
Formal Aspects of Computing (1997) 9:283 330
�9 1997 BCS Formal Aspects

of Computing

Duration Calculus: Logical Foundations
Michael R. H a n s e n I and Z h o u Chaochen 2
1Department of Information Technology, Technical University of Denmark
2International Institute for Software Technology, United Nations University, Macau
on leave of absence from Software Institute, Academia Sinica, Beijing

Keywords: Duration Calculus; Interval Logic; Real-time systems; Formal methods

Abstract. The Duration Calculus (abbreviated DC) represents a logical approach
for formal design of real-time systems, where real numbers are used to model
time and Boolean valued functions over time are used to model states and events
of real-time systems. Since its introduction, DC has been applied to many case
studies and it has been extended in several directions. The aim of this paper is to
provide a thorough presentation of the logic.

1. Motivation

A real-time system is a computing system with real-time requirements. Let us
consider the following example of a real-time system.

1.1. An Example

Gas Burner: This example was first investigated by [SRR90]. A gas burner is
either heating when the flame is burning or idling when the flame is not burning,
and it alternates indefinitely between heating and idling. Usually, no gas is flowing
while it is idling. However, when changing from idling to heating, gas must be
flowing for a short time before it can be ignited, and when a flame failure appears,
gas must be flowing before the failure is detected and the gas valve is closed.
Hence, there may exist a time where gas is flowing and a flame is not burning, i.e.
gas is leaking. A design of a safe gas burner must ensure that the time intervals
where gas is leaking do not get too long.

Correspondence and offprint requests to : Michael R. Hansen, Department of Information Technology,
Building 344, Technical University of Denmark, DK-2800 Lyngby, Denmark. E-mail: mrh@it.dtu.dk

284 M.R. Hansen and Zhou Chaochen

Let us assume that the ventilation required for normal combustion would
prevent dangerous accumulation of gas, provided that the proportion of leak
time is not more than one twentieth of the elapsed time for any time interval
being at least one minute long - - otherwise the requirement would be violated
immediately at the start of a leak. This is a real-time requirement.

Certain design decisions must be made as to how the real-time requirement is
to be met. For example, for any period where the requirement is guaranteed, any
leak should be detectable and stoppable within one second; and to prevent fre-
quent leaks it is acceptable that after any leak the gas burner rejects switching on
gas for thirty seconds. The conjunction of these two decisions implies the original
requirement, a fact which should be proved before implementation proceeds. []

The gas burner is a real-time system and an example of a software embedded
system, also called a hybrid system.

Duration Calculus is a logical approach for formal design of real-time systems.
Real numbers are used to model time, and functions from time to Boolean values
are used to model the behaviour of real-time systems. Based on interval logic
[HMM83, Mos83], DC provides a formal notation to specify properties of real-
time systems and a calculus to prove those properties formally, such as the
correctness of the design decisions for the gas burner.

1.2. State Models

The notion state is used to model behaviour of real-time systems. A Boolean state
model of a real-time system is a set of Boolean valued functions over time:

Time ~ {0,1}

where Time is the set of the real numbers. Each Boolean valued function, also
called a Boolean state (or simply a state) of the system, is a characteristic function
of a specific aspect of the system behaviour, and the whole set of Boolean valued
functions characterizes all the concerned aspects of the behaviour.

Gas Burner: To verify the design decisions against the requirement, one may
start with a single Boolean state to model the critical aspect of the system:

Leak 6 Time ~ {0, 1}

where Leak(t) = 1 means that gas is leaking at time t, and Leak(t) = 0 means
that gas is not leaking at t. However, at a later stage of the design one may have
to specify the phases of burning and idling of the gas burner, and introduce more
primitive Boolean states of the system such as Gas and Flame to characterize
flowing and burning of gas. Then Leak can be pointwise defined as the Boolean
expression of Gas and Flame:

Leak(t) ~- Gas(t) A ~Flame(t), for any t c Time

[]
Boolean operators (e.g. -~ and A) for states are included in DC, so that a

composite state of a real-time system can be refined to primitive states of the
system.

We are interested in non-Zeno states, i.e. states changing at most a finite
number of times in any finite interval. Therefore, we assume that Boolean states
are finitely varied: P has at most a finite number of discontinuity points in [b, e]

Duration Calculus 285

for any Boolean state P and interval [b, e]. It is easy to see that the set of finitely
varied Boolean states are closed under the Boolean operations, and that any
Boolean state in the set is integrable in any interval [b, e].

We are also interested in stable aspects of systems, e.g. when we observe a
gas leak at time t, then gas leaks during a left and /or a right neighborhood of
t. Therefore, a suitable restriction could be to consider Boolean states which are
left or right continuous at any time t.

This set of left or right continuous functions is, however, not closed under the
Boolean operations, e.g. for

0 for t < 2
Gas(t) = 1 for t >~ 2

0 for t~<2
Flame(t) = 1 for t > 2

we have that

1 for t = 2
Leak(t) = Gas(t) A -,Flame(t) = 0 for t :p 2

Thus, Leak(t) is neither left nor right continuous at t --- 2 despite the fact that
both Gas and Flame are left or right continuous functions. Therefore, we only
assume here the finite variability of Boolean states; but we will return to the
discussion of left or right continuous states in Section 3.2

1.3. State Durations

The notion state duration is an essential measurements of the behaviour of real-
time systems. The duration of a Boolean state over a time interval is the accumu-
lated time in which the state is present in the interval. Let P c Time ~ {0, 1} be
a Boolean state and [b, e] an interval, i.e. b, e ~ Time and e/> b. Mathematically,
the duration of state P over [b, e] equals the integral

ep
f b (t)dt.

Let us use the gas burner example to illustrate the importance of state durations
in specifications of real-time behaviour.

Gas Burner: The real-time requirement of the gas burner is that the propor-
tion of leak time in an interval should not be more than one twentieth of the
interval length, if the interval is at least one minute long. This requirement can
be expressed in terms of the duration of Leak:

(e - b) >/60 see. =~ 20f~Leak(t)dt <<. (e - b) for any interval [b, e]

[]

Since gas leaks due to random flame failures, the duration of a leak must
be used to extract the accumulated leak time of gas. Therefore, a mathematical
formulation of this requirement can hardly leave out state durations. Hence, state
duration is adopted in DC as an essential measurement of the behaviour of
real-time systems.

286 M.R. Hansen and Zhou Chaochen

1.4. State Distances

The distance between states (or events) is another important measurement of
the behaviour of real-time systems and was extensively studied before the de-
velopment of DC, e.g. in Timed Automata [A1D92], Real-Time Logic [JAM86],
Metric Temporal Logic [Koyg0], Explicit Clock Temporal Logic [HLP90], and
Interval Temporal Logic [HMM83, Mos85b]. However, state durations are more
expressive than state distances in the sense that the latter can be expressed in
terms of the former, but not vice versa.

One can first express an occurrence of a state using state durations. Let us
assume that a presence of state P lasts for a period of [c, d] (d > c). It can be
expressed as the duration of P in [c, d] is equal to the length of [c, d] :

fdP(t) = (d - c) > O, (abbreviated P[c, d])

if we do not care about instant absence of P. In real analysis it is read as: "P
appears almost everywhere in [c, d]". Thus, real-time constraints on occurrences
of states can be expressed in terms of state durations.

Gas Burner: Consider the first design decision concerning the gas burner. Let
[b, e] be an arbitrary interval where we want to guarantee the requirements of the
gas burner. The first design decision is that any leak in [b, e] should not last for
a period longer than one second. It can be expressed as:

Vc, d : b <~ c ~ d <<. e.(Leak[c,d] ~ (d - c) <~ 1 sec.)

[]
Similarly, real-time constraints on state distances can be expressed in terms

of state durations.

Gas Burner: The second design decision concerning the gas burner is that the
distance between any two consecutive occurrences of leaks during the interval
[b, e] must be at least thirty seconds long:

Vc, d , f , g : b< .c<~d<~f~g<<.e .
(Leak[c, d] A NonLeak [d, f] A Leak[f ,g]) ~ (f - d) ~> 30 sec.

where NonLeak is a state defined from Leak using negation (7):

NonLeak(t) ~ ~Leak(t), for any t ~ Time

[]
Since state durations are more expressive than state distances, DC is more

expressive than the existing formal approaches to real-time systems. By axiom-
atizing integrals of Boolean valued functions, DC also exhibits a possibility to
introduce notions of real analysis into formal techniques for designing software
embedded real-time systems. Nowadays one can find a notion of integral and/or
differential in Automata [ACH93, NOS93], StateCharts [MAP93], Temporal Logic
of Actions [Lam93], and Communicating Sequential Processes [He94].

State durations as integrals of Boolean valued functions are functions from
time intervals to real numbers. It is therefore a natural choice to base DC on
the interval logics proposed in [Dut95a, HMM83, Ven90], since these logics are
logics for functions of time intervals.

Duration Calculus 287

2. Interval Logic

In this section we give the syntax, semantics, and proof system for Interval Logic
(IL) based on [Dut95b, Dut95a]. Section 3 shows how DC extends IL.

2.1. Syntax

The formulas of IL are constructed from the following sets of symbols:

GVar: An infinite set of global variables x , y , z These variables are called
global since their meaning is independent of time and time intervals.

TVar: An infinite set of temporal variables v, v~,.... The meaning of a temporal
variable will be a real-valued interval function.

FSymb: An infinite set of global function symbols f~, gin,.., equipped with arities
n, m >~ 0. If f~ has arity n = 0 then f is called a constant. The meaning of a
global function symbol f", n > 0, will be an n-ary function on real numbers
which will be independent of time and time intervals.

RSymb: An infinite set of global relation symbols G ~, H m equipped with arities
n, m ~> 0. The meaning of a global relation symbol G ", n > 0, will be an n-ary
Boolean valued function on real numbers which will be independent of time
and time intervals. The Boolean constants true and false are the only two
global relation symbols with arity 0.

PLetter: An infinite set of temporal propositional letters X, Y, The meaning of
each temporal propositional letter will be a Boolean valued interval function.

The set of terms O, Oi E Terms is defined by the following abstract syntax:

0 ::-- x l ~ l v I fn(01,...,O~)

where ~ is a special symbol for an interval function denoting the interval length.

The set of formulas (o, ~p E Formulas is defined by the following abstract syntax:

where - is a binary modality for "chopping" an interval into two consecutive
sub-intervals. We also use q~, (ai, q~i, and ~0i to denote formulas.

We will use standard notation for constants, e.g. 0,1, true and false, and for
function and relation symbols of real arithmetic, e.g. + and >/.

2.2. Semantics

The meaning of terms and formulas are explained in this section. To do so one
must define the meaning of global and temporal variables, (global) function and
relation symbols, and (temporal) propositional letters.

We are only interested in functions and relations of real arithmetic, so let us
n assume that a total function f-i E N" ~ N is associated with each n-ary function

symbol f~, and a total function G~ ~ IR" ~ {tt,ff} is associated with each n-ary
relation symbol G~. In particular tt and ff are associated with true and false,
respectively. We assume that +, - and =, ~<,... have their standard meaning.

288 M.R. Hansen and Zhou Chaochen

The meaning of global variables is given by a value assignment, which is a
function associating a real number with each global variable:

V E G V a r ~ R

Let Val be the set of all value assignments.
The meaning of temporal variables and propositional letters, i.e. the "interval

dependent symbols", is given by an interpretation:

J E U ~ t_J
PLetters Intv ~ {tt,ff}

linty G { [b, e] I b, e E R and b ~< e},
where

J(v)([b,e]) 6 R and J(X)([b,e]) c {tt,ff}

associating a real-valued interval function with each temporal variable and a
Boolean valued interval function with each temporal propositional letter. We will
use the following abbreviations'

v j ~- J (v) and X j ~- J (X)

The semantics of a term 0 in an interpretation J is a function

J[[O]] c Val x ~ntv --~ R

defined inductively on the structure of terms by"

J[[x]](V, [b,e]) = V(x)

ff[[[]] (V, [b, el) = e - b

if[Iv]](V, [b,e]) = vy([b, el)

f f~n(01 0n)]l (P,[b,e]) = fn(cl,. . . ,Cn)

where ci = ffl[Oi~ 02, [b, e]), for 1 ~< i ~< n.

The semantics of a formula dp in an interpretation J is a function

J[[4)] e Val x ~ntv --~ {tt,ff}

defined inductively on the structure of formulas below, where the following
abbreviations will be used:

J,V,[b,e] ~ b G J[[~b]] (V,[b,e])=tt
ff, V,[b,e] ~q~ G J[[~b]] (V , [b , e])= f f

Duration Calculus 289

The definition of ,7[[4911 is:

1)

2)

3)

4)
5)

6)

,7,12, [b,e] ~ X iff Xj([b,e]) = tt

J , 12, [b, el ~ Gn(O1,..., On)
iff Gn(J[[011](12, [b, e]) , ,7[[0,1](12, [b, e])) = tt

J,12, [b, e] ~ ~49 iff J,12, [b, e] g=49

J , V, [b, e] ~ 49 V~p iff ,7,12, [b, e] ~ 49 or ,7,12, [b, e] ~

,7,12, [b, el ~ 49"-'~
iff ,7,12, [b, m] ~ 49 and J , 12, Ira, e] ~ ~0, for some m 6 [b, e]

,7,12, [b, e] ~ (3x)49
{ for some value assignment V }

iff ,7,12', [b, el ~ 49 which is x-equivalent to 12

where 12 and 12' are called x-equivalent iff 12(y) = 12'(y)
for any global variable y which is different from x.

A formula 49 is valid, written ~ 49, iff ,7,12, [b, e] ~ 49, for any interpretation J ,
value assignment 12, and interval [b, el. A formula p is satisfiable iff J , 12, [b, e] ~ ~p
for some interpretation J , value assignment 12, and interval [b, e].

2.2.1. Abbreviations and Conventions

The following abbreviations will be used:

~49 -~ true~(49~true) reads: "for some sub-interval: 49"
reads: "for all sub-intervals: 49"

Furthermore, the standard abbreviations from predicate logic will be used e.g.

49 A ~p & ~((~49) V (~))
~ = - ~ ~ (~49) V~
49<=>'~ & (O==>tp) A(~:=>49)
(Vx)49 ~ -,((3x)~49)

When 7, (3x), (Vx), rq, and ~ occur in formulas they have higher precedence than
the binary connectives and the modality _ e.g. (E149) => (((Vx)(=~))--cp) can be
written as []49 ==> ((V x) ~ ' ~) .

2.3. Proof System

The proof system (or calculus) of IL we adopt is called S' in [Dut95b]. To
formulate the axioms and inference rules, we need the standard notion of free
(global) variables. Moreover, a term (formula) is called flexible if a temporal
variable, the symbol f or a propositional letter occurs in the term (formula). A
term or formula which is not flexible is also called rigid.

290 M.R. Hansen and Zhou Chaochen

The axioms of IL are:

A0 : f ~ > 0

((r A ~(~o-~)) ~ ((r A - -~o)~)

A2: ((r ~ (r

R " (r =~ r if q~ is a rigid formula
(r ~ ~p if F is a rigid formula

B �9 ((3x)r ~ (3x)(r if x is not free in tp
(r =~ (3x)(r if x is not free in r

L1 �9 ((f = x)~r =~ ~((~ = x) - ~ r
(r = x)) ~ - , (~ r = x))

L 2 : (x / > 0 A y ~ > 0) ~ ((f = x + y) < : ~ ((f = x)'-'(# = y)))

L3 : q~ => (r = 0))

L4 : r =~ ((E = 0)~r

The inference rules

M P : i f r
G : if~b
N1 : ifq~
N2 : if r
M1 : i f r
M2 : if r

The inference rules

of I L are:

and r =~ tp then ~p (modus ponens)
then (Vx)r (generalization)
then ~(-,qS~p)
then ~0p~--qS)

~p then (r ~ (tp~'~)
~p then (q~-~b) ~ (~o'-'~)

N1 and N2 are called rules of necessitation, and the inference
rules M1 and M2 are the m o n o t o n y rules for chop. The inference rule G is the
s tandard general izat ion rule f rom first order logic.

The p roo f system also contains axioms of first order predicate logic with
equality. Any axiomat ic basis can be chosen, and we will use "PL" when we
refer to predicate logic axioms, theorems, and inference rules. Special care must ,
however, be taken when universally quantified formulas are instant iated:

To formulate an ax iom schema for universal quantif icat ion we define: A term
0 is called free for x in r if x does not occur freely in r within a scope of 3y or
Vy, where y is any variable occurring in 0.

For example, y is free for x in (3z)(z > x); whereas y is not free for x
in (3y)(y > x). Note that (Vx)(3z)(z > x) and (Vx)(~y)(y > x) are bo th valid.
Ins tant ia t ion of x with y in the first formula yields (3z)(z > y), which is a
valid formula. However, instant ia t ion of x with y in the second formula yields
(3y)(y > y), which is not valid.

A formula is called chop free if - does not occur in the formula.
Consider for example the following universally quantified and valid formula :

(Vx)(((f = x)~(# = x)) =~ (E = 2x)). Ins tant ia t ing this formula, which is not
chop free, with the te rm f, which is flexible, yields ((f = f) ' - ' (f = ~)) ~ (f = 2~),
which is not valid.

Duration Calculus 291

Therefore, a side-condition occurs in the following axiom schema:

=:- 49(0) (i f either 0 is free for x in 49(x) and 0 is rigid) Q
or 0 is free for x in 49(x) and 49(x) is chop free.

A proof of 49 is a finite sequence of formulas 491"49~, where ~n is 49, and
each 49~ is either an instance of one of the above axiom schemas or obtained by
applying one of the above inference rules to previous members of the sequence.
We write Fit 49 to denote that there exists a proof of 49 in IL and 49 is called a
theorem of IL.

The proof system is sound, i.e. if Fil 49 then ~ 49 [Dut95b].
A deduction of 49 in IL from a set of formulas F is a sequence of formulas

49a "" 49,, where 49, is 49, and each 49i is either a member of F, an instance of one
of the above axiom schemas or obtained by applying one of the above inference
rules to previous members of the sequence. We write F k~t 49 to denote that there
exists a deduction of 49 from F in IL, and we write F, 49 Fit ~ for (F U {49})]-it 1t).

IL is an extension of the modal logic $4, e.g. [HuC68], since the following
three theorems and one deduction can be proven in IL (remember that tn49 is an
abbreviation for - ~ 4 9 and that <>~p is an abbreviation of true~lp"true)):

TI D(49 ~ ~p) ~ (D49 ~ m~p)
T2 D49 =:- 49
T3 D49 ~ t3m49
R4 49 Fit rq49

Proof We only give proof for R4:

1. 49
2. --,(~49~true)
3. --,(true~--,(7(~49~true)))
4. (~49~true) =>-~(~(~49"-'true))
5. (true~49"-'true)) =*- (true--~(~(-~49~true)))
6. --,(true~-~(~(~49~rue))) ~ -~(true'-'(~49~true))
7. ~(true~(-~49~true))

assumption
1.,N1
2.,N2
PL
4.,M2
5.,PL
3.,6.,MP

[]

The following theorems and deduction will be used later in the proof of the
deduction theorem:

T5 n49 ~ ~(--,49---~)
R6 []49 ~ ~P ~-il m49 =~ t~lp
T7 D(491 ~ 492) ~ ((49i-'~P) ~ (492~tP))

Proof. We prove (~49-~p) ~ -~E349, i.e. (-~49"-'~p) =>

1. W =~ true
2. (-~49~p) ~ (~49"-'true)
3. f = 0 =;- true
4. (f = 0~(~49-~p)) =~ (true~(--,49"-'lp))
5. (true~(~49~lp)) ~ (true~-,49"-'true))
6. ((= 0~(~49~)) ~ (true~(~49~true))
7. (-~49~) ~ ((= 0~(~49~'~))
8. (-~49~p) => (true'-t=49~rue))

(true'-'(~49"-'true)), to prove T5:

PL
1.,M2
PL
3.,M1
2.,M2
4., 5., PL
L4
7.,6.,PL

292 M.R. Hansen and Zhou Chaochen

The proof of R6 is given by:

1. De ~ ~p assumption
2. D([]~b =~ tp) 1., R4
3. E3(c3~b =~ ~p) =~ (~ n r =.. D~p) T1
4. D n r =~ n~p 2.,3.,MP
5. [3r =,. [::]nq~ T3
6. [:3r :=> I ~ 5.,4.,PL

The proof of T7 is left for the reader. []

The deduction theorem for IL is

Theorem 2.1. (Deduction) If a deduction, F, r Fil p, involves no application of
the generalization rule G of which the quantified variable is free in r then
F ~-~t n r ~ ~o.

Proof The proof is by induction on the length n of the deduction F, q5 Fil ~p.

Base step: n = 1. Then q~ must either be r a member of F, or an axiom.

Case ~p is r This case is simple since I-it Dq~ ~ r by T2 and thus trivially
F kil De =~ ~p.

Case ~p is an axiom or a member of F: In this case the following deduction
establishes F k i /De ~ 9 '

1. lp
2. ~ ([3 r PL
3. n~b =~ ~p 1., 2., MP

Inductive step: Suppose n > 0. The induction hypothesis is: If F U {4)} Fil ~0
by a deduction of length shorter than n which does not contain an application
of the generalization rule G of which the quantified variable is free in r then
F ~-it De ~ q~.

The case where ~0 is either q~, a member of F, or an axiom is as above. Otherwise
an inference rule is applied in the last step in the deduction:

Case MP: The deduction from F U {r has the form:

~Pl

~p

Duration Calculus 293

There are deductions of n95 =~ 1/) 1 and n95 ~ OPt =:" tp) from F by the induction
hypothesis. A deduction of []95 ~ ~p from F can be given as:

�9 ; deduction of [395 => ~Pt from F
k. D95 ~ ~pl J

�9 ; deduction of c195 => (~Pl => ~P) from F
1. t395 =~ (~1 =~ ~) J

l + 1. (D95 ~ (~1 ~ ~)) ~ (([]95 ~ ,~t) ~ ([]95 ~ ~)) P L
1+2. (r395 => ~pl) =~- (D95 ~ ~p) 1,1 + 1,MP
1+3�9 []95 ~ ~p k.,l + 2 ,MP

Case G: ~p has the form (Vx)~t, and the deduction from F U {qS} has the form:

(~/X)I/)I

Note that x does not occur freely in 95 and hence in D95. Thus, we have from PL:

~-. (Vx)(n95 ~ ~ t) ~ (D95 ~ (VX)Wl)

By the induction hypothesis there is a deduction of D95 ~ Wl from F. A deduction
of D95 => (Vx)wl from F can be given as:

�9 ~ deduction of D95 => V01 from F
k. D95 ~ ~1 J

k + 1. (Vx)(Q95 => 1/)1) k, G
k + 2. (Vx)(C~95 ~ ~1) ~ (D95 ~ (Vx)~l) P L
k + 3. o95 ~ (Vx)~pt k + 1.,k + 2., MP

Case NI : ~p has the form -~(~pi-'cg), and the deduction from F U {95} has the
form:

~Pl

By the induction hypothesis there is a deduction of ~95 => ~Pl from F. A deduction
of D95 ~ ~(~pi-'cp) from F can be given as:

�9 ~ deduction of D95 =~ ~Pl from F
k. n95 => Wl J

k + l . ~95~c3~1 k.,R6
k + 2. ~p~ ~ -~(~pi-'qg) T5
k + 3 . ~95 ~ ~(-~pi-'~o) k + 1.,k + 2.,PL

Case N2: Similar to N1.

294 M.R. Hansen and Zhou Chaochen

Case MI: W has the form (~i-'~o) => (Wfq)), and the deduction from F U {~b} has
the form:

Wl ~W2

By the induction hypothesis there is a deduction of []~b ~ (Wa ~ W2) from F. A
deduction of Dq5 ~ ((Wi-'(P) => (W~'~P)) from F can be given as:

�9 ; deduction of D o => (Wl ~ W2) from F
k. nq~ ~ (Wl ~ W2) J

k + 1. D~b =,. ~(W~ ~ We) k.,R6
k + 2. D(w~ = w2) = ((w?~0) ~ (w~'~0)) T7
k + 3. G4 ~ ((wi-~o) ~ (w~'~o)) k + 1.,k + 2. ,PL

Case M2: Similar to M1. This ends the proof of the deduction theorem. []

Proofs can sometimes be obtained more easily by using the deduction theorem.
We can, for example, prove

T8 D(~b = W) = n(u~b = QW)

from a deduction of n(l~b ~ DW) from {(~b =~ W)} using Theorem 2.1:

1. ~b= w

2. D(~b => W) 1, R4
3. c3~b =,. c3 w 2, T1, MP
4. D(D~b~DW) 3, R4

Remark: It can be proved that the proof system of IL [Dut95b] and the proof
system for the interval logic in [ZhH96a] are complete wrt. value/time domain
satisfying axioms for totally ordered commutative groups. Real numbers are a
totally ordered commutative group. Unfortunately, it is impossible to establish a
first order logic having real numbers as its only model. []

3. Durat ion Calculus
3.1. Syntax

In this section we establish DC as an extension of IL in the sense that temporal
variables v c TVar have a structure:

fs
where S
variables

S

We will
sions as

is called a state expression and is generated from a set SVar of state
P, Q, R , according to the following abstract syntax:

::= 01 1] P] ~$1 I S1VS2

use the same abbreviations for propositional connectives in state expres-
introduced for IL formulas.

Remark: The propositional connectives ~ and V occur both in state expressions
and in formulas but, as we shall see below, with different semantics. This does
not give problems as state expressions always occur in the context of f . []

Duration Calculus 295

3.2. Semantics

When we generate temporal variables from state variables, the semantics of
temporal variables must be derived from the semantics of the state variables.
To this end we introduce an interpretation for state variables (and propositional
letters) as a function:

2 E U --~ U

PLetters Hntv --* {tt,ff}

where 2 (P) 6 Time ~ {0,1}, 2(X) ~ Intv ~ {tt,ff}, and each function 2(P) has
at most a finite number of discontinuity points in any interval [b, e], hence Z(P)
is integrable in any bounded interval.

The semantics of a state expression S, given an interpretation Z, is a function:

Z[[S]I ~ Time ~ {0, 1}

defined inductively on the structure of state expressions by:

Z[~011(t) = 0
Z[[1]l(t) = 1
Z[[P]](t) = Z(P)(t)
Z[[(=S)]](t) = 1-Z[[S]](t)

2[[(S1V S2)]](t) = { 01 ifZ[[St](t)otherwise = 0 and Z[[S2](t) = 0

We shall use the abbreviation Sz ~ 2[[S]]. We see by this semantics that each
function Sz has at most a finite number of discontinuity points in any interval
[b, e] and is thus integrable in any bounded interval.

The semantics of temporal variables, which now has the form fS , is given by
a function g[[fs]l ~ Hntv ~ 1t defined by:

Z~f S]] [b, e] = fb Sz(t)dt

This function can be used to induce an interpretation J z for temporal variables
v of the form f S and propositional letters from 2:

ffz(X) = Z(X) for any propositional letter X
Jz(v) = 2 [f S~ when v is f S

The semantics of a duration calculus formula 4~, given an interpretation 2 to state
variables, is a function:

Z[[~o]l e Val x Hntv ~ {tt,ff}

for which we use the abbreviations:

2,V,[b,e] ~dc O ~- 2[[0~ (V,[b,e])= tt
2, V,[b,e] g=dc(o ~- 2[[0~ (V,[b,e])--ff

The function can be defined as follows:

2, F, [b, e] ~ac r iff ffz, V, [b, e] ~ (o

The notions of satisfiability and validity of DC formulas are defined as for IL
formulas.

296 M.R. Hansen and Zhou Chaochen

Remark: For two given interpretations Z and U whose values for any state
variable P and interval [b, e] disagree for at most a finite number of points in
[b, e] we have

Z[fP]] [b,e] = Z'[[fP~ [b,e]

No formula can distinguish 2- and Z r since state expressions only occur within
the context of f . We can therefore define that 27 and 27r are equivalent, and build
equivalence classes of interpretations which no formula can distinguish. Such
an equivalence class will contain an interpretation which for any state variable
P is, say left, continuous, and for any interval [b, e] has no more discontinuity
points than any other interpretation in the equivalence class. This "minimal"
left continuous function could be taken as a representative of the equivalence
class, and in this sense the interpretation of a state variables is a stable, say left
continuous, function. C.f. discussions in Section 1.2. []

The following abbreviation will be used frequently:

[] ~ ~ = 0
fs] fs= A >o

The formula [S] holds in an interval [b,e] iff b < e and S is 1 everywhere
(almost) in [b, e], i.e. S may be 0 at at most a finite number of time points in
[b, e].

Gas Burner: The requirement of the gas burner can be formalized in DC by:

f>_-60 ~ 2 0 f L e a k ~ f

and the two design decisions can be formalized in DC by

c?([Leak] ~ ~ ~< 1)

and 1

D(([Leak] ~ [~ L e a k] - [L e a k]) ~ E/> 30)

[]

3.3. Proof System

Since DC is an extension of IL we adopt all axioms and inference rules of IL
from the previous section as axioms and inference rules for DC. Furthermore, we
add axioms reflecting the structure which DC adds to temporal variables:

(DC-A1) f 0 = 0

(DC-A2) f l = #

(DC-A3) f S >~ 0

(DC-A4) f S1 + f S2 = f (S1 V $2) + f (S1 A $2)

(DC-A5) ((f S = x) " (f s = y)) ~ (f s = x + y)

(DC-A6) fS1 = fS2, provided $1 <=~ $2 holds in propositional logic

1 It can be proved that this formula defines the state of Leak which satisfies the mathematical
formulation of the second design decision for the Gas Burner on page 286.

Duration Calculus 297

Furthermore, we add two induction rules:

IRI: Let H(X) be a formula possibly containing the propositional letter X,
and let S be any state expression.

If H ([]) and H (X) ~ H (X V (X I S I) V (X - [- ~ S]))
then H(true)

where H(q~) denotes the formula obtained from H(X) by replacing every occur-
rence of X in H with ~b.

IR2: Let H(X) be a formula possibly containing the propositional letter X,
and let S be any state expression.

If H([-[) and H (X) ~ H (X V ([S I ~ X) V (| - , S I ~ X))
then H(true)

In these rules H ([]) is called the base case, and H(X) is called the induction
hypothesis.

Remark: The soundness of these two induction rules relies on the finite variability
property of functions Sz (see below). Furthermore, in the relative completeness
proof (Lemma 4.2) we shall see that the induction rules have a major r61e in the
formalization of the finite variability property. []

A proof of ~b in DC is a finite sequence of formulas q51"" ~bn, where ~bn is ~b,
and each ~bi is either an instance of one of the above axiom schemas or an axiom
schema of IL or obtained by applying one of the induction rules or the inference
rules of IL to previous members of the sequence. We write ~-dc q~ to denote that
there exists a proof of ~b in DC and ~b is called a theorem of DC. Deduction in
DC is defined similarly to deduction in IL and by F ~-ac ~b we denote that there
exists a deduction of q5 in DC from F.

The definitions and lemmas below are convenient for the soundness proof.

Definition. (Equivalence) Given an interval [b, e] and an interpretation Z. We
call two formulas ~b and ~p equivalent in [b, e] of 27 if

27, V, [c, d] Mdc q5 iff Z, V, [c, d] ~dc lp

for any value assignment]2 and interval [c, d] where [c, d] __ [b, e].

Definition. (Finite alternation) Given a state expression S. The formula FAi(S),
for i >/0, describes less than i alternations of S :

FAo(S) ~- [l
FAi+I(s) ~ FAi(S) V ([SI~FAi(S)) V ([~S]~FAi(S))

Lemma 3.1. (Equivalence) For a given state expression S, interval [b,e], and
interpretation Z, there is a natural number n so that true and FAn(S) are equivalent
in [b, e] of 27.

Proof Follows since Sz has at most a finite number of alternations in [b, el. []

298 M.R. Hansen and Zhou Chaochen

Lemma 3.2. (Substitution) Let (p(X) be a formula in which the propositional
letter X may occur, let [b, e] be an interval, and let Z be an interpretation. Then
for any two formulas ~bx and ~b2:

If ~bl and q52 are equivalent in [b, e] of Z
then ~o(~bl) and q~(~b2) are equivalent in [b,e] of Z

Proof By structural induction on (p(X). []

Lemma 3.3. If ~p does not contain free variables and X, then

~dc ~b(X) implies ~ac qS0P)

Proof Suppose ~ac (o(X). Then for arbitrary 27, V, [a, b] we must show that
Z,V,[a,b] ~ac ~b0P). Define Z' so that 27'(X) [c, d] = Z[[~p](V,[c,d]) which is
independent of 12 since ~p contains no free variables. Otherwise 27' is as Z. Since
X does not occur in ~o and in ~b(~): 27, V, [a, b] ~ ~b0p) iff 27', V, [a, b] ~ ~b0P).
The formulas X and ~p are (by construction) equivalent in [a, b] of 27'. Thus by
the substitution lemma: Z',12, [a, b] ~ac (o(X) iff 27',12, [a,b] ~ac qS0P). Therefore
27,12, [a, b] ~dc ~b(~p). []

Theorem 3.1. (Soundness) The proof system of DC is sound, i.e.

~-d~ q5 implies ~dc ~b

Proof To prove soundness, it suffices to prove that every axiom is valid and that
every inference rule preserves validity, i.e. it yields a valid formula when applied
to valid formulas. We only give the proof for IR2. The proof for IR1 is similar,
and the proofs for the axioms and other inference rules are simple.

So suppose that

(I) ~dc H ([]) , i.e. ~dc H(FA~ and

(II) ~dr H(X) ~ H(X V (IS] AX) V ([-~S]-X))

We must establish that ~dc H(true). We first prove ~a~ H(FAn(S)), for any natural
number n, by induction on n.

The case for n = 0 is established by (/).

Inductive step: From Lemma 3.3 and (II) we get

~d~ H(FAn(S)) ~ H(FAn+I(S))

Combining this with the induction hypothesis ~d~ H(FAn(S)) we get

~d~ H(FAn+I(S))

To show ~dc H(true), we must show that 27,12, [b, e] ~de H(true) for any
interpretation 27, value assignment 12, and interval [b, e]. But by the equivalence
lemma there is a natural number k k so that true and FA (S) are equivalent in
[b, e] of 27, and by the substitution lemma H(true) and H(FAk(S)) are equivalent
in [b, e] of 27 also.

Thus, since from above we have that

27,12, [b, e] ~ H(FAk(S))
then we also have that

Z, 12, [b, e] ~ H(true)
[]

Duration Calculus 299

In order to simplify proofs in DC, we establish the deduction theorem:

Theorem 3.2. (Deduction)

F, q5 ~-ac ~ implies F F-ac ~o ~

provided a deduction F, q5 Fac ~ involves no application of the generalization
rule G of which the quantified variable is free in q5 and every application of the
induction rules with hypothesis H(X) satisfies that X does not occur in qS.

Proof. To the proof of the deduction theorem for IL we must add the cases where
the induction rules are applied as the last step of the deduction. All other cases
remain the same.

Case IRI : ~ has the form H(true), and the deduction from F V {qS} has the
form:

H(I1)

u (x) ~ H(X v (X l S l) v (X I ~ S l))

H(true)

By the induction hypothesis there are deductions from F of []q5 =~ H(,I]) and
[]~ ~ (H(X) =~ H(X V (X I S - I) V (XI--,S,I))). In the following deduction of
[]q~ ~ H(true) from F we abbreviate X V (X~,IS,I)V (X-,I-~S,I) to next(X,S):

�9 ~ deduction from F
k. Q~ ~ U(' i I) J

�9 ~ deduction from F
I. Dd? =~ (H(X) ~ H(next(X, S))) J

l + 1. Gc~ =.. (H(X) => H(next(X, S)))
=~ ((nq5 =, H(X)) ~ (D 4) ~ H(next(X, S)))) PL

1 + 2. (D 4) ~ H(X)) ~ (ac~ ~ H(next(X, S))) l, l + 1, MP
l + 3. nq~ =~ H(true) k., l + 2., IR1

Note that it is taken into account that X does not occur in q5 in the application
of IR1 with D~b => H(X) as induction hypothesis.

Case IR2 is similar to IR1. []

The deduction theorem can often be used to simplify a proof. In connection
with the application of the induction rules, the following theorem is convenient:

Theorem 3.3.

F,H(X) Fac H(X V (X~[S])V (X~[-~S])) and F Fat H ([])
implies F ~-ac H(true)

provided a deduction F, H(X) Fdc H (X V (X~[S])V (X-[-~S])) has the property
that every application of the induction rules with hypothesis H'(Y) satisfies that
Y does not occur in H(X).

300 M.R. Hansen and Zhou Chaochen

Proof Let Yl, Y2,..., Yn be all the variables occurring freely in H(X) and let Hc(X)
denote the formula (Vyl)(Vy2)'"(Vyn)H(X). Since F ~-dc H(]-]) and
F,H(X)~-dcH(XV(XIS|)V(X-[-~S])) we also have F~-dcH~([]) and
F,H~(X) I-de H~(XV(X-[S])V(X~[-,S])) (using a and Q). In the following
deduction we start using the deduction theorem:

�9 }
k. "~Hc(X) ~ Hc(X V (X - [S]) V (X~[-~S])) deductions from F

I. Hc([l)
/ + 1 . MH~([I) /.,R4
/ + 2 . []H~(X) ~ ~HdX V (X-[S]) v (X~[~S])) k.,R6
l + 3. nHc(true) l + 1., 1 + 2., IR1
l + 4. HHc(true) ::~ Hc(true) T2
/ + 5 . He(true) / + 3 . , /+ 4. ,MP
l + 6 H(true) l + 5.,Q

where the application of IR1 uses MHc(X) as induction hypothesis. []

The following theorem is proven in a similar way:

Theorem 3.4.

F, H(X) ~-& H(X V (IS] ~X) V ([- ,S] ~X)) and F I-& H ([])
implies F ~-dc H(true)

provided a deduction F, H(X) ~-dc H(X V ([S] ~X)V ([- ,S] ~X)) has the property
that every application of the induction rules with hypothesis H'(Y) satisfies that
Y does not occur in H(X).

The two induction rules can be used to prove:

(DC-T1) : [] V (true~[S]) V (true~[-~S])

(DC-T2) : [] V ([S]~true) V ([~ S] ~ r u e)

The proof of DC-T1 is easier using Theorem 3.3 with

H(X) -~ X ~ DC-T1

We establish:

(X =~ DC-T1) ~-dc (X V (X~[S]) V (X - [~ S])) ~ DC-T1

by establishing the three deductions:

a) (X :=~ DC-T1) F-& X =~ DC-T1

b) (X ~ DCIT1) ~-ac (X - [S]) ~ DCIT1

c) (X ~ DC-T1) }-& (X1--~S]) =* DC-T1

The first case, i.e. a), is trivial. The cases b) and c) are similar, so we only establish
one of them. The following constitutes a deduction for case b):

1. X ~ true PL
2. (X~[S]) ~ (t r u e 1 S]) 1.,M1
3. (t rue l -S]) =, DC-T1 PL
4. (X~[S]) ~ DC-T1 2.,3.,PL

Duration Calculus

Having established a), b), and c) we have by PL:

(X =~ DC-T1) ~-dc (X V (X I S]) V (X I ~ S])) ~ DC-T1, and

~-dc [] ~ DC-T1

Thus, we get true =*- DC-T1 using Theorem 3.3, and then DC-T1 from PL.

301

4. Relative Completeness

In this section we consider the question whether there is a proof for every valid
formula of DC, i.e. whether the proof system of DC is complete. Using DC
formulas in specifications we want f S to be the integral of a real function.
Therefore, to show completeness of DC, it must be shown that the axioms DC-
A1 to DC-A6, together with the rules IR1 and IR2, and the axioms and rules of
IL are enough to ensure that temporal variables of the form f S are definable by
integrals.

In so doing, the functions and constants, e.g. + and 0, must be interpreted as
real functions and constants, and the chop modality - occurring in the axioms
must be interpreted as a modality, chopping intervals of real numbers.

Since every consistent formal system has a countable model, there is no way to
axiomatize IL in order to ensure that functions, constants, etc. will be interpreted
as real functions, constants, etc. Therefore, the best completeness result for DC
that one can hope for is a relative completeness result, where valid IL formulas
(wrt. a model based on real numbers) are taken as provable formulas. See also
the remark on completeness in Section 2.3.

To formalize this notion, let 7712 be the set of all valid IL formulas, and
define 77s to be the set of all DC instances of formulas of 77s i.e. a formula
q~dc ~ 77s is obtained from a formula ~0 ~ 77s as follows: Let vl,... ,vn be
the temporal variables occurring in ~o, then q~dc is obtained by replacing any
occurrence of vi with fSi, for some state expression Si and for 1 ~< i ~< n.

Each formula ~Odc is a valid DC formula since ~0 is a valid IL formula, and
we will take 77s as the provable formula set of DC provided by IL.

Theorem 4.1. (Relative completeness) For any formula 49 of DC:

~dc 49 implies 77s ~-dc 49

We first sketch the main ideas of the proof of this theorem. The proof follows
subsequently.

4.1. Proof Idea

For any valid DC formula 49, i.e. ~dc 49, we must show the existence of a deduction
27s ~-dc 49. Actually, we will give a deduction of ZEdc I-dcr 49, where I-dcr denotes
a deduction using the axioms of DC together with the two theorems DC-T1
and DC-T2, but not using the induction rules IR1 and IR2. We can, of course,
construct a deduction ZEdc I--tic 49 from a deduction 77s ~-d~r 49, since DC-T1 and
DC-T2 are provable in DC.

A DC deduction ZEdc I-dc~ 49 can be considered to be an IL deduction

Zs U DCR I--it 49

302 M.R. Hansen and Zhou Chaochen

where DCR denotes the set of all instances of the axiom schemas DC-A1 to
DC-A6 and instances of DC-T1 and DC-T2, where temporal variables have the
form of durations. Thus, D C R denotes an infinite set of formulas.

However, for the given r we construct an IL formula, say He, having vl, v2,...
as temporal variables with the property that a DC deduction Zs I--dcr r can be
constructed from an IL deduction 2-/2, H e F-it eh, where eh is obtained from r
by "properly" replacing durations fS i with temporal variables vi. I.e. the formula
H e provides an encoding in IL of the infinite set of formulas DCR.

Using the deduction theorem of IL we have that

ZE, H e I-il eh iff Zfl.. I-il DH e ~ eh

The main part of the proof is to show that [:]H e =~ eh is a valid IL formula, i.e.
an element of 2-E, iff r is a valid DC formula.

Because when ~a~ r we have that ([~H e ~ eh) E 2-E, and the DC formula
[~H ~ r obtained from []H e =:- eh by "properly" replacing temporal variables
vi with durations f s i , is a member of Zs Thus

2-s F-act DH ~ r

The formula H is a conjunction of DC axioms and instances of DC-T1 and
DC-T2, and a deduction of Zf-.dc t-dcr (9 is then easily achieved.

4.2. Proof of Relative Completeness

Let an arbitrary Duration Calculus formula r be given. We now construct the
IL formula H e.

Let P~ , Pl be the state variables occurring in r and let S be the set of
state expressions which can be generated from these 1 state variables.

For S E S let [S] = {S' c S I S r S' in propositional logic }, and let S__- be
the set of equivalence classes: {[S] I S ~ S}. The size k of S_= is the number of
Boolean functions in 1 variables, i.e. k = 2 2t.

Select k temporal variables Vl vk and put them in one-to-one correspon-
dence with the equivalence classes. We can thus index the selected temporal
variables with equivalence classes. Furthermore, we assume a representative for
each equivalence class to be given in the following. (This could for instance be
given by a disjunctive normal form of state expressions.)

For the axiom schemas (DC-A1) to (DC-A5), and for the two theorem schemas
(DC-T1) and (DC-T2) we construct seven finite sets of IL formulas:

~ ~ {vt01=0}
~2 -~ {vtlj =~}
'~-{3 --~ {/)[S] ~ 0 I [S] C S~_}
7-'~4 Am {V[S,1 -1- V[S2] = I)[S, VS2] -F- V[S, AS2] I [S1], [$2] G S_=}
~5 ~ {(Vx)(Vy)(((v[s] = x)'-'(V[sj = y)) ~ (V[s] = x + y)) I [S] e S=-}
7r ~- {[] v (true-[vtsj]) v (t r u e l v t ~ s] l) I [S] ~ S=-}
H7 ~ { [] v ([vfsl]-true) v ([v b s j l - t r u e) I IS] ~ S=-}

where we define [V[Sl] by v[s] = v[1] A vii] > 0.
Define H e to be the conjunction of all the formulas in 7-/1 to 7-/7, and let eh

be the IL formula obtained from r by replacing each duration f S by v[s].
The definition and lemmas below are convenient for the completeness proof.

Duration Calculus 303

Definition. We call a triple (if, V, [b, e]) for an H-triple if

J , 12, [b, e I ~ ~Hr

i.e. if for any sub-interval [c, d] of [b, e]" J , 12, [c, d] ~ He.

Nota t ion: When an interpretation J to temporal variables is given in the context,
we do not mention ,.7 explicitly and write v for J(v).

Lemma 4.1. Given an H-triple (J,12, [b, e]). Then

(i) 0 ~< V_[s] [c, d] ~< d - c
(ii) V_[s] [c, d] = (d - c) - v_[as] [c, d]
(iii) V[sl][c,d] ~< p4s~v&][c,d]

for any S, $1, $2 ~ S and any sub-interval [c, d] of [b, e].

Proof (i) and (ii) are trivial. Since -~$1 V (& v Sz) is a tautology, we have from
7-12 that

~[1] [C, 6]] ~- (d - c) = V_Ds, v(slvs2)] [c, d]

From 7-/4 we have

~_[mS1] [C, d] -~- ~_[(S1VS2)] [C, d] = ~_[mS1V(S1vS2)] [c, d] -4- ~[~S1A(S1vS2)I [C, d]
i.e. us ing (ii) we get

(d - c) - V_[s d [c, d] + v_[(&vs2)] [c, d] = (d - c) + v bslA(SlvS2)] [C, d]

which gives V_[sl] [c, d] ~< V_[s~vs2] [c, d] (since VDslA(s~vs2)l [c, d] > /0 by ~3). []

Definition. Let S E S and (J ,]2, [b, e]), where b < e, be an H-triple. A partition
of [b, e] for S is a finite parti t ion b = to < tl < ... < tn = e of [b, e] so that for
i = 1 , . . .n we get:

either J , V , [ti-l, ti] ~ [V[S]| or J , 12, [ti-l, ti] ~ [-V[~S]]

L e m m a 4.2. Let (J , V, [b, e]), where b < e, be an H-triple. For any S ~ S, there
is a finite parti t ion of [b, e] for S.

Proof For any t �9 b < t < e, there are (by 7-16 and 7-/7) t' and t" so that
b ~< t' < t < t" ~< e and

J , V , [f , t] ~ [v[Sll or J,Y,[t ' , t l ~ [vbs] l]
and ~ (?)

J,V,[t , t"] ~ [Vts]] or J,V,[t , t"] ~ Iv .sjl
Thus, there is an open interval (t', t") covering t (but not b nor e) so that the
closed interval [t', t"] has the above property (I).

For the left end point b, there is by 7-t7 a t" so that b < t" ~< e and

J , 12, [b, t"] ~ [V[Sll or J , 12, [b, t"] ~ [vDs]l (1"b)

Thus, there is an open interval (t', t") covering b so that the closed interval [b, t"]
has the above property (tb). (Select arbitrary t' < b.)

Similarly for e, there is by 7-g6 a t' so that b ~ t ~ < e and

if , 12, [t', el ~ Iv[s]1 or if , V, [t', e] ~ [VDs]] (re)

304 M.R. Hansen and Zhou Chaochen

Thus, there is an open interval (t ~, t ~) covering e so that the closed interval [t ~, e]
has the above proper ty (t~). (Select arbi t rary t" > e.)

So we have an infinite collection of open intervals covering the closed and
bounded interval [b, el. Then by Heine-Borels theorem there is a finite sub-
collection C = { Ib . . . Ira} of the open intervals covering [b,e].

STEP 1: Select the open interval Ii = (ai, bi) from C covering b. Then the
closed interval [b, bi] satisfies by ('~b):

J , 12, [b, bi] ~ [V[s]~ o r ~.~, 12, [b, bil ~ Iu[~s]l .

STEP 2: Stop if bi = e. Otherwise b~ < e. Select an open interval Ij = (aj, bj)
f rom C covering bi. I f e < b j, then by ('~e) either

,.7,12, lb. el ~ [vN1 or J , 12, [b. e] ~ [vt~sl]~
will hold for the closed interval [b, e] and we stop.

I f bj ~< e, then the closed interval [bi, b]] will by (~-) satisfy one o f

1 : ,.7, 12, [bi, bj] ~ [v[s]]

2: fl , V, [bi, b]] ~ [Vi~sj]

3 : 2,!2, [bi, m] ~ [V[s]] and J , 12, [m, bj] ~ [vbs]] ,
for some m : bi < m < bj

4 : ,7,12, [bi, m] ~ IVies1] and fl , 12, Ira, bj] ~]-V[s]],
for some m : bi < m < bj

Repeat STEP 2 until a part i t ion of [b, e] is achieved. This terminates since
there is a finite number of open intervals in C. []

I .emma 4.3. A n / / - t r i p l e (J , 12, [b, el) where b < e induces an interpretat ion Z, so
that for any S 6 $ and t E [b, e):

1, i f t G [ti-1, ti)
Sz(t) = 0, if t E [ti-1, ti)

for some part i t ion b = to < tl <

and J , V, [ti-b ti] ~ [-v[s]]
a n d t , 12, [ti-b ti] ~ [[v[~sl-~

.. . < t, = e of [b, e] for S.

Proof Define an interpretat ion Z as follows: Let Qz(t) --- 0, t 6 Time, for any
state variable Q q~ ,_q. For any state variable P c 8, let b = to < tl < .. . < tn = e
be a part i t ion of [b, e] for P given by Lemma 4.2. Let

1, if ti-1 <. t < ti, ,7, 12, [ti-1, ti] ~ [V[p]], and 1 ~ i ~< n
Pz(t) = 0, otherwise

Each such function has only a finite number of discontinuity points in any
interval, so Z is indeed an interpretation.

We prove the remaining parts of the lemma by structural induction on S. I f
S ~ S there is nothing to prove, so assume beIow that S c S. The cases where S
is 0, 1, or P are trivial, so consider:

CASE: S has the form ~S'.
Let b = to < tl < .. . < tn --- e be a part i t ion of [b,e] for S' given by the

induction hypothesis. This is also a part i t ion for -~S', as ~-~S' ~* S'.

Duration Calculus 305

Consider an arbi t rary t, b ~< t < e. I.e. t~-i ~< t < t~ for some i 6 {1, . . . , n}. By
definition we have that (~S ')z (t) = 1 - S!r(t).

I f f l , V, [t i-b ti] ~ [v%~s,]], then (- ,S')z(t) = 0 as we have S~(t) = 1 f rom the
induct ion hypothesis.

I f f l , V, [ti-1, ti] ~ [vDs,]], then S~(t) = 0 (induction hypothesis). But then
(~S ')z (t) = 1 as required.

CASE: S has the fo rm S' V S".
We combine two part i t ions of [b,e] for S and S' given by the induct ion

hypothesis to get a finite par t i t ion b = to < tl < . . . < t, = e, where precisely
one of the four formulas: Iris,]] A Iris,]], Iv%s,]] A Ivies,,]], Iris,]] A [Vbs, l] , or
[Vbs,l] A [v[s,]], will hold in each section. Fur thermore , each section [ti-1, ti] will
ma tch one of the cases:

(i) V_[s,] = v is,] = t i - ti-1 and S~(t) = S~(t) = 1, i.e. (S ' V S")z(t) = 1, for
t i -1 ~ t < t i.

(ii) v__[~s,] = V_Ds,,] = t i - ti-x, S~(t) = S~(t) = 0, i.e. (S ' V S")z(t) = 0, for
t i_ 1 ~ t "~ t i.

(iii) v__[s,] = ti - t i -b v_[as,,] --- ti - ti-1, S/r(t) = 1 and S~(t) = 0, i.e. (S' V S")z(t) = 1,
for t i -1 <~ t < ti.

(iv) V_bs q = ti - ti-1, V_[s,,] = ti - ti-1, S~(t) = 0 and S~(t) = 1, i.e. (S' V S")z(t) = 1,
for t i -1 ~ t <2 ti.

We prove tha t b -- to < tl < . . . < t , = e is a par t i t ion o f [b, e] for S' V S" by
considering the four cases:

(i) We mus t prove that : J , V, [ti-l, ti] ~ [Vts,vs,,]]. F r o m L e m m a 4.1:

0 ~ V[S,vS,,] [t i-1, ti] ~ ti - - t i -1 and 0 ~< v[s,As,,] [t i-1, ti] <~ ti - - t i -1

so it fol lows f r o m 7-/4 that v__[s,vs,,] [ti-a, ti] = V_[S,AS,,] [t i -a, ti] -= ti - - t i -1 . Using
the definition of [v[s,vs,]] we have that J , V, [ti-1, ti] ~ [V[s,vs,,]].

(ii) We mus t prove that : J , V, [ti-1, ti] ~ [v[~(s,vs,,)]]]. Since (f rom 7-/3)

V_[s,vs,,l [ti-b ti] >1 0 and V_[s,As,,] [ti-l, ti] >~ 0

it follows f rom "It~ 4 and L e m m a 4.1 tha t V_[s,vs,, l [ti-1, ti] = 0. Therefore, by
L e m m a 4.1 V b(s,vs,,)] [ti-1, ti] = t i - t i - 1 and hence J , 12, [ti-1, ti] ~ [Vb~s,vs,,)]].

(iii) We mus t prove that : :Z,V, [ti-l,ti] ~ [V[s,vs,]]. Since by L e m m a 4.1

V_[s,] [ti-1, ti] <~ V_[s,vs,,] [t~-l, t~] <~ ti - ti-1

it follows that V_[s,vs,,] [ti-b ti] = t i - ti-> I.e. J , V, [ti-1, ti] ~ [v[s,vs,,]].
(iv) Similar to (iii).

[]

Theorem 4.2. For a given H-t r ip le (J , V, [b, e]), there is an in terpre ta t ion 27 so
tha t for any S ~ S and interval [c, d] __ [b, e] :

z f f f sll [c, d] = V ls ~ [c, d]

Proo f I f b = e, then any in terpre ta t ion 2- will do, since c = d, 2-[[fS]] [c, d] = 0
and V[s][c,d] = 0, because 0 ~< V[s][c,d] <. d - c f rom L e m m a 4.1. So suppose that
b < e. Let 2- be an interpretat-{on given by L e m m a 4.3. The case where c = d

306 M. R. Hansen and Zhou Chaochen

is treated as above, so suppose that c < d. Let c = to < tl < ... < tn = d be a
partition of [c, d] for S. We have that for any t E [c, d):

1, if t C [ti_l, ti) and J,)2, [ti-1, ti] ~ IV[S]]
Sz(t) = O, if t C [ti-b ti) and J , Y, [ti-a, t~] ~ [vhsl]

Thus fti Sz(t)dt [ti-b ti], for i = 1,.. . , n, and by 7-/5: t~ ~ = -V[S]

n

27[[f Sll [c, d] = ~ Vfsl [h-l, td = V ls I [c, d]
i=1

[]

Let 4)h be the IL formula obtained from 4) by replacing any occurrence of fSi
in 4) with v[sd.

T h e o r e m 4 . 3 .

~ac4) iff ~ (O H r

Proof We first prove that ~dc 4) implies ~ (OH4) ~ 4)h, SO suppose that
~: (OH4) ~ 4)a, i.e. there is an H-triple (Y, V, [b,e]) so that J ,P,[b ,e] V= 4)a.
By Theorem 4.2 there is an interpretation 77 so that for any S c S and interval
[c, d] _c [b, e] :

f sll [e, d] = [sl d]

Since ,7, V, [b, e] ~ 4)h, we have that 27, F, [b, e] ~dc 4), and hence ~dr 4).
To prove the other direction, i.e. ~ ([]He) ~ 4)h implies ~d~ 4), suppose

that ~dr 4), i.e. there is an interpretation 27, value assignment Y and interval
[b, e] so that 77, ~, [b, e] ~d~ 4). Let us construct an interpretation J so that
_V[s] [c, d] = 27[[fS]] [c, d] for all S c S and intervals [c, d]. (By axiom (DC-A6)
this is well-defined.) By construction we have that ,7,~, [b,e] ~ 4)h and from
Theorem 3.1 (soundness) ,7,]2, [b, e] ~ E3Hr So ~ ([]He) ~ 4)h. []

The relative completeness theorem can now be proven:

T h e o r e m 4.4. (Relative completeness) For any formula 4) of DC

~dc 4) implies ZEdc ~-& 4)

Proof Suppose ~& 4). By Theorem 4.3 we get ~ (nil4) ~ 4)h. Let H be obtained
from H 4 by replacing each v[s] by f S . Then (n i l ~ 4)) E 27s and

27s ~-dc [2H ~ 4)

We have that H is a conjunction of DC axioms and instances of DC-T1 and
DC-T2 and therefore by PL and R4:

l-tic DH

and a deduction of 27s t-tic 4) follows by applying MR []

R e m a r k : Note that the relative completeness result was achieved using the theo-
rems DC-T1 and DC-T2 instead of the two induction rules IR1 and IR2. It is,
however, convenient to have the two induction when conducting proofs. []

Duration Calculus 307

5. Decidability

In this section we consider subsets of formulas of DC for which it is decidable
whether a formula from the subset is satisfiable. Since a formula ~b is valid iff the
formula ~q~ is not satisfiable, we can decide whether a formula in the subset is
valid as well. The decidability results presented are based on [ZHS93].

It turns out, as shall be shown in the next section, that even very simple
subsets of formulas of DC are undecidable.

We investigate now the set RDC of formulas generated by

1, if S is a state expression, then IS] E RDC

2. if qS, q~ E RDC, then -,~b, q~ V ~p, ~b-~p E RDC

We present a discrete time version of DC together with decidability results for
satisfiability of RDC formulas, since the denseness of the time domain turns out
to be a source of complication. It is shown that RDC is expressive enough to
formalize an interesting case study under a discrete time interpretation.

This section is organized into five subsections, where the first presents a case
study, the second develops a discrete time version of DC, and the third gives a
decidability result for RDC with regard to discrete time. A decidable result for
RDC with regard to continuous time is presented in subsection four, and the last
subsection discusses the complexity of the decision algorithms.

5.1. A Case Study

In this section we formalize a set of requirements for a gas burner system. These
requirements, which are presented in [RRH93], are later shown to be expressible
in RDC in discrete time.

The state variables used in the requirements are:

G,F,H,I E Time ~ {0, 1}

where G and F describe gas and flame as in Section 1. The intention of the state
variable H is that it is 1 iff there is a heat request to the gas burner and the
intention with the state variable I is that it is 1 iff an ignition transformer is on,
i.e. it is trying to ignite the gas.

The requirements are:

1. For intervals less than 30s, the gas may leak for at most 4s:

Req 1 ~- d <<. 30 ~ fL ~< 4

where L ~ G A ~F.
2. Heat request off must in 60s result in the flame being off:

Req2 ~- [~ H] ~ (f ~< 60 V ((• ~< 60)-[-~F]))

3. Heat request on must in 60s result in the flame burning, unless either an
ignition failure or a flame failure has occurred:

Req3
[H 1 =~ ([~< 60 V (([~< 60)~[F-~ ~true) V ~-~f lOK V G--~IgOK)

where the flame is working correctly if it does not disappear while the gas is
supplied:

308 M.R. Hansen and Zhou Chaochen

FIOK ~ [G] ~ ~O([FI - [-~F])

and the ignition is working correctly if the gas ignites in Is:

IgOK a IGAI] ~ (~ ~< 1 V((f ~< I)~[F]))

The requirements which must be met by the gas burner system is the conjunc-
tion of the above requirements, i.e.

Req ~ Reql AReq2 AReq3

This ends our presentation of the case study. In [RRH93] it is developed
further over several steps, ending with a specification of an implementation of the
above requirements. The implementation consists of a control program interacting
with sensors measuring heat request and flame, and actuators governing the gas
and the ignition devices. The implementation is specified as a DC formula, and
this specification is shown to imply the above requirements.

5.2. Discrete Time Duration Calculus

What shall we consider to be a discrete time Duration Calculus?
Even when the set of natural numbers N = {0, 1, 2,...} is chosen as the discrete

structure, questions remain concerning restrictions on interpretations, intervals,
and the truth of formulas.

First of all, it is required for any interpretation:

Z E SVar --* (Time ~ {0, 1})

that the set of discontinuity points of each Pz must be a subset of N. An
interpretation satisfying this property is called a discrete interpretation. Note that
we omit predicate letters from interpretations, since there are no predicate letters
in formulas of RDC.

Likewise, we will only consider discrete intervals [b, e] c ~ntv where b, e 6 N.
Finally, for a given DC formula q~, its truth value is only considered in discrete

intervals of discrete interpretations.
As a consequence of this, the definition of chop (~b~p) is different from the one

given in Section 2.2 for continuous time. Assume that Z is a discrete interpretation
and [b, e] is a discrete interval:

37, [b, el ~ac q~-v iff Z, [b, m] ~dc (~ and Z, [m, el ~dc V,
for some m E [b, el where m ~ N

where we leave out value assignments 0)) from the definition since we have no
global variables in formulas of RDC.

The other semantic clauses are not given, as they remain as in Section 2.2.
A DC formula q~ is valid for discrete time iff Z, [b, el ~dc 0 for any discrete

interpretation Z and any discrete interval [b, el, and q5 is satisfiable for discrete
time iff 5[, [b, el ~dc 0, for some discrete interpretation Z and some discrete interval
[b, el.

5.2.1. Discrete Time versus Continuous Time

One can ask the question what difference it makes to consider a discrete time
domain instead of a continuous time domain?

Duration Calculus 309

The following DC formula is valid for discrete time, but it is not valid for the
continuous time semantics:

E -- 1 r (~ > 0 A --,(([> O)-'(C > 0)))

There are also formulas of DC which are valid for continuous time, but not
valid for discrete time, e.g.

> 0 ~ ((~ > 0)"(~' > 0))

Thus, there is no simple relationship between the formulas which are valid for
discrete time and the formulas which are valid for continuous time.

5.2.2. Expressibility of the case in RDC

Due to the following equivalences

= 0 ~ - , [11

~o : 1 r [11 A ~ ([1 1 I I 1)

true ~:~ ~ = 0 V -~(~' = 0)

fP=0 [Plv =0
f P -- 1 ~ (fP = 0)~ ([P l / x r = 1)~(fP -- O)

f P = k + l <0 (f P = k) ' - ' (f P - - 1) (k ~ > l , k � 9

f P >~ k ,*~ (fP = k) - t rue (k E N)

f P > k <:~ (f P > l k) A = (f P = k)

fP<~k ~ -~(fP>k)

f P < k ,*~ (fP <~k) A ~ (f P = k)

and since t' = f l , we can encode the formula Req in RDC.

5.3. Decidability for Discrete Time

We show that satisfiability of a formula 4 �9 RDC is decidable by defining a
regular language s so that

4) is satisfiable iff s is non-empty.

Let $ be the (fnite) set of state variables occurring in 4. Then the alphabet Z
of the language E1(4) is the set 12 = P(S) of subsets of S. A letter a E 12 is called
a basic conjunct and is interpreted as the state expression:

A { P [P E a } A A { ~ Q I Q E (S \ a) }

which asserts that all state variables in a are one, and those not in a are zero.
The disjunctive normal form of a state expression S is a disjunction n a Vi=I i

of basic conjuncts, n >/0. We let DNF(S) -- {al , . . . , an} -- I2 denote the uniquely
determined set of basic conjuncts of the disjunctive normal form of S.

We represent a formula 4 by a regular language/21(4) - Z*, so that 4 holds
on a discrete interval [b, e] for a given discrete interpretation 27 iff there is a string

310 M.R. Hansen and Zhou Chaochen

V E s which corresponds to the interpretation 2- on [b,e]. A letter a c Z
describes a unit interval. The formula 4 is satisfiable for discrete time iff the
language s is non-empty. Since emptiness of a regular language is decidable,
we obtain a procedure for deciding satisfiability of 4.

The definition of s is quite straightforward. An "almost everywhere"
formula [S] is represented by the positive closure B +, where B = D N F (S) is the
set of basic conjuncts of S. Disjunction 4 V ~0 is represented by union, negation
~4 by complement, and chop 4~p by concatenation. Since B + is a regular
language, and the family of regular languages is closed under union, complement,
and concatenation, every formula is represented by a regular language. More
precisely,

z;,(4 v
= (DNF(S)) +

= z* \ s
= ~ I (4) s

The last line uses the concatenation LIL2 = {vulv E Lb u E L;} of two regular
languages L1 and L2. Positive closure, union, complement, and concatenation of
regular languages can be realized by operations on finite state automata [HoU79].

String v = al...aN E E* corresponds to a discrete interpretation Z on a
discrete interval [0,N] if Z[ai~(t) = 1 for t E (i - I,i), i E {I N}. (If N = 0
then v = e is the empty string).

Lemma 5.1. Let a formula 4 E RDC, a discrete interpretation 27, and a corre-
sponding string v = al . . . aN be given. Then Z, [0, N] ~& 4 for discrete time iff v
belongs to s

Proof. By induction on the structure of 4. []

Now for any string v in Z* there is an interpretation Z so that v corresponds to
Z, and conversely: for any interpretation Z and interval [0, N] there is a string
v = a l . . . aN in Z* which corresponds to Z. Thus by 5.1, we have

Lemma 5.2. A formula 4 E R D C is satisfiable for discrete time iff the regular
language s is non-empty.

Theorem 5.1. The satisfiability question in discrete time of DC formulas in R D C
is decidable.

We show now how to prove or disprove the validity of formulas.

Question 1: Is the formula ([P] ~ [P]) ~ [P] valid for discrete time ?

Since P is the only state variable occurring in the formula, the alphabet
Z = {{P}, {}}. We have

([P] I P]) ~ [P] is valid

iff ~ (([P] I P]) ~ [P]) is not satisfiable

iff ([P] I P]) A ~ [P] is not satisfiable

iff s n s = {}

iff {{P}~] i i> 2} r~ (E* \ {{P}i [i ~> I}) = {}

which holds. Therefore ([-P] I -P]) ~ [P] is valid for discrete time. []

Duration Calculus 311

Question 2: Is the formula [P] ~ ([P] I P I) valid for discrete time?

Again, the alphabet is X = {{P}, {}}. We have

[P] => ([P] I P I) is valid

iff [P] A-~ ([P]~ [P]) is not satisfiable

iff E I ([P |) C~ C l (- ~ ([P I I P 1)) = {}

iff { { p } i] i > ~ l } N Z , \ { { p } i l i > ~ 2 } = { }

which is false as the intersection contains the word {P}. Thus, the formula
[P] =~ ([P] I P]) is not valid for discrete time. []

Using this technique we can decide that the formula Req from the case study is
satisfiable. It is, however, more interesting that the phase automaton from [RRH93]
can be represented in RDC as well. This phase automaton is a formula of DC
representing an implementation of the requirements. It is proved in [RRH93]
that the phase automaton implies the requirements. Since this implication can be
represented in RDC, the above algorithm can carry out this proof for a discrete
time domain.

5.4. Decidability for Continuous Time

Consider the formula [P] ~ ([P] I P]) , which is valid for continuous time; but
not for discrete time.

Reconsidering the question of its validity for discrete time we have that

[P] ~ ([P I - [P]) is valid iff EI ([P]) ~- E I (I P I I P])

But because {n} E/21([P]) and {P} q~/21([n]~[n]) = {{P}i I i >/2} we have
that the inclusion property is not satisfied.

The problem is that a letter, say {P}, cannot be interpreted as lasting one
time unit under a continuous time domain.

However, with a closure property it is possible to re-use ideas from the discrete
time construction to achieve a decidability result for continuous time.

A language L over alphabet Z is called contraction closed if

vaaw E L implies yaw E L

for any v, w C Y~*, a C Y~.
The language s = {{P}ili >/ 2} is not contraction closed since

{P}{P} belongs to the language and {P} does not belong to the language.
Let ~ L denote the contraction closure of L, i.e. the smallest contraction closed

set containing L. By a simple construction on finite automata one can establish
the following:

Lemma 5.3. If L is regular then so is $ L, and $ L can furthermore be constructed
from L.

We now construct a regular language /~2((~) from a formula q5 E RDC in a
way similar to the way for discrete time:

312

~2([S1) = (DNF(S)) +

/~2(q~ ~/lt)) = s [..J ~2(ip)

s = Y: \ &('k)

s (~'-'1,0) = ; (s163

M. R. Hansen and Zhou Chaochen

By an induction proof on the structure of q~ one can establish:

Lemma 5.4. A formula q~ c R D C is satisfiable for continuous time iff the lan-
guage s is not empty.

Since s is a regular language we have

Theorem 5.2. The satisfiability question in continuous time of DC formulas in
R D C is decidable.

5.5. Complexity

The efficiency of the above decision procedure depends on constructions on finite
automata, and this efficiency is very poor since each negation occurring in the
formula may supply an exponent in the complexity. An exponent occurs when
a non-deterministic automaton is transformed into a deterministic one when
constructing a finite automaton for the complement of a regular language. The
authors of [SkS94b] have found that the decision problem is non-elementary. So
the worst case is very poor, indeed.

In [SkS94b] the decision procedure is implemented and used to prove the
correctness of Fisher's mutual exclusion protocol. The results were not too bad.
It took, for example, approximately twelve minutes to verify a formula consisting
of 3775 characters on a DECStation 5000-240 with 128 MB of memory.

Furthermore, the situation seems (always) to be that the level of nesting
of negations (which cause the poor complexity) is very low for formulas oc-
curring in case studies. The reason for this is that formulas with alternating
nesting of negation, e.g. through implication in (((~bl ~ q52) ~ ~b3) => ~b4) or in
(-~(~((-~b1)-~b2)~b3)-q54), are very difficult to comprehend and therefore do not
occur in specification examples.

The proof assistant for DC described in [SKS93] also supports the use of this
decision procedure.

6. Undecidability

All the disappointing news comes in this section: even for very restricted subsets
of DC formulas, it is undecidable whether a formula in the subsets is satisfiable.

The general technique used to show these results is to reduce the halting
problem of two-counter machines to the satisfiability of formulas belonging to
the subset under consideration. The main results come from [ZHS93]. We give
undecidability results for the following three subsets:

Duration Calculus 313

6.1. The Subsets R D C I (k) , RDC2 , and R D C 3

The subset RDC l(k), where k c N is a fixed constant, is the subset of propositional
DC generated as follows:

1. the formula E --- k belongs to RDC t(k),

2, if S is a state expression, then [S] belongs to RDC l(k), and

3. ifq~ and ~ belong to RDCffk), then so do -~q~, 4~V~, and qS"-'~p.

When k is a natural number we have previously seen that it is decidable for
discrete time whether a formula of RDCI(k) is satisfiable.

Since f = 0 can be expressed by -111] we have that RDC (0) is expressible in
RDC, and thus the satisfiability question for RDC (0) is decidable for continuous
time. If k < 0 then Y = k is false which is expressible in RDC as well. So k > 0 is
assumed in the following undecidability proof for RDC t(k).

The subset RDC 2 is the subset of propositional DC generated as follows:

1. if $1 and $2 are state expressions, then fS1 = fs2 belongs to RDC2 and

2. if ~b and ~p belong to RDC 2, then so do ~q~, ~b V lp, and ip~p.

The subset RDC 3 is the subset of DC generated as follows:

1. if S is a state expressions, then [S] belongs to RDC 3,

2. if x is a global variable, then f = x belongs to RDC 3, and

3. if q~ and ~o belong to RDC3, then so do =~b, q5 V~p, q~-'~, and (3x)r where x
is any global variable.

Remark: For any of the different subsets, we shall use standard abbreviations for
A and ~ from propositional logic, and for [] and ~ from IL. []

Counter Machines: The main technique used to obtain these undecidability results
is to reduce the halting problem of counter machines to satisfiability of formulas
belonging to the subset under consideration. In this section we give a brief and
rather informal introduction to counter machines. For a more careful treatment
we refer e.g. to [Min67] or [HoU79].

A two-counter machine has a current label q and two counters cl and c2 which
can hold arbitrary non-negative integers. A program for such a machine is a finite
set of labeled instructions mi, i.e. the set of labels is finite.

The only instructions are "increase cl by one" (c +) and "test cl and decrease
by one" (ci-), and similarly for c2. For example, qi : c + -* qj is the instruction at
label qi; it increases cl by one and proceeds with the instruction labeled qj. The
instruction qi : C~ ~ qj, qk tests whether the value of Cl is zero; if so, the machine
proceeds with the instruction labeled qj. Otherwise, the machine decreases Cl by
one and proceeds with the instruction labeled qk.

A configuration s of a counter machine is a triple s = (q, nl, n2) of the current
label q and the values nl, n2 c N of the two counters Cl and c2. The configuration
(q, nl, n2) is final if there is no instruction labeled q in the program.

A computation step s ~ s' transforms a non-final configuration s into a
configuration s' as follows (and similarly for c2):

314 M.R. Hansen and Zhou Chaochen

Instruction s ~ s'

q "c + --+ qj (q, hi, n2) ~ (qj, nl + 1, n2)
q : Cl "-~ q j, qk (q, O, n2) ~ (q j, O, n2)
q : c F ~ q j , qk (q, n l + l , n 2) ~ (q k , nl,n2)

A computation is a (finite or infinite) sequence o- = so, sl, s2,.., of configura-
tions, where sn ~ Sn+l.

We call so the initial configuration. In the applications below we will have
So = (q0, 0, 0), where q0 is a designated initial label. We shall make use of the fact
that the halting problem for two-counter machines with initial counter values
na = n2 = 0 is undecidable [Bir76, p. 78]. This result also holds even if we assume
that the programs contain precisely one final label qfin, i.e. qfi, is the only label so
that no instruction has this as its label. In the following we consider two-counter
machines M with the initial configuration (q0, 0, 0) where

1. q o , ' , qm, qfin are the labels of M, where q0 is the initial label and qfin is the
final label.

2. cl and c2 are the two counters.

3. m l , ' " , m t are the instructions of M.

6.2. Undecidabil i ty of R D C l(k)

We reduce the halting problem for M to satisfiability of a formula in RDCI(k) (for
k > 0). The encoding of M uses the following state variables: one state variable
Qi for each label qi, two state variables C1 and C2 to represent the counter values,
and two auxiliary state variables B and L, used as delimiters.

Let Q = {Q0,..., Q,~, Qfin} in the following. The main idea is that a machine
configuration (q, nl, n2) is encoded on an interval of length 4k as follows:

[Q I lZalll L .[Val2l where Valj represents the value of counter cj

k k k k

This will be done so that the n-th configuration appears in the interval
[4nk, 4(n + 1)k], n ~> 0.

The idea behind the representation of the counter values is the following: Let
the value of counter ci be ni ~ O. Then the interval describing Vali is required to
have the following form:

JBIGIBI...JB]GIBI

with ni occurrences of Ci. Since this interval is required to have the length k, and
since there is no bound to the counter value, this idea is based on the denseness
of the time domain. This representation was inspired by [ACD90].

The task is to formalize these ideas as a formula in RDCI(k) . In particular,
we must construct a formula representing the initial configuration and a formula
expressing how the n + 1'st configuration relates to the n'th configuration. To do
so, the following abbreviations of formulas in RDC x(k) will be useful:

Duration Calculus

I | ~ -~Ill

true ~-- I1 v [11

d < k ~ -ff(d = k)~true)

d < 2k ~- -~((d = 2k)~true)

2k~<E ~ (d - -2k)~ t rue

d < 3k ~- ~((d = 2k)~(d = k)- t rue)

d = 4 k -~ (d= 2k)'-'(d= 2k)

d = 5k ~- (d-=4k)~(d=k)

[s V a [s l / x (~ = k)

4 ~ ~ ~ - ' (q ~ (| l v ~))

315

The formula [S1 k reads: "S is one for a duration of k", and 4) ~-~ ~p reads:
"if the interval starts with (b, it must end immediately with [1 or with ~p'.

The initial configuration is (q0, 0, 0), which is represented by the formula:

Init ~ [Qo|k~[Bl~-[L]k~[Blk~'true

State variables must be mutually exclusive:

Mutex ~- A [3-~[P1AP2] where PbP2 range over QU{C1, C2,B,L}
Pl~n2

Certain state expressions will have a periodic appearance since configurations
are represented on intervals of length 4k. Let

Per(c)) ~ O((q~d = 4k)) =~ ((d -- 4k)-q~))

Machine labels, counter values, and the separator L have periodic behaviour:
Periodic ~-

Per(V [Qi]k) A Per([C1 V U-[h) A Per([L] k) A Per([C2 V B] ~)
Q~eQ

For each instruction rni of M we give a formula F(mi), encoding the compu-
tation step performed by the instruction.

Consider the machine instruction m = qi : C+ --~ qj . The possible computation
steps allowed by m are described by a formula F(m) ~- F~ A F2 A F3 A F4 A F5 A F6,
where each Fi is defined below.

The formula F1 expresses that qj is the label of the next configuration:

F1 ~ ([oi]k'-'(d = 4k)) ~ ((d = 4k) ~IQj~ k)
The formula F2 copies the Cl's to the same place in the next configuration.

To encode it, we use formulas of the form: q~ --~ ~p. Here (b characterizes certain
configurations whose label is Qi, and ~p fixes part of the next configuration.

F2 ~ ([0 i ~ k ~ < k) - [C l] ~) -,~ ([Ct]~true)
d = 4k

316 M.R. Hansen and Zhou Chaochen

One can copy the B's occurring before a C~ to the same place in the next
configuration using the same technique:

F3 ~_ ([Qi]k'-'(~ < k)-[B]~([B]~[C1]-true) /x) ~ ([Bl-true)
f = 4k

The formulas F4 and F5 increase the value of cl by replacing the last [B]
section of cx's value with [B] I C 1 1 I B] in the next configuration. (F4 handles
the case nl = 0, and F5 handles the case nl > 0.)

F4 -~ ([Q~lk~fBlk~(e = 4k)) =~ (true'-'(# = k A (f B I I G I I B I)))

(k~ [Bl-[Ll~true)
F5 -~ ([Qi] (f < k)~[Cl]~(A (~ = 5k)))

(true'-'((d = k) A ([B]~IG]]~[BI~[L])))

Note that the beginnings of succeeding L sections are exactly 4k apart, and
therefore in Fs the length of the [B]~[C1]~[B] section in the consequent is
precisely as long as the last [B] section in the antecedent. Thus, the "effect" of
F4 A F5 is to increase the number of [C1] sections by one, as desired.

The formula Periodic takes care of copying the L section to the next configu-
ration, and the formula F6 copies the value of c2 to the next configuration using
the same technique as used above:

([Qi]k~(y < 3k)~[C2]~ A) ~ ([C2]~true)
= 4k

F 6 ~ A
([B]'-'true)

([Qi]k~(2k ~< ~ < 3k)~[B]~ 2 4 k) --~ ([B] "-'true)

The remaining instructions mi can be encoded as formulas F(mi) by techniques
similar to those already used. Then the entire machine is encoded by:

Machine ~- Mutex A Init A Periodic A A DF(m~)
ml

By the construction of formula Machine we know that execution of the
machine terminates if and only if the (Machine A O[Qfin]) is satisfiable.

Theorem 6.1. The satisfiability in continuous time of DC formulas in RDC l(k) is
undecidable.

Remark: This result depends on the ability to express precisely the length ~ = k
of intervals. One would, however, not get a decidable subset if the formula f < k
is used instead, since E = k can be derived from ~ < k as follows2:

~prq~ ~ ([l l -q~true) v (true-~b11])

f = k ~ -~(f<k)/X[]p~(f<k)

2 This was pointed out by Peter Sestoft.

Duration Calculus 317

The formula ~pr~) reads: "for some proper sub-interval: ~b".
Thus, we cannot achieve a decidable subset by "relaxing the punctuality" from

t = k to f < k, analogous to the result discussed in [AFH91]. We do not know
whether this is possible when • > k is considered instead of # = k. []

6.3. Undecidability of RDC2

We reduce the halting problem for two-counter machine M to the satisfiability
of a formula in RDC2. We give a reduction which works both for a discrete and
for a continuous time domain. This reduction is simpler than the first one given
in [ZHS93]. The following state variables are used in this reduction:

1. two state variables C + and C 7 for each counter ci, i = 1, 2.
2. m + 2 state variables Q = {Q0,..., Qra, Qfin} corresponding to the labels of M.

The following abbreviations will be used for state expressions:

c v ci vcfvc vc

C A ~ C+AC1AC+AC2
Q QoV-..VQmVQ .

where C v expresses that at least one of the four counter state variables is one,
C A expresses that all four counter state variables are one, and Q expresses that
at least one of the state variables corresponding to the labels is one.

The main idea of the encoding of M is that a period is divided into two
sections IQICl , where Q is one of the state variables for labels, and C is either one
of C +, CT, C +, or C~- or their conjunction C A.

A configuration (and a computation) is represented by a sequence of periods:

IQolCAIQ'~ ICIQ '2 Ic l . . . IO~lcI
so that f C + = f C ~ holds for this sequence iff the counter ci has the value 0
after k computation steps.

In fact, the idea of the encoding is that the value of the counter ci in the k'th
configuration is f C + - fC?- where the integration is over the "whole sequence".
All sections must have the same size for this idea to work.

To formalize these ideas in RDC2 we will use the following abbreviations of
formulas concerning counter values:

lS l ~ (fS = f l) A ~(fO = f l)

InCrl & [C;- A-~(C 1 V C + V C~-)]

Decrl ~ [C 1A-~(C + V C +VC~-)]

Incr2 --~ [C +A-~(C 2VC +VC1)]

Decr2 ~ [C 2A-~(C +VC +VC1)]

C o n s t -~ [C A]
The formula lncrl expresses that the value of counter Cl is increased by one by

letting C + be one throughout one section, while the other counter state variables
are zero. The formulas Decrl, Incr2, Decr2 have similar explanations.

318 M.R. Hansen and Zhou Chaochen

The conjunction C A is used in Const to keep the counter values constant from
one period to the next (by increasing f c + as much as fCF).

Furthermore, the following abbreviations of formulas in RDC 2 will be used:

true ~ [I V] l]

~ ~--~(~([]v~))
Op~b ~ ~b~true "for some prefix interval: r

cJp~b -~ ,(~p(-~b)) "for all prefix intervals: qY'

Let R and S be two state expressions. By a formula in RDC2 we describe a
sequence of equal size sections of the form:

I R I S I R I S I R] S I . . . I R I S I

1 2 3 4 5 6 . . . n n + l

Let EqualSizeCover(R,S) be defined by the formula:

- ~ [RA S] (a)

([Rll-Sl)~
A f R A = f S true (b)

A o A ([R l l S]) ~ (([1 v [R])~ fR = fS))) (c)

A o(([S] I~SI) =~ ([S] IR])) (d)

(]S]~[R])

A n((]R]-[S]~[R]) ~ ([R]'- '([] V [S])~ f S = A f R)) (e)

A O((]R]~]-~R]) => ([R]~]S])) (f)

A [] (([R] I S] I R l l S]) ~ (]R1- fS=AfR]Sl)) (g)

([R] I S])

A n (([S]~[R] IS]) ~ ([S]~([] V [R])~ fR-=A f S)) (h)

(] R l l S]) ~ f S A o (([S] I R l l S] I R]) ~ (]S]~ fR A = JR1)) (i)

This formula describes a sequence of equal size sections because: (a) requires
that the state expressions R and S are mutually exclusive and (b) requires that
there is an initial period I - R] I S] whose [R] and [S] sections are of equal
size. Formula (c) ensures that the first]S] is not too long. Thus, the first three
formulas characterize the first two sections.

The remaining formulas, i.e. (d) to (i), guarantee that the next two sections
have the right size provided that the previous one has: (d) says that an]R]

Duration Calculus 319

section must follow each IS] section, and (e) ensures that this [R] section is
not too long. (f) says that an [S | section will follow each [R| section, and (g)
guarantees that each full [R] section is precisely as long as the previous full [S]
section. (h) and (i) are similar to (e) and (g).

The following mutual exclusion property is needed:

Mutex ~ A ~O[PIAP2] whereP1 and P2 range over Qu(C v}
P1 ~P2

The two-counter machine M is encoded by the formula: Machine ~-

Mutex A EqualSizeCover(Q, C v) A Init A Start(mo) A A DpG(mi)
mi

where Init, Start(mo), and G(mi) are defined below.
The formula Init expresses that the initial configuration is (q0, O, 0):

([Q~176) - t r u e
Init -~ A

fQo = : C A

The formulas Start(too) and G(mi) are defined below. Here we assume that m0
is the instruction which has q0 as its label. Then the formula Start(too) describes
the first transition of a computation by M and the formula G(m) describes any
later transition caused by the instruction m.

In the definition of Start(too) below we use that we know from 1nit that the
initial configuration is (q0, 0, 0).

If m0 is qo " c + --+ qj, then Start(qo " c + - - * qj)

v
A ~ [Qj]~Incri

fO.o = f c A v
[Q j] -Incr ~-'[Q] "-'true

Notice that the right-hand side of---, demands that Incri can only be followed
by a [QJ section. This excludes for instance a section of the form: Incr'~'Decri.
Furthermore, since [Qj] can only be followed by a section with Incri we have
due to Mutex that all other state variables corresponding to labels are zero in
this [Qj] section.

If m0 is qo " c;- ~ q j, qk, then Start(qo " c~- --~ qj, qk) ~-

) A "-* [Q j] ~Const
fQo = f cA v

[Q j] ~Const ~[Q] "-'true

Thus, the formula Init A Start(too) characterizes the first two configurations
of M's computation. In the definition of G(m), which characterizes later configu-
rations, we use that a previous configuration exists for the "actual" transition.

320 M.R. Hansen and Zhou Chaochen

Define G(qj " c + ~ qk) ~

t r u e l C v] ~ A
fQ; = f c v

Define G(qj �9 c:~ --. qk, qt) ~-

t r u e 1 C v] ~ A
fQ j = f c v

A
f < = f c r

A

[Qk])

[Qk] ~Incri

k(Qk] ~Incr F[Q] "true

[Qkl)
V
[Qk] -Const

X(Qk] -Const ~[Q] ~true

(l Jcv)(I t r u e 1 C v] - A v
fQ j = f c v ~ [Qi]-Decri

A V
=(f C + = f CF) [Qd -Decr['[Q]'-true

The first conjunct describes the case where the value of counter ci is zero, and
the second conjunct describes the case of a positive value of counter ci.

G(mi) must hold for all prefix intervals in Machine because the counter value
of a configuration is "calculated" from the whole computation leading to the
configuration, e.g. ci has the value 0 in the k'th configuration of the computation:

tQolCAIQIlCIQ2ICI ... IQklCI

if f c + = f c F holds "for the whole sequence".
It can be proven that if:r, [a,b] ~dc Machine A O[Qfin-[, then a terminating

computation of M can be constructed, and vice versa, from a terminating compu-
tation of M one can construct Z and [a, b] so that 2;, [a, b] ~dc Machine A 0 [Qfin].
Thus, the halting problem for two-counter machines can be reduced to satisfia-
bility of formulas in RDC2, and we have the following

Theorem 6.2. The satisfiability of DC formulas in RDC2 is undecidable for
discrete as well as for continuous time.

6.4. Undecidability of R D C 3

The halting problem for a two-counter machine M can be reduced to satisfiability
of a formula built from [P] and f = x using the connectives -~ and v, the
quantifier 3x, and the modality - [ZHS93]. We do not present this reduction,
since it illustrates universal quantification better than it does IL and DC.

Theorem 6.3. The satisfiability (in discrete and continuous time) of duration
calculus formulas from RDC3 is undecidable.

7. Related Work

In this section we give references to related work on interval logics and duration
calculus, which we know of at present.

Duration Calculus 321

7.1. Work on Interval Logic

The first work we know of on interval logic comes from the area of philosophical
logic [Hum79, RiJp80, Ben83].

In the area of artificial intelligence, the papers [Al183, Al184] study a theory
of action and time. Thirteen binary relations are introduced for the different
relationships between two intervals, e.g. il before i2 and il overlaps i2. The
relationships can be used in first order sentences where one can quantify over
intervals, e.g.

V/1, i2, i3(il before i2 /k i2 before i 3 ~ i1 before i3)

is an axiom in the system. The modality ~ corresponds to a ternary relation of
intervals and is not introduced in this work.

In [SMV83] and [HMM83] interval logics (with modalities) are used to
describe protocols and hardware components. The modality used in [SMV83]
has the form [I]c~ which reads: "the next time the interval I can be constructed,
the formula ct will hold for that interval", where intervals are characterized through
events. Furthermore, [SMV83] used the modalities "for any suffix interval" and
"for some suffix interval".

In [HMM83], the discrete time interval temporal logic is introduced to specify
hardware components and to reason about such specifications. These first works
initiated a research interest in both practical and theoretical aspects of interval
logic, e.g. [Mos83, Mos85a, Mos86, RoP86, HAS86, Me187, Hal88, Ven90, Ven91,
GBJ91, Mos93, Dut95b, Dut95a].

In [Mos83] some axioms and inference rules occur for the chop modality, e.g.

((q~ v ~)-~0) < , ((q~-q~) v (~-~0))

Furthermore, in [HAS86], the complexity of validity and satisfiability problems
are studied for a propositional interval logic with modalities which can express all
relationships between intervals discussed in [Al184]. E.g. the validity problem is
shown to be Ill-complete when natural numbers are chosen as time domain, and
it is r.e.-hard and belongs to I12 when real numbers are chosen as time domain. In
[Ven90] there is an axiomatization of the logic studied in [HAS86]. Furthermore,
[Dut95b, Dut95a, ZhH96a] contain a completeness result for a language based
on [HMM83].

Related languages are the Time Interval Calculus [Bri91] and the Sequential
Calculus [vKH95], which are based on Tarski's calculus of relations [Tar41], and
the MITL logic [AFH91]. MITL is based on the Metric Temporal Logic [Koy90]
in the sense that it allows the until modality to be indexed with a time interval.

7.2. Work on Duration Calculus

7.2.1. DC Models

Different models are used by designers of real-time systems at different design
stages. In order to accommodate all necessary models, different families of func-
tions are considered as state models for DC formulas. Thus, states can be more
general than the Boolean valued functions considered in this paper. But although
we recognize that different models are useful in different situations, we decline

322 M.R. Hansen and Zhou Chaochen

to develop a universal, but complicated, duration calculus to specify and reason
about all the models. The Boolean state model, presented in this paper, is the
basis for DC. All other models, which have been introduced, extend this basic
model. These models are briefly mentioned below.

Boolean State Model: The basic calculus of DC [ZHR91] axiomatizes state
durations, i.e. integrals of Boolean valued functions, for the Boolean state model
under the finite variability assumption (also called non-Zeno phenomenon) of
states, i.e. a state can only change its presence and absence finitely many times in
a bounded time period. The interval modality chop (~) is used by this calculus,
which can express safety properties of real-time systems. Formalizations of other
models are conservative extensions of this calculus.

Boolean State and Event Model: The Boolean state and event model is studied in
[ZhL94, ZhH96b], where an event is a Boolean valued g-function, i.e. a function
with value of 1 at discrete points. It means that an event is an instant action,
which takes place at a time point, iff the Boolean valued g-function of the event
takes value 1 at the point. By relating events to state transitions, this model
can be used to refine from state based requirements via mixed state and event
specifications to event based specifications or programs.

However, one cannot capture point-values of functions with integrals since
the integral of a function at a point is always zero. In order to describe point
properties in DC, [ZhL94] and [ZhH96b] propose slightly different approaches.

Integrals f P are in [ZhL94] replaced by mean values P, where P([b, el) = e
if b = e, and P([b,e]) = f~P(t)d t / (e - b) if b < e. Thus, one can describe
point properties of Boolean valued functions by using their mean values inpoint
intervals, and at the same time, integral of P can be defined as f P ~ (P �9 f).
Additional axioms and rules for reasoning about point properties are developed
in [ZhL94]. However, extra atomic formulas and axioms are in [ZhH96b] added
to the basic calculus to express and reason about state transitions and events.

Real State Model: A real state model consists of a set of real-valued functions,
which describe behaviour of physical components of a software embedded system.
A Boolean state represents a property of the real states of the model. Therefore,
specifications and reasonings at the state level may have to employ real analysis.
[ZRH93] investigates how DC can be combined with real analysis, so that real
state models can be specified in the framework of DC. [ZhH96a] furthers this
research by formalizing some part of real analysis using expanding modalities.

Dependability: The dependability of a requirement for an implementation can
be quantitatively measured by the satisfaction probability of the requirement for
this implementation. In respect to the Boolean state model, [LRS93, LRS94]
provide designers with a set of rules to reason about whether a given requirement
will hold with a sufficiently high probability, given failure probabilities of the
components used, where implementation with imperfect components is taken to
be a finite automaton with history-independent transition probabilities in discrete
time domain. [DaZ94] generalizes this work for continuous time domain.

Finite Divergence Model: The finite variability of states and events stipulates that
state transitions and events can happen only finitely many times within a finite
time period, and can e.g. be adopted in connection with software systems, where

Duration Calculus 323

time progresses discretely. But this assumption may be violated in a software
embedded system, where time is continuous. The opposite notion is called finite
divergence (or Zeno phenomenon). [HPZ95] formalizes the finite divergence model
by introducing into DC rules to calculate a state duration in a finite divergence
model as a limit of its approximations in finite variability model.

Super Dense Computation: A super dense computation is a sequence of timeless
operations. It is an abstraction of a real-time computation within a context with
a grand time granularity. This abstraction has been adopted by digital control
system, where the cycle time of a computer may be nanoseconds, while the
sampling period of a controller may take seconds. Computation time can, in
this case, be neglected, and operations can be considered as timeless actions.
[ZhH96b] adapts the chop modality (called super dense chop), so that it can map
an operation in a grand time space into a time space with finer time granularity.

Expanding Modalities: Only safety properties can be expressed with contracting
modalities such as ~ and ~. In order to specify unbounded liveness and fairness
properties in DC, [Ska94a, Pan96, EnR94, ZhH96a] present proposals to introduce
expanding modalities. [ZhH96a] proves that the left and right neighborhood
modalities, @ and ~r, are adequate in the sense that the other contracting and
expanding modalities suggested in [Al184, HMM83, Veng0] can be derived from
them in a first order logic with the interval length f. [ZhH96a] establishes a
complete first order calculus for ~/, <>r and E, and demonstrates how expanding
modalities are also convenient for formulating notions of real analysis.

Infinite Intervals: The behaviour of real-time systems is, occasionally, assumed
to be infinite. DC is, however, based on an interval logic of finite intervals. An
infinite behaviour is therefore specified in DC as a set of all finite prefixes of
the behaviour. Expanding modalities can be used to specify liveness and fairness
properties in terms of its finite prefixes. However, an alternative approach is to
introduce infinite intervals. An extension of DC, which allows infinite intervals, is
described in [ZDL95]. In this extension, a state duration over an infinite interval
is determined by a property, which specifies the limit of the state duration over
finite intervals. Since the extension includes both finite and infinite intervals,
terminating and infinite system behaviour can easily be expressed.

7.2.2. DC Applications

Case Studies of Software Embedded Systems: DC has been applied to several
case studies, e.g. an auto pilot [RaR91], a railway crossing [SRR92], a water level
monitor [EKM93], a gas burner [RRH93], an aircraft traffic controller [Ina94],
a production cell [PER94], a motor-load control system [YWZ94], an inverted
pendulum [WCH96], and a hydraulic actuator system [RRH95]. A case study to
formalize and synthesize an optimal design of a double-tank control system is
conducted in [HeZ95].

Real-time Specification and Verification: DC has been used to define real-time
semantics of other languages, e.g. CSP-like languages [ZHR92, HeB92, SCO95,
Sch95, ZhH96b]. It is in [ZHR92] emphasized that some processes may be
executed on the same processor. In [ZhH96b], it is assumed that assignments and
message passing take no time and thus can constitute a super dense computation.

324 M.R. Hansen and Zhou Chaochen

In [HOS93], DC is used to give semantics to two different formalisms to describe
reactive systems, where one supports a global view of systems and the other
supports a CSP-like view of systems. In [RRH93], a CSP semantic domain is
lifted to DC formulas by regarding traces and refusals as functions of time.
[ZWR96] gives semantics to a CSP-like language with continuous variables,
which can be used to describe software embedded systems.

In [MGH96] and [PRS95], DC is used to define real-time semantics for SDL
and Esterel, respectively. A DC semantics is, in [Die96], proposed for a graphical
language called Constraint Diagrams. In [HRS96], a formal meaning of Fault
Trees is given using DC. In [HZS92], DC is used to specify and reason about
real-time properties of circuits. In [Ris92], the correctness of Fischer's mutual
exclusion protocol is proven in DC, and DC is in [ZhZ94] used to specify and
verify the deadline driven scheduler. Furthermore, several well-known real-time
schedulers are specified in [ChD95].

Refinement of DC Specifications: Refinement laws towards DC implementables,
which are formulas of a restricted form which can express properties such as
timed progress and stability, are considered in [MRR93]. A full exposition of
these ideas is given in the monograph [Rav95], which e.g. also contains a study
of how to ensure that a set of implementables is feasible, i.e. that it is consistent
and that any finite observation can be extended in time. Techniques are, in
[ORS96, SCO95, Sch95], developed to refine a feasible set of DC implementables
via a mixed specification and programming language into an executable program.
Refinement of DC implementables into automata is considered in [Sch94, DaW94,
K~i~i95a, K~i~i95b]. An approach to refining DC specifications into programs in
the style of the Hoare logic is considered in [XuH95, XuY96]. In [Lak96], it is
shown how Implementables [Rav95] can be encoded in a decidable fragment of
a logic called Duration Interval Logic.

7.2.3. DC Tools

The research of DC tools include developments of complete calculi for inter-
val modalities and state durations, and decision procedures and model checking
algorithms for DC subsets. It is proved that the interval logic [ZhH96a], with
modalities ~ and %, and the interval length Y, is complete, and the calculi for
integral and mean value are relatively complete [HaZ92, Li93]. The decidable
subsets of DC are discovered by [ZHS93, Han94, Li93]. Decidability and expres-
siveness results are presented in [Pan95] for extensions of the mean value calculus
which includes expanding modalities and quantifications over state variables.
Furthermore, in [PAR95] there is study of mean value calculus extended with
fixed point operators. Various models are investigated in [Frii96] which restrict
the variability of states. Results on decidability and undecidability of formulas
are developed wrt. these restricted models.

In order to check whether state transition sequences of a real-time automaton
satisfy a linear inequality of state durations, [KPS93, ZZY94, LiH96] develop
algorithms which employ techniques from linear and integer programming.

A proof assistant for DC [SkS94a, Ska94b] is developed as an extension
of PVS [OSR93]. A decision procedure [ZHS93] is incorporated in this proof
assistant. For example the soundness proof for the induction rules for DC [HaZ92]
is checked with this proof assistant. Furthermore, several proofs done in case
studies are checked using the DC extension of PVS [Ska94b], e.g. [ZHR91] and

Duration Calculus 325

[SRR92]. In these applications of the proof assistant errors in the original proofs
were spotted. There is also a proof assistant developed in UNU/IIST [MXW96].

7.3. Other Languages with a Duration Notion

In [MAP93], there is a discussion of how the temporal logic of [MAP92] can be
extended by a duration function fp (and a special real-time clock variable T). fp
is a measure of the accumulated time in which p has been true in the interval
[0, T].

Another idea is presented in [Lain93], where a construct is introduced so that
the duration of some state variable p is related to another state variable x and
the actual time, which is called now, in such a way that the value of x(now + t)
for t >/0 equals the duration of p in the interval [now, now + t].

In [LaH94], a duration term f f p is introduced into the metric temporal logic
of [Koy92]. The duration term f f p denotes at a given time t the duration of p in
the interval [t, t + z]. This work is supported by a theorem prover [Hoo94].

In [BES93] there is another logic which can express duration constraints.
In automata based formalism, integrator variable is used to measure the

accumulated time an automaton has spent in certain states, e.g. [KPS93, ACH93,
BER94, KHM94, SiM94].

Acknowledgment

The research of DC [ZHRgl] was introduced in the ProCoS (ESPRIT BRA
3104 and 7071) project [Bjo89], when the work of the project was to investigate
formal techniques for designing safety critical real-time systems. In a project case
study of a gas burner system [SRR90], it was realized that state duration had
not yet been well studied as an essential measurement of real-time behaviour
of computing systems. A research of a logic for state durations was therefore
initiated in 1990. The first paper was published in 1991, and dozens of papers
have been published since then. We would like to thank all the colleagues in the
project for providing a very stimulating environment.

Special thanks go to all the friends with whom we have written joint papers:
Chen Zongji, Martin Ffiinzle, Jens C. Godskesen, He Weidong, Tony Hoare,
Dang Van Hung, Burghard yon Karger, Li Xiaoshan, Liu Zhiming, Simon
Mork, Marcus Miiller-Olm, Ernst-Rfidiger Olderog, Paritosh K. Pandya, Anders
R Ravn, Hans Rischel, Michael Schenke, Peter Sestoft, Robin Sharp, Jens Ulrik
Skakkeb~ek, Jorgen Staunstrup, Erling Vagn Sorensen, Wang Ji, Belawati H.
Widjaja, Yang Lu, Yu Xinyao, Yu Huiqun, Zhang Jingzhong, and Zheng Yuhua.

Furthermore, we would like to thank our colleagues: Henrik Reif Andersen,
Dines Bjorner, Jonathan Bowen, Steven Brien, Chris George, He Jifeng, Tony
Hoare, Hans Henrik Lovengreen, Soren Prehn, Anders R Ravn, Hans Rischel,
Peter Sestoft, Erling Vagn Sorensen, and Xu Qiwen at the Department of Com-
puter Science, DTU, at PRG, Oxford University, and at UNU/IIST for many
discussions, suggestions, corrections, and criticism and other things which are
helpful in the daily work.

The writing of this work started when the first author was visiting the
Semantics Group at Oldenburg University, Germany. The great help, support
and encouragement from Ernst-Riidiger Olderog during this visit are greatly

326 M.R. Hansen and Zhou Chaochen

appreciated. The first handwritten notes were used in a course on "real-time
systems" at Oldenburg University, and we would like to thank Regine Bauer,
Jiirgen Bohn, Cheryl Dietz, Stephan Kleuker, Stephan RSssig, Michael Schenke
from the Semantics Group, and the other attendants in this course for very useful
feedback. Likewise we thank for feedback given to us in connection with similar
courses at the Technical University of Denmark, UNU/IIST, Railways Computer
Center (Beijing), Asian Institute of Technology (Bangkok), Tata Research Design
& Development Center (Pune), University of Indonesia, University of Macau,
University of the Philippines, and the Institute of Cybernetics (Tallinn).

This research has been funded by several sources. We greatly appreciate
funding from: (a) the Commission of the European Communities (CEC) under
the projects: ESPRIT BRA 3104 and 7071, the KIT 010, and the HCM project
ERB4001GT920879, (b) the Danish Natural Science Research Council, (c) the
Danish Technical Research Council under the projects Rapid and Codesign, and
(d) UNU/IIST and the Chinese State Science and Technology Committee under
the project DeTfoRS.

References

[Al183]

[Al184]

[ACD90]

[ACH93]

[A1D92]

[AFH91]

[Ben83]
[Bir76]
[Bjo89]

[BER94]

[BES93]

[Bri91]

[ChD951

[DaZ94]

[DaW94]

[Die96]

[Dut95a]

Allen, J. F.: Maintaining Knowledge about Temporal Intervals. Communications of the
ACM, 26(11):832-843, 1983.
Allen, J.F.: Towards a General Theory of Action and Time. Artificial Intelligence,
23:123-154, 1984.
Alur, R., Courcoubetis, C. and Dill, D.: Model-Checking for Real-Time Systems. In Fifth
Annual IEEE Symp. on Logic in Computer Science, IEEE Press, 1990, pages 414425.
Alur, R., Courcoubetis, C., Henzinger, T. and Ho, P-H.: Hybrid Automata: An Algo-
rithmic Approach to the Specification and Verification of Hybrid Systems. In [GNR93],
pages 209-229.
Alur, R. and Dill, D.: The Theory of Timed Automata. In Real-Time: Theory in Practice,
LNCS 600, Springer-Verlag, 1992, pages 45-73.
Alur, R., Feder, T. and Henzinger, T.: The Benefits of Relaxing Punctuality. In Tenth
Annual ACM Symposium on Principles of Distributed Computing, ACM Press, 1991, pages
139-152.
Benthem, J. E A. K. van: The Logic of Time. D. Reidel publishing Company, 1983.
Bird, R.: Programs and Machines. John Wiley & Sons, 1976.
Bjorner, D. et al.: A ProCoS Project Description: ESPRIT BRA 3104. Bulletin of the
EATCS, (39):60-73, 1989.
Bouajjani, A., Echahed, R. and Robbana, R.: Verifying Invariance Properties of Timed
Systems with Duration Variables. In [LRV94], pages 193-210.
Bouajjani, A., Echahed, R. and Sifakis, J.: On Model Checking for Real-Time Properties
with Durations. In Eights Annual IEEE Syrup. on Logic in Computer Science, IEEE Press,
1993, pages 147-159.
Brien, S.: A time lnterval Calculus. Master's thesis, Programming Research Group,
Computing Laboratory, Oxford University, 1991.
Chan, P. and Dang, Van Hung: Duration Calculus Specification of Scheduling for
Tasks with Shared Resources. In Asian Computing Science Conference 1995, LNCS
1023, Springer-Verlag, 1995, pages 365-380.
Dang, Van Hung and Zhou, Chaochen: Probabilistic Duration Calculus for Continuous
Time. UNU/IIST Report No. 25, UNU/IIST, International Institute for Software
Technology, EO. Box 3058, Macau, 1994.
Dang, Van Hung and Wang, Ji: On Design of Hybrid Control Systems using I /0 Automata
Models. UNU/IIST Report No. 35, UNU/IIST, International Institute for Software
Technology, EO. Box 3058, Macau, 1994.
Dietz, C.: Graphical Formalization of Real-Time Requirements. Technical report, Fach-
bereich Informatik, Oldenburg University, 1996.
Dutertre, B.: Complete Proof Systems for First Order Interval Temporal Logic. In Tenth
Annual IEEE Symp. on Logic in Computer Science, IEEE Press, 1995, pages 3643.

Duration Calculus 327

[Dut95b]

[EKM931

[EnR94]

[Fr~i96]

[GBJ91]

[GNR931

[Hal88]

[HMM83]

[HAS86]

[HRS96]

[Han94]

[HaZ92]

[HZS921

[HOS93]

[HPZ95]

[HLP90]

[He94]

[HeB92]

[HeZ95]

[Hoo94]

[HoU79]

[HuC68]
[Hum79]

[Ina94]

[JAM86]

[KHM94]

[KPS93]

Dutertre, B.: On First Order Interval Temporal Logic. Report no. CSD-TR-94-3, De-
partment of Computer Science, Royal Holloway, University of London, Egham, Surrey
TW20 0EX, England, 1995.
Engel, M., Kubica, M., Madey, J., Parnas, D. L., Ravn, A. R and Schouwen, A. J. van:
A Formal Approach to Computer Systems Requirements Documentation. In [GNR93],
pages 452-474.
Engel, M. and Rischel, H.: Dagstuhl-Seminar Specification Problem - a Duration Calculus
Solution. Department of Computer Science, Technical University of Denmark Private
Communication, 1993.
Fr~nzle, M.: Controller Design from Temporal Logic: Undecidability need not matter,
PhD thesis, Kiel University, submitted December 1996.
Goswami, A., Bell, Michael and Joseph, Mathai: ISL: An Interval Logic for the
Specification of Real-Time Programs. In Formal Techniques in Real-Time and Fault-
Tolerant Systems, LNCS 571, Springer-Verlag, 1991, pages 1-20.
Grossman, R. L., Nerode, A., Ravn, A. R and Rischel, H. (eds).: Hybrid Systems, LNCS
736, Springer-Verlag, 1993.
Hale, R.: Programming in Temporal Logic. PhD thesis, Computing Laboratory, Cam-
bridge University, UK, 1988.
Halpern, J., Moskowski, B. and Manna, Z.: A Hardware Semantics based on Temporal
Intervals. In ICALP'83, LNCS 154, Springer-Verlag, 1983, pages 278~291.
Halperu, J. Y. and Shoham, Y.: A Propositional Modal Logic of Time Intervals. In
Symposium on Logic in Computer Science, IEEE Press, 1986, pages 279-292.
K. M. Hansen, Ravn, A. R and Stavridou, V.: From Safety Analysis to Formal Specifi-
cation. Technical report, Department of Information Technology, Technical University
of Denmark, 1996.
Hansen, M. R. : Model-Checking Discrete Duration Calculus. Formal Aspects of Com-
puting, 6A:826-845, 1994.
Hansen, M. R. and Zhou, Chaochen: Semantics and Completeness of Duration Calculus.
In Real-Time: Theory in Practice, LNCS 600, Springer-Verlag, 1992, pages 209-225.
Hansen, M. R., Zhou, Chaochen and Staunstrup, J.: A Real-Time Duration Semantics
for Circuits. In TAU'92:1992 Workshop on Timing Issues in the Specification and
Synthesis of Digital Systems, Princeton Univ., N J. ACM/SIGDA, 1992.
Hansen, M. R., Olderog, E.-R., Schenke, M., Fr~inzle, M., Karger, B. von, Mfiller-Olm, M.
and Rischel, H. : A Duration Semantics for Real-Time Reactive Systems. Report no. OLD
MRH 1/1, ProCoS II, ESPRIT BRA 7071, Oldenburg University, Germany, 1993.
Hansen, M. R., Pandya, R K. and Zhou, Chaochen: Finite Divergence. Theoretical
Computer Science, 138:113-139, 1995.
Harel, E.; Lichtenstein, O. and Pnueli, A.: Explicit Clock Temporal Logic. In Syrup. on
Logic in Comp. Sei., IEEE press, 1990, pages 402-413.
He, Jifeng: From CSP to Hybrid Systems. In A Classical Mind: Essays in Honour of
C.A.R. Hoare, Prentice Hall, 1994, pages 171-190.
He, Jifeng and Bowen, J.: Time Interval Semantics and Implementation of a Real-Time
Programming Language. In 1992 Euromicro Workshop on Real-Time Systems. IEEE
Press, 1992.
He, Weidong and Zhou, Chaochen: A Case Study of Optimization. The Computer
Journal, 38(9):734-746, 1995.
Hooman, J.: Correctness of Real Time Systems by Construction. In [LRV94], pages
19-40.
Hopcroft, J. E. and Ullman, J. D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.
Hughes, G. E. and Crestwell, M. J.: An Introduction to Modal Logic. Routledge, 1968.
Humberstone, I. L.: Interval Semantics for Tense Logics: Some Remarks. Journal of
Philosophical Logic, 8:171-196, 1979.
Inal, R.: Modular Specification of Real-Time Systems. In 1994 Euromicro Workshop on
Real-Time Systems, IEEE Press, 1994.
Jahanian, F. and Mok, A. K-L.: Safety Analysis of Timing Properties in Real-Time
Systems. IEEE Trans. SE., 12(9), 1986, pages 890~904.
Kaput, A., Henzinger, T., Manna, Z. and Pnueli, A.: Proving Safety Properties of Hybrid
Systems. In [LRV94], pages 431-454.
Kesten, Y., Pnueli, A., Sifakis, J. and Yovine, S.: Integration Graphs: A Class of
Decidable Hybrid Systems. In [GNR93], pages 179-208.

328 M.R. Hansen and Zhou Chaochen

[Koy90]

[Koy92]

[Kii~i95al

[K~i~i95b]

[Lak96]

[LaH94]

[Lam93]
[LRV94]

[Li93]

[LiH96]

[LRS931

[LRS94]

[MAP92]

[MAP93]
[MXW96]

[MRR93]

[Me187]

[Min671

[Mos83]
[Mos85a]

[Mos85b]

[Mos86]

[Mos93]

[MGH96]

[NOS93]

[ORS96]

[OSR931

[Pan95]

Koymans, R.: Specifying Real-Time Properties with Metric Temporal Logic. Real-Time
Systems, Kluwer Academic Publishers, 2(4):255-299, 1990.
Koymans, R. : Specifying Message Passing and Time-Critical Systems with Temporal
Logic. LNCS 651, Springer-Verlag, 1992.
K~i~iramees, M.: Transforming Designs Towards Implementations. In 1995 Euromicro
Workshop on Real-Time Systems, IEEE Press, 1995, pages 197-204.
K~iiiramees, M.: Transformation of Duration Calculus Specifications to DisCo Lan-
guage. Master's thesis, Automation and Systems Engineering, Tallinn Technical Univer-
sity, Estonia, 1995.
Lakhnech, Y.: Specification and Verification of Hybrid and Real-Time Systems. PhD
thesis, Kiel University, 1996.
Lakhnech, Y. and Hooman, J.: Reasoning about Durations in Metric Temporal Logic.
In [LRV94], pages 488-510.
Lamport, L : Hybrid Systems in TLA +. In [GNR93], pages 77-102.
Langmack, H., Roever, W.-R de and Vytopil, J. (eds).: Formal Techniques in Real-Time
and Fault-Tolerant Systems, LNCS 863, Spriuger-Verlag, 1994.
Li, Xiaoshan: A Mean Value Calculus. PhD thesis, Software Institute, Academia Sinica,
1993.
Li, Xuandong and Dang, Van Hung: Checking Linear Duration Invariants by Linear
Programming. In Concurrency and Parallelism, Programming, Network and Security,
LNCS 1179, Springer-Verlag, 1996.
Liu, Zhiming, Ravn, A. E, Sorensen, E. V. and Zhou, Chaochen: A Probabilistic Dura-
tion Calculus. In Dependable Computing and Fault-Tolerant Systems Vol. 7: Responsive
Computer Systems, Springer-Verlag, Wien, New York, 1993, pages 30-52.
Liu, Zhiming, Ravn, A. R, Sorensen, E. V. and Zhou, Chaochen: Towards a Calculus
of Systems Dependability. High Integrity Systems, 1(1):49-75, 1994.
Manna, Z. and Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer Verlag, 1992.
Manna, Z. and Pnueli, A.: Verifying Hybrid Systems. In [GNR93], pages 4-35.
Mao, Xiaoguang, Xu, Qiwen and Wang, Ji: Towards a Proof Assistant for Interval
Logics. UNU/IIST Report No. 77, UNU/IIST, International Institute for Software
Technology, RO. Box 3058, Macau, 1996.
Masiero, R C., Ravn, A. R and Rischel, H. : Refinement of Real-Time Specifications. Re-
port no. ID/DTH PCM 1/1, ProCoS II, ESPRIT BRA 7071, Department of Computer
Science, Technical University of Denmark, 1993.
Melliar-Smith, R M.: Extending Interval Logic to Real Time Systems. In Temporal
Logic in Specification, LNCS 398, Springer-Verlag, 1987, pages 224-242.
Minsky, M. L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, N.J., 1967.
Moszkowski, B.: Reasoning about Digital Circuits. PhD thesis, Stanford University, 1983.
Moszkowski, B.: A Temporal Logic for Multilevel Reasoning about Hardware. IEEE
Computer, 18(2):10-19, 1985.
Moszkowski, B.: Compositional Reasoning about Projected and Infinite Time. In First
IEEE Intl. Conf. on Engineering of Complex Computer Systems, IEEE press, 1995.
Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University Press,
Cambridge, UK, 1986.
Moszkowski, B.: Some Very Compositional Temporal Properties. In Programming
Concepts, Methods and Calculi, IFIP Transactions, Vol. A-56, North-Holland, 1994, pages
307-326.
Mork, S., Godskesen, J. C., Hansen, M. R. and Sharp, R.: A Timed Semantics for SDL.
In Formal Description Techniques IX: Theory, application and tools, Chapman & Hall,
1996, pages 295-309.
Nicollin, X., Olivero, A., Sifakis, J. and Yovine, S. : An Approach to the Description
and Analysis of Hybrid Systems. In [GNR93], pages 149-178.
Olderog, E-R., Ravn, A. R and Skakkeb~ek, J. U.: Refining System Requirements to
Program Specifications. In Formal Methods in Real-Time Systems, Trends in Software-
Engineering, Chapter 5, Wiley, 1996, pages 107-134.
Owre, S., Shankar, N. and Rushby, J.: Users Guide for the PVS Specification and Veri-
fication System, Language, and Proof Checker (beta release) (three volumes). Technical
report, Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USA,
1993.
Pandya, R K.: Some Extensions to Propositional Mean Value Calculus: Expressiveness

Duration Calculus 329

[Pan96]

[PAR95]

[PRS951

[PER94]

[RRH95]

[Rav95]

[RaR911

[RRH93]

[Ris92]

[RoP86]

[RiSp80]
[Sch94]

[Sch95]

[SCO95]

[SMV83]

[SIS94]

[Ska94a]

[Ska94b]

[SRR92]

[SKS93]

[SkS94a]

[SkS94b]

[SRR90]

and Decidability. Report no. TCS-95/9, Computer Science Group, TIFR, Bombay, 1995.
To appear in proc. of CSL'95.
Pandya, P. K.: Weak Chop Inverses and Liveness in Duration Calculus. In Formal
Techniques in Real-Time and Fault-Tolerant Systems, LNCS 1135, Springer-Verlag, 1996,
pages 148-167.
Pandya, P. K. and Ramakrishna, Y.S.: A Recursive Mean Value Calculus. Report no.
TCS-95/3, Computer Science Group, TIFR, Bombay, 1995.
Pandya, P. K., Ramakrishna, Y. S. and Shyamasundar, R. K.: A Compositional Seman-
tics of Esterel in Duration Calculus. In Proc. Second AMAST workshop on Real-Time
systems: Models and Proofs, Bordeux, June, 1995.
Petersen, J. L. and Rischel, H.: Formalizing Requirements and Design for a Production
Cell System. In Symposium ADPM '94: Automatisation des Processus Mixtes: Les Sys-
temes Dynamiques Hybrides, Belgian Institute of Automatic Control, IBRA, 1994, pages
37-46.
Ravn, A. P., Rischel, H., Holdgaard, M., Eriksen, T. J., Conrad, E and Andersen, T.
O.: Hybrid Control of a Robot - a case study. In Hybrid Systems II, LNCS 999,
Springer-Verlag, 1995, pages 391-404.
Ravn, A. P.: Design of Embedded Real-Time Computing Systems. Department of Com-
puter Science, Technical University of Denmark, DK-2800 Lyngby, Denmark, Doctoral
Dissertation, ID-TR: 1995-170, 1995.
Ravn, A. P. and Rischel, H.: Requirements Capture for embedded real-time systems. In
Proceedings of lMACS-MCTS'91 Symposium on Modelling and Control of Technological
Systems, Villeneuve d'Ascq, France, May 7-10, volume 2, IMACS, 1991, pages 147-152.
Ravn, A. P., Rischel, H. and Hansen, K. M.: Specifying and Verifying Requirements of
Real-Time Systems. IEEE Trans. SE., 19(1):41-55, 1993.
Rischel, H.: A Duration Calculus Proof of Fischer's Mutual Exclusion Protocol. Report
no. DTH HR 4/1, ProCoS II, ESPRIT BRA 7071, Department of Computer Science,
Technical University Of Denmark, 1992.
Rosner, R. and Pnueli, A.: A Choppy Logic. In First Annual IEEE Syrup. on Logic in
Computer Science, IEEE Press, 1986, pages 306-313.
RSper, P.: Intervals and Tenses. Journal of Philosophical Logic, 9:452-469, 1980.
Schenke, M.: Specification and Transformation of Reactive Systems with Time Restric-
tions and Concurrency. In [LRV94], pages 605-620.
Schenke, M.: Requirements to Programs: A Development Methodology for Real Time
Systems, Part 2. Technical report, Fachbereieh Informatik, Universit~it Oldenburg, 1995.
(To appear in Acta Informatica.)
Schenke, M. and Olderog, E.-R.: Requirements to Programs: A Development Methodology
for Real Time Systems, Part 1. Technical report, Fachbereich Informatik, Universit~it
Oldenburg, 1995.
Schwartz, R. L., Melliar-Smith, P. M. and Vogt, E H.: An Interval Logic for Higher-Level
Temporal Reasoning. In Second Annual ACM Symposium on Principles of Distributed
Computing, ACM, 1983, pages 173 186.
Sipma, H. B. and Manna, Z.: Specification and Verification of Controlled Systems. In
[LRV94], pages 641-659.
Skakkeb~ek, J. U.: Liveness and Fairness in Duration Calculus. In CONCUR'94:
Concurrency Theory, LNCS 836, Springer Verlag, 1994, pages 283-298.
Skakkeb~ek, J. U.: A Verification Assistant for a Real-Time Logic. PhD thesis, Depart-
ment of Computer Science, Technical University of Denmark, 1994.
Skakkeb~ek, J. U., Ravn, A. P., Rischel, H. and Zhou, Chaochen: Specification of
Embedded, Real-Time Systems. In Proceedings of 1992 Euromicro Workshop on Real-
Time Systems, IEEE Press, 1992.
Skakkeb~ek, J. U. and Shankar, N.: A Duration Calculus Proof Checker: Using PVS as
a Semantic Framework. Report no. SRI-CSL-93-10, Computer Science Laboratory, SRI
International, Menlo Park, CA 94025, USA, 1993.
Skakkeb~ek, J. U. and Shankar, N.: Towards a Duration Calculus Proof Assistant in
PVS. In [LRV94], pages 660-679.
Skakkeb~ek, J. U. and Sestoft, P.: Checking Validity of Duration Calculus Formulas.
Report no. ID/DTH JUS 3/1, ProCoS II, ESPRIT BRA 7071, Department of Computer
Science, Technical University of Denmark, 1994.
Sorensen, E. V., Ravn, A. P. and Rischel, H.: Control Program for a Gas Burner:
Part 1: Informal Requirements, ProCoS Case Study 1. Report no. ID/DTH EVS2,

330 M.R. Hansen and Zhou Chaochen

[Tar41]
[Ven90]

[Ven91]

[vKH95]

[WCH96]

[XuY96]

[XuH95]

[YWZ94]

[ZhZ94]

[ZhH96a]

[ZhH96b]

[ZHR921

[ZHS93]

[ZHRgl]

[ZDL95]

[ZWR96]

[ZZY94]

[ZRH93]

[ZhL94]

ProCoS, ESPRIT BRA 3104, Department of Computer Science, Technical University of
Denmark, 1990.
Tarski, A.: On the Calculus of Relations. Journal of Symbolic Logic, 6(3):73-88, 1941.
Venema, Y.: Expressiveness and Completeness of an Interval Tense Logic. Notre Dame
Journal of Formal Logic, 31(4):529-547, 1990.
Venema, Y.: A Modal Logic for Chopping Intervals. J. Logic Computat., 1(4):453-476,
1991.
Karger, B. yon and Hoare, C. A. R.: Sequential Calculus. Information Processing Letters,
53:123-130, 1995.
Widjaja, Belawati H., Cben, Zongji, He, Weidong and Zhou, Chaochen: A Cooperative
Design for Hybrid Control Systems. In Logic and Software Engineering, International
Workshop in Honor of Chih-Sung Tang, World Scientific, 1996, pages 127-150.
Xu, Qiwen and Yang, Zengyu: Derivation of Control Programs: a Heating System.
Presented at the 4th International Conference on Hybrid Systems, Ithaca, NY, USA,
1996.
Xu, Quiwen and He, Weidong: Hierarchical Design of a Chemical Concentration Control
System. In Hybrid Systems III, LNCS 1066, Springer-Verlag, 1996, pages 270-281.
Yu, Xinyao, Wang, Ji, Zhou, Chaochen and Pandya, Paritosh K.: Formal Design of
Hybrid Systems. In [LRV94], pages 738-755.
Zheng, Yuhua and Zhou, Chaochen: A Formal Proof of the Deadline Driven Scheduler.
In [LRV94], pages 756-775.
Zhou, Chaochen and Hansen, M. R.: An Adequate First Order Interval Logic. UNU/IIST
Report No. 91, UNU/IIST, International Institute for Software Technology, RO. Box
3058, Macau, December 1996.
Zhou, Chaochen and Hansen, M. R. : Chopping a Point. In BCS-FACS 7th refinement
workshop, Electronic Workshops in Computing, Springer-Verlag, 1996.
Zhou, Chaochen, Hansen, M. R., Ravn, A. R and Rischel, H. : Duration Specifications
for Shared Processors. In Symposium on Formal Techniques in Real-Time and Fault
Tolerant Systems, LNCS 571, Springer-Verlag, 1991, pages 21-32.
Zhou, Chaochen, Hansen, M.R. and Sestoft, R: Decidability and Undecidability Results
for Duration Calculus. In STACS'93, LNCS 665, Springer-Verlag, 1993, pages 58-68.
Zhou, Chaochen, Hoare, C. A. R. and Ravn, A. R: A Calculus of Durations. Information
Processing Letters, 40(5):269-276, 1991.
Zhou, Chaochen, Dang, Van Hung and Li, Xiaoshan: A Duration Calculus with Infinite
Intervals. In Fundamentals of Computation Theory, LNCS 965, Springer-Verlag, 1995,
pages 16-41.
Zhou, Chaochen, Wang, Ji and Ravn, Anders R: A Formal Description of Hybrid
Systems. In Hybrid Systems III, LNCS 1066, Springer-Verlag, 1996, pages 511-530.
Zhou, Chaochen, Zhang, Jingzhong, Yang, Lu and Li, Xiaoshan: Linear Duration
Invariants. In [LRV94], pages 86-109.
Zhou, Chaochen, Ravn, A. R and Hansen, M. R.: An Extended Duration Calculus for
Hybrid Systems. In [GNR93], pages 36-59.
Zhou, Chaochen and Li, Xiaoshan: A Mean Value Calculus of Durations. In A Classical
Mind: Essays in Honour of C. A. R. Hoare, Prentice Hall, 1994, pages 431.451.

Received August 1995
Accepted in revised form January 1997 by C. B. Jones

