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Abstract. The Duration Calculus (abbreviated DC) represents a logical approach 
for formal design of real-time systems, where real numbers are used to model 
time and Boolean valued functions over time are used to model states and events 
of real-time systems. Since its introduction, DC has been applied to many case 
studies and it has been extended in several directions. The aim of this paper is to 
provide a thorough presentation of the logic. 

1. Motivation 

A real-time system is a computing system with real-time requirements. Let us 
consider the following example of a real-time system. 

1.1. An Example 

Gas Burner: This example was first investigated by [SRR90]. A gas burner is 
either heating when the flame is burning or idling when the flame is not burning, 
and it alternates indefinitely between heating and idling. Usually, no gas is flowing 
while it is idling. However, when changing from idling to heating, gas must be 
flowing for a short time before it can be ignited, and when a flame failure appears, 
gas must be flowing before the failure is detected and the gas valve is closed. 
Hence, there may exist a time where gas is flowing and a flame is not burning, i.e. 
gas is leaking. A design of a safe gas burner must ensure that the time intervals 
where gas is leaking do not get too long. 
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Let us assume that the ventilation required for normal combustion would 
prevent dangerous accumulation of  gas, provided that the proportion of leak 
time is not more than one twentieth of  the elapsed time for any time interval 
being at least one minute long - -  otherwise the requirement would be violated 
immediately at the start of a leak. This is a real-time requirement. 

Certain design decisions must be made as to how the real-time requirement is 
to be met. For example, for any period where the requirement is guaranteed, any 
leak should be detectable and stoppable within one second; and to prevent fre- 
quent leaks it is acceptable that after any leak the gas burner rejects switching on 
gas for thirty seconds. The conjunction of  these two decisions implies the original 
requirement, a fact which should be proved before implementation proceeds. [] 

The gas burner is a real-time system and an example of a software embedded 
system, also called a hybrid system. 

Duration Calculus is a logical approach for formal design of real-time systems. 
Real numbers are used to model time, and functions from time to Boolean values 
are used to model the behaviour of  real-time systems. Based on interval logic 
[HMM83, Mos83], DC provides a formal notation to specify properties of real- 
time systems and a calculus to prove those properties formally, such as the 
correctness of  the design decisions for the gas burner. 

1.2. State Models 

The notion state is used to model behaviour of real-time systems. A Boolean state 
model of  a real-time system is a set of Boolean valued functions over time: 

Time ~ {0,1} 

where Time is the set of the real numbers. Each Boolean valued function, also 
called a Boolean state (or simply a state) of the system, is a characteristic function 
of a specific aspect of the system behaviour, and the whole set of Boolean valued 
functions characterizes all the concerned aspects of the behaviour. 

Gas Burner: To verify the design decisions against the requirement, one may 
start with a single Boolean state to model the critical aspect of the system: 

Leak 6 Time ~ {0, 1} 

where Leak(t) = 1 means that gas is leaking at time t, and Leak(t) = 0 means 
that gas is not leaking at t. However, at a later stage of the design one may have 
to specify the phases of burning and idling of  the gas burner, and introduce more 
primitive Boolean states of the system such as Gas and Flame to characterize 
flowing and burning of gas. Then Leak can be pointwise defined as the Boolean 
expression of Gas and Flame: 

Leak(t) ~- Gas(t) A ~Flame(t), for any t c Time 

[] 
Boolean operators (e.g. -~ and A) for states are included in DC, so that a 

composite state of a real-time system can be refined to primitive states of  the 
system. 

We are interested in non-Zeno states, i.e. states changing at most a finite 
number of  times in any finite interval. Therefore, we assume that Boolean states 
are finitely varied: P has at most a finite number of discontinuity points in [b, e] 
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for any Boolean state P and interval [b, e]. It is easy to see that the set of finitely 
varied Boolean states are closed under the Boolean operations, and that any 
Boolean state in the set is integrable in any interval [b, e]. 

We are also interested in stable aspects of systems, e.g. when we observe a 
gas leak at time t, then gas leaks during a left and /or  a right neighborhood of 
t. Therefore, a suitable restriction could be to consider Boolean states which are 
left or right continuous at any time t. 

This set of left or right continuous functions is, however, not closed under the 
Boolean operations, e.g. for 

0 for t < 2  
Gas(t) = 1 for t >~ 2 

0 for t~<2 
Flame(t) = 1 for t > 2  

we have that 

1 for t = 2  
Leak(t) = Gas(t) A -,Flame(t) = 0 for t :p 2 

Thus, Leak(t) is neither left nor right continuous at t --- 2 despite the fact that 
both Gas and Flame are left or right continuous functions. Therefore, we only 
assume here the finite variability of  Boolean states; but we will return to the 
discussion of left or right continuous states in Section 3.2 

1.3. State Durations 

The notion state duration is an essential measurements of the behaviour of real- 
time systems. The duration of a Boolean state over a time interval is the accumu- 
lated time in which the state is present in the interval. Let P c Time ~ {0, 1} be 
a Boolean state and [b, e] an interval, i.e. b, e ~ Time and e/> b. Mathematically, 
the duration of state P over [b, e] equals the integral 

ep 
f b (t)dt. 

Let us use the gas burner example to illustrate the importance of state durations 
in specifications of real-time behaviour. 

Gas Burner: The real-time requirement of the gas burner is that the propor- 
tion of leak time in an interval should not be more than one twentieth of the 
interval length, if the interval is at least one minute long. This requirement can 
be expressed in terms of the duration of Leak: 

(e - b) >/60 see. =~ 20f~Leak( t )dt  <<. (e - b) for any interval [b, e] 

[] 

Since gas leaks due to random flame failures, the duration of a leak must 
be used to extract the accumulated leak time of gas. Therefore, a mathematical 
formulation of this requirement can hardly leave out state durations. Hence, state 
duration is adopted in DC as an essential measurement of the behaviour of 
real-time systems. 
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1.4. State Distances 

The distance between states (or events) is another important measurement of 
the behaviour of real-time systems and was extensively studied before the de- 
velopment of DC, e.g. in Timed Automata [A1D92], Real-Time Logic [JAM86], 
Metric Temporal Logic [Koyg0], Explicit Clock Temporal Logic [HLP90], and 
Interval Temporal Logic [HMM83, Mos85b]. However, state durations are more 
expressive than state distances in the sense that the latter can be expressed in 
terms of the former, but not vice versa. 

One can first express an occurrence of a state using state durations. Let us 
assume that a presence of state P lasts for a period of [c, d] (d > c). It can be 
expressed as the duration of P in [c, d] is equal to the length of [c, d] : 

fdP(t)  = ( d -  c) > O, (abbreviated P[c, d]) 

if we do not care about instant absence of P. In real analysis it is read as: "P 
appears almost everywhere in [c, d]". Thus, real-time constraints on occurrences 
of states can be expressed in terms of state durations. 

Gas Burner: Consider the first design decision concerning the gas burner. Let 
[b, e] be an arbitrary interval where we want to guarantee the requirements of the 
gas burner. The first design decision is that any leak in [b, e] should not last for 
a period longer than one second. It can be expressed as: 

Vc, d : b <~ c ~ d <<. e.(Leak[c,d] ~ ( d - c )  <~ 1 sec.) 

[] 
Similarly, real-time constraints on state distances can be expressed in terms 

of state durations. 

Gas Burner: The second design decision concerning the gas burner is that the 
distance between any two consecutive occurrences of leaks during the interval 
[b, e] must be at least thirty seconds long: 

Vc, d , f , g  : b< .c<~d<~f~g<<.e .  
(Leak[c, d] A NonLeak [d, f] A Leak[f  ,g]) ~ ( f -  d) ~> 30 sec. 

where NonLeak is a state defined from Leak using negation (7): 

NonLeak(t) ~ ~Leak(t), for any t ~ Time 

[] 
Since state durations are more expressive than state distances, DC is more 

expressive than the existing formal approaches to real-time systems. By axiom- 
atizing integrals of Boolean valued functions, DC also exhibits a possibility to 
introduce notions of real analysis into formal techniques for designing software 
embedded real-time systems. Nowadays one can find a notion of integral and/or  
differential in Automata [ACH93, NOS93], StateCharts [MAP93], Temporal Logic 
of Actions [Lam93], and Communicating Sequential Processes [He94]. 

State durations as integrals of Boolean valued functions are functions from 
time intervals to real numbers. It is therefore a natural choice to base DC on 
the interval logics proposed in [Dut95a, HMM83, Ven90], since these logics are 
logics for functions of time intervals. 
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2. Interval Logic 

In this section we give the syntax, semantics, and proof system for Interval Logic 
(IL) based on [Dut95b, Dut95a]. Section 3 shows how DC extends IL. 

2.1. Syntax 

The formulas of IL are constructed from the following sets of symbols: 

GVar: An  infinite set of global variables x , y , z  ..... These variables are called 
global since their meaning is independent of time and time intervals. 

TVar: An  infinite set of temporal variables v, v~,.... The meaning of a temporal 
variable will be a real-valued interval function. 

FSymb: An infinite set of global function symbols f~, gin,.., equipped with arities 
n, m >~ 0. If  f~ has arity n = 0 then f is called a constant. The meaning of a 
global function symbol f",  n > 0, will be an n-ary function on real numbers 
which will be independent of time and time intervals. 

RSymb: An infinite set of global relation symbols G ~, H m equipped with arities 
n, m ~> 0. The meaning of a global relation symbol G ", n > 0, will be an n-ary 
Boolean valued function on real numbers which will be independent of time 
and time intervals. The Boolean constants true and false are the only two 
global relation symbols with arity 0. 

PLetter: An infinite set of temporal propositional letters X,  Y, . . . .  The meaning of 
each temporal propositional letter will be a Boolean valued interval function. 

The set of terms O, Oi E Terms is defined by the following abstract syntax: 

0 ::-- x l ~ l v  I fn(01,...,O~) 

where ~ is a special symbol for an interval function denoting the interval length. 

The set of formulas (o, ~p E Formulas is defined by the following abstract syntax: 

where - is a binary modality for "chopping" an interval into two consecutive 
sub-intervals. We also use q~, (ai, q~i, and ~0i to denote formulas. 

We will use standard notation for constants, e.g. 0,1, true and false, and for 
function and relation symbols of real arithmetic, e.g. + and >/. 

2.2. Semantics 

The meaning of terms and formulas are explained in this section. To do so one 
must define the meaning of global and temporal variables, (global) function and 
relation symbols, and (temporal) propositional letters. 

We are only interested in functions and relations of real arithmetic, so let us 
n assume that a total function f-i E N" ~ N is associated with each n-ary function 

symbol f~, and a total function G~ ~ IR" ~ {tt,ff} is associated with each n-ary 
relation symbol G~. In particular tt and ff are associated with true and false, 
respectively. We assume that +, - . . . .  and =, ~<,... have their standard meaning. 
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The meaning of global variables is given by a value assignment, which is a 
function associating a real number with each global variable: 

V E G V a r  ~ R  

Let Val be the set of all value assignments. 
The meaning of temporal variables and propositional letters, i.e. the "interval 

dependent symbols", is given by an interpretation: 

J E  U ~ t_J 
PLetters Intv ~ {tt,ff} 

linty G { [b, e] I b, e E R and b ~< e}, 
where 

J(v)([b,e]) 6 R and J(X)([b,e]) c {tt,ff} 

associating a real-valued interval function with each temporal variable and a 
Boolean valued interval function with each temporal propositional letter. We will 
use the following abbreviations' 

v j  ~- J (v )  and X j  ~- J ( X )  

The semantics of  a term 0 in an interpretation J is a function 

J[[O]] c Val x ~ntv --~ R 

defined inductively on the structure of terms by" 

J[[x]](V, [b,e]) = V(x) 

ff[[[]] (V, [b, el) = e - b 

if[Iv]](V, [b,e]) = vy([b, el) 

f f~n(01 . . . . .  0n)]l (P,[b,e]) = fn(cl,. . . ,Cn) 

where ci = ffl[Oi~ 02, [b, e]), for 1 ~< i ~< n. 

The semantics of  a formula dp in an interpretation J is a function 

J[[4)] e Val x ~ntv --~ {tt,ff} 

defined inductively on the structure of formulas below, where the following 
abbreviations will be used: 

J,V,[b,e] ~ b  G J[[~b]] (V,[b,e])=tt  
ff,  V,[b,e] ~q~ G J[[~b]] (V , [b , e ] )= f f  
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The definition of  ,7[[4911 is: 

1) 

2) 

3) 

4) 
5) 

6) 

,7,12, [b,e] ~ X iff Xj([b,e]) = tt 

J ,  12, [b, el ~ Gn(O1,..., On) 
iff Gn(J[[011](12, [b, e]) . . . .  , ,7[[0,1](12, [b, e])) = tt 

J,12, [b, e] ~ ~49 iff J,12, [b, e] g=49 

J ,  V, [b, e] ~ 49 V~p iff ,7,12, [b, e] ~ 49 or ,7,12, [b, e] ~ 

,7,12, [b, el ~ 49"-'~ 
iff ,7,12, [b, m] ~ 49 and J ,  12, Ira, e] ~ ~0, for some m 6 [b, e] 

,7,12, [b, e] ~ (3x)49 
{ for some value assignment V } 

iff ,7,12', [b, el ~ 49 which is x-equivalent to 12 

where 12 and 12' are called x-equivalent iff 12(y) = 12'(y) 
for any global variable y which is different from x. 

A formula 49 is valid, written ~ 49, iff ,7,12, [b, e] ~ 49, for any interpretation J ,  
value assignment 12, and interval [b, el. A formula p is satisfiable iff J ,  12, [b, e] ~ ~p 
for some interpretation J ,  value assignment 12, and interval [b, e]. 

2.2.1. Abbreviations and Conventions 

The following abbreviations will be used: 

~49 -~ true~(49~true) reads: "for some sub-interval: 49" 
reads: "for all sub-intervals: 49" 

Furthermore, the standard abbreviations from predicate logic will be used e.g. 

49 A ~p & ~((~49) V ( ~ ) )  
~ = - ~  ~ (~49) V~  
49<=>'~ & (O==>tp) A(~:=>49) 
(Vx)49 ~ -,((3x)~49) 

When 7, (3x), (Vx), rq, and ~ occur in formulas they have higher precedence than 
the binary connectives and the modality _ e.g. (E149) => (((Vx)(=~))--cp) can be 
written as []49 ==> ( ( V x ) ~ ' ~ ) .  

2.3. Proof System 

The proof system (or calculus) of IL we adopt is called S' in [Dut95b]. To 
formulate the axioms and inference rules, we need the standard notion of free 
(global) variables. Moreover, a term (formula) is called flexible if a temporal 
variable, the symbol f or a propositional letter occurs in the term (formula). A 
term or formula which is not flexible is also called rigid. 
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The axioms of  IL  are: 

A0 : f ~ > 0  

((r A ~(~o-~))  ~ ((r  A - -~o )~ )  

A2: ( ( r  ~ ( r  

R " (r =~ r if  q~ is a rigid formula  
( r  ~ ~p if F is a rigid formula  

B �9 ((3x)r ~ (3x)(r  if x is not  free in tp 
(r =~ (3x)(r  if  x is not  free in r 

L1 �9 ((f  = x)~r  =~ ~((~ = x ) - ~ r  
(r = x)) ~ - , ( ~ r  = x)) 

L 2 :  ( x / > 0 A y ~ > 0 ) ~  ( ( f = x + y ) < : ~  ((f  = x)'-'(# = y))) 

L3 : q~ => ( r  = 0)) 

L4 : r =~ ((E = 0)~r  

The inference rules 

M P :  i f r  
G : if~b 
N1 : ifq~ 
N2 : if  r 
M1 : i f r  
M2 : if r 

The inference rules 

of  I L  are: 

and r =~ tp then ~p (modus  ponens)  
then (Vx)r (generalization) 
then ~(-,qS~p) 
then ~0p~--qS) 

~p then (r ~ (tp~'~) 
~p then (q~-~b) ~ (~o'-'~) 

N1 and N2 are called rules of  necessitation, and the inference 
rules M1 and M2 are the m o n o t o n y  rules for chop. The inference rule G is the 
s tandard  general izat ion rule f rom first order  logic. 

The p roo f  system also contains axioms of  first order  predicate  logic with 
equality. Any  axiomat ic  basis can be chosen, and we will use "PL" when we 
refer to predicate logic axioms, theorems,  and inference rules. Special care must ,  
however,  be taken when universally quantified formulas  are instant iated:  

To formulate  an ax iom schema for universal  quantif icat ion we define: A term 
0 is called free for x in r if  x does not  occur freely in r within a scope of  3y or 
Vy, where y is any variable occurring in 0. 

For  example,  y is free for x in (3z)(z > x); whereas y is not  free for x 
in (3y)(y > x). Note  that  (Vx)(3z)(z > x) and (Vx)(~y)(y > x) are bo th  valid. 
Ins tant ia t ion  of  x with y in the first formula  yields (3z)(z > y), which is a 
valid formula.  However,  instant ia t ion of  x with y in the second formula  yields 
(3y)(y > y), which is not  valid. 

A formula  is called chop free if  - does not  occur  in the formula.  
Consider  for example  the following universally quantified and valid formula :  

(Vx)(((f = x)~(# = x)) =~ (E = 2x)). Ins tant ia t ing this formula,  which is not  
chop free, with the te rm f,  which is flexible, yields ((f  = f) ' - ' ( f  = ~)) ~ ( f  = 2~), 
which is not  valid. 
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Therefore, a side-condition occurs in the following axiom schema: 

=:- 49(0) ( i f  either 0 is free for x in 49(x) and 0 is rigid ) Q 
or 0 is free for x in 49(x) and 49(x) is chop free. 

A proof of 49 is a finite sequence of formulas 491"49~, where ~n is 49, and 
each 49~ is either an instance of one of the above axiom schemas or obtained by 
applying one of the above inference rules to previous members of the sequence. 
We write Fit 49 to denote that there exists a proof of  49 in IL and 49 is called a 
theorem of IL. 

The proof system is sound, i.e. if Fil 49 then ~ 49 [Dut95b]. 
A deduction of 49 in IL from a set of formulas F is a sequence of formulas 

49a ""  49,, where 49, is 49, and each 49i is either a member of F, an instance of one 
of the above axiom schemas or obtained by applying one of the above inference 
rules to previous members of the sequence. We write F k~t 49 to denote that there 
exists a deduction of  49 from F in IL, and we write F, 49 Fit ~ for (F U {49}) ]-it 1t). 

IL is an extension of the modal logic $4, e.g. [HuC68], since the following 
three theorems and one deduction can be proven in IL (remember that tn49 is an 
abbreviation for - ~ 4 9  and that <>~p is an abbreviation of true~lp"true)):  

TI D(49 ~ ~p) ~ (D49 ~ m~p) 
T2 D49 =:- 49 
T3 D49 ~ t3m49 
R4 49 Fit rq49 

Proof We only give proof for R4: 

1. 49 
2. --,(~49~true) 
3. --,(true~--,(7(~49~true))) 
4. (~49~true) =>-~(~(~49"-'true)) 
5. (true~49"-'true)) =*- (true--~(~(-~49~true))) 
6. --,(true~-~(~(~49~rue))) ~ -~(true'-'(~49~true)) 
7. ~(true~(-~49~true)) 

assumption 
1.,N1 
2.,N2 
PL 
4.,M2 
5.,PL 
3.,6.,MP 

[] 

The following theorems and deduction will be used later in the proof of the 
deduction theorem: 

T5 n49 ~ ~(--,49---~) 
R6 []49 ~ ~P ~-il m49 =~ t~lp 
T7 D(491 ~ 492) ~ ((49i-'~P) ~ (492~tP)) 

Proof. We prove (~49-~p) ~ -~E349, i.e. (-~49"-'~p) => 

1. W =~ true 
2. (-~49~p) ~ (~49"-'true) 
3. f = 0 =;- true 
4. (f  = 0~(~49-~p)) =~ (true~(--,49"-'lp)) 
5. (true~(~49~lp)) ~ (true~-,49"-'true)) 
6. (( = 0~(~49~))  ~ (true~(~49~true)) 
7. (-~49~) ~ (( = 0~(~49~'~)) 
8. (-~49~p) => (true'-t=49~rue)) 

(true'-'(~49"-'true)), to prove T5: 

PL 
1.,M2 
PL 
3.,M1 
2.,M2 
4., 5., PL 
L4 
7.,6.,PL 
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The proof of R6 is given by: 

1. De ~ ~p assumption 
2. D([]~b =~ tp) 1., R4 
3. E3(c3~b =~ ~p) =~ ( ~ n r  =.. D~p) T1 
4. D n r  =~ n~p 2.,3.,MP 
5. [3r =,. [::]nq~ T3 
6. [:3r :=> I ~  5.,4.,PL 

The proof of T7 is left for the reader. [] 

The deduction theorem for IL is 

Theorem 2.1. (Deduction) If  a deduction, F, r Fil p, involves no application of 
the generalization rule G of which the quantified variable is free in r then 
F ~-~t n r  ~ ~o. 

Proof The proof is by induction on the length n of the deduction F, q5 Fil ~p. 

Base step: n = 1. Then q~ must either be r a member of F, or an axiom. 

Case ~p is r This case is simple since I-it Dq~ ~ r by T2 and thus trivially 
F kil De =~ ~p. 

Case ~p is an axiom or a member of F: In this case the following deduction 
establishes F k i /De  ~ 9 '  

1. lp 
2. ~ ( [ 3 r  PL 
3. n~b =~ ~p 1., 2., MP 

Inductive step: Suppose n > 0. The induction hypothesis is: If  F U {4)} Fil ~0 
by a deduction of length shorter than n which does not contain an application 
of the generalization rule G of which the quantified variable is free in r then 
F ~-it De ~ q~. 

The case where ~0 is either q~, a member of F, or an axiom is as above. Otherwise 
an inference rule is applied in the last step in the deduction: 

Case MP: The deduction from F U {r has the form: 

~Pl 

~p 
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There are deductions of n95 =~ 1/) 1 and n95 ~ OPt =:" tp) from F by the induction 
hypothesis. A deduction of []95 ~ ~p from F can be given as: 

�9 ; deduction of [395 => ~Pt from F 
k. D95 ~ ~pl J 

�9 ; deduction of  c195 => (~Pl => ~P) from F 
1. t395 =~ (~1 =~ ~ )  J 

l + 1. (D95 ~ (~1 ~ ~) )  ~ (([]95 ~ ,~t) ~ ([]95 ~ ~) )  P L  
1+2.  (r395 => ~pl) =~- (D95 ~ ~p) 1,1 + 1,MP 
1+3�9 []95 ~ ~p k.,l + 2 ,MP 

Case G: ~p has the form (Vx)~t, and the deduction from F U {qS} has the form: 

(~/X)I/)I 

Note that x does not occur freely in 95 and hence in D95. Thus, we have from PL: 

~-. (Vx)(n95 ~ ~ t )  ~ (D95 ~ (VX)Wl) 

By the induction hypothesis there is a deduction of D95 ~ Wl from F. A deduction 
of D95 => (Vx)wl from F can be given as: 

�9 ~ deduction of  D95 => V01 from F 
k. D95 ~ ~1 J 

k + 1. (Vx)(Q95 => 1/)1) k, G 
k + 2. (Vx)(C~95 ~ ~1) ~ (D95 ~ (Vx)~l )  P L  
k + 3. o95 ~ (Vx)~pt k + 1.,k + 2., MP 

Case NI :  ~p has the form -~(~pi-'cg), and the deduction from F U {95} has the 
form: 

~Pl 

By the induction hypothesis there is a deduction of ~95 => ~Pl from F. A deduction 
of D95 ~ ~(~pi-'cp) from F can be given as: 

�9 ~ deduction of D95 =~ ~Pl from F 
k. n95 => Wl J 

k + l .  ~95~c3~1 k.,R6 
k + 2. ~p~ ~ -~(~pi-'qg) T5 
k + 3 .  ~95 ~ ~(-~pi-'~o) k + 1.,k + 2.,PL 

Case N2: Similar to N1. 
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Case MI:  W has the form (~i-'~o) => (Wfq)), and the deduction from F U {~b} has 
the form: 

Wl ~W2 

By the induction hypothesis there is a deduction of []~b ~ (Wa ~ W2) from F. A 
deduction of  Dq5 ~ ((Wi-'(P) => (W~'~P)) from F can be given as: 

�9 ; deduction of D o => (Wl ~ W2) from F 
k. nq~ ~ (Wl ~ W2) J 

k + 1. D~b =,. ~(W~ ~ We) k.,R6 
k + 2. D(w~ = w2) = ((w?~0) ~ (w~'~0)) T7 
k + 3. G4 ~ ((wi-~o) ~ (w~'~o)) k + 1.,k + 2. ,PL 

Case M2: Similar to M1. This ends the proof of  the deduction theorem. [] 

Proofs can sometimes be obtained more easily by using the deduction theorem. 
We can, for example, prove 

T8 D(~b = W) = n(u~b = QW) 

from a deduction of n(l~b ~ DW) from {(~b =~ W)} using Theorem 2.1: 

1. ~b= w 

2. D(~b => W) 1, R4 
3. c3~b =,. c3 w 2, T1, MP 
4. D(D~b~DW) 3, R4 

Remark: It can be proved that the proof system of IL [Dut95b] and the proof 
system for the interval logic in [ZhH96a] are complete wrt. value/time domain 
satisfying axioms for totally ordered commutative groups. Real numbers are a 
totally ordered commutative group. Unfortunately, it is impossible to establish a 
first order logic having real numbers as its only model. [] 

3. Durat ion  Calculus  
3.1. Syntax 

In this section we establish DC as an extension of IL in the sense that temporal 
variables v c TVar have a structure: 

fs 
where S 
variables 

S 

We will 
sions as 

is called a state expression and is generated from a set SVar of state 
P, Q, R . . . .  , according to the following abstract syntax: 

::= 01 1 ] P  ] ~$1 I S1VS2 

use the same abbreviations for propositional connectives in state expres- 
introduced for IL formulas. 

Remark: The propositional connectives ~ and V occur both in state expressions 
and in formulas but, as we shall see below, with different semantics. This does 
not give problems as state expressions always occur in the context of f .  [] 
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3.2. Semantics 

When we generate temporal variables from state variables, the semantics of  
temporal variables must be derived from the semantics of the state variables. 
To this end we introduce an interpretation for state variables (and propositional 
letters) as a function: 

2 E  U --~ U 

PLetters Hntv --* {tt,ff} 

where 2 (P)  6 Time ~ {0,1}, 2(X) ~ Intv ~ {tt,ff}, and each function 2(P) has 
at most a finite number of discontinuity points in any interval [b, e], hence Z(P) 
is integrable in any bounded interval. 

The semantics of a state expression S, given an interpretation Z, is a function: 

Z[[S]I ~ Time ~ {0, 1} 

defined inductively on the structure of  state expressions by: 

Z[~011(t) = 0 
Z[[1]l(t) = 1 
Z[[P]](t) = Z(P)(t) 
Z[[(=S)]](t) = 1-Z[[S]](t) 

2[[(S1V S2)]](t ) = { 01 ifZ[[St](t)otherwise = 0 and Z[[S2](t) = 0 

We shall use the abbreviation Sz ~ 2[[S]]. We see by this semantics that each 
function Sz has at most a finite number of discontinuity points in any interval 
[b, e] and is thus integrable in any bounded interval. 

The semantics of  temporal variables, which now has the form fS ,  is given by 
a function g[[fs]l ~ Hntv ~ 1t defined by: 

Z~f  S]] [b, e] = fb Sz(t)dt 

This function can be used to induce an interpretation J z  for temporal variables 
v of the form f S  and propositional letters from 2:  

ffz(X) = Z(X) for any propositional letter X 
Jz(v) = 2 [ f  S~ when v is f S 

The semantics of a duration calculus formula 4~, given an interpretation 2 to state 
variables, is a function: 

Z[[~o]l e Val x Hntv ~ {tt,ff} 

for which we use the abbreviations: 

2,V,[b,e] ~dc O ~- 2[[0~ (V,[b,e])= tt 
2, V,[b,e] g=dc(o ~- 2[[0~ (V,[b,e])--ff 

The function can be defined as follows: 

2, F, [b, e] ~ac r iff ffz, V, [b, e] ~ (o 

The notions of satisfiability and validity of DC formulas are defined as for IL 
formulas. 



296 M.R.  Hansen and Zhou Chaochen 

Remark: For two given interpretations Z and U whose values for any state 
variable P and interval [b, e] disagree for at most a finite number of points in 
[b, e] we have 

Z[fP]] [b,e] = Z'[[fP~ [b,e] 

No formula can distinguish 2- and Z r since state expressions only occur within 
the context of f .  We can therefore define that 27 and 27r are equivalent, and build 
equivalence classes of interpretations which no formula can distinguish. Such 
an equivalence class will contain an interpretation which for any state variable 
P is, say left, continuous, and for any interval [b, e] has no more discontinuity 
points than any other interpretation in the equivalence class. This "minimal" 
left continuous function could be taken as a representative of the equivalence 
class, and in this sense the interpretation of a state variables is a stable, say left 
continuous, function. C.f. discussions in Section 1.2. [] 

The following abbreviation will be used frequently: 

[ ]  ~ ~ = 0  
fs] fs= A >o 

The formula [S] holds in an interval [b,e] iff b < e and S is 1 everywhere 
(almost) in [b, e], i.e. S may be 0 at at most a finite number of time points in 
[b, e]. 

Gas Burner: The requirement of the gas burner can be formalized in DC by: 

f>_-60 ~ 2 0 f L e a k ~ f  

and the two design decisions can be formalized in DC by 

c?([Leak] ~ ~ ~< 1) 

and 1 

D(([Leak] ~ [ ~ L e a k ] - [ L e a k ] )  ~ E/> 30) 

[] 

3.3. Proof System 

Since DC is an extension of IL we adopt all axioms and inference rules of IL 
from the previous section as axioms and inference rules for DC. Furthermore, we 
add axioms reflecting the structure which DC adds to temporal variables: 

(DC-A1) f 0  = 0 

(DC-A2) f l  = # 

(DC-A3) f S >~ 0 

(DC-A4) f S1 + f S2 = f (S1 V $2) + f (S1 A $2) 

(DC-A5) ( ( f  S = x ) " ( f  s = y)) ~ ( f  s = x + y) 

(DC-A6) fS1 = fS2, provided $1 <=~ $2 holds in propositional logic 

1 It can be proved that this formula defines the state of Leak which satisfies the mathematical 
formulation of the second design decision for the Gas Burner on page 286. 
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Furthermore, we add two induction rules: 

IRI:  Let H(X) be a formula possibly containing the propositional letter X, 
and let S be any state expression. 

If  H ( [ ] )  and H ( X ) ~ H ( X V ( X I S I ) V ( X - [ - ~ S ] ) )  
then H(true) 

where H(q~) denotes the formula obtained from H(X) by replacing every occur- 
rence of X in H with ~b. 

IR2: Let H(X) be a formula possibly containing the propositional letter X, 
and let S be any state expression. 

If  H([-[) and H ( X ) ~ H ( X V ( [ S I ~ X ) V ( | - , S I ~ X ) )  
then H(true) 

In these rules H ( [ ] )  is called the base case, and H(X) is called the induction 
hypothesis. 

Remark: The soundness of these two induction rules relies on the finite variability 
property of functions Sz (see below). Furthermore, in the relative completeness 
proof (Lemma 4.2) we shall see that the induction rules have a major r61e in the 
formalization of the finite variability property. [] 

A proof of ~b in DC is a finite sequence of formulas q51"" ~bn, where ~bn is ~b, 
and each ~bi is either an instance of one of the above axiom schemas or an axiom 
schema of IL or obtained by applying one of the induction rules or the inference 
rules of IL to previous members of the sequence. We write ~-dc q~ to denote that 
there exists a proof of ~b in DC and ~b is called a theorem of DC. Deduction in 
DC is defined similarly to deduction in IL and by F ~-ac ~b we denote that there 
exists a deduction of q5 in DC from F. 

The definitions and lemmas below are convenient for the soundness proof. 

Definition. (Equivalence) Given an interval [b, e] and an interpretation Z. We 
call two formulas ~b and ~p equivalent in [b, e] of 27 if 

27, V, [c, d] Mdc q5 iff Z, V, [c, d] ~dc lp 

for any value assignment ]2 and interval [c, d] where [c, d] __ [b, e]. 

Definition. (Finite alternation) Given a state expression S. The formula FAi(S), 
for i >/0, describes less than i alternations of S : 

FAo(S) ~- [ l  
FAi+I(s) ~ FAi(S) V ([SI~FAi(S)) V ([~S]~FAi(S)) 

Lemma 3.1. (Equivalence) For a given state expression S, interval [b,e], and 
interpretation Z, there is a natural number n so that true and FAn(S) are equivalent 
in [b, e] of 27. 

Proof Follows since Sz has at most a finite number of alternations in [b, el. [] 
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Lemma 3.2. (Substitution) Let (p(X) be a formula in which the propositional 
letter X may occur, let [b, e] be an interval, and let Z be an interpretation. Then 
for any two formulas ~bx and ~b2: 

If  ~bl and q52 are equivalent in [b, e] of Z 
then ~o(~bl) and q~(~b2) are equivalent in [b,e] of Z 

Proof By structural induction on (p(X). [] 

Lemma 3.3. If  ~p does not contain free variables and X, then 

~dc ~b(X) implies ~ac qS0P) 

Proof Suppose ~ac (o(X). Then for arbitrary 27, V, [a, b] we must show that 
Z,V,[a,b] ~ac ~b0P). Define Z' so that 27'(X) [c, d] = Z[[~p](V,[c,d]) which is 
independent of 12 since ~p contains no free variables. Otherwise 27' is as Z. Since 
X does not occur in ~o and in ~b(~): 27, V, [a, b] ~ ~b0p ) iff 27', V, [a, b] ~ ~b0P). 
The formulas X and ~p are (by construction) equivalent in [a, b] of 27'. Thus by 
the substitution lemma: Z',12, [a, b] ~ac (o(X) iff 27',12, [a,b] ~ac qS0P). Therefore 
27,12, [a, b] ~dc ~b(~p). [] 

Theorem 3.1. (Soundness) The proof system of DC is sound, i.e. 

~-d~ q5 implies ~dc ~b 

Proof To prove soundness, it suffices to prove that every axiom is valid and that 
every inference rule preserves validity, i.e. it yields a valid formula when applied 
to valid formulas. We only give the proof for IR2. The proof for IR1 is similar, 
and the proofs for the axioms and other inference rules are simple. 

So suppose that 

(I) ~dc H ( [ ] ) ,  i.e. ~dc H(FA~ and 

(II) ~dr H(X) ~ H(X V (IS] AX) V ([-~S]-X)) 

We must establish that ~dc H(true). We first prove ~a~ H(FAn(S)), for any natural 
number n, by induction on n. 

The case for n = 0 is established by (/). 

Inductive step: From Lemma 3.3 and (II) we get 

~d~ H(FAn(S)) ~ H(FAn+I(S)) 

Combining this with the induction hypothesis ~d~ H(FAn(S)) we get 

~d~ H(FAn+I(S)) 

To show ~dc H(true), we must show that 27,12, [b, e] ~de H(true) for any 
interpretation 27, value assignment 12, and interval [b, e]. But by the equivalence 
lemma there is a natural number k k so that true and FA (S) are equivalent in 
[b, e] of 27, and by the substitution lemma H(true) and H(FAk(S)) are equivalent 
in [b, e] of  27 also. 

Thus, since from above we have that 

27,12, [b, e] ~ H(FAk(S)) 
then we also have that 

Z, 12, [b, e] ~ H(true) 
[] 
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In order to simplify proofs in DC, we establish the deduction theorem: 

Theorem 3.2. (Deduction) 

F, q5 ~-ac ~ implies F F-ac ~o  ~ 

provided a deduction F, q5 Fac ~ involves no application of the generalization 
rule G of which the quantified variable is free in q5 and every application of the 
induction rules with hypothesis H(X) satisfies that X does not occur in qS. 

Proof. To the proof of the deduction theorem for IL we must add the cases where 
the induction rules are applied as the last step of the deduction. All other cases 
remain the same. 

Case IRI :  ~ has the form H(true), and the deduction from F V {qS} has the 
form: 

H(I1) 

u ( x )  ~ H(X v ( X l S l )  v ( X I ~ S l ) )  

H(true) 

By the induction hypothesis there are deductions from F of []q5 =~ H(,I]) and 
[]~ ~ (H(X) =~ H(X  V ( X I S - I ) V  (XI--,S,I))). In the following deduction of 
[]q~ ~ H(true) from F we abbreviate X V (X~,IS,I)V (X-,I-~S,I) to next(X,S): 

�9 ~ deduction from F 
k. Q~ ~ U( ' i I )  J 

�9 ~ deduction from F 
I. Dd? =~ (H(X) ~ H(next(X, S))) J 

l + 1. Gc~ =.. (H(X) => H(next(X, S))) 
=~ ((nq5 =, H(X)) ~ (D 4) ~ H(next(X, S)))) PL 

1 + 2. (D 4) ~ H(X)) ~ (ac~ ~ H(next(X, S))) l, l + 1, MP 
l + 3. nq~ =~ H(true) k., l + 2., IR1 

Note that it is taken into account that X does not occur in q5 in the application 
of IR1 with D~b => H(X) as induction hypothesis. 

Case IR2 is similar to IR1. [] 

The deduction theorem can often be used to simplify a proof. In connection 
with the application of the induction rules, the following theorem is convenient: 

Theorem 3.3. 

F,H(X) Fac H(X V (X~[S])V (X~[-~S])) and F Fat H ( [ ] )  
implies F ~-ac H(true) 

provided a deduction F, H(X) Fdc H ( X  V (X~[S])V (X-[-~S])) has the property 
that every application of the induction rules with hypothesis H'(Y)  satisfies that 
Y does not occur in H(X). 
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Proof Let Yl, Y2,..., Yn be all the variables occurring freely in H(X) and let Hc(X) 
denote the formula (Vyl)(Vy2)'"(Vyn)H(X). Since F ~-dc H(]-])  and 
F,H(X)~-dcH(XV(XIS|)V(X-[-~S]))  we also have F~-dcH~([])  and 
F,H~(X) I-de H~(XV(X-[S])V(X~[-,S]))  (using a and Q). In the following 
deduction we start using the deduction theorem: 

�9 } 
k. "~Hc(X) ~ Hc(X V ( X - [ S ] )  V (X~[-~S])) deductions from F 

I. Hc([l) 
/ + 1 .  MH~([I) /.,R4 
/ + 2 .  []H~(X) ~ ~HdX V (X-[S]) v (X~[~S]) ) k.,R6 
l + 3. nHc(true) l + 1., 1 + 2., IR1 
l + 4. HHc(true) ::~ Hc(true) T2 
/ + 5 .  He(true) / + 3 . , /+  4. ,MP 
l + 6 H(true) l +  5.,Q 

where the application of IR1 uses MHc(X) as induction hypothesis. [] 

The following theorem is proven in a similar way: 

Theorem 3.4. 

F, H(X) ~-& H(X V (IS] ~X) V ([- ,S] ~X)) and F I-& H ( [  ] ) 
implies F ~-dc H(true) 

provided a deduction F, H(X) ~-dc H(X V ([S] ~X)V ([- ,S] ~X)) has the property 
that every application of the induction rules with hypothesis H'(Y) satisfies that 
Y does not occur in H(X). 

The two induction rules can be used to prove: 

(DC-T1) : [ ]  V (true~[S])  V (true~[-~S]) 

(DC-T2) : [ ]  V ([S]~true) V ( [ ~ S ] ~ r u e )  

The proof of DC-T1 is easier using Theorem 3.3 with 

H(X) -~ X ~ DC-T1 

We establish: 

(X =~ DC-T1) ~-dc (X V (X~[S])  V ( X - [ ~ S ] ) )  ~ DC-T1 

by establishing the three deductions: 

a) (X :=~ DC-T1) F-& X =~ DC-T1 

b) (X ~ DCIT1) ~-ac ( X - [ S ] )  ~ DCIT1 

c) (X ~ DC-T1) }-& (X1--~S]) =* DC-T1 

The first case, i.e. a), is trivial. The cases b) and c) are similar, so we only establish 
one of them. The following constitutes a deduction for case b): 

1. X ~ true PL 
2. (X~[S] )  ~ ( t r u e 1 S ] )  1.,M1 
3. ( t rue l -S] )  =, DC-T1 PL 
4. (X~[S])  ~ DC-T1 2.,3.,PL 
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Having established a), b), and c) we have by PL: 

(X =~ DC-T1) ~-dc (X V ( X I S ] )  V ( X I ~ S ] ) )  ~ DC-T1, and 

~-dc [ ]  ~ DC-T1 

Thus, we get true =*- DC-T1 using Theorem 3.3, and then DC-T1 from PL. 
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4. Relative Completeness 

In this section we consider the question whether there is a proof for every valid 
formula of DC, i.e. whether the proof system of DC is complete. Using DC 
formulas in specifications we want f S  to be the integral of a real function. 
Therefore, to show completeness of DC, it must be shown that the axioms DC- 
A1 to DC-A6, together with the rules IR1 and IR2, and the axioms and rules of 
IL are enough to ensure that temporal variables of the form f S  are definable by 
integrals. 

In so doing, the functions and constants, e.g. + and 0, must be interpreted as 
real functions and constants, and the chop modality - occurring in the axioms 
must be interpreted as a modality, chopping intervals of real numbers. 

Since every consistent formal system has a countable model, there is no way to 
axiomatize IL in order to ensure that functions, constants, etc. will be interpreted 
as real functions, constants, etc. Therefore, the best completeness result for DC 
that one can hope for is a relative completeness result, where valid IL formulas 
(wrt. a model based on real numbers) are taken as provable formulas. See also 
the remark on completeness in Section 2.3. 

To formalize this notion, let 7712 be the set of  all valid IL formulas, and 
define 77s to be the set of all DC instances of formulas of 77s i.e. a formula 
q~dc ~ 77s is obtained from a formula ~0 ~ 77s as follows: Let vl,... ,vn be 
the temporal variables occurring in ~o, then q~dc is obtained by replacing any 
occurrence of  vi with fSi, for some state expression Si and for 1 ~< i ~< n. 

Each formula ~Odc is a valid DC formula since ~0 is a valid IL formula, and 
we will take 77s as the provable formula set of DC provided by IL. 

Theorem 4.1. (Relative completeness) For any formula 49 of DC: 

~dc 49 implies 77s ~-dc 49 

We first sketch the main ideas of the proof of this theorem. The proof follows 
subsequently. 

4.1. Proof Idea 

For any valid DC formula 49, i.e. ~dc 49, we must show the existence of a deduction 
27s ~-dc 49. Actually, we will give a deduction of ZEdc I-dcr 49, where I-dcr denotes 
a deduction using the axioms of DC together with the two theorems DC-T1 
and DC-T2, but not using the induction rules IR1 and IR2. We can, of course, 
construct a deduction ZEdc I--tic 49 from a deduction 77s ~-d~r 49, since DC-T1 and 
DC-T2 are provable in DC. 

A DC deduction ZEdc I-dc~ 49 can be considered to be an IL deduction 

Zs U DCR I--it 49 
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where DCR denotes the set of all instances of the axiom schemas DC-A1 to 
DC-A6 and instances of DC-T1 and DC-T2, where temporal variables have the 
form of durations. Thus, D C R  denotes an infinite set of formulas. 

However, for the given r we construct an IL formula, say He, having vl, v2,... 
as temporal variables with the property that a DC deduction Zs I--dcr r can be 
constructed from an IL deduction 2-/2, H e F-it eh, where eh is obtained from r 
by "properly" replacing durations fS i  with temporal variables vi. I.e. the formula 
H e provides an encoding in IL of the infinite set of formulas DCR. 

Using the deduction theorem of IL we have that 

ZE, H e I-il eh iff Zfl.. I-il DH e ~ eh 

The main part of the proof is to show that [:]H e =~ eh is a valid IL formula, i.e. 
an element of 2-E, iff r is a valid DC formula. 

Because when ~a~ r we have that ([~H e ~ eh) E 2-E, and the DC formula 
[~H ~ r obtained from []H e =:- eh by "properly" replacing temporal variables 
vi with durations f s i ,  is a member of Zs Thus 

2-s F-act DH ~ r 

The formula H is a conjunction of DC axioms and instances of DC-T1 and 
DC-T2, and a deduction of Zf-.dc t-dcr (9 is then easily achieved. 

4.2. Proof of Relative Completeness 

Let an arbitrary Duration Calculus formula r be given. We now construct the 
IL formula H e. 

Let P~ . . . .  , Pl be the state variables occurring in r and let S be the set of 
state expressions which can be generated from these 1 state variables. 

For S E S let [S] = {S' c S I S r S' in propositional logic }, and let S__- be 
the set of equivalence classes: {[S] I S ~ S}. The size k of S_= is the number of 
Boolean functions in 1 variables, i.e. k = 2 2t. 

Select k temporal variables Vl . . . . .  vk and put them in one-to-one correspon- 
dence with the equivalence classes. We can thus index the selected temporal 
variables with equivalence classes. Furthermore, we assume a representative for 
each equivalence class to be given in the following. (This could for instance be 
given by a disjunctive normal form of state expressions.) 

For the axiom schemas (DC-A1) to (DC-A5), and for the two theorem schemas 
(DC-T1) and (DC-T2) we construct seven finite sets of IL formulas: 

~ ~ {vt01=0} 
~2  -~ {vtlj =~} 
'~-{3 --~ {/)[S] ~ 0 I [S] C S~_} 
7-'~4 Am {V[S,1 -1- V[S2] = I)[S, VS2] -F- V[S, AS2] I [S1], [$2] G S_=} 
~5 ~ {(Vx)(Vy)(((v[s] = x)'-'(V[sj = y)) ~ (V[s] = x + y)) I [S] e S=-} 
7r ~- {[] v (true-[vtsj]) v ( t r u e l v t ~ s ] l )  I [S] ~ S=-} 
H7 ~ { [ ]  v ([vfsl]-true)  v ( [ v b s j l - t r u e )  I IS] ~ S=-} 

where we define [V[Sl] by v[s] = v[1] A vii] > 0. 
Define H e to be the conjunction of all the formulas in 7-/1 to 7-/7, and let eh 

be the IL formula obtained from r by replacing each duration f S  by v[s]. 
The definition and lemmas below are convenient for the completeness proof. 
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Definition. We call a triple (if, V, [b, e]) for an H-triple if 

J ,  12, [b, e I ~ ~Hr  

i.e. if for any sub-interval [c, d] of  [b, e]" J ,  12, [c, d] ~ He. 

Nota t ion:  When  an interpretation J to temporal  variables is given in the context, 
we do not  mention ,.7 explicitly and write v for J(v). 

Lemma 4.1. Given an H-triple (J,12, [b, e]). Then 

(i) 0 ~< V_[s ] [c, d] ~< d - c 
(ii) V_[s ] [c, d] = (d - c) - v_[as] [c, d] 
(iii) V[sl][c,d] ~< p4s~v&][c,d] 

for any S, $1, $2 ~ S and any sub-interval [c, d] of  [b, e]. 

Proof (i) and (ii) are trivial. Since -~$1 V (& v Sz) is a tautology, we have from 
7-12 that 

~[1] [C, 6]] ~- (d - c) = V_Ds, v(slvs2)] [c, d] 

From 7-/4 we have 

~_[mS1 ] [C, d] -~- ~_[(S1VS2) ] [C, d] = ~_[mS1V(S1vS2) ] [c, d] -4- ~[~S1A(S1vS2)I [C, d] 
i.e. us ing  (ii) we get 

(d - c) - V_[s d [c, d] + v_[(&vs2)] [c, d] = (d - c) + v bslA(SlvS2)] [C, d] 

which gives V_[sl] [c, d] ~< V_[s~vs2 ] [c, d] (since VDslA(s~vs2)l [c, d] > /0  by  ~3).  []  

Definition. Let S E S and ( J ,  ]2, [b, e]), where b < e, be an H-triple. A partition 
of  [b, e] for S is a finite parti t ion b = to < tl < ... < tn = e of  [b, e] so that  for 
i = 1 , . . .n  we get: 

either J , V ,  [ti-l, ti] ~ [V[S]| or J ,  12, [ti-l, ti] ~ [-V[~S]] 

L e m m a  4.2. Let ( J ,  V, [b, e]), where b < e, be an H-triple. For any S ~ S, there 
is a finite parti t ion of  [b, e] for S. 

Proof For any t �9 b < t < e, there are (by 7-16 and 7-/7) t' and t" so that 
b ~< t' < t < t" ~< e and 

J , V , [ f , t ]  ~ [v[Sll or J,Y,[ t ' , t l  ~ [vbs ] l  ] 
and ~ (?) 

J,V,[t , t"] ~ [Vts]] or J,V,[t , t"] ~ Iv .sjl 
Thus, there is an open interval (t', t") covering t (but not  b nor  e) so that the 
closed interval [t', t"] has the above property (I). 

For the left end point  b, there is by 7-t7 a t" so that b < t" ~< e and 

J ,  12, [b, t"] ~ [V[Sll or J ,  12, [b, t"] ~ [vDs]l (1"b) 

Thus, there is an open interval (t', t") covering b so that the closed interval [b, t"] 
has the above property (tb). (Select arbitrary t' < b.) 

Similarly for e, there is by 7-g6 a t' so that b ~ t ~ < e and 

if ,  12, [t', el ~ Iv[s]1 or if ,  V, [t', e] ~ [VDs]] (re) 
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Thus, there is an open interval (t ~, t ~) covering e so that  the closed interval [t ~, e] 
has the above proper ty  (t~). (Select arbi t rary t" > e.) 

So we have an infinite collection of  open intervals covering the closed and 
bounded  interval [b, el. Then  by Heine-Borels theorem there is a finite sub- 
collection C = { Ib . . .  Ira} of  the open intervals covering [b,e]. 

STEP 1: Select the open interval Ii = (ai, bi) from C covering b. Then  the 
closed interval [b, bi] satisfies by ('~b): 

J ,  12, [b, bi] ~ [V[s]~ o r  ~.~, 12, [b, bil ~ Iu[~s]l .  

STEP 2: Stop if bi = e. Otherwise b~ < e. Select an open interval Ij = (aj, bj) 
f rom C covering bi. I f  e < b j, then by ('~e) either 

,.7,12, lb. el ~ [vN1 or J ,  12, [b. e] ~ [vt~sl ]~ 
will hold for the closed interval [b, e] and we stop. 

I f  bj ~< e, then the closed interval [bi, b]] will by (~-) satisfy one o f  

1 : ,.7, 12, [bi, bj] ~ [v[s]] 

2:  fl ,  V, [bi, b]] ~ [Vi~sj] 

3 : 2,!2,  [bi, m] ~ [V[s]] and J ,  12, [m, bj] ~ [vbs]] ,  
for some m : bi < m < bj 

4 :  ,7,12, [bi, m] ~ IVies1] and fl ,  12, Ira, bj] ~ ]-V[s]], 
for some m : bi < m < bj 

Repeat  STEP 2 until a part i t ion of  [b, e] is achieved. This terminates since 
there is a finite number  of  open intervals in C. []  

I .emma 4.3. A n / / - t r i p l e  ( J ,  12, [b, el) where b < e induces an interpretat ion Z, so 
that for any S 6 $ and t E [b, e): 

1, i f  t G [ti-1, ti) 
Sz(t) = 0, if t E [ti-1, ti) 

for some part i t ion b = to < tl < 

and J ,  V, [ti-b ti] ~ [-v[s]] 
a n d  t ,  12, [ti-b ti] ~ [[v[~sl-~ 

.. .  < t, = e of  [b, e] for S. 

Proof Define an interpretat ion Z as follows: Let  Qz(t) --- 0, t 6 Time,  for any 
state variable Q q~ ,_q. For  any state variable P c 8,  let b = to < tl < .. .  < tn = e 
be a part i t ion of  [b, e] for P given by Lemma  4.2. Let  

1, if ti-1 <. t < ti, ,7, 12, [ti-1, ti] ~ [V[p]], and 1 ~ i ~< n 
Pz(t) = 0, otherwise 

Each such function has only a finite number  of  discontinuity points in any 
interval, so Z is indeed an interpretation. 

We prove the remaining parts of  the lemma by structural induction on S. I f  
S ~ S there is nothing to prove, so assume beIow that  S c S. The cases where S 
is 0, 1, or P are trivial, so consider:  

CASE: S has the form ~S'.  
Let  b = to < tl < .. .  < tn --- e be a part i t ion of  [b,e] for S' given by the 

induction hypothesis. This is also a part i t ion for -~S', as ~-~S' ~* S'. 
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Consider  an arbi t rary  t, b ~< t < e. I.e. t~-i ~< t < t~ for some i 6 {1, . . . ,  n}. By 
definition we have that  (~S ' )z ( t )  = 1 - S!r(t ). 

I f  f l ,  V, [t i-b ti] ~ [v%~s,]], then (- ,S')z(t)  = 0 as we have S~(t) = 1 f rom the 
induct ion hypothesis.  

I f  f l ,  V, [ti-1, ti] ~ [vDs,]], then S~(t) = 0 (induction hypothesis).  But then 
(~S ' )z ( t )  = 1 as required. 

CASE: S has the fo rm S' V S". 
We combine  two part i t ions of  [b,e] for S and S'  given by the induct ion 

hypothesis  to get a finite par t i t ion b = to < tl < . . .  < t, = e, where precisely 
one of  the four  formulas:  Iris,]] A Iris,]], Iv%s,]] A Ivies,,]], Iris,]] A [Vbs, l] ,  or 
[Vbs,l] A [v[s,]], will hold in each section. Fur thermore ,  each section [ti-1, ti] will 
ma tch  one of  the cases: 

(i) V_[s, ] = v is, ] = t i -  ti-1 and S~(t) = S~(t) = 1, i.e. ( S ' V  S")z(t)  = 1, for 
t i -1  ~ t < t i. 

(ii) v__[~s, ] = V_Ds,, ] = t i -  ti-x, S~(t) = S~(t) = 0, i.e. ( S ' V  S")z(t)  = 0, for 
t i_  1 ~ t "~ t i. 

(iii) v__[s, ] = ti - t i -b  v_[as,,] --- ti - ti-1, S/r(t) = 1 and S~(t) = 0, i.e. (S' V S")z(t)  = 1, 
for  t i -1 <~ t < ti. 

(iv) V_bs q = ti - ti-1, V_[s,,] = ti - ti-1, S~(t) = 0 and S~(t) = 1, i.e. (S' V S")z(t)  = 1, 
for  t i -1  ~ t <2 ti. 

We prove tha t  b -- to < tl < . . .  < t ,  = e is a par t i t ion o f  [b, e] for S'  V S" by 
considering the four  cases: 

(i) We mus t  prove that :  J ,  V, [ti-l, ti] ~ [Vts,vs,,]]. F r o m  L e m m a  4.1: 

0 ~ V[S,vS,, ] [t i-1,  ti] ~ ti - -  t i -1 and 0 ~< v[s,As,,] [t i-1,  ti] <~ ti - -  t i -1  

so it fol lows f r o m  7-/4 that  v__[s,vs,, ] [ti-a, ti] = V_[S,AS,, ] [ t i -a,  ti] -= ti - -  t i -1 .  Using 
the definition of  [v[s,vs,]] we have that  J ,  V, [ti-1, ti] ~ [V[s,vs,,]]. 

(ii) We mus t  prove that :  J ,  V, [ti-1, ti] ~ [v[~(s,vs,,)]]]. Since ( f rom 7-/3) 

V_[s,vs,,l [ti-b ti] >1 0 and V_[s,As,, ] [ti-l, ti] >~ 0 

it follows f rom "It~ 4 and L e m m a  4.1 tha t  V_[s,vs,, l [ti-1, ti] = 0. Therefore,  by 
L e m m a  4.1 V b(s,vs,,)] [ti-1, ti] = t i - t i - 1  and hence J ,  12, [ti-1, ti] ~ [Vb~s,vs,,)]]. 

(iii) We mus t  prove that :  :Z,V, [ti-l,ti] ~ [V[s,vs,]]. Since by L e m m a  4.1 

V_[s,] [ti-1, ti] <~ V_[s,vs,,] [t~-l, t~] <~ ti - ti-1 

it follows that  V_[s,vs,, ] [ti-b ti] = t i -  ti-> I.e. J ,  V, [ti-1, ti] ~ [v[s,vs,,]]. 
(iv) Similar to (iii). 

[ ]  

Theorem 4.2. For  a given H-t r ip le  ( J ,  V, [b, e]), there is an in terpre ta t ion 27 so 
tha t  for any  S ~ S and interval [c, d] __ [b, e] : 

z f f f  sll  [c, d] = V ls ~ [c, d] 

Proo f  I f  b = e, then any in terpre ta t ion  2- will do, since c = d, 2-[[fS]] [c, d] = 0 
and V[s][c,d] = 0, because 0 ~< V[s][c,d] <. d - c  f rom L e m m a  4.1. So suppose that  
b < e. Let  2- be  an interpretat-{on given by L e m m a  4.3. The  case where c = d 



306 M. R. Hansen and Zhou Chaochen 

is treated as above, so suppose that c < d. Let c = to < tl < ... < tn = d be a 
partition of [c, d] for S. We have that for any t E [c, d): 

1, if t C [ti_l, ti) and J,)2,  [ti-1, ti] ~ IV[S]] 
Sz(t) = O, if t C [ti-b ti) and J ,  Y, [ti-a, t~] ~ [vhsl] 

Thus fti Sz(t)dt [ti-b ti], for i = 1,.. . ,  n, and by 7-/5: t~ ~ = -V[S] 

n 

27[[ f Sll [c, d] = ~ Vfsl [h-l, td = V ls I [c, d] 
i=1  

[] 

Let 4)h be the IL formula obtained from 4) by replacing any occurrence of fSi  
in 4) with v[sd. 

T h e o r e m  4 . 3 .  

~ac4) iff ~ ( O H r  

Proof We first prove that ~dc 4) implies ~ (OH4) ~ 4)h, SO suppose that 
~: (OH4) ~ 4)a, i.e. there is an H-triple (Y, V, [b,e]) so that J ,P,[b ,e]  V= 4)a. 
By Theorem 4.2 there is an interpretation 77 so that for any S c S and interval 
[c, d] _c [b, e] : 

f sll [e, d] =  [sl d] 

Since ,7, V, [b, e] ~ 4)h, we have that 27, F, [b, e] ~dc 4), and hence ~dr 4). 
To prove the other direction, i.e. ~ ([]He) ~ 4)h implies ~d~ 4), suppose 

that ~dr 4), i.e. there is an interpretation 27, value assignment Y and interval 
[b, e] so that 77, ~, [b, e] ~d~ 4). Let us construct an interpretation J so that 
_V[s ] [c, d] = 27[[fS]] [c, d] for all S c S and intervals [c, d]. (By axiom (DC-A6) 
this is well-defined.) By construction we have that ,7,~, [b,e] ~ 4)h and from 
Theorem 3.1 (soundness) ,7, ]2, [b, e] ~ E3Hr So ~ ([]He) ~ 4)h. [ ]  

The relative completeness theorem can now be proven: 

T h e o r e m  4.4. (Relative completeness) For any formula 4) of DC 

~dc 4) implies ZEdc ~-& 4) 

Proof Suppose ~& 4). By Theorem 4.3 we get ~ (nil4) ~ 4)h. Let H be obtained 
from H 4 by replacing each v[s] by f S .  Then ( n i l  ~ 4)) E 27s and 

27s ~-dc [2H ~ 4) 

We have that H is a conjunction of DC axioms and instances of DC-T1 and 
DC-T2 and therefore by PL and R4: 

l-tic DH 

and a deduction of 27s t-tic 4) follows by applying MR [] 

R e m a r k :  Note that the relative completeness result was achieved using the theo- 
rems DC-T1 and DC-T2 instead of the two induction rules IR1 and IR2. It is, 
however, convenient to have the two induction when conducting proofs. [] 
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5. Decidability 

In this section we consider subsets of formulas of DC for which it is decidable 
whether a formula from the subset is satisfiable. Since a formula ~b is valid iff the 
formula ~q~ is not satisfiable, we can decide whether a formula in the subset is 
valid as well. The decidability results presented are based on [ZHS93]. 

It turns out, as shall be shown in the next section, that even very simple 
subsets of formulas of DC are undecidable. 

We investigate now the set RDC of  formulas generated by 

1, if S is a state expression, then IS] E RDC 

2. if qS, q~ E RDC, then -,~b, q~ V ~p, ~b-~p E RDC 

We present a discrete time version of DC together with decidability results for 
satisfiability of RDC formulas, since the denseness of the time domain turns out 
to be a source of complication. It is shown that RDC is expressive enough to 
formalize an interesting case study under a discrete time interpretation. 

This section is organized into five subsections, where the first presents a case 
study, the second develops a discrete time version of DC, and the third gives a 
decidability result for RDC with regard to discrete time. A decidable result for 
RDC with regard to continuous time is presented in subsection four, and the last 
subsection discusses the complexity of the decision algorithms. 

5.1. A Case Study 

In this section we formalize a set of requirements for a gas burner system. These 
requirements, which are presented in [RRH93], are later shown to be expressible 
in RDC in discrete time. 

The state variables used in the requirements are: 

G,F,H,I E Time ~ {0, 1} 

where G and F describe gas and flame as in Section 1. The intention of the state 
variable H is that it is 1 iff there is a heat request to the gas burner and the 
intention with the state variable I is that it is 1 iff an ignition transformer is on, 
i.e. it is trying to ignite the gas. 

The requirements are: 

1. For intervals less than 30s, the gas may leak for at most 4s: 

Req 1 ~- d <<. 30 ~ fL ~< 4 

where L ~ G A ~F. 
2. Heat request off must in 60s result in the flame being off: 

Req2 ~- [ ~ H ]  ~ (f ~< 60 V ((• ~< 60)-[-~F])) 

3. Heat request on must in 60s result in the flame burning, unless either an 
ignition failure or a flame failure has occurred: 

Req3 
[H 1 =~ ([ ~< 60 V (([ ~< 60)~[F-~ ~true) V ~-~f lOK V G--~IgOK ) 

where the flame is working correctly if it does not disappear while the gas is 
supplied: 
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FIOK ~ [G] ~ ~O( [FI - [ -~F] )  

and the ignition is working correctly if the gas ignites in Is: 

IgOK a IGAI] ~ (~ ~< 1 V((f  ~< I)~[F]))  

The requirements which must be met by the gas burner system is the conjunc- 
tion of the above requirements, i.e. 

Req ~ Reql AReq2 AReq3 

This ends our presentation of the case study. In [RRH93] it is developed 
further over several steps, ending with a specification of an implementation of the 
above requirements. The implementation consists of a control program interacting 
with sensors measuring heat request and flame, and actuators governing the gas 
and the ignition devices. The implementation is specified as a DC formula, and 
this specification is shown to imply the above requirements. 

5.2. Discrete Time Duration Calculus 

What shall we consider to be a discrete time Duration Calculus? 
Even when the set of natural numbers N = {0, 1, 2,...} is chosen as the discrete 

structure, questions remain concerning restrictions on interpretations, intervals, 
and the truth of formulas. 

First of all, it is required for any interpretation: 

Z E SVar --* (Time ~ {0, 1}) 

that the set of discontinuity points of each Pz must be a subset of N. An 
interpretation satisfying this property is called a discrete interpretation. Note that 
we omit predicate letters from interpretations, since there are no predicate letters 
in formulas of RDC. 

Likewise, we will only consider discrete intervals [b, e] c ~ntv where b, e 6 N. 
Finally, for a given DC formula q~, its truth value is only considered in discrete 

intervals of discrete interpretations. 
As a consequence of this, the definition of chop (~b~p) is different from the one 

given in Section 2.2 for continuous time. Assume that Z is a discrete interpretation 
and [b, e] is a discrete interval: 

37, [b, el ~ac q~-v iff Z, [b, m] ~dc (~ and Z, [m, el ~dc V, 
for some m E [b, el where m ~ N 

where we leave out value assignments 0 )) from the definition since we have no 
global variables in formulas of RDC. 

The other semantic clauses are not given, as they remain as in Section 2.2. 
A DC formula q~ is valid for discrete time iff Z, [b, el ~dc 0 for any discrete 

interpretation Z and any discrete interval [b, el, and q5 is satisfiable for discrete 
time iff 5[, [b, el ~dc 0, for some discrete interpretation Z and some discrete interval 
[b, el. 

5.2.1. Discrete Time versus Continuous Time 

One can ask the question what difference it makes to consider a discrete time 
domain instead of a continuous time domain? 
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The following DC formula is valid for discrete time, but it is not valid for the 
continuous time semantics: 

E -- 1 r (~ > 0 A --,(([ > O)-'(C > 0))) 

There are also formulas of DC which are valid for continuous time, but not 
valid for discrete time, e.g. 

> 0 ~ ((~ > 0)"(~' > 0)) 

Thus, there is no simple relationship between the formulas which are valid for 
discrete time and the formulas which are valid for continuous time. 

5.2.2. Expressibility of the case in RDC 

Due to the following equivalences 

= 0 ~ - , [11  

~o : 1 r [11 A ~ ( [ 1 1 I I 1 )  

true ~:~ ~ = 0 V -~(~' = 0) 

fP=0 [ Plv =0 
f P  -- 1 ~ ( fP  = 0 )~ ( [P l / x  r = 1)~(fP -- O) 

f P = k + l  <0 ( f P = k ) ' - ' ( f P - - 1 )  ( k ~ > l , k � 9  

f P  >~ k ,*~ (fP = k) - t rue  (k E N) 

f P > k  <:~ ( f P > l k )  A = ( f P = k )  

fP<~k ~ -~(fP>k) 

f P  < k  ,*~ ( fP  <~k) A ~ ( f P = k )  

and since t' = f l ,  we can encode the formula Req in RDC. 

5.3. Decidability for Discrete Time 

We show that satisfiability of a formula 4 �9 RDC is decidable by defining a 
regular language s so that 

4) is satisfiable iff s is non-empty. 

Let $ be the (fnite) set of state variables occurring in 4. Then the alphabet Z 
of the language E1(4) is the set 12 = P(S) of subsets of  S. A letter a E 12 is called 
a basic conjunct and is interpreted as the state expression: 

A { P  [ P  E a } A A { ~ Q I  Q E ( S \ a ) }  

which asserts that all state variables in a are one, and those not in a are zero. 
The disjunctive normal form of a state expression S is a disjunction n a Vi=I i 

of basic conjuncts, n >/0. We let DNF(S) -- {al , . . . ,  an} -- I2 denote the uniquely 
determined set of basic conjuncts of the disjunctive normal form of S. 

We represent a formula 4 by a regular language/21(4) - Z*, so that 4 holds 
on a discrete interval [b, e] for a given discrete interpretation 27 iff there is a string 
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V E s  which corresponds to the interpretation 2- on [b,e]. A letter a c Z 
describes a unit interval. The formula 4 is satisfiable for discrete time iff the 
language s is non-empty. Since emptiness of a regular language is decidable, 
we obtain a procedure for deciding satisfiability of 4. 

The definition of s is quite straightforward. An "almost everywhere" 
formula [S] is represented by the positive closure B +, where B = D N F ( S )  is the 
set of basic conjuncts of S. Disjunction 4 V ~0 is represented by union, negation 
~4 by complement, and chop 4~p by concatenation. Since B + is a regular 
language, and the family of regular languages is closed under union, complement, 
and concatenation, every formula is represented by a regular language. More 
precisely, 

z;,(4 v 
= (DNF(S)) + 

= z* \ s  
= ~ I ( 4 ) s  

The last line uses the concatenation LIL2 = {vulv E Lb u E L;} of two regular 
languages L1 and L2. Positive closure, union, complement, and concatenation of 
regular languages can be realized by operations on finite state automata [HoU79]. 

String v = al...aN E E* corresponds to a discrete interpretation Z on a 
discrete interval [0,N] if Z[ai~(t) = 1 for t E ( i -  I,i), i E {I ..... N}. (If N = 0 
then v = e is the empty string). 

Lemma 5.1. Let a formula 4 E RDC, a discrete interpretation 27, and a corre- 
sponding string v = al . . .  aN be given. Then Z, [0, N] ~& 4 for discrete time iff v 
belongs to s 

Proof. By induction on the structure of 4. [] 

Now for any string v in Z* there is an interpretation Z so that v corresponds to 
Z, and conversely: for any interpretation Z and interval [0, N] there is a string 
v = a l . . .  aN in Z* which corresponds to Z. Thus by 5.1, we have 

Lemma 5.2. A formula 4 E R D C  is satisfiable for discrete time iff the regular 
language s is non-empty. 

Theorem 5.1. The satisfiability question in discrete time of DC formulas in R D C  
is decidable. 

We show now how to prove or disprove the validity of formulas. 

Question 1: Is the formula ( [P]  ~ [P] )  ~ [P]  valid for discrete time ? 

Since P is the only state variable occurring in the formula, the alphabet 
Z = {{P}, {}}. We have 

( [ P ] I P ] )  ~ [P]  is valid 

iff ~ ( ( [ P ] I P ] )  ~ [P] )  is not satisfiable 

iff ( [ P ] I P ] ) A  ~ [ P ]  is not satisfiable 

iff s  n s = {} 

iff {{P}~ ] i i> 2} r~ (E* \ {{P}i [ i ~> I}) = {} 

which holds. Therefore ( [ -P] I -P] )  ~ [P]  is valid for discrete time. [] 
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Question 2: Is the formula [P]  ~ ( [ P ] I P I )  valid for discrete time? 

Again, the alphabet is X = {{P}, {}}. We have 

[P]  => ( [ P ] I P I )  is valid 

iff [P ]  A-~ ( [P ]~ [P ] )  is not satisfiable 

iff E I ( [ P | )  C~ C l ( - ~ ( [ P I I P 1 ) )  = {} 

iff { { p } i ] i > ~ l } N Z , \ { { p } i l i > ~ 2 } = { }  

which is false as the intersection contains the word {P}. Thus, the formula 
[P]  =~ ( [ P ] I P ] )  is not valid for discrete time. [] 

Using this technique we can decide that the formula Req from the case study is 
satisfiable. It is, however, more interesting that the phase automaton from [RRH93] 
can be represented in RDC as well. This phase automaton is a formula of DC 
representing an implementation of the requirements. It is proved in [RRH93] 
that the phase automaton implies the requirements. Since this implication can be 
represented in RDC,  the above algorithm can carry out this proof for a discrete 
time domain. 

5.4. Decidability for Continuous Time 

Consider the formula [P]  ~ ( [P]  I P ] ) ,  which is valid for continuous time; but 
not for discrete time. 

Reconsidering the question of its validity for discrete time we have that 

[P]  ~ ( [ P I - [ P ] )  is valid iff EI ( [P] )  ~- E I ( I P I I P ] )  

But because {n} E/21([P])  and {P} q~/21([n]~[n])  = {{P}i I i >/2} we have 
that the inclusion property is not satisfied. 

The problem is that a letter, say {P}, cannot be interpreted as lasting one 
time unit under a continuous time domain. 

However, with a closure property it is possible to re-use ideas from the discrete 
time construction to achieve a decidability result for continuous time. 

A language L over alphabet Z is called contraction closed if 

vaaw E L implies yaw E L 

for any v, w C Y~*, a C Y~. 
The language s  = {{P}ili >/ 2} is not contraction closed since 

{P}{P} belongs to the language and {P} does not belong to the language. 
Let ~ L denote the contraction closure of L, i.e. the smallest contraction closed 

set containing L. By a simple construction on finite automata one can establish 
the following: 

Lemma 5.3. If L is regular then so is $ L, and $ L can furthermore be constructed 
from L. 

We now construct a regular language /~2((~) from a formula q5 E RDC in a 
way similar to the way for discrete time: 
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~2( [S1)  = (DNF(S) )  + 

/~2(q~ ~/lt)) = s [..J ~2(ip) 

s = Y: \ &( 'k )  

s ( ~'-'1,0 ) = ; (s163 
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By an induction proof on the structure of q~ one can establish: 

Lemma 5.4. A formula q~ c R D C  is satisfiable for continuous time iff the lan- 
guage s is not empty. 

Since s is a regular language we have 

Theorem 5.2. The satisfiability question in continuous time of DC formulas in 
R D C  is decidable. 

5.5. Complexity 

The efficiency of the above decision procedure depends on constructions on finite 
automata, and this efficiency is very poor since each negation occurring in the 
formula may supply an exponent in the complexity. An exponent occurs when 
a non-deterministic automaton is transformed into a deterministic one when 
constructing a finite automaton for the complement of a regular language. The 
authors of [SkS94b] have found that the decision problem is non-elementary. So 
the worst case is very poor, indeed. 

In [SkS94b] the decision procedure is implemented and used to prove the 
correctness of Fisher's mutual exclusion protocol. The results were not too bad. 
It took, for example, approximately twelve minutes to verify a formula consisting 
of 3775 characters on a DECStation 5000-240 with 128 MB of memory. 

Furthermore, the situation seems (always) to be that the level of nesting 
of negations (which cause the poor complexity) is very low for formulas oc- 
curring in case studies. The reason for this is that formulas with alternating 
nesting of negation, e.g. through implication in (((~bl ~ q52) ~ ~b3) => ~b4) or in 
(-~(~((-~b1)-~b2)~b3)-q54), are very difficult to comprehend and therefore do not 
occur in specification examples. 

The proof assistant for DC described in [SKS93] also supports the use of this 
decision procedure. 

6. Undecidability 

All the disappointing news comes in this section: even for very restricted subsets 
of DC formulas, it is undecidable whether a formula in the subsets is satisfiable. 

The general technique used to show these results is to reduce the halting 
problem of two-counter machines to the satisfiability of formulas belonging to 
the subset under consideration. The main results come from [ZHS93]. We give 
undecidability results for the following three subsets: 
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6.1. The  Subsets R D C I ( k ) ,  RDC2 ,  and R D C 3  

The subset RDC l(k), where k c N is a fixed constant, is the subset of propositional 
DC generated as follows: 

1. the formula E --- k belongs to RDC t(k), 

2, if S is a state expression, then [S] belongs to RDC l(k), and 

3. ifq~ and ~ belong to RDCffk),  then so do -~q~, 4~V~, and qS"-'~p. 

When k is a natural number we have previously seen that it is decidable for 
discrete time whether a formula of RDCI(k) is satisfiable. 

Since f = 0 can be expressed by -111] we have that RDC (0) is expressible in 
RDC, and thus the satisfiability question for RDC (0) is decidable for continuous 
time. If  k < 0 then Y = k is false which is expressible in RDC as well. So k > 0 is 
assumed in the following undecidability proof for RDC t(k). 

The subset RDC 2 is the subset of propositional DC generated as follows: 

1. if $1 and $2 are state expressions, then fS1 = fs2  belongs to RDC2 and 

2. if ~b and ~p belong to RDC 2, then so do ~q~, ~b V lp, and ip~p. 

The subset RDC 3 is the subset of DC generated as follows: 

1. if S is a state expressions, then [S] belongs to RDC 3, 

2. if x is a global variable, then f = x belongs to RDC 3, and 

3. if q~ and ~o belong to RDC3, then so do =~b, q5 V~p, q~-'~, and (3x)r where x 
is any global variable. 

Remark: For any of the different subsets, we shall use standard abbreviations for 
A and ~ from propositional logic, and for [] and ~ from IL. [] 

Counter Machines: The main technique used to obtain these undecidability results 
is to reduce the halting problem of counter machines to satisfiability of formulas 
belonging to the subset under consideration. In this section we give a brief and 
rather informal introduction to counter machines. For a more careful treatment 
we refer e.g. to [Min67] or [HoU79]. 

A two-counter machine has a current label q and two counters cl and c2 which 
can hold arbitrary non-negative integers. A program for such a machine is a finite 
set of labeled instructions mi, i.e. the set of labels is finite. 

The only instructions are "increase cl by one" (c +) and "test cl and decrease 
by one" (ci-), and similarly for c2. For example, qi : c + -* qj is the instruction at 
label qi; it increases cl by one and proceeds with the instruction labeled qj. The 
instruction qi : C~ ~ qj, qk tests whether the value of Cl is zero; if so, the machine 
proceeds with the instruction labeled qj. Otherwise, the machine decreases Cl by 
one and proceeds with the instruction labeled qk. 

A configuration s of a counter machine is a triple s = (q, nl, n2) of the current 
label q and the values nl, n2 c N of the two counters Cl and c2. The configuration 
(q, nl, n2) is final if there is no instruction labeled q in the program. 

A computation step s ~ s' transforms a non-final configuration s into a 
configuration s' as follows (and similarly for c2): 
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Instruction s ~ s' 

q "c + --+ qj (q, hi, n2) ~ (qj, nl + 1, n2) 
q : Cl "-~ q j, qk (q, O, n2) ~ (q j, O, n2) 
q : c F ~ q j ,  qk (q, n l + l ,  n 2 ) ~ ( q k ,  nl,n2) 

A computation is a (finite or infinite) sequence o- = so, sl, s2,.., of  configura- 
tions, where sn ~ Sn+l. 

We call so the initial configuration. In the applications below we will have 
So = (q0, 0, 0), where q0 is a designated initial label. We shall make use of the fact 
that the halting problem for two-counter machines with initial counter values 
na = n2 = 0 is undecidable [Bir76, p. 78]. This result also holds even if we assume 
that the programs contain precisely one final label qfin, i.e. qfi, is the only label so 
that no instruction has this as its label. In the following we consider two-counter 
machines M with the initial configuration (q0, 0, 0) where 

1. q o , ' ,  qm, qfin are the labels of  M, where q0 is the initial label and qfin is the 
final label. 

2. cl and c2 are the two counters. 

3. m l , ' " , m t  are the instructions of M. 

6.2. Undecidabil i ty  of  R D C  l(k) 

We reduce the halting problem for M to satisfiability of a formula in RDCI(k)  (for 
k > 0). The encoding of M uses the following state variables: one state variable 
Qi for each label qi, two state variables C1 and C2 to represent the counter values, 
and two auxiliary state variables B and L, used as delimiters. 

Let Q = {Q0,..., Q,~, Qfin} in the following. The main idea is that a machine 
configuration (q, nl, n2) is encoded on an interval of length 4k as follows: 

[ Q I lZalll L .[Val2l where Valj represents the value of counter cj 

k k k k 

This will be done so that the n-th configuration appears in the interval 
[4nk, 4(n + 1)k], n ~> 0. 

The idea behind the representation of the counter values is the following: Let 
the value of counter ci be ni ~ O. Then the interval describing Vali is required to 
have the following form: 

JBIGIBI...JB]GIBI 

with ni occurrences of  Ci. Since this interval is required to have the length k, and 
since there is no bound to the counter value, this idea is based on the denseness 
of the time domain. This representation was inspired by [ACD90]. 

The task is to formalize these ideas as a formula in RDCI(k) .  In particular, 
we must construct a formula representing the initial configuration and a formula 
expressing how the n + 1'st configuration relates to the n'th configuration. To do 
so, the following abbreviations of formulas in RDC x(k) will be useful: 
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I |  ~ -~Ill 

true ~-- I1 v [11 

d < k ~ -ff(d = k)~true) 

d < 2k ~- -~((d = 2k)~true) 

2k~<E ~ (d - -2k )~ t rue  

d < 3k ~- ~((d = 2k)~(d = k)- t rue)  

d = 4 k  -~ (d= 2k)'-'(d= 2k) 

d =  5k ~- (d-=4k)~(d=k) 

[ s V  a [ s l / x  (~ = k) 

4 ~ ~ ~ - ' ( q ~ ( | l  v ~)) 

315 

The formula [S1 k reads: "S is one for a duration of k", and 4) ~-~ ~p reads: 
"if  the interval starts with (b, it must end immediately with [ 1 or with ~p'. 

The initial configuration is (q0, 0, 0), which is represented by the formula: 

Init ~ [Qo|k~[Bl~-[L]k~[Blk~'true 

State variables must be mutually exclusive: 

Mutex ~- A [3-~[P1AP2] where PbP2 range over QU{C1, C2,B,L} 
Pl~n2 

Certain state expressions will have a periodic appearance since configurations 
are represented on intervals of length 4k. Let 

Per(c)) ~ O( (q~d  = 4k)) =~ ((d -- 4k)-q~)) 

Machine labels, counter values, and the separator L have periodic behaviour: 
Periodic ~- 

Per( V [Qi]k) A Per([C1 V U-[ h) A Per([L] k) A Per([C2 V B] ~) 
Q~eQ 

For each instruction rni of M we give a formula F(mi), encoding the compu- 
tation step performed by the instruction. 

Consider the machine instruction m = qi : C+ --~ qj .  The possible computation 
steps allowed by m are described by a formula F(m) ~- F~ A F2 A F3 A F4 A F5 A F6, 
where each Fi is defined below. 

The formula F1 expresses that qj is the label of the next configuration: 

F1 ~ ([oi]k'-'(d = 4k)) ~ ((d = 4k) ~IQj~ k) 
The formula F2 copies the Cl's to the same place in the next configuration. 

To encode it, we use formulas of the form: q~ --~ ~p. Here (b characterizes certain 
configurations whose label is Qi, and ~p fixes part of the next configuration. 

F2 ~ ( [ 0 i ~ k ~  < k ) - [ C l ] ~  ) -,~ ([Ct]~true) 
d = 4k 
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One can copy the B's occurring before a C~ to the same place in the next 
configuration using the same technique: 

F3 ~_ ([Qi]k'-'(~ < k)-[B]~( [B]~[C1]-true ) /x ) ~ ([Bl-true) 
f = 4k 

The formulas F4 and F5 increase the value of cl by replacing the last [B] 
section of cx's value with [B] I C 1 1 I B ]  in the next configuration. (F4 handles 
the case nl = 0, and F5 handles the case nl > 0.) 

F4 -~ ([Q~lk~fBlk~(e = 4k)) =~ (true'-'(# = k A ( f B I I G I I B I ) ) )  

( k~ [Bl-[Ll~true ) 
F5 -~ ([Qi] (f < k)~[Cl]~( A (~ = 5k) )) 

(true'-'((d = k) A ([B]~IG]]~[BI~[L]))) 

Note that the beginnings of succeeding L sections are exactly 4k apart, and 
therefore in Fs the length of the [B]~[C1]~[B] section in the consequent is 
precisely as long as the last [B] section in the antecedent. Thus, the "effect" of 
F4 A F5 is to increase the number of [C1] sections by one, as desired. 

The formula Periodic takes care of copying the L section to the next configu- 
ration, and the formula F6 copies the value of c2 to the next configuration using 
the same technique as used above: 

([Qi]k~(y < 3k)~[C2]~ A ) ~ ([C2]~true) 
= 4k 

F 6 ~  A 
( [B]'-'true ) 

([Qi]k~(2k ~< ~ < 3k)~[B]~ 2 4 k  ) --~ ( [B] "-'true) 

The remaining instructions mi can be encoded as formulas F(mi) by techniques 
similar to those already used. Then the entire machine is encoded by: 

Machine ~- Mutex A Init A Periodic A A DF(m~) 
ml 

By the construction of formula Machine we know that execution of the 
machine terminates if and only if the (Machine A O[Qfin]) is satisfiable. 

Theorem 6.1. The satisfiability in continuous time of DC formulas in RDC l(k) is 
undecidable. 

Remark: This result depends on the ability to express precisely the length ~ = k 
of intervals. One would, however, not get a decidable subset if the formula f < k 
is used instead, since E = k can be derived from ~ < k as follows2: 

~prq~ ~ ([ l l -q~true)  v (true-~b11]) 

f = k  ~ -~(f<k)/X[]p~(f<k) 

2 This was pointed out by Peter Sestoft. 
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The formula ~pr~) reads: "for some proper sub-interval: ~b". 
Thus, we cannot achieve a decidable subset by "relaxing the punctuality" from 

t = k to f < k, analogous to the result discussed in [AFH91]. We do not know 
whether this is possible when • > k is considered instead of # = k. [] 

6.3. Undecidability of RDC2 

We reduce the halting problem for two-counter machine M to the satisfiability 
of a formula in RDC2. We give a reduction which works both for a discrete and 
for a continuous time domain. This reduction is simpler than the first one given 
in [ZHS93]. The following state variables are used in this reduction: 

1. two state variables C + and C 7 for each counter ci, i = 1, 2. 
2. m + 2 state variables Q = {Q0,..., Qra, Qfin} corresponding to the labels of M. 

The following abbreviations will be used for state expressions: 

c v ci vcfvc vc  

C A ~ C+AC1AC+AC2 
Q QoV-..VQmVQ . 

where C v expresses that at least one of the four counter state variables is one, 
C A expresses that all four counter state variables are one, and Q expresses that 
at least one of the state variables corresponding to the labels is one. 

The main idea of the encoding of M is that a period is divided into two 
sections IQICl ,  where Q is one of the state variables for labels, and C is either one 
of C +, CT, C +, or C~- or their conjunction C A. 

A configuration (and a computation) is represented by a sequence of periods: 

IQolCAIQ'~ ICIQ '2 Ic l  . . . IO~lcI 
so that f C  + = f C ~  holds for this sequence iff the counter ci has the value 0 
after k computation steps. 

In fact, the idea of the encoding is that the value of the counter ci in the k'th 
configuration is f C  + - fC?- where the integration is over the "whole sequence". 
All sections must have the same size for this idea to work. 

To formalize these ideas in RDC2 we will use the following abbreviations of 
formulas concerning counter values: 

lS l  ~ (fS = f l )  A ~(fO = f l )  

InCrl & [C;- A-~(C 1 V C + V C~-)] 

Decrl ~ [C 1A-~(C + V C  +VC~-)] 

Incr2 --~ [C +A-~(C 2VC +VC1) ] 

Decr2 ~ [C 2A-~(C +VC +VC1) ] 

C o n s t  -~ [C A] 
The formula lncrl expresses that the value of counter Cl is increased by one by 

letting C + be one throughout one section, while the other counter state variables 
are zero. The formulas Decrl, Incr2, Decr2 have similar explanations. 
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The conjunction C A is used in Const to keep the counter values constant from 
one period to the next (by increasing f c  + as much as fCF). 

Furthermore, the following abbreviations of formulas in RDC 2 will be used: 

true ~ [ I V ] l ]  

~ ~--~(~([ ]v~))  
Op~b ~ ~b~true "for some prefix interval: r 

cJp~b -~ ,(~p(-~b)) "for all prefix intervals: qY' 

Let R and S be two state expressions. By a formula in RDC2 we describe a 
sequence of equal size sections of the form: 

I R I S I R I S I R ] S I . . . I R I  S I 

1 2 3 4 5 6 . . .  n n + l  

Let EqualSizeCover(R,S) be defined by the formula: 

- ~  [RA S] (a) 

( [Rll-Sl )~ 
A f R  A = f S  true (b) 

A o A ( [ R l l S ] )  ~ (([1 v [R])~ fR  = fS))) (c) 

A o( ( [S ] I~SI )  =~ ( [S] IR] ) )  (d) 

( ]S]~[R] ) 

A n((]R]-[S]~[R]) ~ ([R]'- '([] V [S])~ f S  = A f R  )) (e) 

A O((]R]~]-~R]) => ([R]~]S]))  (f) 

A [ ] ( ( [ R ] I S ] I R l l S ] ) ~  (]R1- fS=AfR  ]Sl)) (g) 

( [ R ] I S ]  ) 

A n ( ( [S]~[R] IS] )  ~ ( [S]~([ ]  V [R])~ fR-=A f S  )) (h) 

( ] R l l S ] ) ~ f S  A o ( ( [ S ] I R l l S ] I R ] )  ~ (]S]~ fR  A = JR1)) (i) 

This formula describes a sequence of equal size sections because: (a) requires 
that the state expressions R and S are mutually exclusive and (b) requires that 
there is an initial period I - R ] I S ]  whose [R] and [S] sections are of equal 
size. Formula (c) ensures that the first ]S] is not too long. Thus, the first three 
formulas characterize the first two sections. 

The remaining formulas, i.e. (d) to (i), guarantee that the next two sections 
have the right size provided that the previous one has: (d) says that an ]R] 
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section must follow each IS] section, and (e) ensures that this [R] section is 
not too long. (f) says that an [S |  section will follow each [R|  section, and (g) 
guarantees that each full [R] section is precisely as long as the previous full [S] 
section. (h) and (i) are similar to (e) and (g). 

The following mutual exclusion property is needed: 

Mutex ~ A ~O[PIAP2] whereP1 and P2 range over Qu(C v} 
P1 ~P2 

The two-counter machine M is encoded by the formula: Machine ~- 

Mutex A EqualSizeCover(Q, C v) A Init A Start(mo) A A DpG(mi) 
mi 

where Init, Start(mo), and G(mi) are defined below. 
The formula Init expresses that the initial configuration is (q0, O, 0): 

( [Q~176 ) - t r u e  
Init -~ A 

fQo = : C  A 

The formulas Start(too) and G(mi) are defined below. Here we assume that m0 
is the instruction which has q0 as its label. Then the formula Start(too) describes 
the first transition of a computation by M and the formula G(m) describes any 
later transition caused by the instruction m. 

In the definition of Start(too) below we use that we know from 1nit that the 
initial configuration is (q0, 0, 0). 

If m0 is qo " c + --+ qj, then Start(qo " c + - - *  qj) 

v 
A ~ [Qj]~Incri 

fO.o = f c  A v 
[ Q j ] -Incr ~-'[Q] "-'true 

Notice that the right-hand side of---, demands that Incri can only be followed 
by a [QJ section. This excludes for instance a section of the form: Incr'~'Decri. 
Furthermore, since [Qj] can only be followed by a section with Incri we have 
due to Mutex that all other state variables corresponding to labels are zero in 
this [Qj] section. 

If m0 is qo " c;- ~ q j, qk, then Start(qo " c~- --~ qj, qk) ~- 

) A "-* [Q j] ~Const 
fQo = f cA  v 

[ Q j] ~Const ~[Q] "-'true 

Thus, the formula Init A Start(too) characterizes the first two configurations 
of M's computation. In the definition of G(m), which characterizes later configu- 
rations, we use that a previous configuration exists for the "actual" transition. 
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Define G(qj " c + ~ qk) ~ 

t r u e l C  v] ~ A 
fQ;  = f c  v 

Define G(qj �9 c:~ --. qk, qt) ~- 

t r u e 1 C  v] ~ A 
fQ j  = f c  v 

A 
f <  = f c r  

A 

[Qk] ) 

[Qk ] ~Incri 

k(Qk ] ~Incr F[Q] "true 

[Qkl ) 
V 
[Qk] -Const 

X(Qk ] -Const ~[Q] ~true 

(l Jcv )( I t r u e 1 C  v ] -  A v 
fQ j  = f c  v ~ [Qi]-Decri 

A V 
=(f  C + = f CF) [Qd -Decr['[Q]'-true 

The first conjunct describes the case where the value of counter ci is zero, and 
the second conjunct describes the case of a positive value of counter ci. 

G(mi) must hold for all prefix intervals in Machine because the counter value 
of a configuration is "calculated" from the whole computation leading to the 
configuration, e.g. ci has the value 0 in the k'th configuration of the computation: 

tQolCAIQIlCIQ2ICI ... IQklCI 

if f c  + = f c  F holds "for the whole sequence". 
It can be proven that if:r, [a,b] ~dc Machine A O[Qfin-[, then a terminating 

computation of M can be constructed, and vice versa, from a terminating compu- 
tation of M one can construct Z and [a, b] so that 2;, [a, b] ~dc Machine A 0 [Qfin]. 
Thus, the halting problem for two-counter machines can be reduced to satisfia- 
bility of formulas in RDC2, and we have the following 

Theorem 6.2. The satisfiability of DC formulas in RDC2 is undecidable for 
discrete as well as for continuous time. 

6.4. Undecidability of R D C  3 

The halting problem for a two-counter machine M can be reduced to satisfiability 
of a formula built from [P]  and f = x using the connectives -~ and v, the 
quantifier 3x, and the modality - [ZHS93]. We do not present this reduction, 
since it illustrates universal quantification better than it does IL and DC. 

Theorem 6.3. The satisfiability (in discrete and continuous time) of duration 
calculus formulas from RDC3 is undecidable. 

7. Related Work 

In this section we give references to related work on interval logics and duration 
calculus, which we know of at present. 



Duration Calculus 321 

7.1. Work on Interval Logic 

The first work we know of on interval logic comes from the area of philosophical 
logic [Hum79, RiJp80, Ben83]. 

In the area of artificial intelligence, the papers [Al183, Al184] study a theory 
of action and time. Thirteen binary relations are introduced for the different 
relationships between two intervals, e.g. il before i2 and il overlaps i2. The 
relationships can be used in first order sentences where one can quantify over 
intervals, e.g. 

V/1, i2, i3(il before i2 /k i2 before i 3 ~ i1 before i3) 

is an axiom in the system. The modality ~ corresponds to a ternary relation of 
intervals and is not introduced in this work. 

In [SMV83] and [HMM83] interval logics (with modalities) are used to 
describe protocols and hardware components. The modality used in [SMV83] 
has the form [I]c~ which reads: "the next time the interval I can be constructed, 
the formula ct will hold for that interval", where intervals are characterized through 
events. Furthermore, [SMV83] used the modalities "for any suffix interval" and 
"for some suffix interval". 

In [HMM83], the discrete time interval temporal logic is introduced to specify 
hardware components and to reason about such specifications. These first works 
initiated a research interest in both practical and theoretical aspects of interval 
logic, e.g. [Mos83, Mos85a, Mos86, RoP86, HAS86, Me187, Hal88, Ven90, Ven91, 
GBJ91, Mos93, Dut95b, Dut95a]. 

In [Mos83] some axioms and inference rules occur for the chop modality, e.g. 

((q~ v ~)-~0) < ,  ((q~-q~) v (~-~0)) 

Furthermore, in [HAS86], the complexity of validity and satisfiability problems 
are studied for a propositional interval logic with modalities which can express all 
relationships between intervals discussed in [Al184]. E.g. the validity problem is 
shown to be Ill-complete when natural numbers are chosen as time domain, and 
it is r.e.-hard and belongs to I12 when real numbers are chosen as time domain. In 
[Ven90] there is an axiomatization of the logic studied in [HAS86]. Furthermore, 
[Dut95b, Dut95a, ZhH96a] contain a completeness result for a language based 
on [HMM83]. 

Related languages are the Time Interval Calculus [Bri91] and the Sequential 
Calculus [vKH95], which are based on Tarski's calculus of relations [Tar41], and 
the MITL logic [AFH91]. MITL is based on the Metric Temporal Logic [Koy90] 
in the sense that it allows the until modality to be indexed with a time interval. 

7.2. Work on Duration Calculus 

7.2.1. DC Models 

Different models are used by designers of real-time systems at different design 
stages. In order to accommodate all necessary models, different families of func- 
tions are considered as state models for DC formulas. Thus, states can be more 
general than the Boolean valued functions considered in this paper. But although 
we recognize that different models are useful in different situations, we decline 
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to develop a universal, but complicated, duration calculus to specify and reason 
about all the models. The Boolean state model, presented in this paper, is the 
basis for DC. All other models, which have been introduced, extend this basic 
model. These models are briefly mentioned below. 

Boolean State Model: The basic calculus of DC [ZHR91] axiomatizes state 
durations, i.e. integrals of Boolean valued functions, for the Boolean state model 
under the finite variability assumption (also called non-Zeno phenomenon) of 
states, i.e. a state can only change its presence and absence finitely many times in 
a bounded time period. The interval modality chop (~) is used by this calculus, 
which can express safety properties of real-time systems. Formalizations of other 
models are conservative extensions of this calculus. 

Boolean State and Event Model: The Boolean state and event model is studied in 
[ZhL94, ZhH96b], where an event is a Boolean valued g-function, i.e. a function 
with value of 1 at discrete points. It means that an event is an instant action, 
which takes place at a time point, iff the Boolean valued g-function of the event 
takes value 1 at the point. By relating events to state transitions, this model 
can be used to refine from state based requirements via mixed state and event 
specifications to event based specifications or programs. 

However, one cannot capture point-values of functions with integrals since 
the integral of a function at a point is always zero. In order to describe point 
properties in DC, [ZhL94] and [ZhH96b] propose slightly different approaches. 

Integrals f P  are in [ZhL94] replaced by mean values P, where P([b, el) = e 
if b = e, and P([b,e]) = f~P( t )d t / (e -  b) if b < e. Thus, one can describe 
point properties of Boolean valued functions by using their mean values inpoint  
intervals, and at the same time, integral of P can be defined as f P  ~ (P �9 f). 
Additional axioms and rules for reasoning about point properties are developed 
in [ZhL94]. However, extra atomic formulas and axioms are in [ZhH96b] added 
to the basic calculus to express and reason about state transitions and events. 

Real State Model: A real state model consists of a set of real-valued functions, 
which describe behaviour of physical components of a software embedded system. 
A Boolean state represents a property of the real states of the model. Therefore, 
specifications and reasonings at the state level may have to employ real analysis. 
[ZRH93] investigates how DC can be combined with real analysis, so that real 
state models can be specified in the framework of DC. [ZhH96a] furthers this 
research by formalizing some part of real analysis using expanding modalities. 

Dependability: The dependability of a requirement for an implementation can 
be quantitatively measured by the satisfaction probability of the requirement for 
this implementation. In respect to the Boolean state model, [LRS93, LRS94] 
provide designers with a set of rules to reason about whether a given requirement 
will hold with a sufficiently high probability, given failure probabilities of the 
components used, where implementation with imperfect components is taken to 
be a finite automaton with history-independent transition probabilities in discrete 
time domain. [DaZ94] generalizes this work for continuous time domain. 

Finite Divergence Model: The finite variability of states and events stipulates that 
state transitions and events can happen only finitely many times within a finite 
time period, and can e.g. be adopted in connection with software systems, where 
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time progresses discretely. But this assumption may be violated in a software 
embedded system, where time is continuous. The opposite notion is called finite 
divergence (or Zeno phenomenon). [HPZ95] formalizes the finite divergence model 
by introducing into DC rules to calculate a state duration in a finite divergence 
model as a limit of its approximations in finite variability model. 

Super Dense Computation: A super dense computation is a sequence of timeless 
operations. It is an abstraction of a real-time computation within a context with 
a grand time granularity. This abstraction has been adopted by digital control 
system, where the cycle time of a computer may be nanoseconds, while the 
sampling period of a controller may take seconds. Computation time can, in 
this case, be neglected, and operations can be considered as timeless actions. 
[ZhH96b] adapts the chop modality (called super dense chop), so that it can map 
an operation in a grand time space into a time space with finer time granularity. 

Expanding Modalities: Only safety properties can be expressed with contracting 
modalities such as ~ and ~. In order to specify unbounded liveness and fairness 
properties in DC, [Ska94a, Pan96, EnR94, ZhH96a] present proposals to introduce 
expanding modalities. [ZhH96a] proves that the left and right neighborhood 
modalities, @ and ~r, are adequate in the sense that the other contracting and 
expanding modalities suggested in [Al184, HMM83, Veng0] can be derived from 
them in a first order logic with the interval length f. [ZhH96a] establishes a 
complete first order calculus for ~/, <>r and E, and demonstrates how expanding 
modalities are also convenient for formulating notions of real analysis. 

Infinite Intervals: The behaviour of real-time systems is, occasionally, assumed 
to be infinite. DC is, however, based on an interval logic of finite intervals. An 
infinite behaviour is therefore specified in DC as a set of all finite prefixes of 
the behaviour. Expanding modalities can be used to specify liveness and fairness 
properties in terms of its finite prefixes. However, an alternative approach is to 
introduce infinite intervals. An extension of DC, which allows infinite intervals, is 
described in [ZDL95]. In this extension, a state duration over an infinite interval 
is determined by a property, which specifies the limit of the state duration over 
finite intervals. Since the extension includes both finite and infinite intervals, 
terminating and infinite system behaviour can easily be expressed. 

7.2.2. DC Applications 

Case Studies of Software Embedded Systems: DC has been applied to several 
case studies, e.g. an auto pilot [RaR91], a railway crossing [SRR92], a water level 
monitor [EKM93], a gas burner [RRH93], an aircraft traffic controller [Ina94], 
a production cell [PER94], a motor-load control system [YWZ94], an inverted 
pendulum [WCH96], and a hydraulic actuator system [RRH95]. A case study to 
formalize and synthesize an optimal design of a double-tank control system is 
conducted in [HeZ95]. 

Real-time Specification and Verification: DC has been used to define real-time 
semantics of other languages, e.g. CSP-like languages [ZHR92, HeB92, SCO95, 
Sch95, ZhH96b]. It is in [ZHR92] emphasized that some processes may be 
executed on the same processor. In [ZhH96b], it is assumed that assignments and 
message passing take no time and thus can constitute a super dense computation. 
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In [HOS93], DC is used to give semantics to two different formalisms to describe 
reactive systems, where one supports a global view of systems and the other 
supports a CSP-like view of systems. In [RRH93], a CSP semantic domain is 
lifted to DC formulas by regarding traces and refusals as functions of time. 
[ZWR96] gives semantics to a CSP-like language with continuous variables, 
which can be used to describe software embedded systems. 

In [MGH96] and [PRS95], DC is used to define real-time semantics for SDL 
and Esterel, respectively. A DC semantics is, in [Die96], proposed for a graphical 
language called Constraint Diagrams. In [HRS96], a formal meaning of Fault 
Trees is given using DC. In [HZS92], DC is used to specify and reason about 
real-time properties of circuits. In [Ris92], the correctness of Fischer's mutual 
exclusion protocol is proven in DC, and DC is in [ZhZ94] used to specify and 
verify the deadline driven scheduler. Furthermore, several well-known real-time 
schedulers are specified in [ChD95]. 

Refinement of DC Specifications: Refinement laws towards DC implementables, 
which are formulas of a restricted form which can express properties such as 
timed progress and stability, are considered in [MRR93]. A full exposition of 
these ideas is given in the monograph [Rav95], which e.g. also contains a study 
of how to ensure that a set of implementables is feasible, i.e. that it is consistent 
and that any finite observation can be extended in time. Techniques are, in 
[ORS96, SCO95, Sch95], developed to refine a feasible set of DC implementables 
via a mixed specification and programming language into an executable program. 
Refinement of DC implementables into automata is considered in [Sch94, DaW94, 
K~i~i95a, K~i~i95b]. An approach to refining DC specifications into programs in 
the style of the Hoare logic is considered in [XuH95, XuY96]. In [Lak96], it is 
shown how Implementables [Rav95] can be encoded in a decidable fragment of 
a logic called Duration Interval Logic. 

7.2.3. DC Tools 

The research of DC tools include developments of complete calculi for inter- 
val modalities and state durations, and decision procedures and model checking 
algorithms for DC subsets. It is proved that the interval logic [ZhH96a], with 
modalities ~ and %, and the interval length Y, is complete, and the calculi for 
integral and mean value are relatively complete [HaZ92, Li93]. The decidable 
subsets of DC are discovered by [ZHS93, Han94, Li93]. Decidability and expres- 
siveness results are presented in [Pan95] for extensions of the mean value calculus 
which includes expanding modalities and quantifications over state variables. 
Furthermore, in [PAR95] there is study of mean value calculus extended with 
fixed point operators. Various models are investigated in [Frii96] which restrict 
the variability of states. Results on decidability and undecidability of formulas 
are developed wrt. these restricted models. 

In order to check whether state transition sequences of a real-time automaton 
satisfy a linear inequality of state durations, [KPS93, ZZY94, LiH96] develop 
algorithms which employ techniques from linear and integer programming. 

A proof assistant for DC [SkS94a, Ska94b] is developed as an extension 
of PVS [OSR93]. A decision procedure [ZHS93] is incorporated in this proof 
assistant. For example the soundness proof for the induction rules for DC [HaZ92] 
is checked with this proof assistant. Furthermore, several proofs done in case 
studies are checked using the DC extension of PVS [Ska94b], e.g. [ZHR91] and 
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[SRR92]. In these applications of the proof assistant errors in the original proofs 
were spotted. There is also a proof assistant developed in UNU/IIST [MXW96]. 

7.3. Other Languages with a Duration Notion 

In [MAP93], there is a discussion of how the temporal logic of [MAP92] can be 
extended by a duration function fp  (and a special real-time clock variable T). fp  
is a measure of the accumulated time in which p has been true in the interval 
[0, T]. 

Another idea is presented in [Lain93], where a construct is introduced so that 
the duration of some state variable p is related to another state variable x and 
the actual time, which is called now, in such a way that the value of x(now + t) 
for t >/0 equals the duration of p in the interval [now, now + t]. 

In [LaH94], a duration term f f p  is introduced into the metric temporal logic 
of [Koy92]. The duration term f f p  denotes at a given time t the duration of p in 
the interval [t, t + z]. This work is supported by a theorem prover [Hoo94]. 

In [BES93] there is another logic which can express duration constraints. 
In automata based formalism, integrator variable is used to measure the 

accumulated time an automaton has spent in certain states, e.g. [KPS93, ACH93, 
BER94, KHM94, SiM94]. 
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