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Abstract. We develop a denotational semantics for POOL, a parallel object- 
oriented programming language. The main contribution of this semantics is an 
accurate mathematical model of the most important concept in object-oriented 
programming: the object. This is achieved by structuring the semantics in layers 
working at three different levels: for statements, objects and programs. For each 
of these levels we define a specialized mathematical domain of processes, which 
we use to assign a meaning to each language construct. This is done in the 
mathematical framework of complete metric spaces. We also define operators 
that translate between these domains. At the program level we give a precise 
definition of the observable input/output behaviour of a particular program, 
which could be used at a later stage to decide the issue of full abstractness. We 
illustrate our semantic techniques by first applying them to a toy language similar 
to CSP. 

1. Introduction 

In the design of a programming language, a formal study of its semantics can be of 
considerable advantage [Ame89c]. First of all, the conciseness and mathematical 
elegance of the formal semantic definition of a language is a very good measure 
of its conceptual integrity. If  the basic concepts of a language or the way in which 
they are combined are not well chosen, then an attempt to describe the meaning 
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of programs written in that language by formal, i.e., mathematical, means will 
certainly run into problems. Second, a formal description of the semantics of a 
language may form a basis for proving the correctness of a certain implementation. 
Sometimes this may apply to a complete implementation, but more often it will 
only apply to specific techniques used in such an implementation. Last but not 
least, formal semantics for a language can function as a gauge for an equally 
formal theory of reasoning about the correctness of programs written in the 
language. Since reasoning about a program can be done at several levels of 
abstraction, it is important that for the formal description of the semantics the 
right abstraction level is chosen. 

In this paper we shall study the semantics of POOL, a parallel object-oriented 
language [Ame89b]. This language has been designed to support the development 
of symbolic (i.e., not only numerical) programs that can be run efficiently on a 
parallel computer without shared memory. Up to now, the formal semantics of 
POOL has been described in several different ways. First an operational semantics 
was defined [ABK86], using the technique of transition systems and Structural 
Operational Semantics [Plo81]. After that we developed a denotational semantic 
description of POOL [ABK89]. This took place in the mathematical framework 
of complete metric spaces and used mathematical structures called processes 
[BaZ82] to represent the behaviour of a program and its parts. In [Rut90] it was 
proved that these operational and denotational semantics, which were developed 
more or less independently, are in a certain sense equivalent. The semantics 
of POOL has also been described using other formalisms, for example process 
algebra [Vaa86]. 

Here we want to concentrate on denotational semantics. The main character- 
istic of denotational semantics is that it assigns a meaning (a value out of some 
mathematical domain) to each language construct in a compositional way. This 
means that the meaning of a composite construct only depends on the meanings 
of its constituents, not on their actual syntactic form. In general, this is the 
best way of describing each concept in the language accurately and individually. 
The denotational semantics developed so far for POOL [ABK89] had two flaws. 
Firstly, it did not give a description of the semantics of a single object, clearly 
a very important concept in the language. Secondly, the denotational semantics 
was not sufficiently abstract, and certainly not fully abstract. This principle of full 
abstractness can be defined as follows: In denotational semantics, the meaning of 
a program fragment must contain suff• information to be able to determine 
the meaning of any larger fragment that contains the first one as a constituent. 
However, if we look at a complete program, it is in general clear which aspects 
of its behaviour can be actually observed, for example, its output as a function 
of its input. A semantic description is called fully abstract if the meaning of 
any program fragment contains only that information that is necessary to fix the 
observable behaviour of any complete program that contains it. More precisely, 
whenever two program fragments have different meanings then there should be a 
context (a program with a 'hole') that gives different observable behaviours when 
it is filled with these fragments. 

This paper develops a semantics for POOL that works at three different levels: 
the statement level, the object level, and the program level. For each level there 
is a specialized domain where the values reside that represent the meaning of 
the individual language constructs. The relationship between the levels is given 
by translation operators that map meanings at one level to meanings at the next 
higher level, forgetting whenever possible about details that are no longer relevant 
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at the higher level. The semantics at the level of programs will define the behaviour 
that we can ultimately observe, and the statement level is of course necessary 
to get off the ground. The object level is most interesting, because it centres by 
definition around the most important concept of  object-oriented programming. 
Getting a clear, formal idea of what constitutes the meaning of an object is not 
just an intellectual challenge. An object is the basic unit of encapsulation and 
reuse in object-oriented programming. As was argued in [Ame89a], it is important 
to abstract away from the internal details of an object, since these cannot be 
observed anyway. Therefore reasoning about the correctness of programs is best 
done at the level of the observable behaviour of the objects. This can also shed 
some light on the nature of inheritance and subtyping, two of  the most interesting 
issues in object-oriented programming (see also [Ame91]). 

A particular aspect that the reader might be less familiar with is the use of 
complete metric spaces instead of the more common complete partial orders. We 
use them mainly because of  two advantages: Firstly, (guarded) recursive defini- 
tions have unique solutions (by Banach's theorem, see the appendix). Secondly, 
the metric power set construction is simpler than its order-theoretic counterparts. 
Even then, the techniques that we use in this paper are relatively complex. The 
most important reason for this is that the language under consideration is (an 
abstract version of) a real programming language which has many different fea- 
tures. In order to introduce the reader to all this, in Section 2 a language called 
Toy is treated, which is semantically much simpler than POOL. Section 3 then 
applies these techniques to POOL. Both Section 2 and Section 3 first introduce 
the language and its syntax and then describe the semantics at the level of state- 
ments, objects, and programs. In Section 4 we draw some conclusions from our 
work and sketch some possibilities for further work. Appendix A sketches the 
mathematical preliminaries necessary to understand the technicalities in the rest 
of  the paper. 

2. A Toy Language 

In this section a simple language, called Toy, is introduced and supplied with a 
denotational semantics. Toy is very similar to CSP [Hoa78], but a little simpler. A 
program consists of a fixed, finite number of objects (the CSP terminology would 
be 'processes'), which can only communicate with each other by exchanging mes- 
sages. In order to communicate, the sender and receiver of a message synchronize 
(the first one that is ready to communicate waits for the other) and then they 
exchange a single value. 

A denotational semantics is given to this language in three stages: first for 
statements, then for objects, and finally for programs. At each stage a different 
domain (a kind of mathematical structure) will be used to describe the meaning 
of the language constructs and operations to translate these structures into each 
other will be defined. 

2.1. Syntax of Toy 

The basic building blocks for the syntax of Toy are a set (x ~)Var of variables 
(by this notation we mean that the set is called Var and that symbols like 
x, x', xl, x2 . . . .  denote elements of  this set), a set (e E)Exp of expressions, and a 
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set (O ~)OLab of object labels. The symbol OLab + is used as a shorthand for 
OLab U {*}, where * indicates that the object is left unspecified (see below for 
examples of  its use). The expressions in the set Exp are considered to be simple, 
in the sense that they do not have side-effects. 

Now we can define the set (s E)Stat of Toy statements as follows: 

: : =  X : :  e 

] O!el  *!e 
I O?xl *?x 
I sl ; s2 
I ifethenslelses2fi 
I w h i l e e d o s o d  

The intended interpretation of the statements is as usual: The assignment state- 
ment x := e stores the value of the expression e in the variable x. The output 
statement O !e sends the value of the expression e to the object with label O 
and the input statement O?x stores the value it receives from object O in the 
variable x. These communication actions take place synchronously: the object that 
reaches its communication statement first must wait for its partner. When this 
partner also reaches a communication statement and moreover the two state- 
ments match (one is an output statement, the other is an input statement, and 
they mention each other's object labels), the transfer of  the value is performed. 
After this communication both partners can continue their execution in parallel. 
In one of the partners (but not in both), the label of the other side can be 
replaced by an asterisk *, so that the statement takes the forms * !e or * ?x. Such 
a statement is willing to communicate with an arbitrary partner object, as long 
as that partner explicitly mentions the name of the object in which the statement 
occurs. The standard control structures, sequential composition, conditional, and 
loop, are also present in the language. 

A program P ~ Prog in Toy is a finite sequence of objects, where an object 
is simply a statement labelled by an object name (in CSP terminology [Hoa78], 
an object would be called 'process', but we reserve the word 'process' for certain 
semantic entities to be introduced below): 

P ::= (Ot :: sl [1 "'" II Or :: sn) where n > 1. 

These objects are executed in parallel and they can communicate with each other 
by the communication statements described above. Each object has its own set 
of  variables; it cannot access the variables of  another object. Therefore the same 
variable name, used in different objects, refers to different variables. 

2.2. Semantics of  Toy Statements 

In order to give a semantics to our language, we first have to give an interpretation 
to its simplest elements, the variables. We assume that our variables can store 
values that are elements of  a set (v E)Val, and that at the beginning of the 
program execution all variables are initialized to the special undefined value 
nil E Val. 

Now we define the set (o E)IE of states by 

2 = Var --* Val. 
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Note that states are local: A state o- can store the values of all the variables of  a 
single object. Each object has its own set of variables and therefore its own state. 

For the evaluation of expressions, we just assume the presence of  an evaluation 
function 

[[]] : Exp  ---~ Z ---~ Val. 

(The function space operator ~ always brackets to the right, so that this means 
Exp ~ (2 ~ Val).) Since expressions do not have side effects and cannot refer to 
the variables of other objects, a state o- contains enough information to determine 
the value of an expression instantly. 

For describing the semantics of  the larger constructs in our language, we use 
processes. These are mathematical structures that describe exactly the execution 
of the language constructs in question (see also [BaZ82]). We use different kinds 
of processes for statements, objects and programs. The processes that describe 
the semantics of statements are called statement processes and are elements of 
the domain (p ~)SProc.  This domain is a complete metric space defined by the 
following reflexive domain equation: 

SProc ~- {P0} U (Y~ x SProc) 
U (OLab + x Val x SProc) 
U (OLab + x (Val ~ SProc)) 

In Appendix A we give an overview of the techniques that can be used to prove 
that this domain equation has exactly one solution up to isomorphism, provided 
we (implicitly) apply the functor idl/2 to all occurrences of SProc at the right-hand 
side. 

Let us now look at the structure of  statement processes: The process P0 
is the (successfully) terminated process, which does not perform any action. A 
statement process of the form [G,p] represents an internal computation step. 
The first component a registers the new state after this step (which might be 
an assignment) and the second component p, called the resumption of  this step, 
represents the activity that follows after this first step. A process of the form 
[0, v,p] represents a send step. The object label O (possibly equal to *, the 
unspecified object label) indicates the receiving object, the second component v 
is the value to be sent, and the third component, the process p is the resumption 
of this send step: it describes what happens after this step. Finally, a statement 
process can have the form [O, f] ,  in which case it models a receive step. The 
object label O (possibly *) indicates from which process a value is expected. 
The resumption f of  this step is a function from values to processes, since the 
behaviour of the statements after this step in general depends on the value that 
is received: if this value is v then f ( v )  is the process that describes what happens 
after this receive step. 

The semantics of  statements is now given by a function J//s of type 

d/Is : Stat --+ Cont ~ Z ~ SProc. 

The meaning ~/~s [Is]] of a statement s depends on two arguments: a continuation 
g E Cont and a state o-. The state a simply represent the values of  the variables 
before the statement s is executed. The set Cont of continuations is given by 

Cont = E ---* SProc. 

Such a continuation g represents the meaning of everything that will happen after 
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the statement s. Generally it depends on the state resulting from the execution of 
s. Using continuations can drastically reduce the complexity of the equations that 
define the semantics of  a language. For a simple language like Toy this technique 
is not really necessary, but we present it here to prepare for Section 3, where it is 
used to define the semantics of POOL. For a good introduction to continuation 
semantics, see [Gor79]. 

The function J/gs is defined by the following clauses: 

�9 Assignment: 

JCsJ[x := ell(g)(~) = D',g(,r')] 
where a' = o{l[e]](a)/x}. Here we have made use of the variant notation: If  
f : X --+ Y is a function, x c X, and y E Y, then f { y / x }  is again a function 
in X -+ Y, defined by 

f {y /x}(z)  = { y if z = x 
f(z) otherwise. 

The statement process describing the execution of an assignment first performs 
an internal computation step. The first component of this step describes the 
new state o-', which differs from the original state a in that the variable x has 
got the value lie]](a) of the expression e in the original state a. The second 
component, the resumption of this step, which is the process describing 
everything that happens after the first step, can be obtained by applying the 
continuation g to the new state a'. 

�9 Output statement: 

~s[[O !e]l(g)(a) = [O, [e]l(o),g(cr)] 
Jgs[[*!e]l(g)(a) = [*, [[e][ (a), g(a)] 

Here the first step is a send step. It contains the label 0 of the receiving 
object (or *, if the receiver is not specified), the value I[e]l (a) to be transmitted, 
and the resumption, which is obtained by applying the continuation g to the 
(unchanged) state a. 

�9 Input statement: 

M s  I[0 ?xll(g)(a)  = [O,,~v.g(a{v/x})] 
~ s D T x l l ( g ) ( - )  = [,,).v.g(a{v/x})] 

The first step executed by an input statement is a receive step of the form 
[O, f] .  The first component O is the label of the sending object (or *). The 
second component f is the resumption, which depends on the value v that is 
received. The function f is defined in such a way that for a given value v the 
resumption f(v) is equal to g(a{v/x}). This means that first a new state cr{v/x} 
is determined, where v is stored in the variable x, and then the continuation g is 
applied to this new state, yielding the process g(a{v/x}) = f(v) that describes 
the actions of the current object after this receive step. 

�9 Sequential composition: 

,//g's ~-Sl ; s2~] (g)(0-) -~- ~/~s [[Sl]] (J//ls Hs2]] (g)) (0-) 

Here we see most clearly the kind of  simplification in the semantic equations 
that can result from the use of continuations. The sequential composition 
of two statements can be described by using the semantics of the second 
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statement as the continuation for the semantics of the first statement. In more 
detail: g is a function in t2 ~ SProc describing everything that happens after 
the two statements; ~(S [[s2]](g) is also a function in Z --* SProc (so it can 
also be used as a continuation) and it describes the execution of s2 plus 
everything that happens afterwards, so rigs [[sl]l(J//s [[s2]] (g)) is also a function 
in Z --* SProc that, when applied to a state o-, delivers a process that describes 
the execution of first the statement Sl, then the statement s2, and then the rest. 

* Conditional statement: 

Jgs[[if e then st else s2 fi](g)(a) = { JP/sd{S H-sl]](g)(cr)[[s2]](g)(cr) ifotherwise[[e~ (tr) =fi nil 

Since there is no special data type for Booleans in the language Toy, we 
base the decision in a conditional statement on whether the value of  the 
expression e is nil or not, where nil stands for 'false'. 

�9 Loop statement: 

{ Jgsl[S]](dgs[[whileedosod]](g))(tr) 
Ms [[while e do s od]] (g) (~) = if lie] (iT) r nil 

[o-, g(~r)] otherwise 

If the condition is not nil, then executing the loop is equivalent to first 
executing the statement s and then executing the loop again. If  the condition is 
nil, then the loop immediately terminates and control passes to the statements 
following it, which are represented by the continuation g. 

The definition of -/~s needs some formal justification, since it cannot be 
justified by a simple induction on the syntactic complexity of the statements (in 
the clause for the while statement, the function value to be defined occurs also at 
the right-hand side). Rather than treating the while statement separately, we give 
the definition of ~fs as a whole as a fixed point of a higher-order contracting 
function, as follows. Define the domain D by 

1/2 
(F E)D = Star -* Cont -+ 12 -+ SProc. 

(Here X 1/_,2 Y is the space of all functions f : X  --* Y such that d(f(xl),f(x2)) <_ 
1 / 2 - d ( X l , X 2 )  for any xl,x2 E X.) Now we define the operator ~ :D --* D by the 
following clauses: 

~P(F)[[x := e](g)(a) = [o',g(a')] where a' = ~r{[[e]](a)/x} 
z 

~P(F) ~-s 1 ; $2]] (g)(o-) = I ] / (F)  [[s1] ( ~ ( F )  [[s2]] (g))(~) 

{ ~P(F) [[s]] ( r  [[while e do s od]] (g)) (cr) 
if [[e]] (a) @ nil RJ(F)[[whileed~176 = [a,g(cr)] otherwise 

It is clear that the above definition of W can be justified by induction on the 
syntactic complexity. By induction on the complexity of a statement s we can prove 

that for any F 6 D the result ~P(F)[[s]] is indeed an element ofCont ~-~ ~ --+ SProc, 
i.e., that it reduces distances by a factor 1/2. Here we use the fact that the functor 
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idu2 is applied to all occurrences of SProc in its defining domain equation, and 
that in the basic clauses for ~ (F)  the continuation g is always applied to a state 
to yield a process that serves as a resumption. Now we note that the only place 
where the function F occurs at the right-hand side without �9 being applied to it 
is in the clause for the while statement, where it occurs in the continuation for 
�9 (F) [[s]]. Therefore ~ is indeed a contracting function (see Appendix A), so by 
Banach's Theorem it has a unique fixed point. This fixed point satisfies exactly 
the equations that we have given above for Jds, so we can define Jgs to be this 
fixed point. 

2.3. Semantics of Objects 

The semantics of an object is obtained by taking the statement semantics (d/s) of 
the statement executed by the object and forgetting about the local computation 
steps. To this end we introduce a domain (q c)OProc of object processes. This 
domain is defined by 

OProc ~ {q0} U (OLab + x Val x OProc) 
U (OLab + x (Val --~ OProc)). 

The domain OProc can be viewed as being (isomorphic to) the subset of SProc 
consisting of those processes that do not contain internal computation steps. 

Next we define an abstraction operator ~ �9 SProc --. OProc, which makes 
all the internal computation steps invisible, so that their effects only become 
apparent through the send and receive steps that the process performs. Note that 
this corresponds to the intuitive fact that we cannot observe the state of an object 
directly, but only indirectly through the messages that it sends and receives. We 
want the operator e to satisfy the following equations: 

cffp0) = q0 
~([~,p]) = :4p) 
~([o,v,p]) = [o, v, ~(p)] 
eft[O,/]) = [O,)w.~(f(v))] 
~([~1, [~2, [~r3 . . . .  ]]]) = qo 

(Note that the last clause is really necessary, since the first four clauses do not 
fix the value of c~ for an infinite sequence of internal steps.) We can obtain such 
an operator e as the unique fixed point of the higher-order contracting operator 

�9 (SProc --+ OProc) ~ (SProc --+ OProc) defined by 

q) (0) ( [a l , ' " [an ,  P0]" ' l )  = q0 (n>_0) 
~(4)( [~;1 ,""  [a , , [O,v ,  p l l - . . ] )  = [O, v, q~(p)] (n > 0) 
( I ) ( r  Jan, [O, f l ] - .  "]) = [O, 2v.4)(f(v))] (n >_ O) 
~(4)([~1,  [~2, [~3,...1]]) = qo 

It is not difficult to see that �9 is indeed a contraction (at the right-hand side, 
~b occurs only inside a resumption, where the functor id1/2 applies) and that its 
unique fixed point satisfies the equations given above for ct. As is usually the 
case with operators that hide (internal computation) steps, a is not continuous: 
If we define the sequence pl ,p2, . . ,  by Pt = [O,v, po] and P,+I = [a,p,] for some 
arbitrary O, v, and o-, then lira, p~ = p~ = [a, [o-, [a...]]]. Applying ~ we get that 
cffp,) = [0, v, q0] for all n, but a(p~) = q0. It is somewhat surprising that c~ can 
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be defined as the fixed point of a higher-order contracting operator, although it 
is not continuous itself. 

Now we can introduce the second semantic mapping d/lo : Star ~ OProc,  
given by 

dg o l[ s]] = o:(.///[ s [[s~ ( )~a.po ) ( 2x.nil  ) ). 

It is obtained by applying the abstraction operator c~ to the meaning of s as a 
statement (given by Ms), supplied with the empty continuation 2a.p0 (indicating 
that after s nothing has to be done any more) and the nowhere defined state 
2x.nil (indicating that at the beginning of  the execution of  s all variables have 
been initialized to nil). 

The semantics of objects, given by the function JC{o, contains all the details that 
are necessary to describe how objects interact with each other (by communication), 
but the information describing how an object works internally (e.g., how it accesses 
and changes its own state) has been removed. 

2.4. Semantics of Programs 

The meaning of a program (the parallel composition of a number of  objects) 
will consist of the communications between this program and the outside world. 
Therefore let us start by defining the latter. 

We assume the presence of two special elements Oin and Oo,t in OLab,  
representing the input and the output half of  the outside world. These object 
labels may occur in the communication statements of a program, and in this way 
the program can communicate with the outside world. For instance, the statement 
Oo,t !3 will output the value 3 to the outside world. Conversely, Oin ?x will input 
a value and store it in the variable x. 

Formally, the outside world is modelled by a pair of object processes, qi,, 
and qout in OProc.  More precisely, the process qin depends on a finite or infinite 
sequence w c Val ~176 consisting of  the values that are offered as input to the 
program. We define 

= q o  

q i n ( v ' w )  = [*,v, qin(W)] 

The latter triple indicates that the value v is sent to any process that is willing to 
accept it (by a statement of  the form Oi,, ?x), after which the remaining values in 
w will be sent. (In order to define qin rigorously on infinite sequences, it can be 
taken as the fixed point of  a contracting operator in the usual way.) 

The output half of the world, qo,,t, is given by 

qout = [*,2V.qout]. 

It represents a continuous willingness to accept values from any process wishing 
to send a value to the outside world (by a statement of the form Oo,t !e). The 
process qout itself does nothing with the values it receives; we shall see below how 
they are extracted to arrive at the output of  the program. 

In order to describe the global behaviour of programs, a third kind of  semantic 
domain is introduced: the set (r E)GProc of global processes, defined by 
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GProc = {r0} U~co(GStep) 
(n �9  = (OLab x OLab + x Val x GProc) 

u (OLab + x OLab x (Val --* GProc)) 
U (Comm x GProc) 

(c � 9  = OLab x Val x OLab 

The terminated process is indicated by to. All other kinds of global processes 
consist of a set of possible steps. This is the way in which nondeterminism (which 
comes from the fact that parallelism is modelled by nondeterministic interleaving, 
as we shall see below) is modelled in our semantics: If such a process is executed, 
it will nondeterministically choose one step from among the members of the set. 
A step can have one of three possible forms: a send step, a receive step, or a 
communication step. The interpretation of send steps (of the form [O1, 02, v, r]) 
and receive steps (of the form [O1, 02, f])  is similar to their counterparts in OProc. 
The only difference is that now the labels of both the sending and the receiving 
objects (in that order) are registered. (Note that in a send step [Ot, O2,v,r] 
the receiver O2 might be unspecified (*) and symmetrically, in a receive step 
[ObO2, f] ,  the sender O1 may be *.) Finally, a step of type [c,r] represents a 
successful communication c with resumption r. Communications are of the form 
[O1, v, O2], indicating that object Ot has sent the value v to object 02. 

We shall need to be able to compose global processes in parallel. For this 
purpose we define the operator 11 : GProc x GProc --~ GProc by 

r II ro = ro II r = r 
rx II r2 = {~  I1__ r2 " ~ e r l }  u {~  I1__ rl : ~ �9 r2}  

u U { ~ I  t~2  ' ~ t  �9 ,'1,~2 �9 r2 or ~t  ~ r2,~2 �9 r l )  
[Ol,02,v ,r]  H_ r2 = [Ox,02, v,r II r2] 

[01,02, f ]  ]J_r2 = [Ol,02,)~v.(f(v) II r2)] 
[C, r] Ij_ r2 = [c, r II r2] 

{{[( 01,v,  O2),f(v) II r]} i f~ l  = [ObO+,v,r]  
7q 1~2 = and ~2 = [O+,02, f]  

0 otherwise 

(Here rl and r2 are supposed to be unequal to r0, and the notation O + has been 
used as a shorthand for Oi or , ,  where at most one of O + and O + may be *.) 

A brief explanation: As already announced above, we model two processes 
executing in parallel by taking all the possible ways in which their individual 
steps can be combined or interleaved. Composing a process r in parallel with 
the terminated process yields r itself. The result of composing in parallel two 
processes rl and r2, both of which are not r0, is a set union of three parts: in the 
first part, the first step is performed by rx (indicated by the left merge operator [J); 
in the second part, the first step is performed by r2; and in the last part, the 
first step is a communication of a step from rl with a step from r2 (indicated by 
the communication merge ]). The left merge [J_ operator effectively composes its 
second argument with the resumption of the first. The communication merge of 
two steps yields a singleton if the steps match, and the empty set otherwise. 

Before we can define the global semantics of programs, one more definition 
is needed. It is an operator co �9 OProc ~ OLab --* GProc that translates an 
object process, together with the label of the object that executes it, into a global 
process, as follows: 
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c o ( q o ) ( O ' )  = ro 
(9([O,v ,q])(O')  = { [O ' ,O ,v ,  co(q)(O')]} 
o~([O,f])(O')  = {[O,O' ,Av .co( f (v) ) (O')]}  

Finally, we can define the meaning function for programs ~{c " Prog  --* 
Val ~176 ~ GProc  : 

~/[GI[(O1 "" S1 II " '" l[ On "" Sn)~(W)  
= ~(,~-~01[$1]])(01)II ' "  II O ~ ( ~ o l I s . l l ) ( O n )  

N co(qin(w))(Oin)II cO(qom)(Oout) 

We see that the semantics of  a program consists of the parallel composition of 
the object processes of all the objects plus the input and output object, after they 
have been translated to global processes. 

However, processes in GProc  contain more information than we consider 
relevant for the observable behaviour of  a program. In particular, only the values 
sent by the program to t he  outside world are of importance. These can  be 
extracted from a global process by means of the operator output  defined below. 
First the operator path : GProc  ~ ~ ( C o m m  x GProc)  ~ is introduced, which 
computes all the finite and infinite sequences of succesful communication steps 
of a process" 

path(r)  = ~([cl,rl] . . . . .  [cn, rn]) " 
% 

[ C l , r l  ] C r A V t  <_ i < n [Ci+l,ri+l] E ri A--,3c, r' [c , / ]  C rn~ 

u {(E l,rll . . . .  > Ecl,rll A Vi_  1 tCi+l,r +ll ri} 
] 

Now we can define the function output  �9 GProc ~ ~ ( V a l  ~176 by 

output(r)  = { ~K'(cl) �9 <(c2) . . . .  :([ci, ri])i E pa th ( r ) }  

where 

~ U ( c ) = {  (v) i f c = [ O , v ,  Oo~t] 
() otherwise 

Finally, the observable behaviour of a program can be given as follows: 

obs " Prog ~ Val ~ ~ ~ ( V a l  ~176 
obs I[P]I (w) = output  ( J [ 6  [[P] (w)) 

For a given program and a (finite or infinite) sequence of input values, this 
function obs delivers the set of all possible sequences of output values. 

3. The Language P O O L  and its Semantics 

In this section we shall introduce the language POOL, a parallel object-oriented 
programming language, and give a semantics for it at three levels, following the 
same basic scheme as that in Section 2. 

3.1. Informal Introduction to the Language 

The language POOL [Ame87, Ame89b] makes use of the principles of object- 
oriented programming in order to give structure to parallel systems. A POOL 
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program describes the behaviour of a whole system in terms of  its constituents, 
objects. Objects contain some internal data and some procedures that act on these 
data (these are called methods in the object-oriented jargon). Objects are entities 
of a dynamic nature: they can be created dynamically, their internal data can 
be modified, and they even have an internal activity of their own. At the same 
time they are units of  protection: the internal data of one object are not directly 
accessible to other objects. 

An object uses variables (more specifically: instance variables) to store its 
internal data. Each variable can contain a reference to an object (another object 
or, possibly, itself). An assignment to a variable can make it refer to a different 
object. The variables of one object cannot be accessed directly by other objects. 
They can only be read and changed by the object itself. 

Objects can only interact by sending messages to each other. A message is 
a request for the receiver to execute a certain method. Messages are sent and 
received explicitly. In sending a message, the sender mentions the destination 
object, the method to be executed, and possibly some parameters (which are 
again references to objects) to be passed to this method. After this its activity is 
suspended. The receiver can specify the set of methods that will be accepted, but 
it can place no restrictions on the identity of the sender or on the parameters of  
messages. If a message arrives specifying an appropriate method, the method is 
executed with the parameters contained in the message. Upon termination, this 
method delivers a result (a reference to an object), which is returned to the sender 
of the message. The latter then resumes its own execution. 

A method can access the variables of the object that executes it (the receiver 
of a message). Furthermore it can have some temporary variables, which exist 
only during the execution of  the method. In addition to answering a message, 
an object can execute a method of its own simply by calling it. Because of this, 
and because answering a message within a method is also allowed, recursive 
invocations of methods are possible. Each of these invocations has its own set of 
parameters and temporary variables. 

When an object is created, a local activity is started: the object's body. When 
several objects have been created, their bodies may execute in parallel. This 
is the way parallelism is introduced into the language. Synchronization and 
communication take places by sending messages, as described above. 

Objects are grouped into classes. All objects in one class (the instances of 
that class) have the same number and kind of variables, the same methods for 
answering messages, and the same body. In creating an object, only its desired 
class must be specified. In this way a class serves as a blueprint for the creation 
of its instances. 

There is a special value, nil, which refers to no object at all. If a message is 
sent with nil as destination, an error occurs. Upon the creation of a new object, 
its instance variables are initialized to nil and when a method is invoked its 
temporary variables are also initialized to nil. 

There are a few standard classes predefined in the language. In this semantic 
description we shall only incorporate the classes 13oo1 and Int. The usual opera- 
tions can be performed on these objects, but they must be formulated by sending 
messages. For example, the addition 2 + 4 is indicated by the expression 2 !add(4), 
sending a message with method name add and parameter 4 to the object 2. 
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3.2. Syntax of POOL 

In this section we describe the syntax of  the language POOL as we study it in this 
paper. The concrete syntax of the language that is used for actual programming 
is relatively complex, since it offers many convenient short-hand notations for 
programmers. In order to avoid this complexity in this paper, we shall define an 
abstract syntax, which is much simpler. Nevertheless, all the essential semantic 
ingredients of the language have been maintained, so that every concrete POOL 
program can be translated straightforwardly into our abstract syntax. 

As a starting point for the definition of the POOL syntax, we assume the 
existence of  the set (x E)I Var of  instance variables, the set (u E) TVar of temporary 
variables, the set (C E)CName of class names, and the set (m E)MName of method 
names. We define the set (~b 6)SObj of  standard objects as follows: 

SObj = z u {t, f} u {nil} 

where Z is the set of all integers. 
Now we can define the set (e c)Exp of expressions by the following clauses: 

u 

m(eb..., e,) (n >>_ O) 
e!m(el,... ,en) (n > O) 
condans{ma . . . .  ,ran} (n > 1) 
new(C) 
e I ~- e 2 

s ; e  

self  

The set (s ~)Stat of statements is defined by 

s ::= x~--e 
u~--e 

answer{m1,.. . ,  ran} (n >_ 1) 
8 

Sl ; S2 

if e then st e lse s2 fi 
w h i l e e d o s o d  

The set (# ~)MethDef of method definitions is given by 

# ::= [(ul . . . .  , un), e] (n > 0), 

the set (d 6)ClassDef of class definitions by 

d ::= [ (m~#1 , . . . ,mn~p~) , s ]  (n >_ 0), 

and finally the set (P E)Prog of programs is defined by 

P ::= (Cl~dl ..... C,~dn) (n >_ 1). 

3.2.1. Informal Explanation 

First of all, it may be important to note that the difference between expressions 
and statements in POOL is only that expressions yield a value whereas statements 
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do not. In particular, expressions can have quite drastic side-effects (but these are 
always defined exactly by the language). 

Expressions" An instance variable or a temporary variable used as an expression 
will yield as its value the object name that is currently stored in that variable. 

A method call simply means that the corresponding method is executed by the 
object itself. This is done as follows: First the argument expressions e l , . . . ,  en are 
evaluated from left to right. Then a new set of temporary variables is taken, in the 
sense that their current values are remembered and they are given new values as 
follows: The argument values are assigned to the corresponding parameters, i.e., 
the temporary variables listed in the method definition, and the other temporary 
variables are initialized to nil. Then the expression in the method definition is 
evaluated; the result of  this evaluation will be the value of the method call. Before 
the method call terminates, the original values of the temporary variables are 
restored. 

The next kind of  expression is a send expression. Here e is the destination 
object to which the message will be sent, m is the method to be invoked, 
and et . . . .  , en are the arguments. When a send expression is evaluated, first the 
destination expression is evaluated, then the arguments are evaluated from left 
to right and then the message is sent to the destination object and the sending 
object does nothing while it awaits the result. When the destination object answers 
the message (which might, however, never happen), the corresponding method is 
executed; that is, the parameters are initialized to the argument values contained 
in the message, the other temporary variables are initialized to nil, and the 
expression in the method definition is evaluated. The value which results from 
this evaluation is sent back to the sender of the message and this will be the value 
of the send expression. 

The conditional answer expression is a variant of  the answer statement de- 
scribed below. This expression can answer a message that mentions a method 
name from the set {rob.. . ,  ran}, if such a message is present. In this case its value 
will be t (true). Otherwise it terminates without answering a message, yielding the 
value f (false). 

A new-expression indicates that a new object is to be created, an instance of 
the class C. The instance variables of  this object are initialized to nil and its body 
starts executing in parallel with all other objects in the system. The result of  the 
new-expression is a reference to this newly created object. 

The next type of expression checks whether el and e2 result in a reference 
to the same object. If so, t is returned, otherwise f. An expression may also 
be preceded by a statement. In this case the statement is executed before the 
expression is evaluated. The expression sell always results in a reference to the 
object that is executing this expression. Finally, the evaluation of  a standard 
object q5 results in that object itself. For instance, the value of the expression 23 
will be the natural number 23. 

Statements" The first two kinds of statements are assignments to an instance 
variable and to a temporary variable. An assignment is executed by first evaluating 
the expression on the right and then making the variable on the left refer to the 
resulting object. 

The next kind of statement is an answer statement. This indicates that a 
message is to be answered. The object executing the answer statement waits until 
a message arrives with a method name that is contained in the set {rnl . . . . .  mn}. 
Then it executes the method (after initializing the parameters and temporary 
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variables). The result of  the method is sent back to the sender of  the message 
and the answer statement terminates. The difference with a conditional answer 
expression is that an answer statement always answers exactly one message 
before terminating, whereas a conditional answer expression answers at most one 
message. 

Any expression may also occur as a statement. Upon  execution, the expression 
is evaluated and the result is discarded. So only the side effects of  the expression 
evaluation (e.g., the sending of a message) are important.  Sequential composition, 
conditionals and loops have the usual meaning. 

Method definitions: A method definition describes a method. Here ul . . . .  , un are 
the parameters and e is the expression to be evaluated when the method is 
invoked. Upon execution of  this method, the parameters are initialized to the 
corresponding argument values, the other temporary variables are initialized to 
nil, and the expression e is evaluated. Not  only is the value of this expression 
important, but in general also its side-effects. 

Class definitions: A class definition describes how instances of  the specified class 
behave. It indicates the methods and the body each instance of the class will 
have. The set of  instance variables is implicit here: it consists of  all the elements 
of  IVar that occur in the methods or in the body. 

Programs: A program consists of  a number  of  bindings of  class names to class 
definitions. I f  a program is to be executed, a single new instance of the last class 
defined in the program is created and execution of its body is started. This object, 
which we call the root object, has the task of  starting the whole system by creating 
new objects and putting them to work. 

3.2.2. Context Conditions 

For a POOL program to be valid a few more conditions need to be satisfied. We 
assume in the semantic treatment that the underlying program is valid. These 
context conditions are the following: 

�9 All class names in a program are different. 
- All method names in a class definition are different. 
�9 All parameters in a method definition are different. 
�9 Every method name that is used in a method call, conditional answer ex- 

pression, or answer statement within a certain class definition is bound to a 
method definition in that class definition. 

Any POOL program that is a translation of a valid POOL-T [Ame87] or 
POOL2 [Ame89b] program will automatically satisfy these conditions. POOL- 
T and POOL2 are even more restrictive. For example, they require that the 
type of every expression conforms with its use and they forbid assignments to 
formal parameters. However, the conditions above are sufficient to ensure that 
the program will have a well-defined semantics. 

3.3. Semantics of POOL Expressions and Statements 

Before the domain of  statement (and expression) processes for POOL can be 
defined, we first need to introduce a few more sets. We define the set AObj of 



A Layered Semantics for a Parallel Object-Oriented Language 391 

active object names by AObj = N*. That is, we use finite sequences of integers to 
name objects. The intention is that the empty sequence () denotes the root object, 
and for any active object name ~ and integer n, the object name c~- (n) denotes 
the nth object created by the object ~. 

The set AObj of active object names and the set SObj of  standard objects 
together form the set (~,/~,7 E)Obj of object names: Obj = AObj U SObj. Now 
we define the set (a E)Z of states by 

X = (IVar --~ Obj) x (TVar ~ Obj). 

Every state r consists of two components that register, for a particular object, 
the values of the instance variables and the values of the temporary variables. 
For readability we also introduce the following sets: 

New = CName 
NewName = AObj 
Result = Obj 
Send = Obj x MName x Obj* 

(For any set A, we denote by A* the set of finite sequences of elements of A.) 
Now we can define the domain (p E)SProc of statement processes to be the 

unique fixed point of the following domain equation: 

SProc ~- {P0} u (E x SProc) 
U (New x (NewName --~ SProc)) 
U (Send x (Result --~ SProc)) 

U (MName ~ (Obj* ~ SProc)) 
fin 

U (MName --~ (Obj* ~ SProc)) x SProc 
U (Result x SProc) 

fin 
(With A ~ B we denote the set of finite partial maps from A to B.) 

We see that a statement process can have one of seven possible forms: 

1. The terminated process P0. 
2. An internal computation step [r The first component indicates the new 

state immediately after this step and the second component is the resumption, 
which describes everything that will happen after the first step. 

3. A creation step [C,f]. This describes the creation of an object of class C. The 
creation itself is done by a mechanism outside the object. The resumption of 
this step is given by f(fi), where fl is the name of the new object. 

4. A send step [(fi, m,~),f] .  The first component describes the contents of the 
message that is sent: fi is the destination, m is the method name, and ~ is the 
sequence of argument values. The resumption of this send step is given by 
applying the function f to the result of the message. 

5. An answer step g. This step indicates that the object is ready to answer any 
message that mentions a method name m that is in the (finite) domain of g. 
If the argument values in the message are given by ~, then the resumption of 
this step is g(m)(~). 

6. A conditional answer step [g, p]. This process is similar to the previous one but 
it has an extra component. If a message of the form [fl, m,~] with m E domg 
has arrived, it can be answered, in which case the resumption is g(m)(fl). 
Otherwise, no message is answered and the resumption is just p. 
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7. A result step [7,P]. This step returns ~, as a result of a message that has been 
sent earlier to this object (an external mechanism will deliver this result to the 
sending object). The resumption of this step is given by p. 

Next the semantics of expressions and statements in a class definition d is 
given by means of two meaning functions 

dg~ " Exp  ~ AObj  --> ECon t  ---* Z --* SProc 
Jg~ �9 Star --> AObj  --~ SCont  ~ Z --> SProc 

where 

(h c ) E C o n t  = Obj ---> Z ---> SProc 
(c E)SCont  = E --* SProc 

are the sets of expression continuations and statement  continuations. 
We see that the types of the meaning functions for expressions and for 

statements are very similar. The reason why we cannot use a very simple meaning 
function for expressions such as the one in Section 2.2 is that in POOL an 
expression can have side-effects: the evaluation of  an expression may involve 
creating new objects and sending or answering messages. Therefore the only 
difference between expressions and statements in POOL is that expressions yield 
a value whereas statements do not. This difference is reflected in their respective 
continuations: the continuation of a statement depends only on the state after 
this statement, but the continuation of  an expression also depends on its value. 

If  we compare the types of  these semantic functions to the one in Section 2.2, 
we see that they need one extra argument: the name of the object that executes 
the expression or statement. Since it does not change during the computation, it 
does not belong in the state. In fact, it is only needed to evaluate the expression 
self. 

We define the functions ~/d~ and J{~ by the following clauses: 
Expressions: 

�9 Instance variable: 

-1/{~ [[x~ (~)(h)(o') = [o-, h(o'(1)(x))(o-)] 

We deliver an internal computation step where the state is unchanged and the 
resumption is obtained by feeding the continuation h with the current value 
of the variable x, which can be found in the first component a(1) of the state. 

�9 Temporary variable: 

~ '~  ~ull (c+)(h)(~) = [~, h(G~2> (u))(~)] 

This is similar to an instance variable, but now the value is found in the 
second component a(2). 

�9 Method call: 

~ lira(el . . . .  , en) ]] (c~)(h) 

= ~}~el~(e) ( 
2~i.~//g~ [[e21] (c~) ( . . .  

2fln.2a. [6,-dg~ [[e]](c~)(hl)(b) ] . . .)  ) 

where 
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O" = [0"(1), ()~u.nil).{fli/ui}n=l] 
h' = 27.2a'.h(y)(~' ) 
g '  = 

and m~[{ut, . . . ,  un), e] occurs in the class definition d. 
The first action to be taken here is the evaluation of the first argument 
expression el. The corresponding meaning function dg~ l~elll is provided with 
a continuation that takes the value fil of  et and starts to evaluate the second 
argument expression ea. This continues until all the arguments have been 
evaluated. The last continuation takes the last value fin of en and a state a 
and performs an internal computation step where the state is changed to 
8, having new values for the temporary variables (in implementation terms, 
one could say that a fresh set of temporary variables is pushed onto the 
execution stack). Most of these temporary variables are initialized to nil, 
but the parameters Ul,... ,un of the method m are set to the corresponding 
argument values fll . . . . .  fin. After that (in the resumption of this computation 
step) the expression e in the method definition is evaluated. The meaning 
function JAZ~ [[e]l that does this is fed with a continuation h' that takes the 
value ? of e and the resulting state ~' and feeds these into the original 
continuation h, but o ~ y  after restoring the original values of the temporary 
variables from er(2) in a' (the execution stack is popped). 
It might be instructive for the reader to write out explicitly the cases where 
the number of argument expressions is 0 or 1. 

�9 Send expression: 

~/~ lie!re(el,..., en) ll (a)(h) 
= J/l~ [Jell (~) ( 

2fl.Jr I[el ll (~) (... 

~en.~.Cr.[ (fl, m, <fiX . . . . .  fin) ), 2y.h(y)(a) ] ...) ) 

This is similar to a method call, except that after evaluating the destination 
expression e and the argument expressions et . . . .  , e,, a send step is performed. 
The first component of this send step contains the destination object fl, 
the method name m, and the argument values f ib . . . , f l , .  The resumption is 
obtained by applying the continuation h to the result value ? of the message 
and the state cr just before the send step. 

�9 Conditional answer expression: 

d/~ [[condans{ml . . . .  , m,}ll (oO(h)(~) = [g, h(f)(a)] 

g(m)((fll . . . . .  ilk)) --- if m E {ml . . . . .  m,} 
undefined otherwise 

= [~r(l), (d,u.nil){fii/ui}L1] 
~) = [0-{0,0"(2)1 

and m~[{u, .... ,uk), e] occurs in the class definition d. 
Here a conditional answer step is performed. The second component reflects 
the fact that such a step can be taken if no suitable messages are present, 

where 
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in which case the value of the conditional answer expression is f (false). The 
first component is a function g that is only defined on the method names 
ml . . . .  , m, mentioned in the conditional answer expression. When applied to 
such a method name m and a sequence (/71,...,]3k) of argument values, it 
delivers a process, which starts with an internal step. In this first step a 
new set of temporary variables is prepared (cf. b) and in the resumption the 
expression e from the method definition is evaluated. The meaning function 
~/d~ [[ell that describes this is given a continuation that begins with a result 
step, in which the value 7 of  e is returned as a result to the sender of  the 
method. The resumption is obtained by applying the continuation h to the 
value t of the conditional answer expression and the state ~ in which the 
temporary variables have been restored to their original values. 

�9 New-expression: 

,///l~ [[new(C)]] (c 0 (h)(o) = [C, 213.h(]3)((7)] 
The meaning of a new-expression is represented by a creation step, which 
consists of the class name C of the object to be created and a resumption that 
depends on the name ]3 of the resulting object. 

�9 Identity test: 

Jr lie1 - e2ll(cO(h) 

= Jr [[ell l(e)( ,~fll .~ ~-e2] (00 (Z]32.if ]31 = f12 then h(t)else h ( f ) ) )  

Here the expressions el and e2 are evaluated (in that order) and if they result 
in identical object names, t is returned; otherwise f is returned. 

�9 Statement before expression: 

[[ s ; ell(cO(h) = Jtl as [f s ll ( e ) ( J r  ~: [[e ~ ( e ) ( h ) ") \ -  / 

�9 The expression self: 

~#~ [self]](e)(h) = h(c 0 

�9 Standard object: 

~ [[~bll (cO (h ) = h(qg) 

Statements: 

�9 Assignment to instance variable: 

where a' = [(7(1 ) { f i / x } ,  0(2)]. 
The last action to be taken in an assignment statement is an internal step 
in which the state is modified: The variable x is given the value ]3, which is 
the result of the expression e. The resumption is the result of applying the 
continuation c to the new state o'. 

�9 Assignment to temporary variable: 

where o-" = [o-o), a(2) {]3/U}]. 
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�9 Answer statement: 

Jg~ [[answer{m1 . . . . .  m.}]l (e)(c)(~) = g 

where 

{ [&, J/{ [[e~ (~) ().7.2a'. [7, c(~'r)]) (o)] 
g(m)((fll,...,ilk)) = if m e {ml ..... tnn} 

undefined otherwise 

a = [o-(t), (2u.nil){fii/ui}~=l] 
= [%), a(2)] 

and m~[(ul . . . .  , uk), e] occurs in the class definition d. 
Here an answer step is performed. It is described by a function g that is 
defined only on the method names ml . . . . .  mn that are mentioned in the answer 
statement. When given such a method name and a sequence of argument 
values, the function yields a process that first changes the state, thereby 
introducing a new set of temporary variables, evaluates the expression e in the 
method definition, and finally performs a result step, in which the value ? of 
the expression e is returned and the resumption consists of the continuation c 
applied to the state a", in which the original values of the temporary variables 
have been restored. 

�9 Expression as statement: 

./ga s [[e~ (u)(c) = J /~  [[el] (c0 (2fl.c) 

Here we fill in a continuation 2fl.c that simply ignores the value fi of the 
expression. 

�9 Sequential composition: 

�9 Conditional statement: 

J//~ [[if e then sl else S 2 fi]] (~)(c) 

= e = t then (=) (c) else 

�9 While loop: 

,/gas [[while e do s od]](~) (c) 
= J t ~  I[ell (a) (2p.2~. 

[ a, if = t 

then J [{  [[s]] (a) ( , / ~  [[wh il e e dos  od]] (~)(c)) (o-) 

else c(o-)] ) 

As in Section 2.2, induction on the syntactic complexity of expressions and 
statements is not enough to justify the above definition of ~/g~ and dgas . This time 
the while statement is not the only offending case: in the clauses for method calls, 
conditional answer expressions, and answer statements an expression is evaluated 
that comes from a method definition and therefore need not be smaller than the 
original statement/expression. Again we can define a higher-order contracting 
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function q) in such a way that the pair [Jd~, JH d] is its unique fixed point. Note 
that the 'extra' internal computation steps that have been introduced precisely in 
the four above-mentioned cases are necessary to make sure that this function 
is indeed contracting. One could also consider these internal steps as representing 
the overhead of the corresponding language construct. 

3.4. Semantics of POOL Objects 

The domain (q E)OProc of object processes is defined analogously to that of 
statement processes except for the fact that object processes do not contain 
internal computation steps. It is given by 

OProc ~- {q0} U (New x (NewName ~ OProc)) 
U (Send x (Result --* OProc)) 

U (MName ~-~ (Obj* ~ OProc)) 

u (MName fi-~ (Obj* --* OProc)) • OProc 
u (Result x OProc) 

The semantics of an object is obtained by applying an abstraction operator 
abstr : SProc ~ OProc to the semantics of the body of this object. This operator 
abstr is characterized by the following equations: 

abstr (Po) = 
abstr ([o-, p]) = 
abstr([C, f]) = 
abstr ([(fi, m,/~),/1) = 
abstr (g) = 
abstr ([g, p]) = 
abstr ([7, P]) = 
abstr ([o'1, [0-2, [o-3," "]]1) = 

(The last clause is needed because 

qo 
abstr(p) 
[C, 2fl.abstr (f (fl))] 
[(fl, m, [?), ~ .abs tr  (f (7))] 
2m.2fl.abstr (g (m) 0))) 
[Am.2fi.abstr (g (m)@)), abstr (p)] 
[7, abstr (p)] 
q0 

the previous clauses do not define the value 
of abstr for infinite sequences of internal steps.) As in Section 2.3, a unique 
(non-continuous) operator satisfying these equations can be obtained as the fixed 
point of a higher-order contraction. 

Now we can define the semantics of objects, or rather of class definitions, by 
giving a meaning function ~ o  : ClassDef --* AObj ---, OProc. This function J///o 
is defined by 

: ( ) 
where 

d = [ ( . . . ) , s ]  
co = 2o-.p0 
o-o =- [2x.nil, 2u.nil] 

3.5. Semantics of POOL Programs 

So far we have only described the behaviour of objects in isolation. Next we want 
to see how several objects in parallel behave and interact. The object processes 
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that describe the individual objects do not describe how to select a message to 
be answered, how to return a result to the sender, or how to create a new object. 
Therefore, a mechanism is needed that takes care of this. Such a mechanism is 
implemented by the operator c0 defined below, which translates an object process 
into a global process. Such a global process can describe one or more objects 
running in parallel. 

First we introduce the domain (r E)GProc of global processes, determined by 
the following domain equation: 

GProc = 
(n E) GStep = 

u 
u 
u 
u 

{r0} U No1 (GStep) 
Send x Obj x GProc 
Obj x (Result ~ GProc) 
m N a m e  x Obj x (Obj --* Obj* ~ GProc) 
Obj x Result x Obj x GProc 
Comm + x GProc 

where 

(c E)Comm + = Comm U{*} 
Comm = Obj x M N a m e  + x Obj* x Obj 

M N a m e  + = m N a m e U { * }  

Again the terminated process is indicated by r0. Otherwise a global process r is a 
set of possible steps, among which a choice is made nondeterministically during 
execution (we see here that an object in itself is deterministic, but a collection of 
objects running in parallel is not). The reason that in this domain equation we 
use the constructor ~ct (delivering a power set consisting of all the closed subsets 
of its argument set) instead of Nco (using only compact subsets) is that below we 
want to define a process that describes the behaviour of all the standard objects. 
In turns out to be impossible to describe an infinite number of integers with a 
compact process. 

The steps resemble the various possibilities that we had for statement and 
object processes but there are important differences. One of these is the fact that 
a global step always contains the names of all objects involved. This is necessary 
because a global process can describe more than one object. Let us review all the 
possibilities: 

1. A send step [(fl, m, fl), ~, r] indicates that the object ~ sends a message to the 
object fl, mentioning the method name m and the sequence fl of argument 
values. After that, execution continues with the resumption r. Note that this 
step does not describe directly what should happen when the result of the 
message arrives. This is done by a separate receive step: 

2. A receive step [fi,f] indicates that the object fi is waiting for the result of a 
message. When this result, let us call it 7, arrives, the object fl will continue 
by executing the process f(7). The reason for separating the send and receive 
steps here is that a global process, unlike an object process, can in general 
perform an arbitrary number of actions between sending of a message and 
receiving the result, because it can describe a collection of objects running in 
parallel. 

3. An answer step [m, a, g] indicates that the object c~ is willing to answer a mes- 
sage mentioning the method name m. If this step is performed, the function g 
is applied to the name of the sender object and to the sequence of arguments 
to yield the resumption process. Since a global process can consist of more 
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than one step, we can describe an answer s ta tement  by a set o f  several o f  
these answer  steps, so that  the individual answer steps are simpler than the 
ones in s ta tement  and object processes. 

4. A result step [fl, y, e, r] indicates that  the object c~ wants  to return the value 7 
to the object fi as a result o f  a message that  fi might  have sent to e before. 
The process r is the resumpt ion  o f  this step. 

5. A completed step [c, r] indicates a step that  the process can take without  
communica t ion  with other  processes. I t  may  either indicate an internal step 
within one o f  the objects described by the global process, in which case c 
s imply has the value *. Alternatively, such a step can indicate a complete  
communica t ion  that  takes place between two objects both  described by the 
present  global process. A communica t ion  c o f  the form [fl, m, fl, c~] indicates 
that  object c~ sends a message to object fl, requesting execution o f  me thod  m 
with a rguments  ft. A communica t ion  of  the form [c~, *, fl, fl] indicates that  
fl returns fl to e as the result o f  a message (in this case fl is always a 
singleton (7})- In all cases, r is the resumpt ion  o f  this step. 

The opera to r  It: GProc x GProc ~ GProc for parallel composi t ion  is defined 
as follows: 

r tlr0 = r0 l i t  = r 
r l [ I  r2 = {g L r 2  : g  e r l } k J { 7 c  ~ r l  :7~ e r 2 }  

(2 [_J{;r I 7c2 : rCl e r1,7~2 ~ re or  7tl E r2,rc2 e r l}  
[(/L m, ~),  c~, rl] L r2 = [(/~, m, a), ~, rl II r2] 

[fl, f ]  Lt"  = [fi,27.f(7) ]l r] 
[m,e,g]  [l__r = [m,c~,,~/~.,~.g(/~)(fi) rt r] 

[fi, y ,~,r l ]  L r 2  = [fl, 7 ,~,r l  Ilr2] 
[c, rl] k r 2  = [c, rl II r2] 

rql rc2 = {[(fl, m, fl, e) , r l  I1 g(~)@)] : 
re1 = {(fl, m, fl), o:, rl], rr2 = [m, fi, g]} 

u {[(B,*,(~),cO, r,  IIf(~)] : 
gl  =- [fl, y,0e, r i ] , g2  ~- [fi, f ]}  

(Here rl and r2 are supposed to be unequal  to r0.) 
Now for each p rog ram P we introduce a t ranslat ion opera tor  

o f f  : OProc -+ Obj ~ Re tS tack  -*  CrCount  -+ GProc,  

where 

(p ~ )Re tS tack  = Obj* 
(n E)CrCoun t  = N 

The opera to r  co e translates an object process q to a global process r when given 
the name  c~ of  the object that  executes the object process, a return stack p, and a 
creation counter  n. Here  the return stack remembers  the names  of  the objects that  
are wait ing for a result to be returned by the current  object (note that  answer 
s ta tements  can occur in methods,  so that  nested rendezvous are possible). The 
creation counter  r emembers  how m a n y  objects have already been created by the 
current  object, so that  the next one can be given a unique name. In general, when 
the p rog ram P is clear, we shall just  write co for co P. Our  opera to r  ~o is then 
defined by the following clauses: 
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�9 Terminated process: 

co(qo)(c~)(p)(n) = ro 

�9 Creation step" 

co([C, f l ) ( ~ ) ( p ) ( n )  
= {[*,co(f(/~))(~)(p)(n + 1) 11 co(~lo[[dl](/~))(/~)(())(0)]} 

where/~ = ~.. (n) and C ~ d  occurs in the program P. 
An object of class C is to be created, so we construct a new name/~ for it, 
look up the corresponding class definition d in the program, and thus we get 
an object process Jgo [[d]] (/~) representing its execution. After translating this 
into a global process, using an empty return stack and a creation counter 
of zero, it is put in parallel with the resumption f(/?) of its creator, again 
translated into a global process, incrementing the creation counter. 

�9 Send step: 

co([(/?, m, [?),f])(cx)(p)(n) = { [(/~, m, ~), c~, r]} 

where 

r = { % ,~.co (f (~))(~)(p)(n)] }. 

The resumption r of the resulting send step consists of a receive step that 
is obtained by applying the function f to the result 7 of the message and 
translating the resulting object process again into a global process. 

�9 Answer step: 

o(g)(~)(p)(n) 
= {Ira, ~, 2 f i . 2~ . co (g (m) (~ ) ) (~ ) (p .  (/?))(n)] "m c dom (g)}. 

An answer step in an object process is translated into a set of answer steps in 
the global process, one  for each method that can be answered (m ~ dora (g)). 
For each answer step in the set, the resumption is obtained by applying the 
original resumption g to the method name m and the argument list /~ and 
translating the resulting object process into a global process, using a return 
stack to which the sender/3 of the message is appended. 

�9 Conditional answer step: 

co ([g, ql) (~) (P) (n) 
= {[m,a ,213 .2~.co(g(m)([3) ) (e ) (p ' { f i } ) (n)]  " m  E dora(g)} 

u { [*, co (q)(~) (p) (n)] }. 

Also in this case a set of answer steps is generated, but here there is an 
additional completed step, which can be taken even if no message is present. 

�9 Result step: 

co(J7, q])(~)(p)(n)  = {[/~, 7, c~, co(q)(~)(p')(n)] �9 p = p' . (/~)}. 

The result 7 is sent to the destination /3, which is taken from the return 
stack p; the resumption is translated using the shorter return stack p'. 

As in Section 2.4, the outside world is represented by objects, but here we 
need only one object, since we can distinguish between input and output by 
using different method names. So let world  be a special element in A O b j  and 
let input, output c M N a m e .  Now we define a function qworld : S O b j  ~176 ~ O P r o c  
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that  gives us for any (finite or infinite) sequence w o f  input  values (which are 
s tandard  objects) a process qwortd (W), which always starts with an answer step, so 

fin 
that  qwortd (W) E MName ---* (Obj* --+ OProe): 

qworld(())(m) = { 

qworld (~" W) (m) = { 

2[?.[world, qworld (())] if  m = output  
undefined otherwise 

2~.[d?, qworta (w)] if m = input 
2/).[world,qworld(~" W)] if  m = output  
undefined otherwise 

(This function qworld can again be obtained as the unique fixed point  o f  a suitable 
higher-order  operator.)  For  a non-empty  w, the process qworld(w) is willing to 
answer either an input message, in which case it returns the first element of  w and 
continues with the rest o f  the elements, or an output  message, to which it replies 
with the name  o f  the world process itself and continues with w unchanged.  In 
bo th  cases the actual  a rgument  values of  the messages are ignored, but  we shall 
see later how the output  values are recovered. 

We shall also define processes that  deal with messages sent to s tandard  objects. 
Messages sent to nil are never  answered, so we do not  need any process for this. 
The Boolean t can be model led by an object process qt defined by 

f i ? l  
qt = gt " MName --~ (Obj* --~ OProc) I [t, qt] if~=(t) 
g t ( a n d )  ----- 2/~. [f, qt] i f / )  = (f) 

q0 otherwise 

gt(or) = 2/3. [t, qt] i f / )  = (t) o r / )  = (f) 
q0 otherwise 

gt(not) = 2/L [f, qt] i f / ) = ( )  
q0 otherwise 

gt is undefined if m ~ {and, or, not} 

An object process qf modell ing the Boolean f can be defined analogously.  Now 
the global process rBool modell ing all Booleans is given by 

r B o o l  = co(qt)(t)(())(O) I] co(qf)(f)(())(O). 

In modell ing the integers we run into a complicat ion:  It  is not  difficult to 
define for each integer k an object process qk that  models  k's behaviour ,  but  
compos ing  this infinite number  of  processes in parallel is difficult, since 

lim co(q_n)(-n)(())(O) I t ' "  I] e)(qn)(n)(())(O) 
~1----~ O0 

does not  exist. To overcome this problem, we define 'by hand '  a process rln t that  
per forms  exactly the steps tha t  we would expect intuitively f rom the above limit: 

rln t = {[m,n, gm,n] "n E Z A r n  = add, . . .}  

where 

gadd,n(c0(~) = {[~, n + k, n, rlnt] " k E Z A ~ = (k)}. 

The process rln t consists o f  an infinite n u m b e r  of  answer steps, one for each 
integer n and for each method  name m applicable for integers (here we have 
written only the me thod  add). The resumpt ion  gm,~ of  such a step, when applied 
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to a sending object e and an argument list fi, yields a process that immediately 
does a result step, where the resulting value (n + k in the case of  the method add) 
is returned to the sender e. Note that no step is generated if the method is called 
with an erroneous argument list; in this case the process becomes blocked. (As a 
mathematical  detail, note that rln t is certainly a closed set, because all its elements 
have a fixed minimum distance to each other. But since this set is infinite, it is 
certainly not compact.) 

Now we can give the semantics of  programs by the function ~lG : Prog 
SObj ~ --~ GProc, defined by 

~r 
= o~P(d/do[[d,~(cO)(())(O) I[ cO(qwortd)(world)(())(O)II rlBoo[ II rlnt 

where 

P = ( C l ~ d l , . . . , C n ~ d n )  

Finally we define the operators needed to extract the observable behaviour 

from a global process. The operator path " GProc ~ N ( ( C o m m  + x GProc) ~ 
/ 

extracts all the possible computat ion paths out of  a process: 

= { ([cl,rl], . . . ,[c, ,r,]) �9 path(r) 

[cl, rl] E r A Yl _< i < n [ci+t, ri+l] E ri 

A(rn =ro V r n N C o m m  + x GProc =O) } 
J 

u ~([cl,r~] . . . .  }" 
[cb rl] E r A Vi > 1 [ci+l, ri+l] C ri } 

Next we have the operator output �9 GProc --~ ~(SObj  ~176 defined by 

output (r) = { ~U(cl)- ~U(c2) . . . . .  ([ci, ri])i E path (r) } 

where 

(v) if c = [c~, output, (v),world] and v E SObj 
~(c )  = () otherwise 

At last we can define the observable behaviour of  a program by the function 
obs " Prog ~ SObj ~176 ~ N(SObj~176 which returns the set of  all possible sequences 
of  output values for a given sequence of input values: 

obs [[P ]] (w) = output (d/d G ][P ]] (w)). 

4. Conclus ions  

In the preceding sections we have given a layered denotational semantics for the 
languages Toy and POOL, where 'layered' means that the semantics is defined 
at three different levels: for statements, objects, and programs. For each of these 
levels we have defined a specialized domain of processes and we have defined 
operators that translate between these domains. In both languages we allow 
programs to interact with the outside world by communicating with special 
objects. In this way we can define the overall observable behaviour of  a program 
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by specifying the set of possible sequences of output values for a given sequence 
of input values. However, the most important contribution of this work is that it 
provides an explicit model of the behaviour of a single object in isolation. 

There are several questions still to be answered. It might be interesting to 
see whether this new semantics for POOL can in some sense be related to the 
operational and denotational semantics developed previously [ABK86, ABK89]. 
Despite the fact that these operational and denotational semantics use completely 
different formalisms, they have been proved to be equivalent to each other. 
Although this proof is quite complex [Rutg0], their precise relationship can be 
described relatively easily by an operator that extracts all possible paths from a 
tree-like structure (very much like our operator path in Sections 2.4 and 3.5). This 
is only possible because the two semantics can be fine-tuned to each other, so 
that the operational semantics performs a step precisely when the denotational 
does so. With the present layered semantics such fine-tuning is clearly impossible, 
particularly because the abstraction operator that translates statement processes 
into object processes deletes all the internal computation steps. Establishing a 
precise relationship between the layered semantics and the older two is therefore 
a challenge that calls for the development of new semantic techniques. 

Another open question is the issue of full abstractness. At the level of programs 
we have defined a clear notion of observable behaviour by the operator obs, which 
can serve as a gauge for defining the notion of full abstractness. Note that this 
notion itself now makes sense for the semantics at the statement level Mrs as 
well as at the object level ~go (at the program level the semantics given by obs 
is trivially fully abstract; the semantics Jga is certainly not fully abstract and it 
was not intended to be). Intuitively, we have the impression that our semantics 
for Toy might well be fully abstract at the statement level and at the object 
level. Proving this, however, is another matter. For the statement level semantics 
of POOL, the question is completely open, but the object level is certainly not 
fully abstract: It is possible that the object creates another object that remains 
completely invisible to the rest of the system, but nevertheless a creation step will 
appear in its semantics. At this moment it is not at all clear how this problem 
could be solved. For our investigation on full abstractness we propose to tackle 
the issue for the Toy language first and then to concentrate on POOL again. 
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Appendix A. Mathematical Preliminaries 

As mathemat ica l  domains  for our  semantics we use complete metric spaces 
satisfying a so-called reflexive domain equation of the following form: 

P ~ F(P)  

(The symbol  ~ is defined below; it says that there is a hijection from P to F(P) 
that  respects the metric defined on the spaces.) Here F(P) is an expression buil t  
from P and  a n u m b e r  of s tandard  construct ions on metric spaces (also to be 
formally in t roduced shortly). A few examples are 

P ----- A U ( B x P )  (A.1) 

P -~ A U ~ c o ( B  x P) (A.2) 

P ~ A U  (B -+ P) (A.3) 
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where A and B are given fixed complete metric spaces. De Bakker and Zucker have 
first described how to solve these equations in a metric setting [BaZ82]. Roughly, 
their approach amounts to the following: In order to solve P ~- F(P) they define 
a sequence of complete metric spaces (P,)n by: P0 = A and Pn+l = F(P,), for 
n > 0, such that P0 -~ P1 --- " ". Then they take the metric completion of the union 
of these spaces Pn, say/5, and show: P ~- F(P). In this way they are able to solve 
equations (A.1), (A.2) and (A.3) above. 

There is one type of equation for which this approach does not work, namely, 

P ~ A U ( P  l_~G(p)) (A.4) 

in which P occurs at the left side of a function space arrow, and G(P) is an 
expression possibly containing P. This is due to the fact that it is not always the 
case that Pn ~- F(P~). 

In [AmR89] the above approach is generalized in order to overcome this 
problem. The family of complete metric spaces is made into a category cg by 
providing some additional structure. (For an extensive introduction to category 
theory we refer the reader to [MLa71].) Then the expression F is interpreted as a 
functor F : cg ~ cg which is (in a sense) contracting. It is proved that a generalized 
version of Banach's theorem (see below) holds, i.e., that contracting functors have 
a fixed point (up to isometry). Such a fixed point, satisfying P ~ F(P), is a 
solution of the domain equation. 

We shall now give a quick overview of  these results, omitting many details 
and all proofs. For a full treatment we refer the reader to [AmR89]. We start by 
listing the basic definitions and facts of metric topology that we shall need. 

We assume the following notions to be known (the reader might consult 
[Dug66] or [Eng89]): metric space, ultra-metric space, complete (ultra-)metric 
space, continuous function, closed set, compact set. In our definition the distance 
between two elements of a metric space is always between 0 and 1, inclusive. 

An arbitrary set A can be supplied with a metric dA, called the discrete metric, 
defined by 

dA(x,y) = { O1 if  x ~ X = Y 

Now (A, dA) is a metric space (it is even an ultra-metric space). 
Let (Mb dl) and (M2, d2) be two complete metric spaces. A function f : M1 --~ 

M2 is called non-expansive if for all x, y E M1 

d2 (f(x), f(y)) <_ dl (x, y) 

The set of all non-expansive functions from M1 to M2 is denoted by Ms ~ M2. 
A function f : M1 --* M2 is called contracting (or a contraction) if there exists an 
e < 1 such that for all x, y E M1 

d2(f(x), f(y)) <_ e. dl (x, y) 

(Non-expansive functions and contractions are always continuous.) 
The following fact is known as Banach's theorem: Let (M, d) be a complete 

metric space and f : M ~ M a contraction. Then f has a unique fixed point, 
that is, there exists a unique x 6 M such that f (x)  -- x. This x can be obtained 
by taking the limit of f"(xo) for any arbitrary xo 6 M (where fO(y) = y and 
f ,+l(y) = f(f ,(y))) .  
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We call M1 and M2 isometric (notation: M1 ~ M2) if there exists a bijective 
mapping f �9 M1 ~ M2 such that for all x, y E Ma 

&if(x) ,  f (y)) = dl (x, y) 

Definition A.1 
Let (M, d), (M1, dl ) , . . . ,  (M,, d~) be metric spaces. 

1. We define a metric de on the set M1 ~ M2 of all functions from M1 to M2 as 
follows: For every f l ,  f2 E M1 ~ M2 we put 

dF(f l,f2) = sup {d2(f l(x),f2(x))} 
xEM1 

This supremum always exists since the values taken by our metrics are always 

between 0 and 1. The set M1 ~ M2 is a subset of M1 ~ M2, and a metric on 

M1 ~ M2 can be obtained by taking the restriction of the corresponding dr. 
2. With M1 �9 "'" @ M, we denote the disjoint union of M1,. . . ,  M~, which can be 

defined as {1} x ml  U . . .  U {n} x m, .  We define a metric d~: on M1 @""  @ m~ 
as follows: For every x, y c M1 @ �9 �9 �9 0 M~, 

dj(x,y) i fx ,  y c { j }  x M j ,  l < j < _ n  
d~ (x, y) = 1 otherwise 

I f  no confusion is possible we often write U rather than @. 
3. We define a metric dp on the Cartesian product M1 x . .  - x M~ by the following 

clause: For every (Xl . . . . .  x~), (Yl . . . .  , y~) ~ M1 x . . .  x M~, 

dp ( ( X I , . . . ,  Xn), (Yl . . . . .  Yn) ) = max { di(xi, Yi) ) 

4. Let Nd(M) = { X ' X  ~_ M A X  is closed}. We can define a metric dH on 
N~l (M), called the Hausdorff distance, as follows: For every X, Y 6 r (M), 

dn(X, Y) = max{sup{d(x, Y)), sup{d(y, X)}} 
xcX yEY 

where d(x ,Z)  = infzcz{d(x,z)} for every Z ~ M, x c M. (We use the 
convention that sup 0 = 0 and inf 0 = 1.) The spaces ~co (M) = { X " X ~_ M A 
X is compact)  and ~,c  (M) = { X : X ~ M A X is non-empty and compact)  
are supplied with a metric by taking the restriction of dR. 

5. For any real number e with 0 < e _< 1 we define 

iG((M, d)) = (M, d') 

where d'(x,y) = e 'd (x ,y ) ,  for every x and y in M. 

Proposition A.2 
Let (M,d), (Ml,dl) . . . . .  (M~,d~), dF, du, dp and du be as in Definition A.I and 
suppose that (M, d), (M1, dl ) , . . . ,  (M~, dn) are complete. Then 

(ml ~ m2, dr) (ml 1_~ M2, de) (a) 

(M1 � 9  0 M.,  du) (b) 

(M1 x . . .  x M~, de) (c) 

(Nct(M),di4) (~co(M),d~) (~,~(M),dH) (d) 

id~ ((M, d)) (e) 
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are complete metric spaces. If (M,d)  and (Mi, di) are all ultra-metric spaces, 
then so are these composed spaces. (Strictly speaking, for the completeness of 

M1 --* M2 and M~ ~ M2 we do not need the completeness of  M1. The same 
holds for the ultra-metric property.) 

Whenever in the sequel we write M1 -~ M2, M1 ~ M2, MI @" " .O M, ,  M1 x . . . x M~, 
~cl(M),  ~@co (M), ~nc(M), or idc(M), we mean the metric space with the metric 
defined above. 

The proofs of Proposition A.2(a), (b), (c), and (e) are straightforward. Part (d) 
is more complex. It can be proved with the help of the following characterization 
of the completeness of (~cl (M), dH). 

Proposition A.3 
Let (~cI(M),dH) be as in Definition A.1. Let (Xi)  i be a Cauchy sequence in 
~cl (M). We have 

lim Xi = { lira xi " xi ~ Xi, (xi)i a Cauchy sequence in M } 
i~+oO i--~oO 

Proofs of Propositions A.2(d) and A.3 can be found in, forinstance, [Dug66] and 
[Eng89]. The proofs are also repeated in [BaZ82]. The completeness of ~co (M) 
is proved in [Mic51]. 

We proceed by introducing a category of complete metric spaces and some 
basic definitions, after which a categorical fixed point theorem will be formulated. 

Definition A.4 
Let c~ denote the category that has complete metric spaces for its objects. The 
arrows t in cg are defined as follows: Let M1, M2 be complete metric spaces. Then 

i M2, satisfying the following properties: Ma -4' M2 denotes a pair of maps M~ ~ j  

1. i is an isometric embedding, 

2. j is non-expansive, 

3. j o i = i d M 1 .  

(We sometimes write [i, j] for z.) Composition of the arrows is defined in the 
obvious way. 

We can consider M~ as an approximation to M2: In a sense, the set M2 contains 
more information than MI, because M1 can be isometrically embedded into M2. 
Elements in M2 are approximated by elements in M1. For an element m2 E M2 
its (best) approximation in M1 is given by j(m2). Clause 3. states that M2 is a 
consistent extension of  M1. 

Definition A.5 
For every arrow M~ -4' 5//2 in cg with t = [i,j] we define 

g) (t) = dM2-,M1 (i o j ,  idM2) ( = sup {d~2 (i o j(rn2), m2)}) 
m2CM~ 

This number can be regarded as a measure of the quality with which M2 is 
approximated by M1 : the smaller 6(0, the better M2 is approximated by M1. 

Increasing sequences of  metric spaces are generalized as follows: 

Definition A.6 

1. We call a sequence (Dn, t~)~ of  complete metric spaces and arrows a tower 
whenever we have that Vn E NDn -4~" D,+I E ~. 
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2. The  sequence (Dn, tn), is called a converging tower when the following condit ion 
is also satisfied: 

Ve > 0 ~ N  E N V m  > n > N 60,m) < e 

where Into = trn--1 o �9 "" o In : D n  ~ D i n .  

A special case of  a converging tower is a tower (D,, ~n), satisfying, for some e 
w i t h 0 < e < l ,  

Vn ~ N~(I~+I)  < e '  ~(I~) 

Note  that  

(~(Inm) --< (~(In) - t - ' ' '  -~- O(/m-1) 

< e n ' 6 ( 5 0 ) + - ' ' + e  m-I ~ 0 0 )  
6,n 

-< 1 ------e "{$0o) 

We shall now generalize the technique of  forming the metric completion of  the 
union of  an increasing sequence of  metric  spaces by proving that,  in (d, every 
converging tower has an initial cone. The construct ion of  such an initial cone for 
a given tower is called the direct limit construction.  Before we treat  this direct 
limit construction,  we first give the definition of  a cone and an initial cone. 

Definition A.7 
Let  (Dn, 1.)n be a tower. Let D be a complete  metric space and (Tn)n a sequence 
o f  arrows. We call (D, (?n).) a cone for (D., ~n). whenever  the following condit ion 
holds:  

Vn c N Dn ---~ ~" D E C~ A Tn = T n + l  O ln 

Definition A.8 
A cone (D, (Tn)~) for a tower (Dn, ln)n is called initial whenever  for every other  
cone (D', (?'~)n) for (Dn, zn)n there exists a unique arrow 1 : D ~ D' in T such that :  

Vn EN~~ =7'~ 

Definition A.9 
Let  (Dn, tn)n, with tn = [in, j.], be a converging tower. The direct limit of  (D., t . ) .  
is a cone (D, (?n).), with 7n = [g.,hn], that  is defined as follows: 

D = { (Xn). :Vn>_Oxn C D n A j . ( x n + I )  = x n }  

is equipped with a metric  dD defined by 

dD ((Xn)n, (Yn)n) = sup{do. (xn, y,) } 

for all (Xn)n and (Y,)n c D. The  mapp ing  g,  : Dn --~ D is defined by gn(x) = (xk)k, 
where 

jkn(X) i f k < n  
xk = x if  k = n 

ink(x) i f k > n  

and hn : D --* On is defined by hn((Xk)k) = x, .  

Lemma A.10 
The direct limit of  a converging tower (as defined in Definit ion A.9) is an initial 
cone for that  tower. 
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As a category-theoretic equivalent of  a contracting function on a metric space, 
we have the following notion of a contracting functor on c~. 

Definition A.11 
We call a functor F : c~ _~ ~ contracting whenever the following holds: There 
exists an e, with 0 _< e < 1, such that, for all D --+~ E E cg, 

6(F(z)) <_ e.  6(0 

A contracting function on a complete metric space is continuous, so it preserves 
Cauchy sequences and their limits. Similarly, a contracting functor preserves 
converging towers and their initial cones: 

Lemma A.12 
Let F : ~ ~ cg be a contracting functor, let (Dn, z~), be a converging tower with 
an initial cone (D, (7,)~). Then (F(Dn), F(t,))n is again a converging tower with 
(F(D), (F(Tn))n) as an initial cone. 

Theorem A.13 
Let F be a contracting functor F : cg ~ c~ and let Do ~ o  F(Do) ~ c~. Let the 
tower (D,, z,)n be defined by D,+I = F(D,) and t,+a = F(t,) for all n _> 0. This 
tower is converging, so it has a direct limit (D, (Tn),)- We have D ~ F(D). 

In [AmR89] it is shown that contracting functors that are moreover contracting 
on all horn-sets (the sets of  arrows in cg between any two given complete metric 
spaces) have unique fixed points (up to isometry). It is also possible to impose 
certain restrictions upon the category cg such that every contracting functor on 
has a unique fixed point. 

Let us now indicate how this theorem can be used to solve Equations (A.1) 
to (A.4) above. We define 

FI(P) = AUidl/2(B x P) (A.5) 

F2(P) = AU~co(B x idl/2(P)) (A.6) 

F3(P) = A U (B --~ idl/2(P)) (A.7) 

If  the expression G(P) in Equation (A.4) is, for example, equal to P, then we 
define F4 by 

F4(P) = AUidv2(P  t p) (A.8) 

Note that the definitions of these functors specify, for each metric space (P, dp), 
the metric on F(P) implicitly (see Definition A.1). 

Now it is easily verified that F1, F2, F3, and F4 are contracting functors on 
cg. Intuitively, this is a consequence of the fact that in the definitions above each 
occurrence of P is preceded by a factor idl/2. Thus these functors have a fixed 
point, according to Theorem A.13, which is a solution for the corresponding 
equation. (We often omit the factor idl/2 in the reflexive domain equations, 
assuming that the reader will be able to fill in the details.) 

In [AmR89] it is shown that functors like F1 to F4 are also contracting on 
hom-sets, which guarantees that they have unique fixed points (up to isometry). 

The results above hold for complete ultra-metric spaces too, which can be 
easily verified. 
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