

of programs written in that language by formal, i.e., mathematical, means will
certainly run into problems. Second, a formal description of the semantics of a
language may form a basis for proving the correctness of a certain implementation.
Sometimes this may apply to a complete implementation, but more often it will
only apply to specific techniques used in such an implementation. Last but not
least, formal semantics for a language can function as a gauge for an equally
formal theory of reasoning about the correctness of programs written in the
language. Since reasoning about a program can be done at several levels of
abstraction, it is important that for the formal description of the semantics the
right abstraction level is chosen.

In this paper we shall study the semantics of POOL, a parallel object-oriented
language [Ame89b]. This language has been designed to support the development
of symbolic (i.e., not only numerical) programs that can be run efficiently on a
parallel computer without shared memory. Up to now, the formal semantics of
POOL has been described in several different ways. First an operational semantics
was defined [ABK86], using the technique of transition systems and Structural
Operational Semantics [Plo81]. After that we developed a denotational semantic
description of POOL [ABK89]. This took place in the mathematical framework
of complete metric spaces and used mathematical structures called processes
[BaZ82] to represent the behaviour of a program and its parts. In [Rut90] it was
proved that these operational and denotational semantics, which were developed
more or less independently, are in a certain sense equivalent. The semantics
of POOL has also been described using other formalisms, for example process
algebra [Vaa86].

Here we want to concentrate on denotational semantics. The main character-
istic of denotational semantics is that it assigns a meaning (a value out of some
mathematical domain) to each language construct in a compositional way. This
means that the meaning of a composite construct only depends on the meanings
of its constituents, not on their actual syntactic form. In general, this is the
best way of describing each concept in the language accurately and individually.
The denotational semantics developed so far for POOL [ABK89] had two flaws.
Firstly, it did not give a description of the semantics of a single object, clearly
a very important concept in the language. Secondly, the denotational semantics
was not sufficiently abstract, and certainly not fully abstract. This principle of full
abstractness can be defined as follows: In denotational semantics, the meaning of
a program fragment must contain suff• information to be able to determine
the meaning of any larger fragment that contains the first one as a constituent.
However, if we look at a complete program, it is in general clear which aspects
of its behaviour can be actually observed, for example, its output as a function
of its input. A semantic description is called fully abstract if the meaning of
any program fragment contains only that information that is necessary to fix the
observable behaviour of any complete program that contains it. More precisely,
whenever two program fragments have different meanings then there should be a
context (a program with a 'hole') that gives different observable behaviours when
it is filled with these fragments.

This paper develops a semantics for POOL that works at three different levels:
the statement level, the object level, and the program level. For each level there
is a specialized domain where the values reside that represent the meaning of
the individual language constructs. The relationship between the levels is given
by translation operators that map meanings at one level to meanings at the next
higher level, forgetting whenever possible about details that are no longer relevant

378 R America and J. Rutten

at the higher level. The semantics at the level of programs will define the behaviour
that we can ultimately observe, and the statement level is of course necessary
to get off the ground. The object level is most interesting, because it centres by
definition around the most important concept of object-oriented programming.
Getting a clear, formal idea of what constitutes the meaning of an object is not
just an intellectual challenge. An object is the basic unit of encapsulation and
reuse in object-oriented programming. As was argued in [Ame89a], it is important
to abstract away from the internal details of an object, since these cannot be
observed anyway. Therefore reasoning about the correctness of programs is best
done at the level of the observable behaviour of the objects. This can also shed
some light on the nature of inheritance and subtyping, two of the most interesting
issues in object-oriented programming (see also [Ame91]).

A particular aspect that the reader might be less familiar with is the use of
complete metric spaces instead of the more common complete partial orders. We
use them mainly because of two advantages: Firstly, (guarded) recursive defini-
tions have unique solutions (by Banach's theorem, see the appendix). Secondly,
the metric power set construction is simpler than its order-theoretic counterparts.
Even then, the techniques that we use in this paper are relatively complex. The
most important reason for this is that the language under consideration is (an
abstract version of) a real programming language which has many different fea-
tures. In order to introduce the reader to all this, in Section 2 a language called
Toy is treated, which is semantically much simpler than POOL. Section 3 then
applies these techniques to POOL. Both Section 2 and Section 3 first introduce
the language and its syntax and then describe the semantics at the level of state-
ments, objects, and programs. In Section 4 we draw some conclusions from our
work and sketch some possibilities for further work. Appendix A sketches the
mathematical preliminaries necessary to understand the technicalities in the rest
of the paper.

2. A Toy Language

In this section a simple language, called Toy, is introduced and supplied with a
denotational semantics. Toy is very similar to CSP [Hoa78], but a little simpler. A
program consists of a fixed, finite number of objects (the CSP terminology would
be 'processes'), which can only communicate with each other by exchanging mes-
sages. In order to communicate, the sender and receiver of a message synchronize
(the first one that is ready to communicate waits for the other) and then they
exchange a single value.

A denotational semantics is given to this language in three stages: first for
statements, then for objects, and finally for programs. At each stage a different
domain (a kind of mathematical structure) will be used to describe the meaning
of the language constructs and operations to translate these structures into each
other will be defined.

2.1. Syntax of Toy

The basic building blocks for the syntax of Toy are a set (x ~)Var of variables
(by this notation we mean that the set is called Var and that symbols like
x, x', xl, x2 denote elements of this set), a set (e E)Exp of expressions, and a

A Layered Semantics for a Parallel Object-Oriented Language 379

set (O ~)OLab of object labels. The symbol OLab + is used as a shorthand for
OLab U {*}, where * indicates that the object is left unspecified (see below for
examples of its use). The expressions in the set Exp are considered to be simple,
in the sense that they do not have side-effects.

Now we can define the set (s E)Stat of Toy statements as follows:

: : = X : : e

] O!el *!e
I O?xl *?x
I sl ; s2
I ifethenslelses2fi
I w h i l e e d o s o d

The intended interpretation of the statements is as usual: The assignment state-
ment x := e stores the value of the expression e in the variable x. The output
statement O !e sends the value of the expression e to the object with label O
and the input statement O?x stores the value it receives from object O in the
variable x. These communication actions take place synchronously: the object that
reaches its communication statement first must wait for its partner. When this
partner also reaches a communication statement and moreover the two state-
ments match (one is an output statement, the other is an input statement, and
they mention each other's object labels), the transfer of the value is performed.
After this communication both partners can continue their execution in parallel.
In one of the partners (but not in both), the label of the other side can be
replaced by an asterisk *, so that the statement takes the forms * !e or * ?x. Such
a statement is willing to communicate with an arbitrary partner object, as long
as that partner explicitly mentions the name of the object in which the statement
occurs. The standard control structures, sequential composition, conditional, and
loop, are also present in the language.

A program P ~ Prog in Toy is a finite sequence of objects, where an object
is simply a statement labelled by an object name (in CSP terminology [Hoa78],
an object would be called 'process', but we reserve the word 'process' for certain
semantic entities to be introduced below):

P ::= (Ot :: sl [1 "'" II Or :: sn) where n > 1.

These objects are executed in parallel and they can communicate with each other
by the communication statements described above. Each object has its own set
of variables; it cannot access the variables of another object. Therefore the same
variable name, used in different objects, refers to different variables.

2.2. Semantics of Toy Statements

In order to give a semantics to our language, we first have to give an interpretation
to its simplest elements, the variables. We assume that our variables can store
values that are elements of a set (v E)Val, and that at the beginning of the
program execution all variables are initialized to the special undefined value
nil E Val.

Now we define the set (o E)IE of states by

2 = Var --* Val.

380 R America and J. Rutten

Note that states are local: A state o- can store the values of all the variables of a
single object. Each object has its own set of variables and therefore its own state.

For the evaluation of expressions, we just assume the presence of an evaluation
function

[[]] : Exp ---~ Z ---~ Val.

(The function space operator ~ always brackets to the right, so that this means
Exp ~ (2 ~ Val).) Since expressions do not have side effects and cannot refer to
the variables of other objects, a state o- contains enough information to determine
the value of an expression instantly.

For describing the semantics of the larger constructs in our language, we use
processes. These are mathematical structures that describe exactly the execution
of the language constructs in question (see also [BaZ82]). We use different kinds
of processes for statements, objects and programs. The processes that describe
the semantics of statements are called statement processes and are elements of
the domain (p ~)SProc. This domain is a complete metric space defined by the
following reflexive domain equation:

SProc ~- {P0} U (Y~ x SProc)
U (OLab + x Val x SProc)
U (OLab + x (Val ~ SProc))

In Appendix A we give an overview of the techniques that can be used to prove
that this domain equation has exactly one solution up to isomorphism, provided
we (implicitly) apply the functor idl/2 to all occurrences of SProc at the right-hand
side.

Let us now look at the structure of statement processes: The process P0
is the (successfully) terminated process, which does not perform any action. A
statement process of the form [G,p] represents an internal computation step.
The first component a registers the new state after this step (which might be
an assignment) and the second component p, called the resumption of this step,
represents the activity that follows after this first step. A process of the form
[0, v,p] represents a send step. The object label O (possibly equal to *, the
unspecified object label) indicates the receiving object, the second component v
is the value to be sent, and the third component, the process p is the resumption
of this send step: it describes what happens after this step. Finally, a statement
process can have the form [O, f] , in which case it models a receive step. The
object label O (possibly *) indicates from which process a value is expected.
The resumption f of this step is a function from values to processes, since the
behaviour of the statements after this step in general depends on the value that
is received: if this value is v then f (v) is the process that describes what happens
after this receive step.

The semantics of statements is now given by a function J//s of type

d/Is : Stat --+ Cont ~ Z ~ SProc.

The meaning ~/~s [Is]] of a statement s depends on two arguments: a continuation
g E Cont and a state o-. The state a simply represent the values of the variables
before the statement s is executed. The set Cont of continuations is given by

Cont = E ---* SProc.

Such a continuation g represents the meaning of everything that will happen after

A Layered Semantics for a Parallel Object-Oriented Language 381

the statement s. Generally it depends on the state resulting from the execution of
s. Using continuations can drastically reduce the complexity of the equations that
define the semantics of a language. For a simple language like Toy this technique
is not really necessary, but we present it here to prepare for Section 3, where it is
used to define the semantics of POOL. For a good introduction to continuation
semantics, see [Gor79].

The function J/gs is defined by the following clauses:

�9 Assignment:

JCsJ[x := ell(g)(~) = D',g(,r')]
where a' = o{l[e]](a)/x}. Here we have made use of the variant notation: If
f : X --+ Y is a function, x c X, and y E Y, then f { y / x } is again a function
in X -+ Y, defined by

f {y /x}(z) = { y if z = x
f(z) otherwise.

The statement process describing the execution of an assignment first performs
an internal computation step. The first component of this step describes the
new state o-', which differs from the original state a in that the variable x has
got the value lie]](a) of the expression e in the original state a. The second
component, the resumption of this step, which is the process describing
everything that happens after the first step, can be obtained by applying the
continuation g to the new state a'.

�9 Output statement:

~s[[O !e]l(g)(a) = [O, [e]l(o),g(cr)]
Jgs[[*!e]l(g)(a) = [*, [[e][(a), g(a)]

Here the first step is a send step. It contains the label 0 of the receiving
object (or *, if the receiver is not specified), the value I[e]l (a) to be transmitted,
and the resumption, which is obtained by applying the continuation g to the
(unchanged) state a.

�9 Input statement:

M s I[0 ?xll(g)(a) = [O,,~v.g(a{v/x})]
~ s D T x l l (g) (-) = [,,).v.g(a{v/x})]

The first step executed by an input statement is a receive step of the form
[O, f] . The first component O is the label of the sending object (or *). The
second component f is the resumption, which depends on the value v that is
received. The function f is defined in such a way that for a given value v the
resumption f(v) is equal to g(a{v/x}). This means that first a new state cr{v/x}
is determined, where v is stored in the variable x, and then the continuation g is
applied to this new state, yielding the process g(a{v/x}) = f(v) that describes
the actions of the current object after this receive step.

�9 Sequential composition:

,//g's ~-Sl ; s2~] (g)(0-) -~- ~/~s [[Sl]] (J//ls Hs2]] (g)) (0-)

Here we see most clearly the kind of simplification in the semantic equations
that can result from the use of continuations. The sequential composition
of two statements can be described by using the semantics of the second

382 R America and J. Rutten

statement as the continuation for the semantics of the first statement. In more
detail: g is a function in t2 ~ SProc describing everything that happens after
the two statements; ~(S [[s2]](g) is also a function in Z --* SProc (so it can
also be used as a continuation) and it describes the execution of s2 plus
everything that happens afterwards, so rigs [[sl]l(J//s [[s2]] (g)) is also a function
in Z --* SProc that, when applied to a state o-, delivers a process that describes
the execution of first the statement Sl, then the statement s2, and then the rest.

* Conditional statement:

Jgs[[if e then st else s2 fi](g)(a) = { JP/sd{S H-sl]](g)(cr)[[s2]](g)(cr) ifotherwise[[e~ (tr) =fi nil

Since there is no special data type for Booleans in the language Toy, we
base the decision in a conditional statement on whether the value of the
expression e is nil or not, where nil stands for 'false'.

�9 Loop statement:

{ Jgsl[S]](dgs[[whileedosod]](g))(tr)
Ms [[while e do s od]] (g) (~) = if lie] (iT) r nil

[o-, g(~r)] otherwise

If the condition is not nil, then executing the loop is equivalent to first
executing the statement s and then executing the loop again. If the condition is
nil, then the loop immediately terminates and control passes to the statements
following it, which are represented by the continuation g.

The definition of -/~s needs some formal justification, since it cannot be
justified by a simple induction on the syntactic complexity of the statements (in
the clause for the while statement, the function value to be defined occurs also at
the right-hand side). Rather than treating the while statement separately, we give
the definition of ~fs as a whole as a fixed point of a higher-order contracting
function, as follows. Define the domain D by

1/2
(F E)D = Star -* Cont -+ 12 -+ SProc.

(Here X 1/_,2 Y is the space of all functions f : X --* Y such that d(f(xl),f(x2)) <_
1 / 2 - d (X l , X 2) for any xl,x2 E X.) Now we define the operator ~ :D --* D by the
following clauses:

~P(F)[[x := e](g)(a) = [o',g(a')] where a' = ~r{[[e]](a)/x}
z

~P(F) ~-s 1 ; $2]] (g)(o-) = I] / (F) [[s1] (~ (F) [[s2]] (g))(~)

{ ~P(F) [[s]] (r [[while e do s od]] (g)) (cr)
if [[e]] (a) @ nil RJ(F)[[whileed~176 = [a,g(cr)] otherwise

It is clear that the above definition of W can be justified by induction on the
syntactic complexity. By induction on the complexity of a statement s we can prove

that for any F 6 D the result ~P(F)[[s]] is indeed an element ofCont ~-~ ~ --+ SProc,
i.e., that it reduces distances by a factor 1/2. Here we use the fact that the functor

A Layered Semantics for a Parallel Object-Oriented Language 383

idu2 is applied to all occurrences of SProc in its defining domain equation, and
that in the basic clauses for ~ (F) the continuation g is always applied to a state
to yield a process that serves as a resumption. Now we note that the only place
where the function F occurs at the right-hand side without �9 being applied to it
is in the clause for the while statement, where it occurs in the continuation for
�9 (F) [[s]]. Therefore ~ is indeed a contracting function (see Appendix A), so by
Banach's Theorem it has a unique fixed point. This fixed point satisfies exactly
the equations that we have given above for Jds, so we can define Jgs to be this
fixed point.

2.3. Semantics of Objects

The semantics of an object is obtained by taking the statement semantics (d/s) of
the statement executed by the object and forgetting about the local computation
steps. To this end we introduce a domain (q c)OProc of object processes. This
domain is defined by

OProc ~ {q0} U (OLab + x Val x OProc)
U (OLab + x (Val --~ OProc)).

The domain OProc can be viewed as being (isomorphic to) the subset of SProc
consisting of those processes that do not contain internal computation steps.

Next we define an abstraction operator ~ �9 SProc --. OProc, which makes
all the internal computation steps invisible, so that their effects only become
apparent through the send and receive steps that the process performs. Note that
this corresponds to the intuitive fact that we cannot observe the state of an object
directly, but only indirectly through the messages that it sends and receives. We
want the operator e to satisfy the following equations:

cffp0) = q0
~([~,p]) = :4p)
~([o,v,p]) = [o, v, ~(p)]
eft[O,/]) = [O,)w.~(f(v))]
~([~1, [~2, [~r3]]]) = qo

(Note that the last clause is really necessary, since the first four clauses do not
fix the value of c~ for an infinite sequence of internal steps.) We can obtain such
an operator e as the unique fixed point of the higher-order contracting operator

�9 (SProc --+ OProc) ~ (SProc --+ OProc) defined by

q) (0) ([a l , ' " [an , P0]" ' l) = q0 (n>_0)
~(4)([~;1 ,"" [a , , [O,v , p l l - . .]) = [O, v, q~(p)] (n > 0)
(I) (r Jan, [O, f l] - . "]) = [O, 2v.4)(f(v))] (n >_ O)
~(4)([~1, [~2, [~3,...1]]) = qo

It is not difficult to see that �9 is indeed a contraction (at the right-hand side,
~b occurs only inside a resumption, where the functor id1/2 applies) and that its
unique fixed point satisfies the equations given above for ct. As is usually the
case with operators that hide (internal computation) steps, a is not continuous:
If we define the sequence pl ,p2, . . , by Pt = [O,v, po] and P,+I = [a,p,] for some
arbitrary O, v, and o-, then lira, p~ = p~ = [a, [o-, [a...]]]. Applying ~ we get that
cffp,) = [0, v, q0] for all n, but a(p~) = q0. It is somewhat surprising that c~ can

384 R America and J. Rutten

be defined as the fixed point of a higher-order contracting operator, although it
is not continuous itself.

Now we can introduce the second semantic mapping d/lo : Star ~ OProc,
given by

dg o l[s]] = o:(.///[s [[s~ ()~a.po) (2x.nil)).

It is obtained by applying the abstraction operator c~ to the meaning of s as a
statement (given by Ms), supplied with the empty continuation 2a.p0 (indicating
that after s nothing has to be done any more) and the nowhere defined state
2x.nil (indicating that at the beginning of the execution of s all variables have
been initialized to nil).

The semantics of objects, given by the function JC{o, contains all the details that
are necessary to describe how objects interact with each other (by communication),
but the information describing how an object works internally (e.g., how it accesses
and changes its own state) has been removed.

2.4. Semantics of Programs

The meaning of a program (the parallel composition of a number of objects)
will consist of the communications between this program and the outside world.
Therefore let us start by defining the latter.

We assume the presence of two special elements Oin and Oo,t in OLab,
representing the input and the output half of the outside world. These object
labels may occur in the communication statements of a program, and in this way
the program can communicate with the outside world. For instance, the statement
Oo,t !3 will output the value 3 to the outside world. Conversely, Oin ?x will input
a value and store it in the variable x.

Formally, the outside world is modelled by a pair of object processes, qi,,
and qout in OProc. More precisely, the process qin depends on a finite or infinite
sequence w c Val ~176 consisting of the values that are offered as input to the
program. We define

= q o

q i n (v ' w) = [*,v, qin(W)]

The latter triple indicates that the value v is sent to any process that is willing to
accept it (by a statement of the form Oi,, ?x), after which the remaining values in
w will be sent. (In order to define qin rigorously on infinite sequences, it can be
taken as the fixed point of a contracting operator in the usual way.)

The output half of the world, qo,,t, is given by

qout = [*,2V.qout].

It represents a continuous willingness to accept values from any process wishing
to send a value to the outside world (by a statement of the form Oo,t !e). The
process qout itself does nothing with the values it receives; we shall see below how
they are extracted to arrive at the output of the program.

In order to describe the global behaviour of programs, a third kind of semantic
domain is introduced: the set (r E)GProc of global processes, defined by

A Layered Semantics for a Parallel Object-Oriented Language 385

GProc = {r0} U~co(GStep)
(n �9 = (OLab x OLab + x Val x GProc)

u (OLab + x OLab x (Val --* GProc))
U (Comm x GProc)

(c � 9 = OLab x Val x OLab

The terminated process is indicated by to. All other kinds of global processes
consist of a set of possible steps. This is the way in which nondeterminism (which
comes from the fact that parallelism is modelled by nondeterministic interleaving,
as we shall see below) is modelled in our semantics: If such a process is executed,
it will nondeterministically choose one step from among the members of the set.
A step can have one of three possible forms: a send step, a receive step, or a
communication step. The interpretation of send steps (of the form [O1, 02, v, r])
and receive steps (of the form [O1, 02, f]) is similar to their counterparts in OProc.
The only difference is that now the labels of both the sending and the receiving
objects (in that order) are registered. (Note that in a send step [Ot, O2,v,r]
the receiver O2 might be unspecified (*) and symmetrically, in a receive step
[ObO2, f] , the sender O1 may be *.) Finally, a step of type [c,r] represents a
successful communication c with resumption r. Communications are of the form
[O1, v, O2], indicating that object Ot has sent the value v to object 02.

We shall need to be able to compose global processes in parallel. For this
purpose we define the operator 11 : GProc x GProc --~ GProc by

r II ro = ro II r = r
rx II r2 = {~ I1__ r2 " ~ e r l } u {~ I1__ rl : ~ �9 r2}

u U { ~ I t~2 ' ~ t �9 ,'1,~2 �9 r2 or ~t ~ r2,~2 �9 r l)
[Ol,02,v ,r] H_ r2 = [Ox,02, v,r II r2]

[01,02, f]]J_r2 = [Ol,02,)~v.(f(v) II r2)]
[C, r] Ij_ r2 = [c, r II r2]

{{[(01,v, O2),f(v) II r]} i f~ l = [ObO+,v,r]
7q 1~2 = and ~2 = [O+,02, f]

0 otherwise

(Here rl and r2 are supposed to be unequal to r0, and the notation O + has been
used as a shorthand for Oi or , , where at most one of O + and O + may be *.)

A brief explanation: As already announced above, we model two processes
executing in parallel by taking all the possible ways in which their individual
steps can be combined or interleaved. Composing a process r in parallel with
the terminated process yields r itself. The result of composing in parallel two
processes rl and r2, both of which are not r0, is a set union of three parts: in the
first part, the first step is performed by rx (indicated by the left merge operator [J);
in the second part, the first step is performed by r2; and in the last part, the
first step is a communication of a step from rl with a step from r2 (indicated by
the communication merge]). The left merge [J_ operator effectively composes its
second argument with the resumption of the first. The communication merge of
two steps yields a singleton if the steps match, and the empty set otherwise.

Before we can define the global semantics of programs, one more definition
is needed. It is an operator co �9 OProc ~ OLab --* GProc that translates an
object process, together with the label of the object that executes it, into a global
process, as follows:

386 R Amer ica and J. Rut ten

c o (q o) (O ') = ro
(9([O,v ,q])(O') = { [O ' ,O ,v , co(q)(O')]}
o~([O,f])(O') = {[O,O' ,Av .co(f (v)) (O')]}

Finally, we can define the meaning function for programs ~{c " Prog --*
Val ~176 ~ GProc :

~/[GI[(O1 "" S1 II " '" l[On "" Sn)~(W)
= ~(,~-~01[$1]])(01)II ' " II O ~ (~ o l I s . l l) (O n)

N co(qin(w))(Oin)II cO(qom)(Oout)

We see that the semantics of a program consists of the parallel composition of
the object processes of all the objects plus the input and output object, after they
have been translated to global processes.

However, processes in GProc contain more information than we consider
relevant for the observable behaviour of a program. In particular, only the values
sent by the program to t he outside world are of importance. These can be
extracted from a global process by means of the operator output defined below.
First the operator path : GProc ~ ~ (C o m m x GProc) ~ is introduced, which
computes all the finite and infinite sequences of succesful communication steps
of a process"

path(r) = ~([cl,rl] [cn, rn]) "
%

[C l , r l] C r A V t <_ i < n [Ci+l,ri+l] E ri A--,3c, r' [c , /] C rn~

u {(E l,rll > Ecl,rll A Vi_ 1 tCi+l,r +ll ri}
]

Now we can define the function output �9 GProc ~ ~ (V a l ~176 by

output(r) = { ~K'(cl) �9 <(c2) :([ci, ri])i E pa th (r) }

where

~ U (c) = { (v) i f c = [O , v , Oo~t]
() otherwise

Finally, the observable behaviour of a program can be given as follows:

obs " Prog ~ Val ~ ~ ~ (V a l ~176
obs I[P]I (w) = output (J [6 [[P] (w))

For a given program and a (finite or infinite) sequence of input values, this
function obs delivers the set of all possible sequences of output values.

3. The Language P O O L and its Semantics

In this section we shall introduce the language POOL, a parallel object-oriented
programming language, and give a semantics for it at three levels, following the
same basic scheme as that in Section 2.

3.1. Informal Introduction to the Language

The language POOL [Ame87, Ame89b] makes use of the principles of object-
oriented programming in order to give structure to parallel systems. A POOL

A Layered Semantics for a Parallel Object-Oriented Language 387

program describes the behaviour of a whole system in terms of its constituents,
objects. Objects contain some internal data and some procedures that act on these
data (these are called methods in the object-oriented jargon). Objects are entities
of a dynamic nature: they can be created dynamically, their internal data can
be modified, and they even have an internal activity of their own. At the same
time they are units of protection: the internal data of one object are not directly
accessible to other objects.

An object uses variables (more specifically: instance variables) to store its
internal data. Each variable can contain a reference to an object (another object
or, possibly, itself). An assignment to a variable can make it refer to a different
object. The variables of one object cannot be accessed directly by other objects.
They can only be read and changed by the object itself.

Objects can only interact by sending messages to each other. A message is
a request for the receiver to execute a certain method. Messages are sent and
received explicitly. In sending a message, the sender mentions the destination
object, the method to be executed, and possibly some parameters (which are
again references to objects) to be passed to this method. After this its activity is
suspended. The receiver can specify the set of methods that will be accepted, but
it can place no restrictions on the identity of the sender or on the parameters of
messages. If a message arrives specifying an appropriate method, the method is
executed with the parameters contained in the message. Upon termination, this
method delivers a result (a reference to an object), which is returned to the sender
of the message. The latter then resumes its own execution.

A method can access the variables of the object that executes it (the receiver
of a message). Furthermore it can have some temporary variables, which exist
only during the execution of the method. In addition to answering a message,
an object can execute a method of its own simply by calling it. Because of this,
and because answering a message within a method is also allowed, recursive
invocations of methods are possible. Each of these invocations has its own set of
parameters and temporary variables.

When an object is created, a local activity is started: the object's body. When
several objects have been created, their bodies may execute in parallel. This
is the way parallelism is introduced into the language. Synchronization and
communication take places by sending messages, as described above.

Objects are grouped into classes. All objects in one class (the instances of
that class) have the same number and kind of variables, the same methods for
answering messages, and the same body. In creating an object, only its desired
class must be specified. In this way a class serves as a blueprint for the creation
of its instances.

There is a special value, nil, which refers to no object at all. If a message is
sent with nil as destination, an error occurs. Upon the creation of a new object,
its instance variables are initialized to nil and when a method is invoked its
temporary variables are also initialized to nil.

There are a few standard classes predefined in the language. In this semantic
description we shall only incorporate the classes 13oo1 and Int. The usual opera-
tions can be performed on these objects, but they must be formulated by sending
messages. For example, the addition 2 + 4 is indicated by the expression 2 !add(4),
sending a message with method name add and parameter 4 to the object 2.

388 P. A m e r i c a a n d J. R u t t e n

3.2. Syntax of POOL

In this section we describe the syntax of the language POOL as we study it in this
paper. The concrete syntax of the language that is used for actual programming
is relatively complex, since it offers many convenient short-hand notations for
programmers. In order to avoid this complexity in this paper, we shall define an
abstract syntax, which is much simpler. Nevertheless, all the essential semantic
ingredients of the language have been maintained, so that every concrete POOL
program can be translated straightforwardly into our abstract syntax.

As a starting point for the definition of the POOL syntax, we assume the
existence of the set (x E)I Var of instance variables, the set (u E) TVar of temporary
variables, the set (C E)CName of class names, and the set (m E)MName of method
names. We define the set (~b 6)SObj of standard objects as follows:

SObj = z u {t, f} u {nil}

where Z is the set of all integers.
Now we can define the set (e c)Exp of expressions by the following clauses:

u

m(eb..., e,) (n >>_ O)
e!m(el,... ,en) (n > O)
condans{ma ,ran} (n > 1)
new(C)
e I ~- e 2

s ; e

self

The set (s ~)Stat of statements is defined by

s ::= x~--e
u~--e

answer{m1,.. . , ran} (n >_ 1)
8

Sl ; S2

if e then st e lse s2 fi
w h i l e e d o s o d

The set (# ~)MethDef of method definitions is given by

::= [(ul , un), e] (n > 0),

the set (d 6)ClassDef of class definitions by

d ::= [(m~#1 , . . . ,mn~p~) , s] (n >_ 0),

and finally the set (P E)Prog of programs is defined by

P ::= (Cl~dl C,~dn) (n >_ 1).

3.2.1. Informal Explanation

First of all, it may be important to note that the difference between expressions
and statements in POOL is only that expressions yield a value whereas statements

A Layered Semantics for a Parallel Object-Oriented Language 389

do not. In particular, expressions can have quite drastic side-effects (but these are
always defined exactly by the language).

Expressions" An instance variable or a temporary variable used as an expression
will yield as its value the object name that is currently stored in that variable.

A method call simply means that the corresponding method is executed by the
object itself. This is done as follows: First the argument expressions e l , . . . , en are
evaluated from left to right. Then a new set of temporary variables is taken, in the
sense that their current values are remembered and they are given new values as
follows: The argument values are assigned to the corresponding parameters, i.e.,
the temporary variables listed in the method definition, and the other temporary
variables are initialized to nil. Then the expression in the method definition is
evaluated; the result of this evaluation will be the value of the method call. Before
the method call terminates, the original values of the temporary variables are
restored.

The next kind of expression is a send expression. Here e is the destination
object to which the message will be sent, m is the method to be invoked,
and et , en are the arguments. When a send expression is evaluated, first the
destination expression is evaluated, then the arguments are evaluated from left
to right and then the message is sent to the destination object and the sending
object does nothing while it awaits the result. When the destination object answers
the message (which might, however, never happen), the corresponding method is
executed; that is, the parameters are initialized to the argument values contained
in the message, the other temporary variables are initialized to nil, and the
expression in the method definition is evaluated. The value which results from
this evaluation is sent back to the sender of the message and this will be the value
of the send expression.

The conditional answer expression is a variant of the answer statement de-
scribed below. This expression can answer a message that mentions a method
name from the set {rob.. . , ran}, if such a message is present. In this case its value
will be t (true). Otherwise it terminates without answering a message, yielding the
value f (false).

A new-expression indicates that a new object is to be created, an instance of
the class C. The instance variables of this object are initialized to nil and its body
starts executing in parallel with all other objects in the system. The result of the
new-expression is a reference to this newly created object.

The next type of expression checks whether el and e2 result in a reference
to the same object. If so, t is returned, otherwise f. An expression may also
be preceded by a statement. In this case the statement is executed before the
expression is evaluated. The expression sell always results in a reference to the
object that is executing this expression. Finally, the evaluation of a standard
object q5 results in that object itself. For instance, the value of the expression 23
will be the natural number 23.

Statements" The first two kinds of statements are assignments to an instance
variable and to a temporary variable. An assignment is executed by first evaluating
the expression on the right and then making the variable on the left refer to the
resulting object.

The next kind of statement is an answer statement. This indicates that a
message is to be answered. The object executing the answer statement waits until
a message arrives with a method name that is contained in the set {rnl mn}.
Then it executes the method (after initializing the parameters and temporary

390 R America and J. Rutten

variables). The result of the method is sent back to the sender of the message
and the answer statement terminates. The difference with a conditional answer
expression is that an answer statement always answers exactly one message
before terminating, whereas a conditional answer expression answers at most one
message.

Any expression may also occur as a statement. Upon execution, the expression
is evaluated and the result is discarded. So only the side effects of the expression
evaluation (e.g., the sending of a message) are important. Sequential composition,
conditionals and loops have the usual meaning.

Method definitions: A method definition describes a method. Here ul , un are
the parameters and e is the expression to be evaluated when the method is
invoked. Upon execution of this method, the parameters are initialized to the
corresponding argument values, the other temporary variables are initialized to
nil, and the expression e is evaluated. Not only is the value of this expression
important, but in general also its side-effects.

Class definitions: A class definition describes how instances of the specified class
behave. It indicates the methods and the body each instance of the class will
have. The set of instance variables is implicit here: it consists of all the elements
of IVar that occur in the methods or in the body.

Programs: A program consists of a number of bindings of class names to class
definitions. I f a program is to be executed, a single new instance of the last class
defined in the program is created and execution of its body is started. This object,
which we call the root object, has the task of starting the whole system by creating
new objects and putting them to work.

3.2.2. Context Conditions

For a POOL program to be valid a few more conditions need to be satisfied. We
assume in the semantic treatment that the underlying program is valid. These
context conditions are the following:

�9 All class names in a program are different.
- All method names in a class definition are different.
�9 All parameters in a method definition are different.
�9 Every method name that is used in a method call, conditional answer ex-

pression, or answer statement within a certain class definition is bound to a
method definition in that class definition.

Any POOL program that is a translation of a valid POOL-T [Ame87] or
POOL2 [Ame89b] program will automatically satisfy these conditions. POOL-
T and POOL2 are even more restrictive. For example, they require that the
type of every expression conforms with its use and they forbid assignments to
formal parameters. However, the conditions above are sufficient to ensure that
the program will have a well-defined semantics.

3.3. Semantics of POOL Expressions and Statements

Before the domain of statement (and expression) processes for POOL can be
defined, we first need to introduce a few more sets. We define the set AObj of

A Layered Semantics for a Parallel Object-Oriented Language 391

active object names by AObj = N*. That is, we use finite sequences of integers to
name objects. The intention is that the empty sequence () denotes the root object,
and for any active object name ~ and integer n, the object name c~- (n) denotes
the nth object created by the object ~.

The set AObj of active object names and the set SObj of standard objects
together form the set (~,/~,7 E)Obj of object names: Obj = AObj U SObj. Now
we define the set (a E)Z of states by

X = (IVar --~ Obj) x (TVar ~ Obj).

Every state r consists of two components that register, for a particular object,
the values of the instance variables and the values of the temporary variables.
For readability we also introduce the following sets:

New = CName
NewName = AObj
Result = Obj
Send = Obj x MName x Obj*

(For any set A, we denote by A* the set of finite sequences of elements of A.)
Now we can define the domain (p E)SProc of statement processes to be the

unique fixed point of the following domain equation:

SProc ~- {P0} u (E x SProc)
U (New x (NewName --~ SProc))
U (Send x (Result --~ SProc))

U (MName ~ (Obj* ~ SProc))
fin

U (MName --~ (Obj* ~ SProc)) x SProc
U (Result x SProc)

fin
(With A ~ B we denote the set of finite partial maps from A to B.)

We see that a statement process can have one of seven possible forms:

1. The terminated process P0.
2. An internal computation step [r The first component indicates the new

state immediately after this step and the second component is the resumption,
which describes everything that will happen after the first step.

3. A creation step [C,f]. This describes the creation of an object of class C. The
creation itself is done by a mechanism outside the object. The resumption of
this step is given by f(fi), where fl is the name of the new object.

4. A send step [(fi, m,~),f] . The first component describes the contents of the
message that is sent: fi is the destination, m is the method name, and ~ is the
sequence of argument values. The resumption of this send step is given by
applying the function f to the result of the message.

5. An answer step g. This step indicates that the object is ready to answer any
message that mentions a method name m that is in the (finite) domain of g.
If the argument values in the message are given by ~, then the resumption of
this step is g(m)(~).

6. A conditional answer step [g, p]. This process is similar to the previous one but
it has an extra component. If a message of the form [fl, m,~] with m E domg
has arrived, it can be answered, in which case the resumption is g(m)(fl).
Otherwise, no message is answered and the resumption is just p.

392 R America and J. Rutten

7. A result step [7,P]. This step returns ~, as a result of a message that has been
sent earlier to this object (an external mechanism will deliver this result to the
sending object). The resumption of this step is given by p.

Next the semantics of expressions and statements in a class definition d is
given by means of two meaning functions

dg~ " Exp ~ AObj --> ECon t ---* Z --* SProc
Jg~ �9 Star --> AObj --~ SCont ~ Z --> SProc

where

(h c) E C o n t = Obj ---> Z ---> SProc
(c E)SCont = E --* SProc

are the sets of expression continuations and statement continuations.
We see that the types of the meaning functions for expressions and for

statements are very similar. The reason why we cannot use a very simple meaning
function for expressions such as the one in Section 2.2 is that in POOL an
expression can have side-effects: the evaluation of an expression may involve
creating new objects and sending or answering messages. Therefore the only
difference between expressions and statements in POOL is that expressions yield
a value whereas statements do not. This difference is reflected in their respective
continuations: the continuation of a statement depends only on the state after
this statement, but the continuation of an expression also depends on its value.

If we compare the types of these semantic functions to the one in Section 2.2,
we see that they need one extra argument: the name of the object that executes
the expression or statement. Since it does not change during the computation, it
does not belong in the state. In fact, it is only needed to evaluate the expression
self.

We define the functions ~/d~ and J{~ by the following clauses:
Expressions:

�9 Instance variable:

-1/{~ [[x~ (~)(h)(o') = [o-, h(o'(1)(x))(o-)]

We deliver an internal computation step where the state is unchanged and the
resumption is obtained by feeding the continuation h with the current value
of the variable x, which can be found in the first component a(1) of the state.

�9 Temporary variable:

~ '~ ~ull (c+)(h)(~) = [~, h(G~2> (u))(~)]

This is similar to an instance variable, but now the value is found in the
second component a(2).

�9 Method call:

~ lira(el , en)]] (c~)(h)

= ~}~el~(e) (
2~i.~//g~ [[e21] (c~) (. . .

2fln.2a. [6,-dg~ [[e]](c~)(hl)(b)] . . .))

where

A Layered Semantics for a Parallel Object-Oriented Language 393

O" = [0"(1), ()~u.nil).{fli/ui}n=l]
h' = 27.2a'.h(y)(~')
g ' =

and m~[{ut, . . . , un), e] occurs in the class definition d.
The first action to be taken here is the evaluation of the first argument
expression el. The corresponding meaning function dg~ l~elll is provided with
a continuation that takes the value fil of et and starts to evaluate the second
argument expression ea. This continues until all the arguments have been
evaluated. The last continuation takes the last value fin of en and a state a
and performs an internal computation step where the state is changed to
8, having new values for the temporary variables (in implementation terms,
one could say that a fresh set of temporary variables is pushed onto the
execution stack). Most of these temporary variables are initialized to nil,
but the parameters Ul,... ,un of the method m are set to the corresponding
argument values fll fin. After that (in the resumption of this computation
step) the expression e in the method definition is evaluated. The meaning
function JAZ~ [[e]l that does this is fed with a continuation h' that takes the
value ? of e and the resulting state ~' and feeds these into the original
continuation h, but o ~ y after restoring the original values of the temporary
variables from er(2) in a' (the execution stack is popped).
It might be instructive for the reader to write out explicitly the cases where
the number of argument expressions is 0 or 1.

�9 Send expression:

~/~ lie!re(el,..., en) ll (a)(h)
= J/l~ [Jell (~) (

2fl.Jr I[el ll (~) (...

~en.~.Cr.[(fl, m, <fiX fin)), 2y.h(y)(a)] ...))

This is similar to a method call, except that after evaluating the destination
expression e and the argument expressions et , e,, a send step is performed.
The first component of this send step contains the destination object fl,
the method name m, and the argument values f ib . . . , f l , . The resumption is
obtained by applying the continuation h to the result value ? of the message
and the state cr just before the send step.

�9 Conditional answer expression:

d/~ [[condans{ml , m,}ll (oO(h)(~) = [g, h(f)(a)]

g(m)((fll ilk)) --- if m E {ml m,}
undefined otherwise

= [~r(l), (d,u.nil){fii/ui}L1]
~) = [0-{0,0"(2)1

and m~[{u, ,uk), e] occurs in the class definition d.
Here a conditional answer step is performed. The second component reflects
the fact that such a step can be taken if no suitable messages are present,

where

394 R America and J. Rutten

in which case the value of the conditional answer expression is f (false). The
first component is a function g that is only defined on the method names
ml , m, mentioned in the conditional answer expression. When applied to
such a method name m and a sequence (/71,...,]3k) of argument values, it
delivers a process, which starts with an internal step. In this first step a
new set of temporary variables is prepared (cf. b) and in the resumption the
expression e from the method definition is evaluated. The meaning function
~/d~ [[ell that describes this is given a continuation that begins with a result
step, in which the value 7 of e is returned as a result to the sender of the
method. The resumption is obtained by applying the continuation h to the
value t of the conditional answer expression and the state ~ in which the
temporary variables have been restored to their original values.

�9 New-expression:

,///l~ [[new(C)]] (c 0 (h)(o) = [C, 213.h(]3)((7)]
The meaning of a new-expression is represented by a creation step, which
consists of the class name C of the object to be created and a resumption that
depends on the name]3 of the resulting object.

�9 Identity test:

Jr lie1 - e2ll(cO(h)

= Jr [[ell l(e)(,~fll .~ ~-e2] (00 (Z]32.if]31 = f12 then h(t)else h (f)))

Here the expressions el and e2 are evaluated (in that order) and if they result
in identical object names, t is returned; otherwise f is returned.

�9 Statement before expression:

[[s ; ell(cO(h) = Jtl as [f s ll (e) (J r ~: [[e ~ (e) (h) ") \ - /

�9 The expression self:

~#~ [self]](e)(h) = h(c 0

�9 Standard object:

~ [[~bll (cO (h) = h(qg)

Statements:

�9 Assignment to instance variable:

where a' = [(7(1) { f i / x } , 0(2)].
The last action to be taken in an assignment statement is an internal step
in which the state is modified: The variable x is given the value]3, which is
the result of the expression e. The resumption is the result of applying the
continuation c to the new state o'.

�9 Assignment to temporary variable:

where o-" = [o-o), a(2) {]3/U}].

A Layered Semantics for a Parallel Object-Oriented Language 395

�9 Answer statement:

Jg~ [[answer{m1 m.}]l (e)(c)(~) = g

where

{ [&, J/{ [[e~ (~) ().7.2a'. [7, c(~'r)]) (o)]
g(m)((fll,...,ilk)) = if m e {ml tnn}

undefined otherwise

a = [o-(t), (2u.nil){fii/ui}~=l]
= [%), a(2)]

and m~[(ul , uk), e] occurs in the class definition d.
Here an answer step is performed. It is described by a function g that is
defined only on the method names ml mn that are mentioned in the answer
statement. When given such a method name and a sequence of argument
values, the function yields a process that first changes the state, thereby
introducing a new set of temporary variables, evaluates the expression e in the
method definition, and finally performs a result step, in which the value ? of
the expression e is returned and the resumption consists of the continuation c
applied to the state a", in which the original values of the temporary variables
have been restored.

�9 Expression as statement:

./ga s [[e~ (u)(c) = J /~ [[el] (c0 (2fl.c)

Here we fill in a continuation 2fl.c that simply ignores the value fi of the
expression.

�9 Sequential composition:

�9 Conditional statement:

J//~ [[if e then sl else S 2 fi]] (~)(c)

= e = t then (=) (c) else

�9 While loop:

,/gas [[while e do s od]](~) (c)
= J t ~ I[ell (a) (2p.2~.

[a, if = t

then J [{ [[s]] (a) (, / ~ [[wh il e e dos od]] (~)(c)) (o-)

else c(o-)])

As in Section 2.2, induction on the syntactic complexity of expressions and
statements is not enough to justify the above definition of ~/g~ and dgas . This time
the while statement is not the only offending case: in the clauses for method calls,
conditional answer expressions, and answer statements an expression is evaluated
that comes from a method definition and therefore need not be smaller than the
original statement/expression. Again we can define a higher-order contracting

396 R America and J. Rutten

function q) in such a way that the pair [Jd~, JH d] is its unique fixed point. Note
that the 'extra' internal computation steps that have been introduced precisely in
the four above-mentioned cases are necessary to make sure that this function
is indeed contracting. One could also consider these internal steps as representing
the overhead of the corresponding language construct.

3.4. Semantics of POOL Objects

The domain (q E)OProc of object processes is defined analogously to that of
statement processes except for the fact that object processes do not contain
internal computation steps. It is given by

OProc ~- {q0} U (New x (NewName ~ OProc))
U (Send x (Result --* OProc))

U (MName ~-~ (Obj* ~ OProc))

u (MName fi-~ (Obj* --* OProc)) • OProc
u (Result x OProc)

The semantics of an object is obtained by applying an abstraction operator
abstr : SProc ~ OProc to the semantics of the body of this object. This operator
abstr is characterized by the following equations:

abstr (Po) =
abstr ([o-, p]) =
abstr([C, f]) =
abstr ([(fi, m,/~),/1) =
abstr (g) =
abstr ([g, p]) =
abstr ([7, P]) =
abstr ([o'1, [0-2, [o-3," "]]1) =

(The last clause is needed because

qo
abstr(p)
[C, 2fl.abstr (f (fl))]
[(fl, m, [?), ~ .abs tr (f (7))]
2m.2fl.abstr (g (m) 0)))
[Am.2fi.abstr (g (m)@)), abstr (p)]
[7, abstr (p)]
q0

the previous clauses do not define the value
of abstr for infinite sequences of internal steps.) As in Section 2.3, a unique
(non-continuous) operator satisfying these equations can be obtained as the fixed
point of a higher-order contraction.

Now we can define the semantics of objects, or rather of class definitions, by
giving a meaning function ~ o : ClassDef --* AObj ---, OProc. This function J///o
is defined by

: ()
where

d = [(. . .) , s]
co = 2o-.p0
o-o =- [2x.nil, 2u.nil]

3.5. Semantics of POOL Programs

So far we have only described the behaviour of objects in isolation. Next we want
to see how several objects in parallel behave and interact. The object processes

A Layered Semantics for a Parallel Object-Oriented Language 397

that describe the individual objects do not describe how to select a message to
be answered, how to return a result to the sender, or how to create a new object.
Therefore, a mechanism is needed that takes care of this. Such a mechanism is
implemented by the operator c0 defined below, which translates an object process
into a global process. Such a global process can describe one or more objects
running in parallel.

First we introduce the domain (r E)GProc of global processes, determined by
the following domain equation:

GProc =
(n E) GStep =

u
u
u
u

{r0} U No1 (GStep)
Send x Obj x GProc
Obj x (Result ~ GProc)
m N a m e x Obj x (Obj --* Obj* ~ GProc)
Obj x Result x Obj x GProc
Comm + x GProc

where

(c E)Comm + = Comm U{*}
Comm = Obj x M N a m e + x Obj* x Obj

M N a m e + = m N a m e U { * }

Again the terminated process is indicated by r0. Otherwise a global process r is a
set of possible steps, among which a choice is made nondeterministically during
execution (we see here that an object in itself is deterministic, but a collection of
objects running in parallel is not). The reason that in this domain equation we
use the constructor ~ct (delivering a power set consisting of all the closed subsets
of its argument set) instead of Nco (using only compact subsets) is that below we
want to define a process that describes the behaviour of all the standard objects.
In turns out to be impossible to describe an infinite number of integers with a
compact process.

The steps resemble the various possibilities that we had for statement and
object processes but there are important differences. One of these is the fact that
a global step always contains the names of all objects involved. This is necessary
because a global process can describe more than one object. Let us review all the
possibilities:

1. A send step [(fl, m, fl), ~, r] indicates that the object ~ sends a message to the
object fl, mentioning the method name m and the sequence fl of argument
values. After that, execution continues with the resumption r. Note that this
step does not describe directly what should happen when the result of the
message arrives. This is done by a separate receive step:

2. A receive step [fi,f] indicates that the object fi is waiting for the result of a
message. When this result, let us call it 7, arrives, the object fl will continue
by executing the process f(7). The reason for separating the send and receive
steps here is that a global process, unlike an object process, can in general
perform an arbitrary number of actions between sending of a message and
receiving the result, because it can describe a collection of objects running in
parallel.

3. An answer step [m, a, g] indicates that the object c~ is willing to answer a mes-
sage mentioning the method name m. If this step is performed, the function g
is applied to the name of the sender object and to the sequence of arguments
to yield the resumption process. Since a global process can consist of more

398 R America and J. Rutten

than one step, we can describe an answer s ta tement by a set o f several o f
these answer steps, so that the individual answer steps are simpler than the
ones in s ta tement and object processes.

4. A result step [fl, y, e, r] indicates that the object c~ wants to return the value 7
to the object fi as a result o f a message that fi might have sent to e before.
The process r is the resumpt ion o f this step.

5. A completed step [c, r] indicates a step that the process can take without
communica t ion with other processes. I t may either indicate an internal step
within one o f the objects described by the global process, in which case c
s imply has the value *. Alternatively, such a step can indicate a complete
communica t ion that takes place between two objects both described by the
present global process. A communica t ion c o f the form [fl, m, fl, c~] indicates
that object c~ sends a message to object fl, requesting execution o f me thod m
with a rguments ft. A communica t ion of the form [c~, *, fl, fl] indicates that
fl returns fl to e as the result o f a message (in this case fl is always a
singleton (7})- In all cases, r is the resumpt ion o f this step.

The opera to r It: GProc x GProc ~ GProc for parallel composi t ion is defined
as follows:

r tlr0 = r0 l i t = r
r l [I r2 = {g L r 2 : g e r l } k J { 7 c ~ r l :7~ e r 2 }

(2 [_J{;r I 7c2 : rCl e r1,7~2 ~ re or 7tl E r2,rc2 e r l}
[(/L m, ~), c~, rl] L r2 = [(/~, m, a), ~, rl II r2]

[fl, f] Lt" = [fi,27.f(7)]l r]
[m,e,g] [l__r = [m,c~,,~/~.,~.g(/~)(fi) rt r]

[fi, y ,~,r l] L r 2 = [fl, 7 ,~,r l Ilr2]
[c, rl] k r 2 = [c, rl II r2]

rql rc2 = {[(fl, m, fl, e) , r l I1 g(~)@)] :
re1 = {(fl, m, fl), o:, rl], rr2 = [m, fi, g]}

u {[(B,*,(~),cO, r, IIf(~)] :
gl =- [fl, y,0e, r i] , g2 ~- [fi, f]}

(Here rl and r2 are supposed to be unequal to r0.)
Now for each p rog ram P we introduce a t ranslat ion opera tor

o f f : OProc -+ Obj ~ Re tS tack -* CrCount -+ GProc,

where

(p ~)Re tS tack = Obj*
(n E)CrCoun t = N

The opera to r co e translates an object process q to a global process r when given
the name c~ of the object that executes the object process, a return stack p, and a
creation counter n. Here the return stack remembers the names of the objects that
are wait ing for a result to be returned by the current object (note that answer
s ta tements can occur in methods, so that nested rendezvous are possible). The
creation counter r emembers how m a n y objects have already been created by the
current object, so that the next one can be given a unique name. In general, when
the p rog ram P is clear, we shall just write co for co P. Our opera to r ~o is then
defined by the following clauses:

A Layered Semantics for a Parallel Object-Oriented Language 399

�9 Terminated process:

co(qo)(c~)(p)(n) = ro

�9 Creation step"

co([C, f l) (~) (p) (n)
= {[*,co(f(/~))(~)(p)(n + 1) 11 co(~lo[[dl](/~))(/~)(())(0)]}

where/~ = ~.. (n) and C ~ d occurs in the program P.
An object of class C is to be created, so we construct a new name/~ for it,
look up the corresponding class definition d in the program, and thus we get
an object process Jgo [[d]] (/~) representing its execution. After translating this
into a global process, using an empty return stack and a creation counter
of zero, it is put in parallel with the resumption f(/?) of its creator, again
translated into a global process, incrementing the creation counter.

�9 Send step:

co([(/?, m, [?),f])(cx)(p)(n) = { [(/~, m, ~), c~, r]}

where

r = { % ,~.co (f (~))(~)(p)(n)] }.

The resumption r of the resulting send step consists of a receive step that
is obtained by applying the function f to the result 7 of the message and
translating the resulting object process again into a global process.

�9 Answer step:

o(g)(~)(p)(n)
= {Ira, ~, 2 f i . 2~ . co (g (m) (~)) (~) (p . (/?))(n)] "m c dom (g)}.

An answer step in an object process is translated into a set of answer steps in
the global process, one for each method that can be answered (m ~ dora (g)).
For each answer step in the set, the resumption is obtained by applying the
original resumption g to the method name m and the argument list /~ and
translating the resulting object process into a global process, using a return
stack to which the sender/3 of the message is appended.

�9 Conditional answer step:

co ([g, ql) (~) (P) (n)
= {[m,a ,213 .2~.co(g(m)([3)) (e) (p ' { f i }) (n)] " m E dora(g)}

u { [*, co (q)(~) (p) (n)] }.

Also in this case a set of answer steps is generated, but here there is an
additional completed step, which can be taken even if no message is present.

�9 Result step:

co(J7, q])(~)(p)(n) = {[/~, 7, c~, co(q)(~)(p')(n)] �9 p = p' . (/~)}.

The result 7 is sent to the destination /3, which is taken from the return
stack p; the resumption is translated using the shorter return stack p'.

As in Section 2.4, the outside world is represented by objects, but here we
need only one object, since we can distinguish between input and output by
using different method names. So let world be a special element in A O b j and
let input, output c M N a m e . Now we define a function qworld : S O b j ~176 ~ O P r o c

400 R America and J. Rutten

that gives us for any (finite or infinite) sequence w o f input values (which are
s tandard objects) a process qwortd (W), which always starts with an answer step, so

fin
that qwortd (W) E MName ---* (Obj* --+ OProe):

qworld(())(m) = {

qworld (~" W) (m) = {

2[?.[world, qworld (())] if m = output
undefined otherwise

2~.[d?, qworta (w)] if m = input
2/).[world,qworld(~" W)] if m = output
undefined otherwise

(This function qworld can again be obtained as the unique fixed point o f a suitable
higher-order operator.) For a non-empty w, the process qworld(w) is willing to
answer either an input message, in which case it returns the first element of w and
continues with the rest o f the elements, or an output message, to which it replies
with the name o f the world process itself and continues with w unchanged. In
bo th cases the actual a rgument values of the messages are ignored, but we shall
see later how the output values are recovered.

We shall also define processes that deal with messages sent to s tandard objects.
Messages sent to nil are never answered, so we do not need any process for this.
The Boolean t can be model led by an object process qt defined by

f i ? l
qt = gt " MName --~ (Obj* --~ OProc) I [t, qt] if~=(t)
g t (a n d) ----- 2/~. [f, qt] i f /) = (f)

q0 otherwise

gt(or) = 2/3. [t, qt] i f /) = (t) o r /) = (f)
q0 otherwise

gt(not) = 2/L [f, qt] i f /) = ()
q0 otherwise

gt is undefined if m ~ {and, or, not}

An object process qf modell ing the Boolean f can be defined analogously. Now
the global process rBool modell ing all Booleans is given by

r B o o l = co(qt)(t)(())(O) I] co(qf)(f)(())(O).

In modell ing the integers we run into a complicat ion: It is not difficult to
define for each integer k an object process qk that models k's behaviour , but
compos ing this infinite number of processes in parallel is difficult, since

lim co(q_n)(-n)(())(O) I t ' " I] e)(qn)(n)(())(O)
~1----~ O0

does not exist. To overcome this problem, we define 'by hand ' a process rln t that
per forms exactly the steps tha t we would expect intuitively f rom the above limit:

rln t = {[m,n, gm,n] "n E Z A r n = add, . . .}

where

gadd,n(c0(~) = {[~, n + k, n, rlnt] " k E Z A ~ = (k)}.

The process rln t consists o f an infinite n u m b e r of answer steps, one for each
integer n and for each method name m applicable for integers (here we have
written only the me thod add). The resumpt ion gm,~ of such a step, when applied

A Layered Semantics for a Parallel Object-Oriented Language 401

to a sending object e and an argument list fi, yields a process that immediately
does a result step, where the resulting value (n + k in the case of the method add)
is returned to the sender e. Note that no step is generated if the method is called
with an erroneous argument list; in this case the process becomes blocked. (As a
mathematical detail, note that rln t is certainly a closed set, because all its elements
have a fixed minimum distance to each other. But since this set is infinite, it is
certainly not compact.)

Now we can give the semantics of programs by the function ~lG : Prog
SObj ~ --~ GProc, defined by

~r
= o~P(d/do[[d,~(cO)(())(O) I[cO(qwortd)(world)(())(O)II rlBoo[II rlnt

where

P = (C l ~ d l , . . . , C n ~ d n)

Finally we define the operators needed to extract the observable behaviour

from a global process. The operator path " GProc ~ N ((C o m m + x GProc) ~
/

extracts all the possible computat ion paths out of a process:

= { ([cl,rl], . . . ,[c, ,r,]) �9 path(r)

[cl, rl] E r A Yl _< i < n [ci+t, ri+l] E ri

A(rn =ro V r n N C o m m + x GProc =O) }
J

u ~([cl,r~] }"
[cb rl] E r A Vi > 1 [ci+l, ri+l] C ri }

Next we have the operator output �9 GProc --~ ~(SObj ~176 defined by

output (r) = { ~U(cl)- ~U(c2) ([ci, ri])i E path (r) }

where

(v) if c = [c~, output, (v),world] and v E SObj
~(c) = () otherwise

At last we can define the observable behaviour of a program by the function
obs " Prog ~ SObj ~176 ~ N(SObj~176 which returns the set of all possible sequences
of output values for a given sequence of input values:

obs [[P]] (w) = output (d/d G][P]] (w)).

4. Conclus ions

In the preceding sections we have given a layered denotational semantics for the
languages Toy and POOL, where 'layered' means that the semantics is defined
at three different levels: for statements, objects, and programs. For each of these
levels we have defined a specialized domain of processes and we have defined
operators that translate between these domains. In both languages we allow
programs to interact with the outside world by communicating with special
objects. In this way we can define the overall observable behaviour of a program

402 R America and J. Rutten

by specifying the set of possible sequences of output values for a given sequence
of input values. However, the most important contribution of this work is that it
provides an explicit model of the behaviour of a single object in isolation.

There are several questions still to be answered. It might be interesting to
see whether this new semantics for POOL can in some sense be related to the
operational and denotational semantics developed previously [ABK86, ABK89].
Despite the fact that these operational and denotational semantics use completely
different formalisms, they have been proved to be equivalent to each other.
Although this proof is quite complex [Rutg0], their precise relationship can be
described relatively easily by an operator that extracts all possible paths from a
tree-like structure (very much like our operator path in Sections 2.4 and 3.5). This
is only possible because the two semantics can be fine-tuned to each other, so
that the operational semantics performs a step precisely when the denotational
does so. With the present layered semantics such fine-tuning is clearly impossible,
particularly because the abstraction operator that translates statement processes
into object processes deletes all the internal computation steps. Establishing a
precise relationship between the layered semantics and the older two is therefore
a challenge that calls for the development of new semantic techniques.

Another open question is the issue of full abstractness. At the level of programs
we have defined a clear notion of observable behaviour by the operator obs, which
can serve as a gauge for defining the notion of full abstractness. Note that this
notion itself now makes sense for the semantics at the statement level Mrs as
well as at the object level ~go (at the program level the semantics given by obs
is trivially fully abstract; the semantics Jga is certainly not fully abstract and it
was not intended to be). Intuitively, we have the impression that our semantics
for Toy might well be fully abstract at the statement level and at the object
level. Proving this, however, is another matter. For the statement level semantics
of POOL, the question is completely open, but the object level is certainly not
fully abstract: It is possible that the object creates another object that remains
completely invisible to the rest of the system, but nevertheless a creation step will
appear in its semantics. At this moment it is not at all clear how this problem
could be solved. For our investigation on full abstractness we propose to tackle
the issue for the Toy language first and then to concentrate on POOL again.

Acknowledgements

We wish to thank the following people for their valuable contributions in many
discussions about the contents of this paper: Jaco de Bakker, Ton Kalker, Joost
Kok, and Frank van der Linden.

References

[ABK86]

[ABK89]

Pierre America, Jaco de Bakker, Joost N. Kok, and Jan Rutten. Operational semantics
of a parallel object-oriented language. In Conference Record o f the 13th Symposium
on PHnciptes o f Programming Languages, St. Petersburg, Florida, January 13-15, 1986,
194208.
Pierre America, Jaco de Bakker, Joost N. Kok, and Jan Rutten. Denotational semantics
of a parallel object-oriented language. Information and Computation, 83(2):152-205,
November 1989.

A Layered Semantics for a Parallel Object-Oriented Language 403

[Ame87]

[Ame89a]

[Ame89b]

[Ame89c]

lAme91]

[AmR891

[BaZ82]

[Dug66]
[Eng89]

[Gor79]

[Hoa78]

[Mic51]

[MLa71]

[P1o81]

[Rut90]

[Vaa86]

Pierre America. POOL-T: A parallel object-oriented language. In Akinori Yonezawa
and Mario Tokoro, editors, Object-Oriented Concurrent Programming, 199-220. MIT
Press, 1987.
Pierre America. A behavioural approach to subtyping in object-oriented programming
languages. In Workshop on Inheritance Hierarchies in Knowledge Representation and
Programming Languages, Viareggio, Italy, February 6-8, 1989. Wiley. Also appeared in
Philips Journal os Research, 44(2/3):365-383, July 1989.
Pierre America. Issues in the design of a parallel object-oriented language. Formal
Aspects of Computing, 1 (4) :366M 11, 1989.
Pierre America. The practical importance of formal semantics. In J. W. Klop, J.-J. Ch.
Meyer, and J. J. M. M. Rutten, editors, J. W. de Bakker, 25 Jaar Semantiek, Liber
Amicorum, 31-40. Centre for Mathematics and Computer Science, Amsterdam, the
Netherlands, April 1989.
Pierre America. Designing an Object-Oriented Programming Language with Behavioural
Subtyping. In J.W. de Bakker, W.E de Roever and G. Rozenberg, editors, Proceedings
REX/FOOL Workshop on the Foundations of Object-Oriented Languages, 60-90.
Springer LNCS 489, 1991.
Pierre America and Jan Rutten. Solving reflexive domain equations in a category of
complete metric spaces. Journal of Computer and System Sciences, 39(3):343-375,
December 1989.
J. W. de Bakker and J. I. Zucker. Processes and the denotational semantics of concur-
rency. Information and Control, 54:70-120, 1982.
J. Dugundji. Topology. Allyn and Bacon, Boston, Massachusetts, 1966.
R. Engelking. General Topology. Revised and completed version. Sigma Series in Pure
Mathematics, Vol. 6, Heldermann, Berlin, 1989.
Michael J. C. Gordon. The Denotational Description of Programming Languages: An
Introduction. Springer, 1979.
C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8) :666-677, August 1978.
E. Michael. Topologies on spaces of subsets. Transactions of the AMS, 71:152-182,
1951.
Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in
Mathematics, Vol. 5, Springer, 1971.
Gordon D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-
19, Aarhus University, Computer Science Department, Aarhus, Denmark, September
1981.
Jan Rutten. Semantic correctness for a parallel object-oriented language. SIAM Journal
on Computing, 19(3):341-383, 1990.
Frits W. Vaandrager. Process algebra semantics for POOL. In J.C.M. Baeten, editor,
Applications of process algebra, 173-236. Cambridge Tracts in Theoretical Computer
Science 17, Cambridge University Press, 1990.

Appendix A. Mathematical Preliminaries

As mathemat ica l domains for our semantics we use complete metric spaces
satisfying a so-called reflexive domain equation of the following form:

P ~ F(P)

(The symbol ~ is defined below; it says that there is a hijection from P to F(P)
that respects the metric defined on the spaces.) Here F(P) is an expression buil t
from P and a n u m b e r of s tandard construct ions on metric spaces (also to be
formally in t roduced shortly). A few examples are

P ----- A U (B x P) (A.1)

P -~ A U ~ c o (B x P) (A.2)

P ~ A U (B -+ P) (A.3)

404 R America and J. Rutten

where A and B are given fixed complete metric spaces. De Bakker and Zucker have
first described how to solve these equations in a metric setting [BaZ82]. Roughly,
their approach amounts to the following: In order to solve P ~- F(P) they define
a sequence of complete metric spaces (P,)n by: P0 = A and Pn+l = F(P,), for
n > 0, such that P0 -~ P1 --- " ". Then they take the metric completion of the union
of these spaces Pn, say/5, and show: P ~- F(P). In this way they are able to solve
equations (A.1), (A.2) and (A.3) above.

There is one type of equation for which this approach does not work, namely,

P ~ A U (P l_~G(p)) (A.4)

in which P occurs at the left side of a function space arrow, and G(P) is an
expression possibly containing P. This is due to the fact that it is not always the
case that Pn ~- F(P~).

In [AmR89] the above approach is generalized in order to overcome this
problem. The family of complete metric spaces is made into a category cg by
providing some additional structure. (For an extensive introduction to category
theory we refer the reader to [MLa71].) Then the expression F is interpreted as a
functor F : cg ~ cg which is (in a sense) contracting. It is proved that a generalized
version of Banach's theorem (see below) holds, i.e., that contracting functors have
a fixed point (up to isometry). Such a fixed point, satisfying P ~ F(P), is a
solution of the domain equation.

We shall now give a quick overview of these results, omitting many details
and all proofs. For a full treatment we refer the reader to [AmR89]. We start by
listing the basic definitions and facts of metric topology that we shall need.

We assume the following notions to be known (the reader might consult
[Dug66] or [Eng89]): metric space, ultra-metric space, complete (ultra-)metric
space, continuous function, closed set, compact set. In our definition the distance
between two elements of a metric space is always between 0 and 1, inclusive.

An arbitrary set A can be supplied with a metric dA, called the discrete metric,
defined by

dA(x,y) = { O1 if x ~ X = Y

Now (A, dA) is a metric space (it is even an ultra-metric space).
Let (Mb dl) and (M2, d2) be two complete metric spaces. A function f : M1 --~

M2 is called non-expansive if for all x, y E M1

d2 (f(x), f(y)) <_ dl (x, y)

The set of all non-expansive functions from M1 to M2 is denoted by Ms ~ M2.
A function f : M1 --* M2 is called contracting (or a contraction) if there exists an
e < 1 such that for all x, y E M1

d2(f(x), f(y)) <_ e. dl (x, y)

(Non-expansive functions and contractions are always continuous.)
The following fact is known as Banach's theorem: Let (M, d) be a complete

metric space and f : M ~ M a contraction. Then f has a unique fixed point,
that is, there exists a unique x 6 M such that f (x) -- x. This x can be obtained
by taking the limit of f"(xo) for any arbitrary xo 6 M (where fO(y) = y and
f ,+l(y) = f(f ,(y))) .

A Layered Semantics for a Parallel Object-Oriented Language 405

We call M1 and M2 isometric (notation: M1 ~ M2) if there exists a bijective
mapping f �9 M1 ~ M2 such that for all x, y E Ma

&if(x) , f (y)) = dl (x, y)

Definition A.1
Let (M, d), (M1, dl) , . . . , (M,, d~) be metric spaces.

1. We define a metric de on the set M1 ~ M2 of all functions from M1 to M2 as
follows: For every f l , f2 E M1 ~ M2 we put

dF(f l,f2) = sup {d2(f l(x),f2(x))}
xEM1

This supremum always exists since the values taken by our metrics are always

between 0 and 1. The set M1 ~ M2 is a subset of M1 ~ M2, and a metric on

M1 ~ M2 can be obtained by taking the restriction of the corresponding dr.
2. With M1 �9 "'" @ M, we denote the disjoint union of M1,. . . , M~, which can be

defined as {1} x ml U . . . U {n} x m, . We define a metric d~: on M1 @"" @ m~
as follows: For every x, y c M1 @ �9 �9 �9 0 M~,

dj(x,y) i fx , y c { j } x M j , l < j < _ n
d~ (x, y) = 1 otherwise

I f no confusion is possible we often write U rather than @.
3. We define a metric dp on the Cartesian product M1 x . . - x M~ by the following

clause: For every (Xl x~), (Yl , y~) ~ M1 x . . . x M~,

dp ((X I , . . . , Xn), (Yl Yn)) = max { di(xi, Yi))

4. Let Nd(M) = { X ' X ~_ M A X is closed}. We can define a metric dH on
N~l (M), called the Hausdorff distance, as follows: For every X, Y 6 r (M),

dn(X, Y) = max{sup{d(x, Y)), sup{d(y, X)}}
xcX yEY

where d(x ,Z) = infzcz{d(x,z)} for every Z ~ M, x c M. (We use the
convention that sup 0 = 0 and inf 0 = 1.) The spaces ~co (M) = { X " X ~_ M A
X is compact) and ~,c (M) = { X : X ~ M A X is non-empty and compact)
are supplied with a metric by taking the restriction of dR.

5. For any real number e with 0 < e _< 1 we define

iG((M, d)) = (M, d')

where d'(x,y) = e 'd (x ,y) , for every x and y in M.

Proposition A.2
Let (M,d), (Ml,dl) (M~,d~), dF, du, dp and du be as in Definition A.I and
suppose that (M, d), (M1, dl) , . . . , (M~, dn) are complete. Then

(ml ~ m2, dr) (ml 1_~ M2, de) (a)

(M1 � 9 0 M., du) (b)

(M1 x . . . x M~, de) (c)

(Nct(M),di4) (~co(M),d~) (~,~(M),dH) (d)

id~ ((M, d)) (e)

406 R Amer i ca and J. R u n e n

are complete metric spaces. If (M,d) and (Mi, di) are all ultra-metric spaces,
then so are these composed spaces. (Strictly speaking, for the completeness of

M1 --* M2 and M~ ~ M2 we do not need the completeness of M1. The same
holds for the ultra-metric property.)

Whenever in the sequel we write M1 -~ M2, M1 ~ M2, MI @" " .O M, , M1 x . . . x M~,
~cl(M), ~@co (M), ~nc(M), or idc(M), we mean the metric space with the metric
defined above.

The proofs of Proposition A.2(a), (b), (c), and (e) are straightforward. Part (d)
is more complex. It can be proved with the help of the following characterization
of the completeness of (~cl (M), dH).

Proposition A.3
Let (~cI(M),dH) be as in Definition A.1. Let (Xi) i be a Cauchy sequence in
~cl (M). We have

lim Xi = { lira xi " xi ~ Xi, (xi)i a Cauchy sequence in M }
i~+oO i--~oO

Proofs of Propositions A.2(d) and A.3 can be found in, forinstance, [Dug66] and
[Eng89]. The proofs are also repeated in [BaZ82]. The completeness of ~co (M)
is proved in [Mic51].

We proceed by introducing a category of complete metric spaces and some
basic definitions, after which a categorical fixed point theorem will be formulated.

Definition A.4
Let c~ denote the category that has complete metric spaces for its objects. The
arrows t in cg are defined as follows: Let M1, M2 be complete metric spaces. Then

i M2, satisfying the following properties: Ma -4' M2 denotes a pair of maps M~ ~ j

1. i is an isometric embedding,

2. j is non-expansive,

3. j o i = i d M 1 .

(We sometimes write [i, j] for z.) Composition of the arrows is defined in the
obvious way.

We can consider M~ as an approximation to M2: In a sense, the set M2 contains
more information than MI, because M1 can be isometrically embedded into M2.
Elements in M2 are approximated by elements in M1. For an element m2 E M2
its (best) approximation in M1 is given by j(m2). Clause 3. states that M2 is a
consistent extension of M1.

Definition A.5
For every arrow M~ -4' 5//2 in cg with t = [i,j] we define

g) (t) = dM2-,M1 (i o j , idM2) (= sup {d~2 (i o j(rn2), m2)})
m2CM~

This number can be regarded as a measure of the quality with which M2 is
approximated by M1 : the smaller 6(0, the better M2 is approximated by M1.

Increasing sequences of metric spaces are generalized as follows:

Definition A.6

1. We call a sequence (Dn, t~)~ of complete metric spaces and arrows a tower
whenever we have that Vn E NDn -4~" D,+I E ~.

A Layered Semantics for a Parallel Object-Oriented Language 407

2. The sequence (Dn, tn), is called a converging tower when the following condit ion
is also satisfied:

Ve > 0 ~ N E N V m > n > N 60,m) < e

where Into = trn--1 o �9 "" o In : D n ~ D i n .

A special case of a converging tower is a tower (D,, ~n), satisfying, for some e
w i t h 0 < e < l ,

Vn ~ N~(I~+I) < e ' ~(I~)

Note that

(~(Inm) --< (~(In) - t - ' ' ' -~- O(/m-1)

< e n ' 6 (5 0) + - ' ' + e m-I ~ 0 0)
6,n

-< 1 ------e "{$0o)

We shall now generalize the technique of forming the metric completion of the
union of an increasing sequence of metric spaces by proving that, in (d, every
converging tower has an initial cone. The construct ion of such an initial cone for
a given tower is called the direct limit construction. Before we treat this direct
limit construction, we first give the definition of a cone and an initial cone.

Definition A.7
Let (Dn, 1.)n be a tower. Let D be a complete metric space and (Tn)n a sequence
o f arrows. We call (D, (?n).) a cone for (D., ~n). whenever the following condit ion
holds:

Vn c N Dn ---~ ~" D E C~ A Tn = T n + l O ln

Definition A.8
A cone (D, (Tn)~) for a tower (Dn, ln)n is called initial whenever for every other
cone (D', (?'~)n) for (Dn, zn)n there exists a unique arrow 1 : D ~ D' in T such that :

Vn EN~~ =7'~

Definition A.9
Let (Dn, tn)n, with tn = [in, j.], be a converging tower. The direct limit of (D., t .) .
is a cone (D, (?n).), with 7n = [g.,hn], that is defined as follows:

D = { (Xn). :Vn>_Oxn C D n A j . (x n + I) = x n }

is equipped with a metric dD defined by

dD ((Xn)n, (Yn)n) = sup{do. (xn, y,) }

for all (Xn)n and (Y,)n c D. The mapp ing g, : Dn --~ D is defined by gn(x) = (xk)k,
where

jkn(X) i f k < n
xk = x if k = n

ink(x) i f k > n

and hn : D --* On is defined by hn((Xk)k) = x, .

Lemma A.10
The direct limit of a converging tower (as defined in Definit ion A.9) is an initial
cone for that tower.

408 R America and J. Rutten

As a category-theoretic equivalent of a contracting function on a metric space,
we have the following notion of a contracting functor on c~.

Definition A.11
We call a functor F : c~ _~ ~ contracting whenever the following holds: There
exists an e, with 0 _< e < 1, such that, for all D --+~ E E cg,

6(F(z)) <_ e. 6(0

A contracting function on a complete metric space is continuous, so it preserves
Cauchy sequences and their limits. Similarly, a contracting functor preserves
converging towers and their initial cones:

Lemma A.12
Let F : ~ ~ cg be a contracting functor, let (Dn, z~), be a converging tower with
an initial cone (D, (7,)~). Then (F(Dn), F(t,))n is again a converging tower with
(F(D), (F(Tn))n) as an initial cone.

Theorem A.13
Let F be a contracting functor F : cg ~ c~ and let Do ~ o F(Do) ~ c~. Let the
tower (D,, z,)n be defined by D,+I = F(D,) and t,+a = F(t,) for all n _> 0. This
tower is converging, so it has a direct limit (D, (Tn),)- We have D ~ F(D).

In [AmR89] it is shown that contracting functors that are moreover contracting
on all horn-sets (the sets of arrows in cg between any two given complete metric
spaces) have unique fixed points (up to isometry). It is also possible to impose
certain restrictions upon the category cg such that every contracting functor on
has a unique fixed point.

Let us now indicate how this theorem can be used to solve Equations (A.1)
to (A.4) above. We define

FI(P) = AUidl/2(B x P) (A.5)

F2(P) = AU~co(B x idl/2(P)) (A.6)

F3(P) = A U (B --~ idl/2(P)) (A.7)

If the expression G(P) in Equation (A.4) is, for example, equal to P, then we
define F4 by

F4(P) = AUidv2(P t p) (A.8)

Note that the definitions of these functors specify, for each metric space (P, dp),
the metric on F(P) implicitly (see Definition A.1).

Now it is easily verified that F1, F2, F3, and F4 are contracting functors on
cg. Intuitively, this is a consequence of the fact that in the definitions above each
occurrence of P is preceded by a factor idl/2. Thus these functors have a fixed
point, according to Theorem A.13, which is a solution for the corresponding
equation. (We often omit the factor idl/2 in the reflexive domain equations,
assuming that the reader will be able to fill in the details.)

In [AmR89] it is shown that functors like F1 to F4 are also contracting on
hom-sets, which guarantees that they have unique fixed points (up to isometry).

The results above hold for complete ultra-metric spaces too, which can be
easily verified.

Received February 1991
Accepted in revised form May 1991 by B.T. Denvir

