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Abstract. Usually renormalization group transformations are defined by some
averaging operations. In this paper we study such operations for lattice gauge
fields and for gauge transformations. We are interested especially in character-
izing some classes of field configurations on which the averaging operations are
regular (e.g., analytic). These results will be used in subsequent papers on the
renormalization group method in lattice gauge theories.

Introduction

In Wilson’s approach to renormalization group transformations [9, 10] for lattice
gauge systems, it is necessary to define an operation of taking an average of field
configurations over subdomains of a lattice. These subdomains are usually some
simple subsets, for example cubes of a fixed size, or sums of several such cubes. In
this paper we will study one such definition of an averaging operation. This
operation will be used in other papers on gauge field theories.

Let us introduce some definitions and notations. We will be very sketchy
because these definitions have already appeared several times in the earlier papers
[1, 2] of the author and we refer the reader to these papers, especially to [2], for
more detailed explanations. We consider a subdomain € of the lattice nZ? with a
lattice spacing #. A sequence of sets Q% is defined as the intersections

QY =QnIiyz?, 1)

where Lis a fixed integer, L>> 1. For a point y € I’y Z* (or any lattice 6Z7), we define
a block of an order j as the cube

Bl(y)={xe LI'Z": y, <%, <y, +Ln,u=1,...d} )

(or the corresponding cube with L' replaced by 6). We will omit the subscript j if
j=1. For a subset ACL'Z* (or C5Z%), we define

Bi(A)= UABf(y)CL_"L”nZ" (or CL96Z%). 3
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18 T. Bataban

We assume that
Bi(QN=0 for j=1,...k 4)

for some k. In fact, we will assume that # =L™*. Thus Q is a sum of blocks of the
order k.

Besides the blocks of different orders, there are two other geometric objects
important for us. Bonds of the lattice Q are ordered pairs (x,x") of nearest
neighbor points x, x” of 2. We identify them with the corresponding oriented
intervals with endpoints x, x". We will denote them also by the letters b, V', ¢, ctc.
For example, b denotes a bond {b_, b, > with an initial point b .. and a final point
b.; b_, b, are nearest neighbors. Plaquettes are oriented elementary squares of
the lattice Q2 and are denoted by p, p’, etc. A boundary of a plaquette p is a sum of
four bonds, and an orientation of the plaquette may be indicated by an orientation
of the bonds. A plaquette p may be identified also with an ordered quadruple
{x,y,z,w) of corners x, y, z, w of the elementary square p; the ordering indicates
the orientations of bonds {x, y>, {y, z), {z, w), {w, x> forming the boundary dp.
Speaking precisely, the symbol {x, y, z, w) indicates not only the oriented square,
but also the initial point x of its boundary. In this paper we will consider positively
oriented plaquettes and such a plaquette pCQ is represented as

p=<{x,x+ne, x+ne,+ne,x+ne,y, p<v. (%)

The above definitions of bonds and plaquettes may be applied to an arbitrary
lattice, e.g., to QY.

Gauge field configurations U are defined on a set of bonds in 2, and with values
in a Lie subgroup G of a unitary group U(N). A value of U ata bond b= (x, x"> is
denoted by

Ub = U(x,x’) = U(x: xl) = U(b) ’ (6>
and we assume that U satisfies the condition
U(x,x)=U"1(x,x)=U*x', x). D

In the sequel, we will consider quantities which are invariant with respect to some
important transformations in the space of gauge field configurations, the so-cailed
gauge transformations. They are determined by gauge functions u: Q— G, and are
given by

Ut(x, x)=u(x)U(x, xu x), <{x,x>CQ. (8

n—1
For an oriented contour I'= | {x;,x;,,) we define
i=0

n—-1
U= 11 Ulxi Xi44). ®)

where the order of factors in the product is the same as the order of bondsin I'. This
definition will be applied also to contours on arbitrary lattices. For a plaquette
p=<x,y,z,w) we define dp as the oriented contour dp={x, y>u{y,z>ulz,w)
ulw, xp, and U(dp) is defined by (9).
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The renormalization group transformations are integral operators transform-
ing functions defined on gauge field configurations on a lattice, into functions
defined on configurations on the lattice of blocks. We will consider transform-
ations of the form

¢(V)=1dUs(vT~He(U), (10)

where, for example, U is a gauge field configuration on the lattice 29, V is a
configuration on the lattice QU*? and dU is a product of Haar measures of the
group G. The most important part of the above definition is an averaging
operation U. It transforms a configuration U defined on QY into a configuration U
defined on QU+ Y, In fact, Q¥ may be replaced by any other lattice. We will demand
that this averaging operation has to satisfy some important and natural
conditions. A first condition is connected with the fact that we consider gauge-
invariant quantities, so we demand that the averaging preserves gauge transfor-
mations, i.e.,

(U0, y)=u() Uy, y)u"'(y), or U= (1D

This property implies that the renormalization transformation (10} transforms
gauge-invariant functions g into gauge-invariant ¢”. Indeed, if v is a gauge function
on a new lattice, then

Q(V)=[dUs(V'T~He(U)= [ dUS(V* (T He(U")
= [dUs(V*(T") ™ He(U), 12)

where we have used the gauge-invariance of the Haar measure dU and the function
0, besides the condition (11). Now if we choose u coinciding with v at points of the
new lattice, then we get

o(ry=1du J1 00V, y) U,y v~ ()eU)
=JdUs(vT~He(U)=¢'(V). (13)

We have used also the invariance of the d-function concentrated at the identity of
the group G with respect to transformations U—vUv ™ !. A second condition on
averages U is formulated in the following way. We consider configurations U with
values in a small neighborhood of the identity of G, hence U=¢" and 4 is a Lie
algebra valued configuration with values in a small neighborhood of 0. For such

X 1. . . .
configurations we demand that ?logU is well approximated by the linear

averaging operation (1.8) defined in [2]. Let us write this operation
A= 3 LA )+ A% x(@]) + AT g, e.)) - (149

xeB(c -}
We refer the reader to paper [2] for explanations of symbols used above. Let us
notice that I',_ ,U[x, x(c)]Jwl'y,,., is an oriented contour with ¢_ as an initial
point and c, as a final point. We denote it by I', ,.
There are many ways of implementing these two conditions. We will write now
a definition of an average which satisfies these conditions and which has some
other advantages. We define

U,=exp l:i 3 L“’%log u(r,,,) U(c)_l] Ulc). (15)

xeB{c-}
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It is easy to see that taking U = e* with A4 small and expanding the logarithm of the
expression on the right-hand side above in powers of 4, we get the expression (14)
as a linear term in the expansion.

In this paper we will study properties of this and other averaging operations,
and especially their compositions. In the future we will need many properties of
these compositions. For example, it will be necessary to know that a composition
of many averaging operations applied to a regular or small gauge field
configuration gives a regular or small configuration also, the notions of regularity
or smallness being related to scales on which the gauge field configurations are
considered. This is the basic property of averagings we would like to understand.
Another important property is an analyticity of a result of the averaging operation
with respect to an averaged field.

The analysis and the propositions we prove in this paper can be easily extended
to other definitions of averaging operations satisfying the requirements postulated
in this introduction. The definitions we have used in this paper were chosen for
their simplicity but in some future papers we will need somewhat more
complicated definitions. We will discuss them at the proper time when they appear.

A. Norms, Important Inequalities, and Functions

We consider a Lie subgroup G of a unitary group U(N). Its Lic algebra g is a
subalgebra of the algebra of hermitian matrices. Because of analyticity properties
we are looking for, we will consider complexified algebras and groups. The
complexification of the algebra of hermitian matrices is the algebra of all complex
N x N matrices, and the complexification of U(N) is the general linear complex
group GL(C, N).

The complexification g is a subalgebra of the algebra of all complex matrices.
It may be defined in the following way: we take a basis {z,} of the algebra g, then all
clements 4 € g can be written as linear combinations 4=} A.t,, where 4, are

arbitrary real numbers, 4,€ R, and we form a complexification ¢° taking 4, as
arbitrary complex numbers, 4, €. It is easy to see that this complexification is
independent of any particular basis {t,} chosen in the above definition. For a
function F(A) defined on the complexified algebra, a notion of analyticity is well
defined and means analyticity with respect to complex variables 4,. The unitary
group U(N) can be obtained by an application of the exponential mapping to the
algebra of hermitian matrices. This exponential mapping is simply given by the
exponential function e, where

f=expX= Y — (16)

is defined for an arbitrary matrix X. The group G is obtained by applying the
function ¢ to A € g, and the complexified group G° may be defined as an image of
the exponential function applied to the complexified algebra g°. Of course, G°is a
subgroup of GL(C, N). We will need only a neighborhood of G in this subgroup.
We introduce a scalar product in the algebra of all complex matrices

N
(X, Y =t X*Y,trX = 'zlifj; X, (17)
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and a scalar product in spaces of matrix valued functions defined on subsets 02
cnz?
X.Yy= T trX*()Y(), as)
xef2
similarly for functions defined at bonds or plaquettes of Q. The scalar products
define the corresponding norms. They are L* norms and are denoted by || - |, e.g.,
for a matrix X the norm is given by | X||*=tr X*X. The I” norms, 1 <p< 0, are

defined in an obvious way. In estimates we will use much more frequently another
norm for matrices. It is the operator norm given by

|X|=sup|Xy|=sup|¢- Xy|, 4,peCF,
d=tol=L loP= % o/ (19)
We have the following inequalities for the norms introduced:
fer X| < |X], | X)) <1X1, 1X) S)/N X,
XYISIX|IYLIXY[<IX) Y.

Now we will introduce several important functions on the matrix algebra. The
first is a logarithmic function. It is an inverse to the exponential function and for
matrices X satisfying |X — 1|« 1 it is given by

( 1)n+1

(20)

logX = Z X-1". ey

Of course, both functions are analytic functions of complex matrices X. For
any branch logz of the ordinary logarithmic function, we may deﬁne logX for X

defining a normal operator on C¥. If X is such a matrix, then X = Z‘, z;P;, z;eC,

{P;} is a spectral family of orthogonal projections (i.e., P} = P P P,=P.P;
=6,P,), and we define

logX = Y logz,P;. 2)
j=1

We will use this definition for logz=logl|z| +iargz, where argze ]—=, n], and for
unitary matrices. Every unitary matrix U can be represented uniquely in the form

U= _Z ¢'*iP,, where the numbers 1, are different and satisfy 1, ]—=, 7], and then

we di:fme ,
logU=i 3, A;P;=iA, 23
i=1

A is a hermitian matrix, |4]<z. From this definition the following inequalities
follow:

LA
sin =<

A

2

[U—-1|= max e —1]| = max |4 < max |4 =|log U], (24)
J

logU|<%|U —1], because

sinx| _ 2
_—— —Z7. 2
X I._n_ for xe[-3.3] (25)
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We will need also inequalities of this type for arbitrary complex matrices X
instead of U. For matrices X satisfying | X —1| <1, we have

IX—1
To X1 21X 1], (26)

X —1]=le'eX —1| g eloeX 1 < eloeXl|log X| < 2]log X | . 27

© 1
logX|< 3 ;IX—ll"é
n=1

Let us consider now the most important function for all future considerations,
the function describing the group multiplication in terms of Lie algebra elements.

Let us define
Z(u,v)=loge*¥e"™ . (28)

It is a well-defined and analytic function of uX, vY, for example, in the domain
uX| <3, vY|<4$. Its power series expansion is given by the Baker-Campbell-
Haussdorf formula (see [7], Sect. 2.15)

Yy o0 (_wl)mi"} 1
Z=loge*e’ = ¥
m=1p+qzl M P1+Prt . APt +drt .. Gy
1 1 -1
‘Pl!‘h!' |qm!(adx)p1(adr)q “.r(adg)m(ady)™ "0 Y
=X+Y+3[X Y1+ BN [N XTI+ 50X X YT+ 29

where ad,Y=[X, Y]=XY - YX, and the series is convergent in a neighborhood
of 0:1X], |Y|= ¢, for some positive ¢,. From the structure of this power series
expansion, we get easily the bound

1Z-X —Y—1[X, YISO (X)2|Y]|+IX]|Y?), (30)
and this implies

lZ-X-Y[=2|X||Y] for |X],|Y|=cy, G3D

where 2 is a sufficiently smali positive constant, ¢; <c,. We will treat the
expression ady Y for a fixed X as a linear operator on a space of matrices ¥, and we
will consider functions of this operator f(ady). For analytic functions f defined in
a neighborhood of 0 and for X with a sufficiently small norm, the function f(ady)
can be defined by the power series expansion.

We will be interested in calculating derivatives of the function Z(u, v) and some
other functions of this type. Let us start with the following basic formula (see [7,
Theorem 2.14.37)

i @ (=1 .

e A(t)EeA(t) nzo D (ad 4)"A'(t) =g(ad 4,)) A(®), (32)
where A(f) is a differentiable matrix-valued function of t. The function g{(z) defined
by the above formula is an entire function given by

© (=1 e ?—1

g(z)—n o(n+1)'z — for z#0,g0)=1, (33)
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hence the function g~ (z)= g(l—z) is an analytic function in a neighborhood of 0,
more exactly for z=+2kni, k=11, +2,..., and we have the identities
- -z _ - _
0@ = =10 (D= D=2 D=4}t (39

Defining f(z)=g '(z)— 4z, we have f(—z)=f(2), so

f@=1+ 121 ko2, 97 @)= fD)+32,9 (—)=f(D—3z.  (35)

Using (32) we can derive easily the following formulas:

0Z(u,v - 0Z(u,v _
P00 gt adg X, P80 gty )y 00

We apply them to derive the second-order Taylor expansion of Z(u, v) with respect
to the variable u, for example:

1 ~2
Z(u,0)= 20,00+ 20D 2 g —p TELLY)
ou i ou
0Z(0 37
Z(O,D)=UY, ;u’v) =g—1(_aqu)X=g_1("vadY)X'
From this we get
%loge"xe"'= Y+g N—iady) X +F(X;Y),
(33)

7 (X; V=o)X

for |X|, |Y] sufficiently small, where O(1) is an absolute constant [e.g., we can take
0(1)=24 for |X| <3, |Y|£45]. Another important function we will need later is

Z(u)=loge”**¥e Y, (39
Repeating the above calculations, we get

Z(u) =ug(—ady) X +u? i dt(1 — ) Z"(tu), (40)
and

%loge”‘“"e_“’zg(——iadY)X+0(]X|2). 41)

B. Compositions of Averaging Operations

Let us recall the basic definitions. Let U be a gauge field configuration with values
in U(N). The one-step averaging operation is defined by

xeBlc-)

ﬁc=exp[z‘ > L—%logwc,x)v(c)-*} U, ccw, )
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and if k™ order averaging U* is defined at bonds of Q®, then

U1 =(U%,=exp [i > L % logUX(T, ) (O¥c))~ 1] U*(c), ccQ®*1) (43)
xeB(c-)
where the contours I', , are defined on the lattice Q®.

Let us notice that this definition is local in the sense that U¥, ¢ CQ®, depends
only on the bond variables U, for bC B¥(c_)uB¥(c..). This property will play a very
important role in the future. Let us notice also that the property (11) is satisfied.
Indeed, for an arbitrary gauge field configuration U and a gauge transformation u,
we have U, ,)U%c) '=u(c_)U(I, )U(c)"'u"'(c-); thus the matrices
UXT, ) U%c)~*and U(T', ,) U(c)~* are unitarily equivalent, their eigenvalues are
equal, and by the definition (22) their logarithms are unitarily equivalent with the
same unitary operator u(c_). Then from (42) we get (U"),=u(c_)U.u" 1(c+)

Now we would like to understand how regular the configuration U is,
assuming some regularity of U. We will investigate carefully the one-step
averaging operation from this point of view. We assume that a configuration V
defined on a unit lattice Q” satisfies

[V(ep)—1ll<ay, pC&, 44

and «, sufficiently small. We would like to get optimal bounds for |V(0p)—1|, p’
cow,

Let us denote by y the upper right corner of the plaquette p”and let us introduce
locally the axial gauge with the initial point y. This means that we take the
contours

Fy xz[ys (yla -":yd—lﬂxd)]u"'u[ylﬂxb '-'axd)a x]

for x in some neighborhood of y containing 2¢ blocks having the point y as one of
the corners, and we make a gauge transformation v, such that the gauge
transformed configuration V,=V"" satisfies the conditions ¥,(I', ,)=1. Such a
gauge transformation can be easily found because Vy(I', )=V"(T, )
=0o(V) V(I,,)vg '(x)=1 implies vy(x)=vo(y)V([; ,); thus v, is determined
uniquely if vy(y) is given. Of course, we have

IVo(@p) — 1=V (0p) — 1] <axo, [V (0p) — 1| = |Vo(6p) — 1] . 45)
Fan f\y
yz A N/
»
7 -

The conditions Vo(I', ,)=11imply Vy(x,x+e)=1, [Vy(x, x +e;) — 1| <|x; — y4]ato,
[Vo(x, x +e3) — 1| <(Ixy —yi|+ X3 = ¥2D kg, ...s  [Volx, x+e,) — 1| <(|x —yi|+ ...
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+{x,—1 = Vu—1D %, #=2,...,d, for x in the neighborhood of y. If we denote

A(p)=B(yo)uB(y )W B(y)WB(y), (46)

then for bCA(p) we have |V ,—1|<|b_—ylay=dLay, hence ¥, ,=e"* and
|4yl <2|b.. —ylog <2dLay. For cC0p’, the contours I', , are contained in A(p’) and
we have

VoI =S X Vo= 1<l JdLoo<(2d+1)LdLoo=0(1) Lo,
bCT

e, x

Voll'e, ) — 1 —iA(T S (AT, ) <O(1) (Pato)?,

so using the definition (21) of the logarithmic function, we h-ve

08 V4T 2~ 0) — AT oA —0)| <0(1) (L2

for I?a, sufficiently small. From this and (31) we get
Vo, =¢xp [i > LA o (—c)+ 0((L2“0)2)]

xeB(c.-)
-exp[id(c) + O((LPat)*)]
=exp P > LA o+ 0((L2050)2)] ;

~ xeB(c-)

hence

<O(1)(Ia)?.

xeB{c-)

}%,c_l—i Z L‘dA(Fc,x)

Now we can estimate |Vy(ép)— 1|. We have

{Vo(apﬁ—l—i > X LA

cCdp’ xeBlc.)

<O(1) (LPag)?. 47

Denoting by (p"), a plaquette obtained by translation of the plaquette p’ to the
point x, we have the identity

X Y LAl.)= Y LA0P).)

cCdp’ xeBlc-) xeB{yo)
= X L 3 A@p). (48)
xeB(yo) <P )x

Further, we have for pCA(p")
Vo(0p) ~ 1 —iA(0p)| < 3(141(0p))* < 3(8dLa)* = O(1) L?ag . (49)
Gathering together the above three inequalities, we obtain
IVo(0p)— 1< xegly B L p%}x |4(0p)| +0(1) (LPao)?

< X L 3 [W@p)-1+0(1) (LPa)

xeB(yo) L)

<20y +0(1) (IP0)?. (50)

This is the estimate we are looking for. Let us notice that it is a local result; the
bound above depends on bounds for V{(dp)—1 on A(p), i.e, for pCA(p"). We
formulate the results in the following:
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Proposition 1. There exist positive constants C, ¢, such that for every configuration
V satisfying (44) for pC A(p) and for ag S ¢5, we have

[V(0p) — 1| < LPay+ Co(LP0g)> . (51)
The constant C, depends on d and ¢, depends on d and L.

Now it becomes obvious what assumption we have to make for a configuration
U in order to get a bound on U*(dp) — 1, pc Q®. Each averaging operation rescales
a bound on plaquette variables approximately by the factor I%, hence k operations
by the factor I**. To get some small number yet, we have to assume that

[U@p)—1l<aen®, n=L"* (52)

on some set of plaquettes. If o, < ¢, then by the above Proposition, |U(dp")—1|
< IPagn?+ Co(IPagn?). We take k=1 50 0o I2% + Co(ag L2 1%)? S ag + Cood and we
assume further that o+ Coed < ¢;. Applying the Proposition again, we get for p”
e

[02(0p") ~ 1 <o L*n? + CoLA(LPagh®)? + ColotoL*n® + CoLA(Lagn) )
=0oL? + ColaoL?)*
+ CologL*n®)? L™ 2[1 4 2C oo L** + CEL™ 2(ao L )]
Sl + Colao L) [14+ L72(1 + Coo)*] -
We make the following inductive assumption for j<k:
|0/(0p) — 1| < oo L2 + Co(oo L)
U+ L 21+ Cootg)? +... + L7207 V(1 + Couo)*V V). (53)
The right-hand side can be bounded by o+ Coo32 if L™ (1 + Coay)* < 3. The last
inequality holds if, e.g., Coxto <, and then oy + Cyed2 <20,. We assume further

that 20, <c,. Then for j<k, we can apply Proposition 1 to the configuration U’
and we get for pcQU*+Y

[T 1(0p)— 1| < a2V V2 + Co LA (0o L) [1+...]
+ Cooto 29 V% + Co Lo L) [1 +...])?
S 29" I? 4 Cofao L2V D) {14 [1+ .. L7 21+ Como)?}
Thus the inequality (53) is proved for all j<k. Taking j=k, we get

1
Proposition 2. If U satisfies (52) with 4y <c, =min {?IC—’ %c’z} , then
]

|0%8p) — 1| <oy +2Co02 <209, pCR®. (54)

The result is local in the sense that if p= (x, y, z, w), then it is enough to assume
(52) for pC B(x)uB*(y)u B (z)u B (w).

C. Other Averaging Operations

In future analysis of variational problems we will have a situation, where the
averaging operation will be composed with a change of gauge conditions, i.e., with
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a gauge transformation. Let us recall that if we apply a gauge transformationvtoa
configuration ¥, VP =v(b_) Vv~ 1(b.), bC ', then (V°),=v(c_) Vo *(c,),ccQW.
We will consider gauge field configurations V of the form V=V"V,, where ¥, is a
fixed configuration and V' may have values in the complexified group G°. We find
easily that if we apply a gauge transformation v to ¥V and we write V?=V""V,, then

VP =v(b_)V;R(Vo,p)v™ (b4} =v(b_) V;Ro 50" '(b4), (33)
where for arbitrary invertible matrix X the operator R(X) is given by the formula
RX)Y=XYX"*. (56)

R(X) acts on the algebra of all matrices and has the following properties:
R(X) f(Y)=f(R(X)Y) for analytic functions f,
RX)R(Y)=R(XY), RX)'=RX™), (57)
R(X)*=R(X™¥).

In a one-step renormalization transformation we consider configurations V*
satisfying axial gauge conditions in blocks:

(Ro,V) (.= TT R((Ty )Wy =1, x€B(), x+y. (58)

It will be convenient to change this gauge into another one. We apply a gauge
transformation v~ ! to ¥’ and we get a configuration ¥}, thus

V=V and V.=Vo)=(VVo)e=0(c)(VVo)ev™ ().

We will consider this average for configurations V" and ¥, with values close to 1
and we will be interested in the expression

ViVo)e t =v(c-) (M o)e (Vo) * Ro, o0 (), Ro e =R((Va).) - (59)

The gauge conditions (58) written in terms of the configurations V; and v have the
form

(RO,yV,) (Fy,x) = U(y) (RO,yVI) (Fy,x) (RO,yU)_ l(x) =1 s
(RO,yv) (JC) = R(%(Fy,x))v(x) 3
and they imply

(Ro,yv) (X) = U(y) (R(),yVl) (Fy,x)a X€e B()’)> X :# Y.y € Q/(l) . (60)

To determine the configuration v uniquely, we will impose on it an additional
condition at each block.

To find a form of this condition, let us recall the simplest case of one vector field
considered in paper [1]. To change a gauge, we make a gauge transformation 4
satisfying (') ()= Y L™?A(x)=0. Such a transformation does not change the

xeB(y

average given by (1.11) in [2], and this is very important because the explicit
representations of propagators, and other formulas, hold for this specific form of
the averaging operation. In the considered general case, we will also try to find the
additional condition on gauge transformation requiring that the form of the
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averaging operation should be preserved. We will be able to obtain only an
approximate invariance. Because of the axial gauge conditions (58), the average

(V'¥). depends on Ro, V)L x(D = I1 = RVl 0lx.b-IK:

Cx, x{e)]
xeB(c.), and a good approximation of the function %log(m)c(f/};)c‘l for
V'=¢e", A small, is given by (Qod)(©)= Y L %R. A)(x,x(c)]), where

xeBle-)
R, . Aisdefined as R, . V", only the product over b is replaced by the sum. If we
make a small gauge transformation v=e', then a good approximation of this
transformation acting on Lie algebra variables A4 is given by A} = A, — (R, ,A(b+)
—A(b_))=A,—(Dy A) (b). Under such a transformation the average Q4 changes
as follows:

QoA (@)= 3 LR 2)(x)+(QA)()

xeB(c-)

— ¥ LRg.. H(x).

x'eBlc +)
If we define (Q54) ()= X L %R, ,A)(x), then the first term in the right-hand
xeB(y)

side above is equal to (@A) {c_). There are troubles with the second term because

> LRo. H(x)= 3 LRV, V[xxDAUx)

x'eB(c+) x'eB(c+)
= % }L_dR(Va(F e xH—NMRV() Ry, H (X,
and this expression is only approximately equal to R(V,(c)) (Qp4) (¢, ), because
VoI, su(—c)) are close to 1 for V; regular, but not necessarily equal to 1. Now if
we assume that A satisfies the conditions QyA=0, then the form of Q,4 is
approximately preserved under such a gauge transformation. Finally, these
conditions are approximations for A small to the conditions

xeB(y)

(Rﬁ)(y)=v(y>exp[i > L-élogv*l(y)(Ro,yvxx)]=1. (61)

We assume that the gauge transformation » we have applied to the configuration
V’ satisfies these conditions. The equality (60) and the condition (61) imply

v (Ro,,0) () =(Ro , V) (T;.5)
and (62)
o(3) =exp [ —i B L logRo, ) (ry,x)] .

Thus the gauge transformation v is determined uniquely by the gauge conditions
{58) and conditions (61). It is a function of the gauge transformed configuration ¥;.
From (59) and (62) we get

Z(V;)c“lzexp[—i > L*d%log(Ro,c-m(ru,x)](”VTVE»(%):‘

xeB(c..)

— 1
“Ro,.exp [i 2. L7-log(Rq.. Vi)(F“,x')] (63)

x'eB(c+)
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The same reasoning can be applied to a higher order average U*, where
U=UU,, U, is a fixed configuration and U’ satisfies a sequence of axial gauge
conditions in blocks of lattices Q, Q'V), ..., Q% ~ Y More precisely, we describe these
conditions in the following way. For blocks of the lattice 2, we assume

(Ro,, UNTy =1, x€B(y), x+y, ye P, (64
where R, is defined by the configuration U,. Next defining
(@) =OTUo)(To) ", (65
we assume
(R, ,UNT,,)=1,yeB(@), y*z,26 Q?, (66)

and R, is defined by U,,. If an average U is defined on the lattice QV, j <k, then we
assume

(R, UV, )=1,xeB(), x+y, ye QU™ Y, (67)
and we define
T+ =(@0DT: (68)
From this inductive definition of the average U, it follows easily that
Uj=UTU)(Th, *, bcQ9. (69)

Now we would like to change these gauge conditions and we apply a gauge
transformation u~* to U’. We get some configuration U, and U’=Uj. The j*
order averages U’ transform as follows,

0} =00 =ub-) (T:Uju"(bs). b, (710)

and this implies a transformation law for U4,
0i=(0Di=ub_)(UDIRS yu~ (by), bRV, (71)
The gauge conditions (67) written in terms of U, give us the following equations:
(RS U (T, ) =u(y) (R, ,U)(T,,.) (RS yu)~ " (x)=1 (72)

for xe B(y), x+y, ye QY*Y, j<k. Solving these equations, we get
(R, ) () =u(x;) (Ro,»,U) (s, ) for xeB(x,),x;€QY, (73)
(Ro,x,W) (x)=u(x2) (R, z,U )Ty, ) for x;€B(xy), x,€Q?, (74)
hence

(R—O, szO,xlu) (x) =u(x2) (1.2_0,x2l71) (sz,xl)lTO,xz(RO,xlUl) (Fxl,x)a Xe BZ(xZ) ’
(75)
and for arbitrary j<k we have
(Ro Xj+ ) () =u(x;4 ) (Ro x,HUJD (ij+ 1x;) for x;€B(X;.4), X;41 € QuUtD,
(76)
Let wuws denote UI'9 )=Ui"(T,,,, ) ...-Uo(lx, ;) Uo(I'x, ), then
(Rh . R Lo Ry 4 Ro, 1) (X) = R(UO(I"G“’x))u(x), and we have the equality

Xj+1s
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R(Uo(rg,ti)x))”(x) u(x;4 1) (Ro x,+1UJi) (ij+1,x,)R€,xj+1
(RELUIT DTy sy ) Ry, Ro s,
“(Ro,x,Up) (Tyy ) =1(xj1 1) (Rb s, DTy, )
ROONIY, RO Ty )

Xj+isXj

RO, )R, U (T, )
=u(X;+1) (RO,xj+1 1) (F%t})x > xij“(xjH), (77)

where the symbol (R, ., U,)(I'Y}; D) is defined by the last equation. Taking (77)
for j=k—1, we may determine the gauge transformation u uniquely, given values
u(y) at points y of the lattice Q®, We calculate these values from additional
conditions, as in (61) and (62). These conditions are straightforward generalizations
of the conditions (61). At first we define inductively a k™ order averaging operation
for gauge transformations. Generally a one-step averaging transformation defined
by a field configuration ¥; is given by

(Red) ()= (RV3)9) () = (RO D) (D ey
—0(3) exp[ 5 L logo™ )RV, x))v(x>] (78)

xeB(y)

where v is defined on a lattice ', ye Q™.
For a given configuration U, we define inductively

Rouw) (x)=RTu)(x1), x, €Y, 79
R’ ™ 1) (xj+1)=(R(l7{))§;;tj) (xj41)» Xit1 eQuty, (80)

The additional conditions are
RoaY()=1, yeQ®. @1

Now using the identities (76), (77) we will solve the equations (81) and we will
determine u uniquely as a function of U,. We have

(Row) (x4) =u(x,) (Ro,x, U (I, )=u(x;)R, U, (82)

for x; € @M, where the expression R, , U, is defined by the last equation. Next
from (74) we have

(Rou?) (x2) = (R(Ug) Rowt) (x2)
= {(R:, X2 u) (xl) (R_O,szO,m Ul) (xl)}xleB(xz)

=u(x,) {(R_o,szﬂ (s, %) (R—o,szo,xi Uy (xl)}x1eB(x2)
=u(x)Ro,,U?, x,€Q?, (83)

where the last equation defines the symbol R,, ,U,®. We easily find by induction
that

(R_Oi;]) (xj)zu(xj)RO,ij10)7 x}.GQU), (84)
where R, . U;" is defined inductively as
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I TR
RQ, Xi+1 Ul v )

= {(‘R_O{xﬁ 1{71}) (ij+ 1,xj) (E)fx,w ;Ro,ijlm) (xj)}XjEB(xj+ 1)

X4, €QUFD. (85)
The formula (84) together with the conditions (81) give the equation
(Rou) () =u()Ro,,U;¥=1 for yeQ®, (86)
hence
u(y)=(Ro,,U,“7". 87

Thus the gauge transformation is uniquely determined by all the conditions and is
given by the formulas (77) for j=k—1 and by (87). Similarly as in (63) we get

U’l:(U ) = Uok)b(U )b =u(b_)(U, Uok)b(U s 1Ro plU 1(”4«)
=Ro,5.U1%)~ IU’ile),bRo,mUl(k)’ bcQ®. (88)

We may consider this expression as a new averaging operation of k' order acting
on a configuration U, defined at bonds of the lattice (. A result of the averaging is
a configuration defined at bonds of the lattice Q®. Such an operation for k=1 is
given by the formula (63).

Now we will prove the following fundamental fact: the new k™ order averaging
operation defined by the last expression in (88) is a composition of k averaging
operations defined by (63) with properly chosen configurations ¥,. More precisely,
for a j™ factor in this composition, we take V, = U}~ '. Let us introduce some new
notations. We denote the averaging operation in (63) by

RV V1).= (Ro,c‘ - ! " VZ))C(VO)c_ ! ﬁe,cRa,“ |4
=(Ro,c V) ' ViRo Ro . V1. (89)
We define inductively a sequence of averaging operations of j* b order composing j

operations defined above for Vo=U,, U,, ..., U™ ! correspondingly. For j=1 we
define

ﬁ1=R(U0) Uy, (90)
and if the operation U7 is defined, then
Oi*1 = R(T}) U3, ©1)

ie., it is a composition of the operation (89) for ¥,=U} and of the j** order
operation U3.

Let us remark that these averages have the same locality properties as the
averages U*, namely (0%),, cCQ®, depends on the variables U, for bCB¥c_)
UB¥c.).

We are going to prove now the fundamental equality

(Ro,, U *) " U4RS 4 Ro,5, U W =(TY). ®2)

The proof will be by induction. For k=1 the equality holds by the definitions
(89), (90), and the Eq. (63). If we have a configuration V="V, on a lattice ', then
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for an arbitrary gauge transformation v we write V=(V* ")’ =(V? 'V,)’ and we
have

(P)e=ViVo) Vo —e=0(c )} Ro v M ey), cCQW. (93)

Let us consider the case k=2, and let us start with an analysis of U2. We have by
(68) U?= (Ul) and we apply the above identity with V,=U,, V,=0U,, and
v(x)=R, U, xeQW:

(0D.=R,. U0 )R (R UD™",  cc?. 94)
Further, by the definition (89), we have
(U~!{_l)b=(R0,b“U1)_1ﬁl,bRO,bRO,bJ,Ul:f]l:r (95)

hence

(ﬁf)c=R0 c- (ﬁl)cR_(Z) c(Ro oy 1)_1 =Ro e U1(Ro,c_[=]1)
[(RO c- 1) 1(le)cR(z) C(RO ct 1)]R (R—O,C-;-ﬁl)_l
“R3 (Ro,., U1 (96)

The expression in the square bracket above is equal to U2 Let us make the
following inductive hypothesis:

(O)p=0i(b-) (T, RY, bv_l(b+) (U) bcQv,
j(x)_(RO,x 1)(R0,x Uy)-...- o,x U, xeQY.
We have proved it for j=1, 2. The definition (68) and the hypothesis imply
(O )= (TP 0. Ubt L =vyc ) (TR o7 ()
_U](C )(RO c_Ujl) [(RO c— ) 1((] )CR{)+C1(R0 c+ Jl)]
]+1(R ) 1R1+1 —1(c )
=Uj+1(c—)(U11+1)cR{)+c1 J_+11(C+) (98)

where we have used the identity (93) again and the other definitions.
Let us now consider the expressions R, ,U,?, xe QY. We will prove that

R, UP=v(x), xeQV. 99)
For j=1 it is the definition (97) of v;. For j+ 1 we have by (85), (97), and (99)
Ro, U940 ={(R] TN (T, ) (R, Ko U1 (9} ey
={(R) ,(U)"") (I;.) (Rb,,03) (%)} xey)
=o(y) RS, TD=0,.100), yeQU*Y, (100)

hence the identity (39) is proved by induction. From (97), (99) for j =k we get (92).

Let us consider again the gauge transformation u calculated before in terms of
U, and given by the equalities (77) for j=k— 1, (87). In the future we will need this
transformation expressed by the averagings UJ. Let us write explicitly the formula

o7




Averaging Operations for Lattice Gauge Theories 33

for u

VeXj+1

'(R{),xj+;l712.{) (FXj+1,xj)9 (101)

where x € By), ye Q®, x, =y, xo=x.
We use the equalities (97) and we get for j>0

(RO Xj4 g )(Fx/+x x,) U](x_]+ 1)(R0 Xj+1 i)(rxj+1,x‘,‘)
(Ro,xjﬂ j) (xj)' (102)

If we take two neighboring factors for j, j—1 in (101), then the last factor on the
right-hand side above for j and the first factor for j—1 give the product

ROGHIELIMRONT o7 ) RO 05 1(x)
=RONTE) 07 () v, () =ROMTEMN R SUTH ™, (103)

Yo Xj

R(UIE)u(x)=(Ro,,U,®) ! I,ZI R(U (%577 1)
i=k-1

where we have used the second Eq. (97). We connect this expression with the factor
corresponding to j— 1. We get such an expression for j— 1 =0 also. The first factor
in (102) for j+ 1=k and the first factor on the right-hand side of (101) give
v 1(y)v— 1(y) and this is equal to (103) for j=k. Thus we obtain the equality

RUTEDu)= 11 ROEHTE)
=k 1

VXjat

: I:(R—{),Jcﬁ.lﬁji)_l(R_{),x,ur 1[711) (ij+1,xj)] . (104)
Let us recall that we have

( O,xj+1 1)=€Xp[ 2 L_d Iog(RQ xJ.HUi) (ij+ 1,x):l . (105)

xeB{xj+ 1}

The Eq. (104) can be written also in the following way:

0 = .
ux)= TI 1(R(Uo(fl‘f,ti’x))) '[(RD o OD T (R o, OD Ty, )1, (106)

and this gives the formulas

(Rou)f(x})— H (R(U ré=m

[(Ro B0 R SSSR CL) (€4S ) B (107)
(Rot) ™" (xj5 DROK(T o, ) Ro) ()= (R ., TN (T, ). (108)

D. Properties of the Averages U%

We will now investigate the new averaging operations. For the averages U* natural
quantities to consider were plaquette variables. For U% we expect that the
configuration itself, i.e., bond variables, has good bounds in terms of bounds of U ;.
We will prove to this effect propositions analogous to Propositions 1 and 2.



34 T. Bataban

Let us recall that the definition of (T%),, ¢ C Q®, involves only the gauge fields
U, Us,p at bonds bCB¥c_)uB*c.).

Let us start with a detailed analysis of the one-step averaging operation V;. We
assume that the configurations V, V] satisfy the conditions

IV()(BP)"1|<O‘Q> Vl,bzeiAbﬁ IAbI<OC19 P; bCQ,, (109)

and A, belong to the complexified Lie algebra ¢° ~
We would like to prove that for «,, o, sufficiently small the average (V,). is an
analytic function of the variables A4,, bC B(c_)uB(c.), cC 'V, and to find bounds

for (¥,).—1, or rather %log(f/l)c. We assume that «, is so small that the

Propositions 1 and 2 hold, i.e., 05=¢,.
At first let us consider the expressions

R,V =exp [ix:‘;(y) L*”%log(Ro,yVl) I, )], yeQ®m. (110)
We have
%log(RO,yVI) Iy, 9 =(Ro,,A) (I, )+ 0(A4|(T},))"), (111)
hence
R, V4 =exp{ xe%‘, L™ %R, , AT, )+ 0L a3 )}. (112)

Next let us consider ¥;:

(IZ)C=(W5)C(%){’=€XP[' 2 L i S log(Vi¥o) e, (~ C))]

xeB{c-)

ABIGIA G exp[—l z L"llogVo(chU( C))]

xeB(c-)

=exp[i Z L_dzlog(RO,c_Vl)(rc,xu(wc))VO(Fc,xU(“c)):‘

xeB(c-)
-(Ru,c_vl)(c)exp[—i > L“d%log%(rc,xu(—c»} (13)
xeB(c-)
and let us denote
1
A= Clog(Ro o V) (o o(~0), Y= tlogVTo(~0).  (114)

As in (111) we have
Ae=(Ro o A) (T xo(— )+ O0(LPad)=(Ro . A) (I ,0[x,x7])
—R(™)(Ry.._A) (cUT,, )+ O0(L*a}). (115)

. C . 1 S
A logarithm in the first exponential in (113) can be written as —Z;Ioge““xe“’x.



Averaging Operations for Lattice Gauge Theories 35

Applying the results of Sect. A, more exactly (38), we have

%loge"""ei"" =Y, +g '(—iady )A,+O0(|4)). (116)
All these formulas give us
(V). =exp [i > LY +i ¥ L ' (—iady)A.+ O(Lzaf)]
xeBle-) xeBi{c_)
-exp[i(Ro,._A) (c)+ O(L*a})] exp [ —-i ¥ L Y;] ) (117
xeB(c-)
Denoting 3> L7?Y,=Y and using the formula (41), we have further
xeB(c-)
(V).=exp [i > L Y(—iady)A,+O0(Pad)+ iY]
xeB(c-)

exp[—iY]expLiR(E™) (Ro,._A) (©)+ O(I252)]
=€xp [ig(——iady) > L_"g"1(_iadYx)Ax+O(L2a%)]

xeB(c-)
-exp[iR(e™) (Ro,._A4) (¢) + O(La})]
=exp[(Q' (Vo) A).+ O(LPa})], (118)
where

QVo)A)=g(—iady) Y L% '(—iady)

xeBic..}
’ [(RO,C_ A) (Fc_ xM [x7 x,]) - R(ele) (RO,C -A) (curc+ s x')]
+R(e™) (Ry,._A) (), (119)
as it follows from (115).

We can transform this linear expression using the identities R(¢'"~) = ¢'** and
g~ '(—iady )e'*¥ =g~ '(iady ). The last follows from the corresponding identity
for functions of a complex variable: g~ !(—z)e*=g~!(z). We have also

(RO,C.-A) (Fc+ ,x') = R(VO(C)) (RO,C+A) (Fm, ,x’)
= R(e_iY)R((VO)c) (RO,c+A) (Fc+ ,x’)
= e«iadYRO,c(RO,cJ,A) (rc+ ,x’) .
These identities imply the following formula:

Q) A.=g(—iady) ¥ L *g ' (—iady)(Ro, AT 0% x7T)

xeB(c-)

—g(—iady) X L~d9_ Y ady)) e_iadygo,c(Ro,uA) ey )

xeB(c-)
+ [eiad"~g(—iady) % )L‘dg"(iady,,)](Ro,c_A)(C)~
From (118) and (112) we get finally
(—I_“/l)cz(RO,c_%)_I(IZ)CR.O,CRO,CJ,VI
=CXP[—~1’ > L Ro,. AU J+iQ (Vo)A

xeBic-)

+i ¥ LRo(Ro,c, AT, )+ O(szx?)]. (120)

x'eB(¢+)
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In all the estimates above, we have assumed that o, «, are sufficiently small so that
the formulas and inequalities proved in Sect. A hold, and that |Y,|=O0(I?«,) are
small. We restrict further o, assuming that the norm of the element in the
exponential above is small also; for example, it is enough that itis <. Under these
assumptions it is obvious that functions of the variables 4 involved in all the
formulas until now are analytic functions of 4. Let us define

0V, 4,09= Jlog(Py), (121)

then Q(V;, 4, ¢) is an analytic function of 4 and from (120) it follows that its Taylor
expansion begins with a first-order polynomial. Let us denote it by L{Q(V,) 4)..
Thus we have

Q(Vo, 4,6)=L(Q(Vo) A). + C(V5, 4, 0). (122)

C(V,, 4, ¢) 1s an analytic function of 4 whose Taylor’s expansion begins with a
second-order polynomial (a quadratic form), and

|C(Ve, 4,0 S C, AP < Cy (Lay)?. (123)
The linear form Q(V,) A is given by

QA= 3 L“HRy, A[xxD+ T L@

xeB(c-) xeB(c-)
-[g(—iady)g™(—iady)—11(Re,. DT, )
+ Y L“*V[g(—iadyg™'(~iady)—1]

xeBe-)

. (Ro,c_A) [x,xD— X [+

xeBl(c-)
. [g(_ladY)g— 1(l adYx) e—iady_ 1] RO,C(RO,C+A) (Fc+,x’)
+ [ei"’d"—g(“iady) > LG ad,,x)] L™ '(Ro,. A)(c). (124)
B(c-)

xeb{c -

The first term on the right-hand side above is the main term in this linear form, and
it resembles the definition of the averaging operation @ in [2]. The remaining
terms are small because the functions g(—z), g~ }(z), € are equal to 1 for z=0, so
the operators occurring in these terms can be estimated by O(L?a,) and the terms
can be estimated by O(1) [?o,L|A| < O(1) [*a, Lo, . We will denote the main term
by Qy,, or Q

(QoA).=(Qy, A= X )L_"””(Ro,c_A) ([x,x1), (125)

xeB(c -

and it has an estimate
(QoA) =14l <y,

so we have for the whole linear term

Q(Vo) D 1A+ 0(1) LPag|A| < (1 +O(1) Porg)ory <e®Voog . (126)
Thus we have proved the following
Proposition 3. There exist constants C,, ¢, €3¢, such that for o, 0, Scy the
Junction Q(V,, Ay= %log V, is an analytic function of A satisfying the equalities and
bounds (122)-(124). The constant C, depends on d and ¢, depends on d and L.
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Now we will consider the k™ order average U%. Its definition implies that

1, = . 1 . iy .
;log U* as a function of ;log U, is a composition of the functions

QUo, -), (U, *), ..., QTE 2, ), QUG ). (127)

We assume that U, satisfies the assumptions of Proposition 2 and U, =,
|4l <a,. Then by this proposition the configurations U} for j<k sansfy the
assumptions of Proposition 3 for V,=Uj if ocOLZjn2+2C0(ocoL2j112)2
Lo, <ayZcy.

We will now investigate compositions of functions in the sequence (127). For
the first function we have

10(Ug, n4)— LnQ(U o) A| £ C(LInAl)? < Cy(a, Ln)?,
hence
1
IH Q(Uo,nA)—Q(Ugy) 4| <C,Lyot,

and

1
lﬁ QUo, ﬂA)l <|Q(Uo) Al + CyLnai <(1+0(1) Logn®) oty + Cy Linat

<0y, + CyLnad . (128)

Because e? W%y 1 C, Lyl £ %My, + C, 02 <240, for oy, o, sutﬁciently small
(O(Day <4, Ciay £4), 50 10U, n4)) <20€1L}’[<2d1 ¢, for oy < 4c;, and we can
apply Proposition 3 to function Q(U,, -) calculated at Q(U,,nA). For this
composition we have

0(Ts, Q(Us, nA))—LZnQ(ﬁo)iQ<UO, ﬂA)l

= Cl(LZ'?)2

Q(Uos < C(LPn)*(2,)*,

denoting

Q(ﬁm Q(Ug,nA4))=0Q,(Uq, n4), Q(UO)Q(UO) =0,(U,),
and using (128) we get

1 4
—5—0,(Ug,n4)—Q,(Up) 4 <O "2406‘1}-‘7’19‘% +4C1L2770‘%
Py

<O IPaYC (L4 Py,

1
LT,?Qz(Uo, nA)| <PWE+Lu0y

+eOW A H AP 4C (L4 ) ot
<OMAFL a0 L AC (1+ L™ Yoy,
<ePW2a0(] 1-8C, oy )ty
<20, for o, o, sufficiently small [e.g., O(1)a, <,
8C oy <4]. (129)
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Continuing these arguments, we arrive at the following inductive assumption for
the composition Q{U,,nA) of the first j functions (127) aad the composition
Q(U,) of their linear parts:

1 2 4 @ i
WQJ-(UO, nA)-Qj(UO)A] <O+ AL a0 4C (D ...+ 2+ L) ’Zﬁm
This implies

1 ; B 3
z};QJ(UG’nA)l <eO{1)(L2;+...+L +L2}”2a°(&1+4cl(ﬂ+...+LZ +L)?’]C€%)

SOMUHLT24 L2 ey, 4 4C (1L 4.4+ LU D))

<efW2e0(1 4 8C o)ty <20ty , (131

and for a; < $c¢5 we can apply Proposition 3 to the function Q(U%, -) calculated at

Qj(U09 nA), and we get

]Q(ﬁs, O{Us1A)~ L nQ(Th 10U wl

2

<C,(/*y)? <4C(H*in)’al. (132)

1
T Q{Uq,n4)
Applying (130} and denoting
Qj+ 1(Ug,nd)= Q(U{)a Qj(U()s nA)), Qj+ 1(Ug)= Q(U{)) Qj(Uo) s
we have

1

m Qi+1(Uo,nA)—0;.1(Uy) 4 <4C,LI* 'yas 4 €O LA a0

oI +‘22"’2"“‘4C1(I;«"+ oo+ Lyna?
< PG+ 120+ +L2)n2ao4C1(Lj+ 1

+L+...+ L.
Thus the inductive hypothesis (130) is proved for j<k. For j=k, we have
10x(Uo, nA4)— Qi (Uo) A <OWUHLTEF ... #1720 Dyag

A4C (14 L 4.+ L% D)g? < g0W228C a2 = Cyal . (133)
We formulate the obtained results in
Proposition 4. There exist constants C,, ¢, such that for «y, o, <c, the function
0, (Ug,nA, 0)= ;;log(ﬁ’{)c, cCOQW, is an analytic function of the variables A,, b
CB¥c_)YuB*(c.). Further we have

QU nA)=Q(Ug) A+ C(Us, A), (134)

and

[Cu(Uq, IS ColAP < Cyai. (135)
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The constants C,, ¢, are independent of k, C, depends on d and c, depends on d and
L.

The function C, can be decomposed further into a sum of homogeneous
polynomials,

CyUq, A)=CE(U,, A)+ CE (U, A+ ... (136)

We will need some more precise information about the function Q. This
information is connected with a notion of the functional derivative. Let us recall
this notion. If F(4) is a differentiable function defined at field configurations 4 on
Q, then the differential

dF(4,54)= - d gFA+ea) (137)

=0

is a linear functional of the variable 64 and can be represented as a scalar product
of 64 and some Lie algebra valued function. This function is called the functional

derivative and is denoted by (%F (4), thus we have

d 4y 5F OF(4) oF(4)
th(A+tc5A)t=0 -bZ nt 6A,, ——=04,= < 5A 5A> (138)
From this definition it follows easily that the functional derivative coincides with
partial derivatives (gradient) of F(4) multiplied by n~“.

We would like to prove that the functional derivative of Q(U,, n4) is bounded
by a constant independent of . This property is not clear even for the linear part of
0, so let us start with an analysis of this linear part. The linear part of the one-step
renormalization transformation is given by the formula (124). It is a sum of the
main term Qy A given by (125) and a remainder which we will denote by Q" (V;) A.
From (124) it is clear that we have the inequalities

05,41 014, 10" (V) Al = C Lo Q" 1Al (139)
where the operator Q is defined as in [2], and Q" is defined as
Q@A)= ¥ L4, (140)

bCB(c-)UB(c+)

The constant C} depends on d and L. A composition of k operators Q is the
operator Q,. The operators Q” do not compose in a simple way, but if we introduce
an operator Qy by the formula

(@A) = > 4y, ccQb, (141)

bCB*(c.. )wB*(c+)

then we have the inequality
1Q"Q7 A= Q" Q7141 = 2405, , |4 (142)
Now we will prove by induction the bound

10U AI= Q|41 +2C oL QjlAl, - j=k, (143)
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assuming that U, satisfies the bound (52). For j=1 it is a consequence of (139). We
assume (143) for j <k and we have

1041(Uo) AI=1QUH) 8 (U) Al £ QIQ(Uo) Al + C1 20o(Lin)* Q"1Q (U o) Al
S 0(Q;141+2C] oo(Ln)* Q514D + C1 200(Lin)?
- Q(Q,lA41+ 2C  oo(Lm)* Q514D
= Q41|41+ 2C 0o(In)* QOF 14| + 2C1 ao(Lin)* Q"Q,|A|
+4CPad(Lin)* Q" Q]| Al (144)
by (139) and Proposition 2. Further using the inequalities (142), QQj|A|
=£207+.14], and 0"Q|A| £ 07, 14|, we get
105+ 1(Uo) Al £ Q)4 1141 +2C (L 1)2 @ 1|A] - QLT2 + L2 +4dCrao L™

Because (145)

21724 L2 44dClog L4 £ 3 +4dC L %0, <1
if 16dC{L™*ay <1, so the bound (143) is proved for all j<k. For j=k we have
10U o) Al = Ol Al +2C a0 Gyl Al S (1 +2C] 00) Q5 14l (146)

and this bound implies the required property, namely

%(Qk(UO)A)st(UO;c, b).10Uo; . IS 14+2Ci0e.  (147)

Now we will generalize it to the whole function Q,. It is enough to prove it for C,.
For one-step renormalization transformation we have the bound

SC(Vy, A)
00 5

following easily from general properties of the function C(V,, A). The constant C}
depends on d and L. We will prove that a similar bound holds for the functional
derivative of Cy(U,, 4) for arbitrary j< k. We will prove by induction that

=Cil4]Q7164] (148)

=G5l4]Qj104], (149)

P
<5—A C{Uo, 4), 5A>

where the configurations 4 are considered on L /-lattice and C, is a positive
constant satisfying conditions which will be written later.
From the definition of the functions Q(U,,#n4) we have

Qj+1(U0=’1A)=Q(0{)a 04Uy, n4)), (150)
QU nA)=LEnQ(Ug) A+ C{U,, LnA),

hence
Q;1(Uo,nA)=LO(UH)Q(U,, nA)+ C(T}, Q/Uo,n4))
=L"'Q(U)) QUo) A+ LU CLU,, LinA)
+ C(U}, Q(Uo, nA))
=L"0;11(Ug) A+ Cp 1 (Ug, I 19 4), (151)
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and
Cir1(Uo, AA=LQUHC{Uq, L™ * A+ C(U}, L1 QUx) A+ C(U,, L™ 4)),
(152)

Ais a field configuration considered on L™U* 1Y Z% | 4| < I/* 4o, Differentiation of
the above equality gives

0 . [0C;
<ﬂ Cj+ 1(U0, A), 5A> = Q(U{))<ﬁ(Uo, L~ 1A), 5A>

+ <§—§(f’?’3» L 'QUo)A+C{Uqo, L™ 4)), L' Q{U,)64

-1 5Cj ~1
+L <H(U0,L A),5A>>. (153)

Using (143), (148), (149) we obtain the following bound:
5 —_ v/4
K(S_A Cj+1(Uo, 4), 5A>‘ SQC,L1A[Qj104]
+C1200(Lin)*Q"C5 L7 14| Q]164]
+CIILT'QUg) A+ CU,, L™ 4)]
. Q//
SC3(2~-L ML YA|Q7,,104]
+C1C32002d(Lin)* L™ A1 Q74,104
+CIL(Q,|A1+2C (L) Q]| Al + C, L HAP)
- Q"(Q,10A4]+ 2C (L) Q104+ C5 L™ 1| 4] Q716 A))
SC5lA41Q74 41041 [1 - L7 +4dCiaoL77]
+C{L™4(1+4dCiagL™*+ C, L *ay)
|Al (1 +4dCa L2 +2dC, L™ 0,) Q74 4 16 A
CiL™?
G,

L‘le(U0)6A+L'1<%(U0, L1 A), 6A>‘

< C;14]Q74 4164 [1 — L2 4+4dClaoL ™3 +
-(14+4dCiagL™ 2+ C,L Y, +2dC3 L7 lcxl)z:l . (154)

This bound implies the inequality (149) for j+ 1 if

L4

44C,aoL ™t + %(1 +4dCiaoL 2+ CoL g +2dCL a2 <1, (155)
3

This inequality is satisfied if C;> C7 and «,, o, are sufficiently small, e.g., we may
take C,=6C7 and ay, o, satisfying 4dClaoL ' <4, (C,L ' +12dC{L Vo, 3.
Thus we have proved
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Proposition 5. The functional derivative of Q, (U, nA) is a bounded function for ay,
o, sufficiently small, and we have the bounds

é
EA_Q"(UO’ nA4,c)| £142C 00+ C3l4|<14+2C e+ Cy0,4 , (156)
b
)
54, C(Uo, 4, 0)| S C5lA[< Cya, . (157)

E. Analyticity Properties of the Averaging Operations

In this section we will prove some simple analyticity results for the averages. Let us
begin with the average U*. Formally, it is defined for all configurations, but we
have good control over it for configurations U satisfying the regularity condition
(52). We will prove that U* is an analytic function of U on this domain. In fact, we
will prove a little bit stronger result. Let us take a configuration U, satisfying (52)
and U=U"U,, U'=¢"*, |4’| bounded by a small constant o,. Such configurations
U do not necessarily satisfy (52), so we get a neighborhood of U, which is larger
than neighborhoods of U, in the domain. This neighborhood may be also
described by the conditions

[U=Uo|=IUU; " — 1| <ayn, (158)

o4 is a sufficiently small number.

We will prove that U*=U"U,* is an analytic function of A’ and U*(U%) ! is
close to 1; the difference may be estimated by a constant proportional to «;. We
have

Ux0%), ' =(U Tk T8, ' =0
=Uk(b—)(Uk)bR’f) s0p N(by), bcQ®, (159)

where
() =(Ro,U)(Ro,,U)- ... . (REZIT*Y), xeQ®. (160)

From Proposition 4, and especially from (131), we get

—;log 07

=1Q;(U,, nA)| <20, Lin, (161)
hence

1 =
110%(13’ LU= T L""flog(R{),xU”) (Ts,x)

xjeB(x)

<8u,dl* iy <oV, Iy,  j=0,1,....,k—1 (162)

and
00— 1] <0ty ¥ L in=0(Da (163)
ji=0

for a4 sufficiently small. Moreover, Proposition 4 implies that the functions of 4in
(159) are analytic. We get the following
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Proposition 6. If U, satisfies (52), then UUy* is an analytic function of

1

A= -i;?—log U’ for A’ with values in the complexified algebra, and satisfying |A'| <a.
Moreover, we have a bound

{UU MO = 1< 0D, . (164)

Of course, we assume that oy, o; are sufficiently small,

Another analyticity result we will need is an analyticity of Q (U, nA4) with
respect to U,. We will understand it in a similar way as for U*. We take U'U,,
instead of U, U'=e€"™', | 4’| < «,, and we consider the function Q,(U'U,n4). We
want to prove that it is an analytic function of both variables 4" and 4, and that
Proposition 4 holds uniformly with respect to A".

Let us analyze the proof of Proposition 3 first. The bounds depend on bounds

of the quantities Y, = —i,—log Vo(I¢, zu(— ). Previously we had [Y,|=0(I%,), but

now we allow complex perturbations V'V, of ¥,, and for these we have
|Y,| =O(I*ay + La,). Thus Proposition 3 holds unifirmly for V'V, instead of ¥ and
with the only change in the inequality (126), where the constant e®V2*% on the
right-hand side is replaced by W& %0+ Lat) Similarly we repeat the reasoning
connected with Proposition 4, but with T}, replaced by U'U,’ = U, Because of
the bound (164), we have to replace the factors ePML*V Vs fy
OV DnPao + LI M) byt this change is easily incorporated into the consider-
ations and the estimates. We get the same results as before for o, «, sufficiently
small, uniformly in A’, and additionally, we get the analyticity of Q, with respect to
A’. Let us formulate these results in

Proposition 7. For U, satisfying (52) and U'=e"', |A|<a,, oo, o, sufficiently
small, the function Q. (U'Ugy,nA) is analytic in complex variables A’, A, and
Proposition 4 holds uniformly in A’

Similarly, Proposition 5 may be extended to include analyticity and uniformity
statements. The formulations are obvious.

F. Averaging Operations for Gauge Transformations

In the last section of the paper we will study the averaging operations for gauge
transformations, given by (61), (78)(80). A natural analog of the regularity
condition (52) would be the condition

Oy ) (D) =IR(Uo p)ulb ) —u(b_)|<opn, bCQ. (165)

We will consider functions u satisfying this condition, but we have to consider also
the functions u given by the formulas (104)(106). They appear naturally in our
considerations and generally they do not satisfy the regularity condition (165), but
they satisfy other conditions following from (107), (108) if the configuration U, is
small, i.e, |U, ~1|<a,n, o, small. We define:
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A(Uq, a3) is a set of gauge transformations u defined on £,
and satisfying the conditions

I(Row)) (x)—1|<as, x;€ 29, j=0,1,...,k, (166)
l(m")‘l(xﬁ 1) (R_{),xj+1mj) xp—1 <°€3H+1’?a
Xj+1€QVTY x;€B(x;4), j=0,1,..,k—1. (167)

From this it is obvious that for u e 4,(U,, «,) and a5 small, all operations needed to
define Ryu* are done always in a case where proper expressions are small. More
exactly, we have to calculate a logarithm of the expression in (167) and this
expression is small.

We need to consider a product of two gauge transformations satisfying (166),
(167), so we would like to know that it also satisfies similar conditions. Let us
consider at first the following situation: we have functions v, v, v, defined on a
lattice ' and a gauge field configuration V,, and we assume that
v(x)=01(x)02(x)e"®, [r()l<css o711 (Ro,,0) (X)=1]<cy, i=1,2, xeB(y),
ye QM. We will find relations between Ryv and Rov;, Ryv,, and bounds satisfied
by Ryv. We have

713 (R,,0) (X) =€~ "0 1 (y) o7 1 (1) (Ro,,01) (x)
“(Ro,y02) (%) gRoM
=e "OR (v, () [v1 () (Ro,,v1) (X)]
03 ') (Rg,,02) (x) giRo N

=exp[—fr(y)+iR<v;1<y>)§logv;*<y> (Ro,,1) ()

+ i%logv; 1) (Ro,,02) (X) +i(Rg ;1) () + O(ey + 02)2)]’ (168)
hence

(Rov) () =v(y) exp [i xe%(y) L™logv™'(y) (Ro, ) (x)] =0;(3)0,(y)

*€Xp [ir(Y) +i %( )L_”Ogv' '(3) (Ro,,0) (x) + 0 ((ey +Cz)2):'
=0,(y)vo(y) exp [i xgm L™"R(vy 1(}’))%10385 ') (Ro,,01) (x)

HT L3 10g0; ') (Ro ) ()

xeB(y)

+i X L7%Ro,,7) () +0((c, + 02)2):|

xeB(y)

0 ORG: O] § 3 L4 oge; 0) (Ra,00 (9|

xeB(y)
1
op|i 3 140803 "0) R0 () |
- €Xp [i )3 )L_ HRo,,1) (X)+0((cy + 02)2)]

xeB(y

=(Rov1) () (Rov2) (1) €7, [F (M) <1 +0((ey +¢2)%). (169)
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Let us denote the constant in the above bound by C;, so we have
(Rov) (1) =(Rov1) () (Rov2) (1) €7, [F(»)| <1+ Caleg +co)*, ye QWM. (170)

Now let us take two gauge transformations u,, u, satisfying (166}, (167).
Applying the above result to u=u,u,, we get

(Row) (x;) =(Rouy) (x1) (Rott) (%) €750, ry (x,)| < Cy(osLig)>  (171)
for x, € Q. Next applying it to Rou, Rou;, Rou,, we get
(Rou?) (x2) = (Rot1) () (Rotz?) (x,) €722,
2 (x,)| < Ca(otsLyp)? + C5(Caot3 L) + 03 Ln)>
S Ca(oa L) [1+ L *(1+ C33)*] (172)

for x, € 2®. We can prove by an easy induction that

(Row') (x;)= (Rouy’) (xj) (Rouy’) (x;) erity X; € Qv
IF(x )l < Calos ) [1+ L7 2(1 + Caoa)?* + ... + (L7231 + Ca03)?) 1]
<2C5(o3n)? (173)
for o5 sufficiently small, i.e., such that L™ 2(1 + C50;)? £ 4. From this it follows that
I(Rot!) (x;) — 1] <2003+ 2C5(0t3 L) 203+ 2C303,  j=0,1,...,k,
[(Ro’) ™ 1(xj+ 1) (R-{),x“ 1R—(;aj) (xp—1]< 20,17+ 'y +4C5 (a3 in)?
<Quy+2Cs0R) Ly, j=0,1,... . k—1. a75)
We can formulate these results in

Proposition 8. If u,, u, € A (U, a3) and a5 is sufficiently small, i.e., a3 < ¢ for some
Cs, then u=u,u, € AUy, 205 +2C,03) and we have (173).

We will need to consider regular configurations ¥’ in the sense that the
following conditions are satisfied:

Wx)—ll<a,, xeQ, (176)
W= (b )Ry ' (by)—1| <oy, bCQ. (177)

We would like to know that if 1’ is such a configuration and u, belongs to a class
Ao3), then the product u'u, belongs to some class A,(O(1) (¢4 + a4)) also. Because

. . | . .
we want some analyticity properties of —logRqu'u,*, we will consider configu-
1

rations u’ with values in the complexified group G*, i.e., u’=¢'* and A has values in
the complexified algebra ¢°. We will consider the averages

i = Rou'w, (Rqu) 1. (178)

As in the case of averages U7, it can be easily seen that they may be defined
inductively as

ﬁ/l == ﬁ/ e Rou/ul(ROul)— 1, ﬁ/j+ ! = R{)ﬁuRoulj(R{)Roulj) —1 . (179)
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We will prove that the configuration @ for j < k satisfy the regularity conditions
(176), (177) on proper scales and with different constants. As usual, we start with a
careful analysis of a one-step operation. Let us assume that we have a gauge ficld
configuration ¥, satisfying the regularity condition |V,(dp)—1|<a,, pC ', and
two gauge transformations v’, v, satisfying the conditions

o'~ 1 <y, |0/~ (b_)Ro 0/ (b ) — 1] <t}
o1 — 11 <as, Iog () Rovy) (¥) — 1] < Log,

x € B(y), ye Q@M. We assume that the constants are sufficiently small, so that we
can apply proper theorems and estimates. We will find a bound for
"¢ )Ry #(c)—1. We have

(Rov'v1) ) =v'()v1(y)

-exp[i ) L“d%log(v’m)"l(y)(Ro,yv'vmx)}, (181)

xeB(y)

(180)

(0'01) 71 (3) (Ro,,0'v1) () = R(vy () [ () (R, ;") (%)]
07 () (Ro,,01) (%), (182)
and |v " (y) (R ,v") (x)— 1| < [T, | oy e!»1% = O(La}) by (180), hence

1 1
S10g(1'91) ™' () (Ro,,00y) () =R (5 (1) 5 logo' ™' ()

1
*(Ro,,0) () + 510801 (1) (Ro,01) (x) + O(Lot304,) (183)

A constant in the bound above is an absolute constant. Using (41) and (181), (183)
we get

¥()=v»)1(y) eXP[i 2 L™“R(vy 1(y))%logv"l(y)

xeB(y)

“(Ro,yv) (%) + O(Lo30) + (Lai } vy ()

—o)exp| i 3 L*Hogr0) (Ro,)()

xeB(y
+O(LA(05 +0a3) oc;):| . (184)

Let us denote
Vi=v'"Yb_)R, yv'(b.), then |Vy—1|<oje™,
V/=e"r, |4, <20. (185)
Using this we can write
V(1) (Ro,y0) (%) = bCIFT Ry, s NV =(Ro,, V)L, ), (186)

¥, x
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and we have
1
7108(Ro,, VI, ) = (R, ) (I, ) + O((La3)%) (187)
Now using this and the representation (184), we have
17’_1(6—)Ro,c5’(c+)=exp[—i > LR AT, )
xeB(c-)

+O(L (o5 + a&)dl)] v He-)Ro,v(cs)

"€Xp [i Y L™Ro,Ro,c, AT, )+ O3 +0ty) ai)] :

x'eBlc4)
(188)
Let us recall that
. 1 02
Vo,.=exp [i > L_";log VoL e, x (= C))] Vo(c) = eIV (c),
xeB(c-)
hence
Ro,cvl(c +)=R(Vo(eNv'(c, )+ O(LZ“O [v'(c)—1])
=R(Vo(e)v'(c4) + O(LPag0y).
Similarly,
(Ro,Ro,c, (., ) =RV Ry, ., A (Te, )+ O0LPa00y) .
Further we can write
v He )R v(c)=(Ry . V) (c)
=1+i(Ro,._A) () + O((Loy)?),
and this implies the following representation
v 1(6—)§0,c5/(c+) —1=—i Z L‘d(RO,c- A) (Fc_,x)
xeBic-)
+i(Ro,._A) () +i BZ( )L_d(R(VO(C))RO,mA)(F corx)
+ O (I (oo + ooty + 0505 + o)) . (189)

We will transform the linear terms in A on the right-hand side of (189). Let us
notice that by the definition (185) of 4 and by the identity logv ™! = —logv we have

1 - 7z, 1 ;= 7z,
—Ay=—<logu " (b )Ro yu'(b+) = Zlog(Ro,u ™ '(b u'(b-)
1 - ,
=R0,b€10gu, 1(b+)Ro, ()

1
=R, logu”™ H(=b))Ro, - ((—b)),
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hence
—Ay=Ro,A_,. (190)
For the term (R, ._A)(c), we have for x e B(c_),
Ro.c.A)(©)= X R(Vo([e-, b-D) 4= — 2, R(FVo([e—. b 1) 4,

== T RONEU(= T )Rl b-1) 4,

=— ¥ RV, ey, b-1) A+ O(L00%}); (191)

bC—¢

similarly for the third term on the right-hand side of (189). Taking this into
account, we have

F7 e )R, ) —1=i ¥ )L""(RO,C_A) ([x, xD)

xeB(c -

—i Z L_d(RO,c - A) (Fc,xu( - C))
xeB(c-)
+ O(L(og0g + ooty + ey +a2)y. (192)
Let us now estimate the terms (R, . A) (I', ,w(—c)). They almost vanish because

1
by the definition (185) 4 is almost equal to the derivative of A= ?logv’. We will
prove in fact that they are small. Similarly, as in (187) we have

(Ro,c_A) (I, x0(—0))= %log(Ro,c,‘, VYT o(—e)+0((Lo)?),  (193)

and

(Ro,e V) (T, xo(=))=0"" e )R(Vo(I e xu(—))v(c-)
=140 e )[RV, (—))— 11 (v'(c-)—1)
=1+0(Layu,), (194)

hence
(Ro,c.A) (e x0(— ) = O(L gy + ) - (195)
This gives us finally
5 )R ler) 1= 3 L*(Ro 4)([xxD)
+ O(L(agoty + ooty + a0 +0i)) . (196)
From this we easily get a bound if we notice that

1 — / .
Ay=~ (/" (b)Ro,0'(b1) = 1) +0().

This implies {4, <«} + 0(¢f), and
[5"" () Ry (cy)— 1) < Loty + O(L(0g0ty + 000ty + 0505 +a2)) . (197)
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From representation (184) we obtain also
() — 1] <o, +O(Lag) + O (o + o) ay) So, + O(Lot) - (198)
Let us formulate these results in

Proposition 9. There exist positive constants Cj, Cs, cg such that for arbitrary
Sunctions Vy, v', v, satisfying (180) with o, o, 03, 0, 004 < Cg, the following bounds
hold:

5"~ (c_) Ry, (c+) — | < Lt + Col (ot + 3004 + 02) (199)
W(y)—l<as+CsLlog. 200)
In these bounds we have assumed that o} = O{a,), which will always be true here
and in forthcoming papers.
Let us apply this result to configurations U, ', u, many times. We assume that
U, satisfies (52), u satisfies (176}, (177), and u, satisfies (166),(167). When we apply it
the first time, we get bounds
@™ 1(c-)Ro,cﬁ'(c+) — 1| <o, Lo+ Co(otota + 30y +03) (L), (201)
|7 (y)— 1] <oy + CsoqLy . (202)
Let us denote B=aq0, + o304 +23, Cs=1+4C5, C,=8C,Cs. We will prove by
induction that
@)~ eI RE (e )= 1| <ayLn+ Cop(Ln)?,  cCQY, (203)
[(y)— 1| <oy +2C50, Ly +... +2Csa, iy,  yeQ9. (204)
Let us notice that
a, n+ Cop(Lin)? Lo, in(1+ C oot + 03 +04)) < 200, i £ 201,

for ag, as, o, sufficiently small, so the condition «, =0(x,) mentioned above is
satisfied indeed. The inequalities (203), (204) hold for j=0, 1. We assume them for
some j and we will prove them for j+1. We apply Proposition 9 with ¥,= Ui,
v’ =17, v, =Rqu,’. We have a, replaced by 2u,(L'n)*, o5 replaced by o3y, o,
replaced by the right-hand side of (204), which can be bounded by
ay(1+4C5)=Csn,, and o, replaced by the right-hand side of (203), which can be
bounded by 2a,. The conditions of the proposition are satisfied if, e.g., 2000, &3,
Csoy, 20, =g, 50 We can apply it and we get
@ e REL @9 ey ) = U< T i+ LC,B(Liy)?
+ C4(2aOC5a4 -+ 0632064 -+ 4“1) (H+ 17[)2
CLAC;

Cy

Sa L+ CBE )2, (205)
[@7* () — 1| <o, +2C50, Ly + ... +2C50,Ln + 2C50, L 1y . (206)

Thus we have proved the following

<o I+ C (L p)? [L"‘ +
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Proposition 10. There exist positive constants C,, Cs, cg such that for arbitrary
configurations Uy, w', u, satisfying (52), (176), (177), (166), (167) with oy, a3, ty S Cg
the bounds (203), (204) hold for j<k.

This result implies in particular that the configuration #’ belongs to the class
ALCso,). The assumptions (176), (177) can be reformulated in terms of the

. 1
functions 4= —logu’. If we assume
H

Dy D) (D) <oy, 1AX)<ay, Ax)eg,
oy sufficiently small, (207)

then assumptions (176), (177) are satisfied with a constant 4o, instead of «,. It is
obvious from the definition of the averaging operations that #” are analytic
functions of A, and

Oj(u, D= Tlog?,  j<k, (208)

are analytic functions of 4 also. We want to calculate a linear term in an expansion
of this function. In fact, we will be satisfied with a good approximation of this term.
From (184), (187), we have for v'=¢'*

¥(y)=exp [ix(y) +i Y L™%R, AT, )+ O0(osLog) + O(L (o + o) a;)] .

xeB(y)
(209)
By definition of A4,
Ab p— }: loge —iA(b- )eiRO’ pAb+)
i
- _l‘_loge-*i}.(b_)eil(b—)-* i(DVO A)(b)
i
=(Dy, ) (b) + O(os0, +0), (210)
hence
1
?logg’(y) = xg(y) LRy ,A) (x) + O(ag Loty + LPotyor + [Pof) . (211)

By (179) the function Qj(u,, /) is a composition of one-step functions and from the
above formula we can easily see that

, , i—1
Qj(uy, L, y)= Y L#RUITPNA)+ T
xeBi(y) I=0
- O(Csog 200, L + 0320, ()* + 403 (Lin)?) (212)
hence

Qi1 4, y)=(Q;0) N+ Ciuy, 4, y), (213)
|C3uy, A, M= O((eatty +aZ) ). (214)
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