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Abstract. Usually renormalization group transformations are defined by some 
averaging operations. In this paper we study such operations for lattice gauge 
fields and for gauge transformations. We are interested especially in character- 
izing some classes of field configurations on which the averaging operations are 
regular (e.g., analytic). These results will be used in subsequent papers on the 
renormalization group method in lattice gauge theories. 

Introduction 

In Wilson's approach to renormalization group transformations I-9, 10] for lattice 
gauge systems, it is necessary to define an operation of taking an average of field 
configurations over subdomains of a lattice. These subdomains are usually some 
simple subsets, for example cubes of a fixed size, or sums of several such cubes. In 
this paper we will study one such definition of an averaging operation. This 
operation will be used in other papers on gauge field theories. 

Let us introduce some definitions and notations. We will be very sketchy 
because these definitions have already appeared several times in the earlier papers 
[1, 2] of the author and we refer the reader to these papers, especially to [2], for 
more detailed explanations. We consider a subdomain f2 of the lattice qZ d with a 
lattice spacing q. A sequence of sets f2 u) is defined as the intersections 

(2 (j) -= (2nLJtIz a , (1) 

where L is a fixed integer, L > 1. For a point y e L"tlZ a (or any lattice 6Za), we define 
a block of an order j as the cube 

BJ(y) = {x e L-JUrl Za : y ,  < x~, < y~, + L"q, /~ = 1, ..., d} (2) 

(or the corresponding cube with L"t/replaced by 6). We wilt omit the subscript j if 
j = 1. For a subset A C L"tlZ d (or C 6Zn), we define 

B~(A) = U BJ(y)CL-JlYrl Za (or CL-JfZa) .  (3) 
yeA 

* Research supported in part by the National Science Foundation under Grant PHY-82-03669 



18 T. Bataban 

We assume that 

BJ(~ °)) =/2 for j =  1,..., k (4) 

for some k. In fact, we will assume that q = L  -k. Thus O is a sum of blocks of the 
order k. 

Besides the blocks of different orders, there are two other geometric objects 
important for us. Bonds of the lattice Q are ordered pairs (x, x')  of nearest 
neighbor points x, x' of ~2. We identify them with the corresponding oriented 
intervals with endpoints x, x'. We will denote them also by the letters b, b', c, etc. 
For example, b denotes a bond (b_, b + ) with an initial point b_ and a final point 
b + ; b_, b + are nearest neighbors. Plaquettes are oriented elementary squares of 
the lattice ~2 and are denoted by p, p', etc. A boundary of a plaquette p is a sum of 
four bonds, and an orientation of the plaquette may be indicated by an orientation 
of the bonds. A plaquette p may be identified also with an ordered quadruple 
(x, y, z, w) of corners x, y, z, w of the elementary square p; the ordering indicates 
the orientations of bonds (x, y), (y, z), (z, w), (w, x) forming the boundary 0p. 
Speaking precisely, the symbol (x, y, z, w) indicates not only the oriented square, 
but also the initial point x of its boundary. In this paper we will consider positively 
oriented plaquettes and such a plaquette p C/2 is represented as 

p = (x ,  x + ~le u, x + qe~, + tle~, x + qe~), it < v. (5) 

The above definitions of bonds and ptaquettes may be applied to an arbitrary 
lattice, e.g., to f2 cj). 

Gauge field configurations U are defined on a set of bonds in (2, and with values 
in a Lie subgroup G of a unitary group U(N).  A value of U at a bond b = (x, x') is 
denoted by 

Ub = U <~,~,> = U(x,  x') = U(b) , (6) 

and we assume that U satisfies the condition 

U(x, x3 = U- l(x', x) = U*(x', x). (7) 

In the sequel, we will consider quantities which are invariant with respect to some 
important transformations in the space of gauge field configurations, the so-called 
gauge transformations. They are determined by gauge functions u : f2~ G, and are 
given by 

U"(x, x3 = u(x) U(x, x3u- 1(x3, (x, x') c O. (8) 
n--1  

For an oriented contour F =  ~ (xi ,  xi+~) we define 
i = 0  

n - 1  

U(F) = I-[ U ( x ,  x~+ 1), (9) 
i = 0  

where the order of factors in the product is the same as the order of bonds in F. This 
definition will be applied also to contours on arbitrary lattices. For a plaquette 
p = (x, y, z, w) we define 0p as the oriented contour Op = (x ,  y ) w ( y ,  z ) w ( z ,  w )  
w ( w ,  x ) ,  and U(Op) is defined by (9). 
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The renormalization group transformations are integral operators transform- 
ing functions defined on gauge field configurations on a lattice, into functions 
defined on configurations on the lattice of blocks. We will consider transform- 
ations of the form 

e'(V) = ~ dUa(VU- 1)Q(U), (10) 

where, for example, U is a gauge field configuration on the lattice f2 ~/), V is a 
configuration on the lattice f2 ~+ 1) and dU is a product of Haar measures of the 
group G. The most important part of the above definition is an averaging 
operation U. It transforms a configuration U defined on ~2 ~/) into a configuration G 
defined on f2 (j+ 1). In fact, ~(J) may be replaced by any other lattice. We will demand 
that this averaging operation has to satisfy some important and natural 
conditions. A first condition is connected with the fact that we consider gauge- 
invariant quantities, so we demand that the averaging preserves gauge transfor- 
mations, i.e., 

(U-~)(y,y')=u(y)U(y,y')u-l(y'), or U-a=(U) ". (11) 

This property implies that the renormalization transformation (10) transforms 
gauge-invariant functions Q into gauge-invariant e'. Indeed, if v is a gauge function 
on a new lattice, then 

q'(v°) = I cIUa(V °U - ')a(U) = I d U a ( W ( ~ ) -  t)e(U") 

= I dUa(V'(U")- ' )e (e) ,  (12) 

where we have used the gauge-invariance of the Haar measure d U and the function 
Q, besides the condition (11). Now if we choose u coinciding with v at points of the 
new lattice, then we get 

e'(vv) = f dO FI a(v(y) V(y, y)  (U(y, y'))- iv- l(y))e(V) 
(y ,y ' )  

= i aUa(VU- 1)o(U ) -- e'(V). (13) 

We have used also the invariance of the a-function concentrated at the identity of 
the group G with respect to transformations U~vUv-  1. A second condition on 
averages [7 is formulated in the following way. We consider configurations U with 
values in a small neighborhood of the identity of G, hence U = e *A and A is a Lie 
algebra valued configuration with values in a small neighborhood of 0. For such 

configurations we demand that 4log t7 is well approximated by the linear 
l 

averaging operation (1.8) defined in [2]. Let us write this operation 

ac= X (14) 
x ~ B ( c  - ) 

We refer the reader to paper [2] for explanations of symbols used above. Let us 
notice that F~_,xu[x, x(c)]uF~(~),~+ is an oriented contour with c_ as an initial 
point and c+ as a final point. We denote it by Fc,~. 

There are many ways of implementing these two conditions. We will write now 
a definition of an average which satisfies these conditions and which has some 
other advantages. We define 

tT~ =exp [ i  x~(~ ~ _ ) L-dl'I°gU(F~'~)U(c)-I] U ( c ) ' ,  (15) 
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It is easy to see that taking U = e ia with A small and expanding the logarithm of the 
expression on the right-hand side above in powers of A, we get the expression (14) 
as a linear term in the expansion. 

In this paper we will study properties of this and other averaging operations, 
and especially their compositions. In the future we will need many properties of 
these compositions. For example, it will be necessary to know that a composition 
of many averaging operations applied to a regular or small gauge field 
configuration gives a regular or small configuration also, the notions of regularity 
or smallness being related to scales on which the gauge field configurations are 
considered. This is the basic property of averagings we would like to understand. 
Another important property is an analyticity of a result of the averaging operation 
with respect to an averaged field. 

The analysis and the propositions we prove in this paper can be easily extended 
to other definitions of averaging operations satisfying the requirements postulated 
in this introduction. The definitions we have used in this paper were chosen for 
their simplicity but in some future papers we will need somewhat more 
complicated definitions. We will discuss them at the proper time when they appear. 

A. Norms, Important Inequalities, and Functions 

We consider a Lie subgroup G of a unitary group U(N). Its Lie algebra g is a 
subalgebra of the algebra of hermitian matrices. Because of analyticity properties 
we are looking for, we will consider complexified algebras and groups. The 
complexification of the algebra of herrnitian matrices is the algebra of all complex 
N x N matrices, and the complexification of U(N) is the general linear complex 
group GL(IE, N). 

The complexification g~ is a subalgebra of the algebra of all complex matrices. 
It may be defined in the following way: we take a basis {to} of the algebra g, then all 
elements A E g can be written as linear combinations A = ~ A,t a, where A, are 

a 

arbitrary real numbers, A, ~ ~ ,  and we form a complexification gC taking A, as 
arbitrary complex numbers, Aa e 112. It is easy to see that this complexification is 
independent of any particular basis {ta} chosen in the above definition. For a 
function F(A) defined on the complexified algebra, a notion of analyticity is well 
defined and means analyticity with respect to complex variables A,. The unitary 
group U(N) can be obtained by an application of the exponential mapping to the 
algebra of hermitian matrices. This exponential mapping is simply given by the 
exponential function d a, where 

oo X n 

eX=exp X =  Z n-T. (16) 
n = 0  

is defined for an arbitrary matrix X. The group G is obtained by applying the 
function e ia to A e g, and the complexified group G ~ may be defined as an image of 
the exponential function applied to the complexified algebra gO. Of course, G c is a 
subgroup of GL(tE, N). We wilt need only a neighborhood of G in this subgroup. 
We introduce a scalar product in the algebra of all complex matrices 

1 N 
(X,  Y )= t rX*Y ,  t r X = - -  Y~ Xj j (17) 

Nj=j  ' 



Averaging Operations for Lattice Gauge Theories 21 

and a scalar product in spaces of matrix valued functions defined on subsets O 
c ~Z d 

(X, Y~ = ~ ~/d trX*(x) Y(x), (18) 
x~D 

similarly for functions defined at bonds or plaquettes of ~. The scalar products 
define the corresponding norms. They are L 2 norms and are denoted by H" II, e.g., 
for a matrix X the norm is given by IIXll z = trX*X. The L p norms, 1 ~ p ~  ~ ,  are 
defined in an obvious way. In estimates we will use much more frequently another 
norm for matrices. It is the operator norm given by 

IXt=suplX~pI=supl~. X~pL, q~, q , ~ N ,  
N 

I~l = I~;I = 1, [WI 2 = E tWj[ 2. (19)  
j = l  

We have the following inequalities for the norms introduced: 

ItrXl < IXl, IlS II--< ISl, ISl ~ 1/N IIg II, (20) 
IXYI<IXI IYI, IIXYII _-< IlSll II YII • 

Now we will introduce several important functions on the matrix algebra. The 
first is a logarithmic function. It is an inverse to the exponential function and for 
matrices X satisfying IX - 11 < 1 it is given by 

logX= ~ ( -1 ) "+1(X-1 ) " .  (21) 
n = l  /'/ 

Of course, both functions are analytic functions of complex matrices X. For 
any branch logz of the ordinary logarithmic function, we may define logX for X 

defining a normal operator on ~s.  If X is such a matrix, then X = ~ ziPi, zj ~ C, 
j = l  

{Pj} is a spectral family of orthogonal projections (i.e., P*=Pj, PjPk=PkPj 
= 6jkPj), and we define 

logX= ~ logzjP~. (22) 
j = l  

We will use this definition for logz = loglzl + i argz, where argz ~ ] -zc, re], and for 
unitary matrices. Every unitary matrix U can be represented uniquely in the form 

/, 

U = ~., eiXJP~, where the numbers )oj are different and satisfy 2j ~ ] - re, rc], and then 
j = l  

we define 
l ogU=i  ~ 21P~=iA, (23) 

j = l  

A is a hermitian matrix, tAI <~. From this definition the following inequalities 
follow: 

[ g - l l = l ~ a x l e ~ S - l l = m a x ~ j  12il<maxl2jl=llogg I , (24) 

1 2 1  

IlogUl<~lU-1l,  because s_inx >-2 for x ~ [ - ~ , ~ ] .  (25) 
X 7Z 
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We will need also inequalities of this type for arbitrary complex matrices X 
instead of U. For matrices X satisfying IX-11 < ½, we have 

II°gX[ < ,=1 ,, I X -  11"---- 1 II <2IX-11,  (26) 

I X -  1[ = [e l ° g x -  11 < e II°gxl - 1 < e II°gxl IlogX[ < 2 [logX[. (27) 

Let us consider now the most important function for all future considerations, 
the function describing the group multiplication in terms of Lie algebra elements. 
Let us define 

Z(u, v) = log eUX evr . (28) 

It is a well-defined and analytic function of uX, vY, for example, in the domain 
luXI <~, IvYI <-~. Its power series expansion is given by the Baker-Campbell- 
Haussdorf formula (see E7], Sect. 2.15) 

Z=log exer= ~ Z 
(_1)  ,.+1 1 

m=l  p~+q~>_l m P l + P 2 + . . . + P m + q l + q z + " ' + q m  

1 
Pl! q l !" ... "Pro !qm ! (adx)m (ady)q~" "'"" (adx)P"(ady)q"- ~ Y 

= X  + Y + ½IX, Y] + ~2[Y, [Y, X]] + ~2[X, IX, Y]] + . . . ,  (29) 

where adxY= [X, Y] = X Y -  YX, and the series is convergent in a neighborhood 
of 0: IXt, I YI < Co for some positive Co. From the structure of this power series 
expansion, we get easily the bound 

I Z -  x -  Y -  ½[x ,  Y]I _-< o(1) (IX121YI + IXI I r12), (30) 

and this implies 

I z - x - Y i < 2 I X I I Y I  for lXl, IYl<q,  (31) 

where ct is a sufficiently small positive constant, ca<=c o. We will treat the 
expression adx Y for a fixed X as a linear operator on a space of matrices Y, and we 
will consider functions of this operator f(adx). For analytic functions f defined in 
a neighborhood of 0 and for X with a sufficiently small norm, the function f(adx) 
can be defined by the power series expansion. 

We will be interested in calculating derivatives of the function Z(u, v) and some 
other functions of this type. Let us start with the following basic formula (see [7, 
Theorem 2.14.3]) 

_A,0d ~ (--1)" 
e ca(O= ,=0 (n+ 1)! (ada(t))"A'(t)=o(ada(t))A'(t), (32) 

where A(O is a differentiable matrix-valued function of t. The function 9(z) defined 
by the above formula is an entire function given by 

(--1)n zn=__e-Z--1 
Z for z+0,  9(0)= 1 (33) 9(z)= ,=o (n+ 1)! - z  
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1 
hence the function g-~(z)= ~ is an analytic function in a neighborhood of 0, 

more exactly for z # 2krci, k = _+ 1, _+ 2, .,., and we have the identities 

- - Z  
9-~ (Z )=e_Z_  1 , 9 - 1 ( - z ) = 9 - 1 ( z ) - z , g - ~ ( z ) = l + ½ z +  .. . .  (34) 

Defining f ( z )  = 9 -  i(z) - ½z, we have f (  - z) = f (z ) ,  so 

f ( z ) = l +  ~ kzpzZP, g - l ( z ) = f ( z ) + ½ z ,  o - l ( - z ) = f ( z ) - ½ z .  (35) 
p = l  

Using (32) we can derive easily the following formulas: 

~Z(u, v) 8Z(u, v) 
0u = 9 -  l ( _  adz(.,v))X, Ov = 9-  l(adz<u,,)) Y- (36) 

We apply them to derive the second-order Taylor expansion of Z(u, v) with respect 
to the variable u, for example: 

. 8Z(O, v) 1 o2Z( tu ,  v) 
Z (u , v )=Z(O,v )+u  ~u + u 2 S d t ( 1 - t )  

0 ~U 2 
(37) 

Z(O, v) = vY, 0Z(0, v) = 9 - 1 ( _  advr)X = 9-  l ( _  v adr)X 
au 

From this we get 

1 
_ l ogeiXe ir = Y + g-  I ( _  i adr) X + ~ ( X ;  Y), 
1 

(38) 
I~(X;  Y)[ < 0(1)IX] 2 

for IXI, tYI sufficiently small, where 0(1) is an absolute constant [e.g., we can take 
0(1) = 24 for IXI < ~o, I YI ~ ~ ] -  Another important function we will need later is 

Z(u) = log e ux + r e-  r .  (39) 
Repeating the above calculations, we get 

1 
Z(u) = u g ( -  adr)X + u 2 ~ dt(1 - t)Z"(tu), (40) 

0 

and 

1 logei X +ire_ ir = O ( - i  adr) X + o(IxI2). 
l 

(41) 

B. Compositions of Averaging Operations 

Let us recall the basic definitions. Let U be a gauge field configuration with values 
in U(N). The one-step averaging operation is defined by 

Uc=exp [ i x~8~c ~ _ ) L-e l l °gU(Fc 'x )U(c) - l lU(c) ' c f i f2~) ' t  (42) 
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and if k th order averaging ~.~k is defined at bonds of ~c~(k) then 

[Tk+ 1 = (Gk)~ = exp [ i x~l~(c ~-" _ ) L - d l ' 1 0 g G k ( F ~ ' x ) ( G k ( c ) ) - t l G k ( c ) ' c C g 2 ( k + t ) ' ( 4 3 ) t  

where the contours Fc, x are defined on the lattice f2 (k). 
Let us notice that this definition is local in the sense that Uc k, c C f2 (k), depends 

only on the bond variables Ub for b C Bk(c - ) w Bk(c +). This property will play a very 
important role in the future. Let us notice also that the property (i 1) is satisfied. 
Indeed, for an arbitrary gauge field configuration U and a gauge transformation u, 
we have U"(Fc,x)UU(c)-l=u(c_)U(F~,~)U(c)-iu-i(c_); thus the matrices 
U"(Fc, x) UU(c) - t and U(F~, ~) U(c) - 1 are unitarily equivalent, their eigenvalues are 
equal, and by the definition (22) their logarithms are unitarily equivalent with the 
same unitary operator u(c_). Then from (42) we get (U--a)~ = u(c_)Ucu-1(c+). 

Now we would like to understand • -k how regular the configuration U is, 
assuming some regularity of U. We will investigate carefully the one-step 
averaging operation from this point of view. We assume that a configuration V 
defined on a unit lattice f2' satisfies 

I V(Sp) - I I < % ,  p C f2', (44) 

and % sufficiently small. We would like to get optimal bounds for I P(OP')-  11, P' 
C 0'(~). 

Let us denote by y the upper right corner of the plaquette p' and let us introduce 
locally the axial gauge with the initial point y. This means that we take the 
contours 

r r ,  x = [Y, (Yl, ..., Ya- i, xa)] w.. .  w [Yl, X 2  . . . . .  Xd) , X] 

for X in some neighborhood of y containing 2 a blocks having the point y as one of 
the corners, and we make a gauge transformation Vo such that the gauge 
transformed configuration V0 = V v° satisfies the conditions Vo(Fy,x)= 1. Such a 
gauge transformation can be easily found because Vo(Fy,~)=VV°(Fy,~) 
= Vo(y) V(Fy,~)Vo i(x) = 1 implies Vo(X) = vo(y) V(Fy,~); thus Vo is determined 
uniquely if Vo(y) is given. Of course, we have 

IVo(Op)- l l=lV(Sp) - l ]<%,  IP(Op')- l l=lPo(Op')- l l .  (45) 

C) ()Y 
~a 

p' 

Yo Yl 

The conditions Vo(Fr, x) = 1 imply Vo(x, x + e 1)  = 1, [ Vo(x, x + e2) - 11 < Ix 1 - Yl[ %, 
Igo (x , x+ea) - l l<( l x l -Y l l+ lx2 -Y2] )~o ,  ..., I V o ( x , x + e , ) - l l < ( l x l - y l l + . . .  
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+ Ix,_ 1-Y~,-11)~o, P = 2, ..., d, for x in the neighborhood of y. If we denote 

A (p') = B(yo) uB(y 1) uB(y2) u B(y), (46) 

then for bcA(p') we have IVo,b-ll<lb_-yl%<dL~o, hence Vo,b=e iAb and 
lAb[ < 2 Ib- -y] ~o < 2dL~o. For c C @', the contours Fc,~, are contained in A(p') and 
we have 

[Vo(Yc,~,)- II < ~2 ]Vo, b -  l l<lF, ,~ldL~o<(2d+ 1)LdLczo=O(1)L2c%, 
b C F e ,  x 

[Vo(F,,~)- t - iA(r~,~)l < ½([AI (Fc,~)) 2 < 0(1) (L2%) 2 , 

so using the definition (21) of the logarithmic function, we have 

[ {logVo(r~,xU(-c))-A(rc,~u(-c)) < 0(1) (L2%) 2 

for L2~o sufficiently small. From this and (31) we get 

P°,¢ =exp [ i x.~.(~ _ ) L-aA(F~,~w(-c))+O((L2eo)2)] 

• exp [iA(c) + O((L2ao)2)] 

=exp[i ~_)L-aA(F~,~)+O((L2eo)2) 1, 

hence 

Fo,c- 1 -  i :,~B(cZ _ ) L-eA(Fc, x)< o(1)  (L2c~o) 2. 

Now we can estimate [Po(Op')- t l- We have 

V°(0P')- 1-i~cop,Z ~(~-)~ L-dA(r,,A <O(1)(L2~o) 2 . (47) 

Denoting by (p')~ a plaquette obtained by translation of the plaquette p' to the 
point x, we have the identity 

X X L-aA(Fc,x) = X L-dA(O(P)x) 
cCOp" xEB(c  - ) x~B(yo) 

= Z L-a Z A(Op). 
x~B(yo) pC(p')~ 

Further, we have for pCA(p') 

(48) 

]Vo(0p)- 1 -iA(Op)] < {(]A[ (Op))2 < ½(8dL%)2 = O(1)L2c~. (49) 

Gathering together the above three inequalities, we obtain 

IFo(Op')-l[< 2 L-a 2 [A(OP)i+O(1)(L2eo) 2 
x~B(yo) p C ( p ' ) x  

< Z L-a X [Vo(ap)-ll+O(1)(LZeo) 2 
x~B(yo) p C (P')x 

<L2% + 0(1) (L2~o) 2 . (50) 

This is the estimate we are looking for. Let us notice that it is a local result; the 
bound above depends on bounds for V(Op)-1 on A(p), i.e., for pCA(p'). We 
formulate the results in the following: 
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Proposition 1. There exist positive constants Co, c" 2 such that for every configuration 
V satisfying (44) for pCA(p') and for < " O~ 0 ~ C 2 ~  w e  have 

[ F'(Dp') - II <L2% + Co(L2%) 2 • (51) 

The constant Co depends on d and c'2 depends on d and L. 

Now it becomes obvious what assumption we have to make for a configuration 
U in order to get a bound on Gk(Op) -- 1, p C ~2 (k). Each averaging operation rescales 
a bound on plaquette variables approximately by the factor L 2, hence k operations 
by the factor L 2k. To get some small number yet, we have to assume that 

[U(ap)- II <%r/2 , q = L -k (52) 

on some set of plaquettes. If % < c~, then by the above Proposition, IG(Op3-11 
< L2%r/2 + C0(L2%~2). We take k > 1 so %L2~/2 + C0(%L2~/2) z ~ % + Co~Zo and we 

c, - 2 < _, Applying the Proposition again, we get for p" assume further that % + ,~0% = c2. 
C 0 (2) 

t G2(Dp ") - I t < ,oL4~/2 + CoL2(L20~o~12) 2 + Co(cZoL4r/2 + CoL2(L2%~12)2)2 

=,oL4q 2 + Co(,oL4rlz) 2 

-I- C0(0~oL4/']2) 2 L- 2 [1 + 2Co~oL4~] 2 + C~L- 2(~xoL4n2)2 ] 

=_< ~xoL4q 2 + Co(~XoL4~/2) 2 [1 + L- 2(1 + Co%)2]. 

We make the following inductive assumption for j ~ k: 

I Gi(Op) - 11 < ~oUSq 2 + Co(%l-Nq2) 2 

• [1 +L-Z(1 +C0%)2+ . . .  +L-2t/-1)(1 +C0%)2(s-1)]. (53) 

The right-hand side can be bounded by % + Co~  2 if L-  2(1 + C0%) 2 < ½. The last 
inequality holds if, e.g., C0% < 7, and then % + C0%22 <2%.  We assume further 

< , that 2% =c2. Then f o r j < k ,  we can apply Proposition 1 to the configuration U j 
and we get for pCf2 ti+l) 

IU s+ a(Op)- 11 <~o L2o+ ~)rl 2 + CoZ2(%Z2Sq2) 2 I-1 + . . . ]  

+ Co(o~oL2(j+ 1)q2 ..~ CoL2(o~oL2Jrl2)2 F1 +. . . ] )z  

< o~oL2(J + 1)/,/2 + Co(%L2~i+ 1)q2)2 {1 + [1 + . . . ]  L-z(1 + Co%)2}. 

Thus the inequality (53) is proved for all j < k. Taking j = k, we get 

f 1 1,] 
eropositio,, 2. I f  v satisfies (52  with c2 = min )3-600' then 

I uk(Op) -- I I < % + 2Co% 2 < 2%, p C f2 (k) . (54) 

The result is local in the sense that if p = (x, y, z, w), then it is enough to assume 
(52) for p C Bk(x)uBk(y)uBk(z)wBk(w). 

C. Other Averaging Operations 

In future analysis of variational problems we will have a situation, where the 
averaging operation will be composed with a change of gauge conditions, i.e., with 
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a gauge transformation. Let us recall that if we apply a gauge transformation v to a 
configuration V, V{ = v(b _) Vbv- l(b +), b C f2', then (V~)c = v(c_) ~ v -  1(c +), c C f2 '(1). 
We will consider gauge field configurations V of the form V= V'Vo, where Vo is a 
fLxed configuration and V' may have values in the complexified group G c. We find 
easily that if we apply a gauge transformation v to V and we write V v = V'VVo, then 

V; ~ = v(b_ ) V;R(Vo,b) V- l(b + ) = v(b_ ) Vb'Ro,bV- ~(b + ), (55) 

where for arbitrary invertible matrix X the operator R(X) is given by the formula 

R(X) r = x Y X - 1 .  (56) 

R(X) acts on the algebra of all matrices and has the following properties: 

R ( X ) f ( Y ) = f ( R ( X )  Y) for analytic functions f ,  

R(X) R(Y) = R(X r ) ,  R(X)-~ = R ( X -  ~), (57) 

R(X)* =R(X*).  

In a one-step renormalizafion transformation we consider configurations V" 
satisfying axial gauge conditions in blocks: 

(Ro,,V')(r, ,x)= 1-I R(Vo(Fr,b_))Vb'=I,x~B(y) ,x*Y.  (58) 
bCFy,x 

It will be convenient to change this gauge into another one. We apply a gauge 
transformation v-1 to V' and we get a configuration 111, thus 

V'= V~ and ~=(V'Vo)c=(V~Vo)c=v(c)(V1Voo)cV-l(c+). 

We will consider this average for configurations V" and 111 with values close to 1 
and we will be interested in the expression 

Vc(Vo)~ ~ = v(c_) (V1Vo)c(Vo)~ -1R~o:V- ~(c +), R-~o,c = R((~)~). (59) 

The gauge conditions (58) written in terms of the configurations 111 and v have the 
form 

(R0,r V') (Fr,x) = v(y) (Ro,yVx) (Fy:,) (Ro,yV)- l(x) = 1, 

(Ro,r v) (x) = R( Vo(Fy, ~)) v (x), 

and they imply 

(Ro,yV)(X)=v(y)(Ro,yVO(Fy,~), x~B(y) ,  x~-y, y ~ 2  '(1) . (60) 

To determine the configuration v uniquely, we will impose on it an additional 
condition at each block. 

To find a form of this condition, let us recall the simplest case of one vector field 
considered in paper [1]. To change a gauge, we make a gauge transformation 2 
satisfying (Q'2) (y) = ~ L-a2(x) =0. Such a transformation does not change the 

x~B(y) 
average given by (1.11) in I-2], and this is very important because the explicit 
representations of propagators, and other formulas, hold for this specific form of 
the averaging operation. In the considered general case, we will also try to find the 
additional condition on gauge transformation requiring that the form of the 
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averaging operation should be preserved. We will be able to obtain only an 
approximate invariance. Because of the axial gauge conditions (58), the average 
(V'Vo)~ depends on (Ro,~_V')([x,x(c)])= 1-I R(Vo(F~_.xu[x,b-]))V~, 

b C Ix, x(c)] 

x~B(c_), and a good approximation of the function ~log(V-TVoo)c(Fo)~ -~ for 
, i  

1 

V'=e iA, A small, is given by (QoA)(c)= ~ L-d(Ro,c_A)([x,x(c)]), where 
xeB(c - ) 

Ro,c_ A is defined as Ro,c_ V', only the product over b is replaced by the sum. If we 
make a small gauge transformation v= eil, then a good approximation of this 
transformation acting on Lie algebra variables A is given by A~ = A b -(Ro, b 2(b ÷) 

- 2(b _)) = Ab -- (Dvo 2) (b). Under such a transformation the average Qo A changes 
as follows: 

(QoAi)(c) = E L-a(Ro,¢_2)(x)+(QoA)(c) 
x~B(c - )  

- ~, L-a(Ro,~_4)(x'). 
x '  eB(c ÷) 

"2 If we define ( Q o ) ( y ) =  Z L-d(Ro,y2)(x), then the first term in the right-hand 
xEB(y) 

side above is equal to (Q~2) (c_). There are troubles with the second term because 

E L-d(Ro,c_2)(x') = Z L-dR(Vo(F~_,~u[x,x']))2(x ") 
x'~B(c + ) x'~B(c + ) 

= Z 
x'EB(c +) 

and this expression is only approximately equal to R(Vo(c))(Q'o2)(c+), because 
Vo(F~,xu(-c)) are close to 1 for Vo regular, but not necessarily equal to 1. Now if 
we assume that 2 satisfies the conditions Q~2=0,  then the form of QoA is 
approximately preserved under such a gauge transformation. Finally, these 
conditions are approximations for 2 small to the conditions 

(~VoV)(y)=v(y)expFiL ~R(y) ~ L-dl'togv-l(y)(R°yv)(x)] = 1 " ,  , (61) 

We assume that the gauge transformation v we have applied to the configuration 
V' satisfies these conditions. The equality (60) and the condition (61) imply 

v-  l(y) (Ro,yV) (x) = (Ro,yV1) (Fy,~,), 

and (62) 

v(y)=exp[-i Z L-nl. log(RoyVi)(Fyx)] • 
L x~B(y) t ' ' ] 

Thus the gauge transformation v is determined uniquely by the gauge conditions 
(58) and conditions (61). It is a function of the gauge transformed configuration V1. 
From (59) and (62) we get 

V~(Vo)~ 1 = exp [ - i  ~.~(~Z_ ) L-dl. log(Ro,~_Vi)(F~_,~)l(V1Vo)~(Vo)::-I 

• R--~ ~exp[i ,  ~ '~B(~ ~ ÷ ) L-dll°g(R°c+VO(Fc+'~') 1 " ~  , (63) 



Averaging Operations for Lattice Gauge Theories 29 

The same reasoning can be applied to a higher order average t7 k, where 
U = U'Uo, Uo is a fixed configuration and U' satisfies a sequence of axial gauge 
conditions in blocks of lattices f2, t2 ¢1) . . . .  , f2~k- 1). More precisely, we describe these 
conditions in the following way. For blocks of the lattice g2, we assume 

(Ro, rU 3 (Fr,:,) = 1, x ~ B(y), x # y, y ~ f2 ~1) , (64) 

where Ro is defined by the configuration Uo. Next defining 

(t~')c = (U'Uo)~(Uo);- ' ,  (65) 

we assume 

(Roo, ~ U')  ( F~,~) = 1, y ~ B ( z ) ,  y + z ,  z ~ 0 ~2) , (66) 

and Woo is defined by Uo. If an average ~7'~ is defined on the lattice O~),j < k, then we 
assume 

(g~o,rl~'J)(Fr,~)= 1, x ~ B(y), x # y, y ¢ O  ~+1) , (67) 

and we define 

/.7~ j+l = (U'JtT~)c(t~)~ -1 (68) 

From this inductive definition of the average t.7'J, it follows easily that 

t j  _ , j - - j  - 1 b C £2 tj) t7 b - (U Uo)b(Uo)b , • (69) 

Now we would like to change these gauge conditions and we apply a gauge 
transformation u-1 to U'. We get some configuration U 1 and U '=  U~. The jth 
order averages U j transform as follows, 

U~=(U~Uo)~=u(b_)(U1Uo)~U-l(b+),  bc£2 tj), (70) 

and this implies a transformation law for U'2, 

U'bJ=(U~)~=u(b_)(l~O~RJo,bu-l(b+), bc f2  ~j) . (71) 

The gauge conditions (67) written in terms of U 1 give us the following equations: 

( R G  ty '~) (G,~)=u(y)  ~ -J ~-j -1 _ (Ro,yU1) (Fy,~,) (Ro.rU) ( x ) -  1 (72) 

for x ~ B ( y ) ,  x#-y ,  y r f 2 o + l ) , j < k .  Solving these equations, we get 

(Ro , ,~ ,u ) (x )=u(x l ) (Ro , , : yO(F~,~)  for x e B ( x l )  , x 1 ~f2 ~1), (73) 

(Roo,~u)(xl)=u(xz)(K-O,x~U1)(F~,:,,) for x l ~ B ( x z ) , x 2 E O  ~z), (74) 

hence 

( G , ~ R o , ~ u )  (x) = U(Xz) (Ro,x~ U O (G~,~) Ro, x~( Ro,., U O ( G~,~), x ~ B2(xz), 
(75) 

and for arbitrary j < k we have 

(R~o,xj+~u)(xj)=u(xj+O g~ for n(xj+O, Xj+l ( o , ~ . , t T ~ ) ( G ~ + , , x )  xj~ ~ o  ~j+" 
(76) 

Let us denote Uo(F~°~,~) = UJo- I(F~,j,:,~_ ) " ... " Uo(F~,~,~) Uo(F,~,x), then 
j 1 (/+ 1) 1 (/~, xj+~/~-x~ • --- •/~o. ,~Ro,x~ u) (x) = R(Uo(F~+,,  ~))u(x), and we have the equat'ty 
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R(Uo(F~++~?~))u(x) = u(x~+ 1) (RJ ,x i  + 1 [-~j) ( f  xj+ 1,xj) RJ,xj+ l 

• ( R o ,  x~ Ua) (rx,, x) = u(xj+ ,) 8 0  x,) 
- i  (1) ~ j - 1  ~ j - 1  F ...  • R(Uo(r~+ ~.~,)) ( R o , ~ , U ~ )  ( ~ , . ~ , _ ) .  

• R(Oo(r~ . . . .  ) )  (Ro,~lUO ( r ~ , , x )  
t'NU+ 1) "~ =u(xj+l)(Ro,xj+,Ul)~-x~+,,xj, xEBJ+l(xj+l) (77) 

where the symbol(Ro,~j.lU1) u+l) • (F~+ 1,~) lS defined by the lastequation. Taking (77) 
for j  = k -  1, we may determine the gauge transformation u uniquely, given values 
u(y) at points y of the lattice 0 %  We calculate these values from additional 
conditions, as in (61) and (62).These conditions are straightforward generalizations 
of the conditions (61). At first we define inductively a k ta order averaging operation 
for gauge transformations• Generally a one-step averaging transformation defined 
by a field configuration Vo is given by 

(Ro v) (y) = (R(Vo) v) (y) = {(R(Vo) v) (x))~B(y) 

=v(y)exp[i  ~_, L-allogv-a(y)R(Vo(Fr~))v(x)~ (78) 
L ~B(y) t " j '  

where v is defined on a lattice f2', y ~ O 'm. 
For a given configuration U o we define inductively 

(R--~oU) (x0  = (R---(Uo)u) ( x 0 ,  x~ e f2 m , (79) 

(~ooUJ+ 1) (xj+ 1) = (n(UJo)Ro uj) (x j+ 1), x~+l ~ (2~+ 1). (80) 

The additional conditions are 

(RTu k) (y) = 1, y ~ f2 (k) . (81 ) 

Now using the identities (76), (77) we will solve the equations (81) and we will 
determine u uniquely as a function of U> We have 

(Rou) (xl) = u(x,) (Ro, ~, U1) (F~,.) = u(xl) Ro,x, U1 (82) 

for xa e O °}, where the expression Ro,~,U 1 is defined by the last equation. Next 
from (74) we have 

(R~o u2 ) (x2) = (R(Uo)Roo u) (x2) 

= {(R-oo,.~ u ) (xO (Ro,.2Ro,x, UO (xl ) )~n(~)  

= u ( x 9  (RO,x Ro,   U1) (x 
= u ( x 2 ) R o , x Y - l l  (2) , X 2 e Q(2), (83)  

where the last equation defines the symbol Ro,x~ U------~ (z). We easily find by induction 
that 

(Roo u j) (x j) = u(xj)Ro.~,U-~I o ,  xj ~ 0 u) , (84) 

where Ro,~;-UT, u) is defined inductively as 
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R rr ( j + l )  
O , x j  + 1 " 1  

= {( o.,j+, U1 ) (Fx,+,,~) (Ro.,,+,Ro,x, U1 ) (xj)}x~B(x,+ O, 
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xj+ 1 ~ O(J+ 1) (85) 

The formula (84) together with the conditions (81) give the equation 

( R ~ k ) ( y ) = u ( y ) ~  (k)= 1 for y~f2  (k), (86) 

hence 

u ( y )  = ( R  o,r U 1 (k)) - , .  ( 8 7 )  

Thus the gauge transformation is uniquely determined by all the conditions and is 
given by the formulas (77) for j = k -  1 and by (87). Similarly as in (63) we get 

- - k  - - k  - Vb(Vo)b 1 = ( V - - - ~ 0 k ) b ( ~ 7 ~ ) b  1 = u(b_ ) (U1Uok)b(GkO); * ~o,bU-- l(b +) 

= (Ro,b---U~i(k))- I ~k --k C f2 (k) • U1Ro,bRo,b+ U1 (k) , b (88) 

We may consider this expression as a new averaging operation of k th order acting 
on a configuration U 1 defined at bonds of the lattice O. A result of the averaging is 
a configuration defined at bonds of the lattice f2 (k). Such an operation for k = 1 is 
given by the formula (63). 

Now we will prove the following fundamental fact: the new k th order averaging 
operation defined by the last expression in (88) is a composition of k averaging 
operations defined by (63) with properly chosen configurations V0. More precisely, 
for a j  th factor in this composition, we take Vo = U~- 1. Let us introduce some new 
notations. We denote the averaging operation in (63) by 

(R(Vo) V1)c = (Ro, c_ V~)-I (V-~)c (~,o)- 1/~o,~Ro,c + 111 

= (Ro,~_ V1)-1 ViRo,cRo,c ÷ V1" (89) 

We define inductively a sequence of averaging operations of j  th order composingj  
operations defined above for V o = U o, (70 . . . . .  U~- 1 correspondingly. F o r j  = 1 we 
define 

U1 = R(Uo) U1, (90) 

and if the operation 0~ is defined, then 

U{ +1 = R((7{) U j , (91) 

i.e., it is a composition of the operation (89) for V0 = (7~ and of the jth order 
operation 0{. 

Let us remark that these averages have the same locality properties as the 
averages U k, namely (Uk)c, cCf2 (k), depends on the variables Ub for bcBk(c_) 
vo Bk(c + ). 

We are going to prove now the fundamental equality 

(Ro,b_lT-(k)~-lrTkO--k o rT (k)--(U~)b. (92) 
" ~ 1  .] W l * " O , b * ' ~ O , b +  ~ " 1  - -  

The proof will be by induction. For  k = 1 the equality holds by the definitions 
(89), (90), and the Eq. (63). If we have a configuration V = V1 Vo on a lattice f2', then 
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for an arbitrary gauge transformation v we write V=  (V ~- ' y =  (V~ ~VoY and we 
have 

(V1)c = (V-~)c Vo, -c = v (c_ )  (@-~l)cRo,cV- 1(c+), c C f2 '(1) • (93) 

Let us consider the case k = 2, and let us start with an analysis of [72. We have by 
(68) [7~=(U~) and we apply the above identity with V1 = [71, Vo = [7o, and 
v ( x ) = R o , x U 1 ,  x ~ f2(1): 

([7~)c = Ro, ~_ U1 ([7~- ~)cR~,c(Ro,c+ U1)-1,  c C O (2) • (94) 

Further, by the definition (89), we have 

([7~- ~)b = ( R o o , ~ )  -1  [71,bRo,bRo,b+ U1 = U1, (95) 

hence 

([72)c = R-~o, c_ ~ (0,)¢/~2,~(Ro,~ + U1)-1 = Ro,¢ - U1 (Ro,c_ Ua ) 

• [(go,. G) -  G)] g L ( G , .  01)-1 

•/~o2,c(Ro,~÷ U1)-1 (96) 

The expression in the square bracket above is equal to U 2. Let us make the 
following inductive hypothesis: 

([7~)b = v j (b_)  (O~)bRJo,bV] - l (b+) = (0~)~/ ,  b C f2 ~j) , 
(97) 

vj(x) = (Ro ,xU 0 ( R o , x U O . . . . .  (Rio.) U{-  1), x ~ Y2 ~i) . 

We have proved it for j = 1,2. The definition (68) and the hypothesis imply 

t, V l{  ~ j  +1 ]ch ---- \K"F 1 ) { [  ~ j  h Vd "" Olc f~j "t vO,f~J +l_c = Vj(C _ ) ( 0 i )c RJTcl V ;  1 (C + ) 

= vj(c_)  (/~,c_ U{) [(R~,c_ U{)-a (~{)¢/~+1 (/~,~ ÷ U{)] 

 j+l, j 
• ~t~.O, c \~ t~-O,c+ 

= j + l  j + l  --1 = v j + l ( c _ ) ( U  1 )~Ro, c v j+ l ( c+) ,  (98) 

where we have used the identity (93) again and the other definitions. 
Let us now consider the expressions Ro,~U1 ° ,  x ~ f2 t/). We will prove that 

Ro,- -~l  ti) = vj(x) , x ~ f2 ~j) . (99) 

For j =  1 it is the definition (97) of vj. For j +  1 we have by (85), (97), and (99) 

Ro,yUlt i+ 1)= {(/~,y [7~) (Fr,x) (R2o,yRo,~U-~lti)) (x)}x~B(y, 

= (RG@ 

= vj(y) (RJo,r U{)  = vj +1 (Y), y ~ f2tj +1), (100) 

hence the identity (99) is proved by induction• From (97), (99) for j  = k we get (92). 
Let us consider again the gauge transformation u calculated before in terms of 

U1 and given by the equalities (77) for j  = k -  1, (87). In the future we will need this 
transformation expressed by the averagings 0~. Let us write explicitly the formula 
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for u 

o 
R(Uo(r~*,~))u(x) =t°~.-o,,,~ lrT t ~ -  x /  H orm+l , r (*-J -  1~ , ~t x~, ~ /  0 ~ - J y ,  X j  + 1 21 

j = k - 1  

• (g~,~+, 8 0  (r~,+ ~,~), (IOI) 
where x e Bk(y), y e f2 ~k), X k = y, X o = X. 

We use the equalities (97) and we get for j > 0 

• (RJo,xj+t 0 -1  (X j ) .  (102) 

If we take two neighboring factors for j, j -  1 in (101), then the last factor on the 
right-hand side above for j and the first factor for j -  1 give the product 

- - j+ l  F ( k - j - 1 )  --J F - 1  - j  f ( k - j )  (R(Uo ( r,.j+, ) ) R ( V o (  .,+~,x))Vj (x j ) ) (R(Uo(  y,~j ) ) I J j - I (X j ) )  

_ --j (k - j) _ --j (k - j) - R(Uo (Fy, ~j )) (v f  x ( x )  v j_ l  (xj)) - R ( U o ( r ~ , ~ j  )) (K~?A~ 0{-  1) - 1 , (103) 

where we have used the second Eq. (97). We connect this expression with the factor 
corresponding to j -  1. We get such an expression for j -  1 = 0 also. The first factor 
in (102) for j + l = k  and the first factor on the right-hand side of (101) give 
V;I(y)Vk _ ~(y) and this is equal to (103) for j = k .  Thus we obtain the equality 

0 
(k) U X 12[y~j+ l [ l " ( k - j -  t )~  n(Uo(Fy,~,)) ( ) =  H *-~'~o v* r, xj+, /~ 

j = k - 1  

• [(K~,.~ +, 8{)-l(RJo, ~j+ ~8{) (F~j+ ~,~j)]. (104) 

Let us recall that we have 

( O,xj,,U~)=exp i 2 L -d  log( /~ ,~+y~) ( r~ j+ , ,~ ) ] .  
x~B(xj+ 0 

The Eq. (104) can be written also in the following way: 

0 
g(X) n (j+l) -1  ~-j = (R(Uo(F~j+,,~))) [(Ro,xj+~8{)- '  ~j (Ro,~+,O{) (r~+,,~)], (106) 

j = k - 1  

and this gives the formulas 

J 

(Roou)J(xj) = H --j (/+ X-j) -1  (R(Uo(r~ ,+ , ,~ ) ) )  
l=k-1  

--I [(Ro . . . .  O~)-i  -z =t • ~ (Ro ,~ ,+ ,uo( r~ ,+ , , x ) ] ,  (107) 

( R o  uj)  - l ( x j +  OR(UJo(r~s + ~,,,)) (Rot t  j) ( x j )  = (/~J,xs + , 8 j )  (Fxs + ,, x ) .  (108) 

D. Properties of the Averages U~ 

We will now investigate the new averaging operations• For the averages/7 k natural 
quantities to consider were plaquette variables. For  O k we expect that the 
configuration itself, i.e., bond variables, has good bounds in terms of bounds of UI. 
We will prove to this effect propositions analogous to Propositions 1 and 2. 
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Let us recall that the definition of (U])~, c C f2 (k), involves only the gauge fields 
Ul,b, Uo,b at bonds bcBk(c_)uBk(c+). 

Let us start with a detailed analysis of the one-step averaging operation ~]. We 
assume that the configurations Vo, 171 satisfy the conditions 

[Vo(Sp)- 11<%, Vl,b=e iab, lAb[ <czl, p, bcO', (109) 

and Ao belong to the complexified Lie algebra g*. 
We would like to prove that for %, e~ sufficiently small the average (~) ,  is an 

analytic function of the variables Ab, b C B(c_)uB(c +), c C f2"(~), and to find bounds 

for (V1)~-I, or rather -1.1og(P0c. We assume that % is so small that the 

Proposit ions 1 and 2 hold, i.e., % <Cz. 
At first let us consider the expressions 

RoyVl=exp[i ~. L-allog(RoyV1)(Fy~)], y~(2 '0). (110) 
" L xeB(y) t " ' 

We have 

hence 

1. log(R0,yV0 (Fy, x) = (Ro,rA) (Fy,~) + O(([A[ (Fy,~))2), 
l 

(111) 

R o yV 1 = exp [i 2 L-a(Ro yA) (Fy ~) + O(L2c~)l . (112) 
' k x ~ B ( y )  ' " 

J 

Next let us consider VI: 

(~'0c = (V' ~)c (P°)c '  = exp [ i ~(cY" _ ) L-dl'l°g(V'V°)(Fc'xW(-c)) I t  

"(V1V°) (c) V°(c)- l exp [ -ix~B(c ~_) L-d l l°g V°(F~'~(-c))l 

= e x p [ i  ~(~2 _ ) L-d l log(Ro  ~ ,  , _ VO(Fc,~W(-c))Vo(Fc,~w(-c))], 

" ( R°'c- V') (c) exp l - i x~.(~ ~ _ ) L-d l" l°g V°( F~'xu(-c)) ] (113) 

and let us denote 

A . =  ltog(Ro,~_ VO (F~.xu(-c)), Y~= llogVo(rc,~u(-c)). (1 14) 

As in (111) we have 

A~, = (Ro,~_A) (Fc,~w ( -  c)) + 0 (L2e~) = (Ro,c_a) (F ... .  u[x, x']) 
--R(e iY~) (Ro,¢_A) (cuFf+ ,~,) + O(LZa~). (115) 

1 lAx iYx A logarithm in the first exponential in (113) can be written as -:loge e . 
I 
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Applying the results of Sect. A, more exactly (38), we have 

1 _ loge~Axeirx = y~ + g-  1 ( _  i adyx)Ax + O(IAxt2). (116) 

All these formulas give us 

(V1)c = exp [ i 52~B(c _ ) L-d y~ + i ~B(~ ~ _ ) L-d g-  l ( - iadrx)A~ + O(L2°~2)] 

• exp[i(Ro,c_A)(c)+O(Ua~)]exp[-i2x~tc _ ~ L-dYe]" (117) 

Denoting ~ L-dYe= Y and using the formula (41), we have further 
x e B ( c  - ) 

(V')c : exp [ i x~B(cZ _ ) L-dg-l(- iadyx)A~+O(L2ct2)+ iY ] 

• exp [ -  i Y] exp [iR(e it) (Ro,~_ A) (c) + 0 (L 2e~)] 

=exp[ ig ( - iady)  ~s(~2 _ ) L-d g - l ( - i a d r . ) A ~  +O(L2c~)] 

• exp[iR(e ~r) (Ro,~_A) (c) + O(L2a~)] 

= exp [(Q'(Vo) A)c + 0 (L2a~)], ( 1 1 8) 
where 

(Q'(Vo)A)~=g(-iadr) 52 L-ag-X(- iadrx)  
x ~ B ( e  - ) 

• [(Ro, c - A) (F~_ ,xw[x, x']) - R(e iY~) (Ro,~ _A) ( c w F . ,  x')] 

+ R(e 'r) (Ro,¢_A) (c), (119) 

as it follows from (115). 
We can transform this linear expression using the identities R(e ir~) = ei~a~, and 

g - x ( _ i adr~) e iad~ = g - 1 (i adv. ). The last follows from the corresponding identity 
for functions of a complex variable: g - 1 ( _  z)e~= 9-1 (z). We have also 

(Ro, ~_ A) (F~+,~,,) = R(Vo(c)) (Ro, ~ + A) (F,+, ~,) 
= R (e - Jr) R((Po)~) (Ro,~+ A) (F~+,~,) 

= e-i"d~/~O, c(Ro,~ + A) (F~ +, x'). 

These identities imply the following formula: 

(Q'(Vo)A)~=g(-iadr) 52 L-dg- l ( - iadr . ) (Ro , .A) (Fc_ ,~w[x ,x ' ] )  
x ~ B ( c  - ) 

- g ( - - i a d r )  E L-dg-l(iadr,)e-iaarZRo,c(Ro,~+A)(Fc+,x ") 
x e B ( c  - ) 

+ [ e iaar- 'q(- iadr)  x~B(o 52-) L-do-l(iadr~)l(R°'~-A)(c)" 

From (118) and (112) we get finally 

(V1)c ~-- ( ~ )  -1 (~rl)c~o,~Ro,~ + 111 

=exp[-- i~B(~ ~_)L-d(R°'c-A) ( F~-'~) + i(Q'(V°) A)~ 

+i Z L-aKo,~(Ro,.A)(F~+,x,)+O(LEa~)]. (120) 
x '  e B ( c  + ) 3 
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In all the estimates above, we have assumed that %, 0q are sufficiently small so that 
the formulas and inequalities proved in Sect. A hold, and that I Y~I = O(LZ%) are 
small. We restrict further cq assuming that the norm of the element in the 
exponential above is small also; for example, it is enough that it is < ½. Under these 
assumptions it is obvious that functions of the variables A involved in all the 
formulas until now are analytic functions of A. Let us define 

Q(Vo, A, c) = ~log(~L, (121) 

then Q(Vo, A, c) is an analytic function of A and from (120) it follows that its Taylor 
expansion begins with a first-order polynomial. Let us denote it by L(Q(Vo)A)~. 
Thus we have 

Q(Vo, A, c) = L(Q(Vo) A)c + C(Vo, A, e). (122) 

C(Vo, A, c) is an analytic function of A whose Taylor's expansion begins with a 
second-order polynomial (a quadratic form), and 

(123) IC(V o, A, c)l _--< CI L21At 2 < CI(L~)  z • 

The linear form Q(Vo)A is given by 

(Q(Vo)A)~ = ~, L-(a+l)(Ro,~A)([x,x'-])+ Y~ L-(a+l) 
x ~ B ( c  - ) x ~ B ( c  - ) 

• [g( - i ady)g-  ~( - i adr~) - 1] (Ro, ~_ A) (F . . . .  ) 

+ Z L- td+~)[a( - iadr)v -~( - iadr~) - l ]  
x ~ B ( c  - ) 

• (Ro.c_A)([x,x'])- ~. L-(a+l) 
x e B ( c  - ) 

• [g( - i adr )g-  1 (i adrx) e-i"aY - 1] Ro, c(Ro,~+ A) (F c +, x,) 

+ [  e i"aY-g(- iadr)  x~B(cT~_) L-ag-l(iadrx)lL-l(Ro,~_A)(c).  (124) 

The first term on the right-hand side above is the main term in this linear form, and 
it resembles the definition of the averaging operation Q in [2]. The remaining 
terms are small because the functions 9( - z), 9-1(z), ei~ are equal to I for z = 0, so 
the operators occurring in these terms can be estimated by 0(I_3%) and the terms 
can be estimated by O(1)LZ%LIAI < O(1)LZ%Lcq. We will denote the main term 
by Qvo, or Q0 

(QoA)c=(QvoA)c= ~. L-(a+l)(Ro,c_A)([x,x']), (125) 
x ~ B ( c -  ) 

and it has an estimate 
I(QoA)~[ < tA[ < a l ,  

so we have for the whole linear term 

I(Q(Vo)A)d < IA] + O(1)L2aolAI < (1 + O(1)L2%)al < eO(a)L~°~ 1 . (126) 

Thus we have proved the following 

Proposition 3. There exist constants C~, %, c 3 <c2, such that for %, ~ < % the 
1 = 

function Q( Vo, A) = ~log t~ is an analytic function of A satisfying the equalities and 

bounds (122)-(124). The constant C1 depends on d and c 3 depends on d and L. 
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Now we will consider the k th order average 0 ]. Its definition implies that 

_1. log 0 ]  as a function of 1. log U i is a composition of the functions 

Q(Uo ' .), Q(t.7o ' .),-. . ,  Q(~k-Z, .), Q(~ko-~ ' .). (127) 

We assume that U o satisfies the assumptions of Proposition 2 and Ul=e "ra, 
I A l < e r  Then by this proposition the configurations t?~ for j < k  satisfy the 
assumptions of Proposition 3 for Vo=tTJo if %L2612+2Co(%L2jq2) 2 
< 2~oLZJt/2 < 0~ o _--< C a. 

We will now investigate compositions of functions in the sequence (127). For 
the first function we have 

IQ(Uo, t/A) -Lt/Q(Uo)A[ ~ CI(LIt/AI) 2 < C~ (aaLt/) 2 , 

hence 

and 

~-~ Q(U o, t/A) - Q(Uo)A < C~Lt/a 2 , 

~ Q ( U o ,  t/A) < [Q(Uo)AI + < (1 + + C I Lt/a 2 O(1)L2~ot/2) ~1 C1Lt/~ 2 

< eO(1)L2,2~o a 1 + C a Lqcq 2- (128) 

Because e°(1)L2~°al + C1Lt/a~ < e°(i)~°al + Ci ~2 < 2~ i for ao, al sufficiently small 
(0(1) % < ½, C1~ < ½), so IQ(Uo, ~/A)I < 2 a l b / <  2~1 < c3 for ~i < ½c3, and we can 
apply Proposition 3 to function Q((?o, ") calculated at Q(Uo, t/A). For this 
composition we have 

fQ(Uo. Q(Uo. t/A))-L2qQ(Go)-~q Q( Uo. t/A) 

<cl(/}t/) 2 Q(Uo,~A) <Cl(L~t/)2(2~0 ~, 

denoting 

Q(Uo, Q(Uo, t/A)) = Q2(Uo, t/A), Q([7o) Q(Uo) = Q2(Uo), 

and using (128) we get 

L~Q2(Uo,  t /A)-  Q2(Uo)A < + eO(1) L 4tl2cto C1L~ 2 4C1L2r/~ 2 

< eO(1) tL ~ + L ~),~o 4C i ( L + L2) t/~ 2 ' 

t~--~Q2(Uo, t/A)<e°(i)(L4+Z:)'?~°~ 1 

+ eO(1)(L'+ L:),2~o4Ci(L + L2)t/~ 

< e°(1)(i +L 2)~°(1 +4Cl(1 +L-1)cq)~ 1 

<e°(i)2~°(1 + 8Ci~i)~l 

<2a  I for %,a l  sufficiently small [e.g., 0 ( 0 % <  ± 

8Clal <½].  (t29) 
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Continuing these arguments, we arrive at the following inductive assumption for 
the composition Qj(Uo, tlA) of the first j functions (127) aad the composition 
Qj(Uo) of their linear parts: 

~ Q j ( g o ,  tlA)-Q~(Uo) < 4C~(L ~+... + +L) tla~. A eo(1 )(L2~ + L 4 + L2)~2gO. L 2 

(130) 
This implies 

~ Q j ( U  o, qA) + 4C1(/J+ ... +L)t/aa z) < eO(t)(L2J+ + L4 + L2)~'/2a:o (0~ 1 + L  2 

< eOOm +L-: +... +L- 2(j- ~))~o(a~ + 4C1(1 + L- 1 + . . .  + L- ~-  1))~2) 

< e°(1)2~°(1 + 8Cloh)cq < 211, (131) 

and for al < ½c3 we can apply Proposition 3 to the function Q(U~, • ) calculated at 
Qj(Uo, tlA), and we get 

Qi(Uo, qA)) - -  L J+ a qQ(O~o) ~ Qj(Uo, tla ) Q(Uio, 

1 U 2 < Cl (LJ+ ltl) 2 -ff~q Qj( o, qA) <4Cl(LJ+lq)2a 2. (132) 

Applying (130) and denoting 

Q j+ l(Uo, tlA) = Q(UJo, Qj(U o, tlA)), Qi+ i(Uo) = Q(U~)Qj(Uo), 

we have 

1 A I ~  QJ+i(U°' t l ) -Qj+I(Uo)AI<4C1L j+ lrla2-I-eO(1)L2L2Jn2ao 

• e °(l)(L~j+ "'" +L~)"~°4CI(U + ... + L) t/c~ 

< eO(1)(L 2(~+ t)+L2J+... +LZ)e2ao4CI(LJ+ I 

+LJ+...+L)q~. 

Thus the inductive hypothesis (130) is proved for j<k .  For j =  k, we have 

]Qk(Uo ' tlA)_ Qk(Uo)A] < eO(lm +L- :+ ... + L- :(k ~))~o 

• 4Ca(l+L-i+...+L-(k-~))e2<e°m2~°8Cae2=C2a2. (133) 

We formulate the obtained results in 

Proposition 4. There exist constants C2, c4 such that for ~o, 11 < c4 the function 
1 =k 

Qk(Uo, t/A, c) = ~ log (U 1)~, c C ~?tk), is an analytic function of the variables Ab, b 

cBk(c_)wBk(e + ). Further we have 

Qk(Uo, tIA) = Qk(Uo)A + Ck(Uo, A), (134) 

and 

[Ck(Uo, A)[ _-< C2 IA] z < C2a 2 • (135) 
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The constants C2, C 4 are independent of k, C 2 depends on d and c 4 depends on d and 
L. 

The function Ck can be decomposed further into a sum of homogeneous 
polynomials, 

Ck(Uo, A) = C~k2)(Uo, A) + Ctk3)(Uo, A) + .... (136) 

We will need some more precise information about the function Qk. This 
information is connected with a notion of the functional derivative. Let us recall 
this notion. If F(A) is a differentiable function defined at field configurations A on 
f2, then the differential 

dV(A, 6A) = ~ v ( a  + t6a) t=o (137) 

is a linear functional of the variable 6A and can be represented as a scalar product 
of 6A and some Lie algebra valued function. This function is called the functional 

derivative and is denoted by 6-~ F(A), thus we have 

F(A+t6A) = 2. q tr~5-.---OAb= ,3A . (138) 
t = O  bCg2 o ~ t  b 

From this definition it follows easily that the functional derivative coincides with 
partial derivatives (gradient) of F(A) multiplied by q-d. 

We would like to prove that the functional derivative of Qk(Uo, rlA) is bounded 
by a constant independent of r/. This property is not clear even for the linear part of 
Qk, so let us start with an analysis of this linear part. The linear part of the one-step 
renormalization transformation is given by the formula (124). It is a sum of the 
main term QvoA given by (125) and a remainder which we will denote by Q"(Vo)A. 
From (124) it is clear that we have the inequalities 

IQvoAt < Q IAt, IQ"(Vo) A! < C'~ L2%Q"IAI , (139) 

where the operator Q is defined as in [2], and Q" is defined as 

(Q"A)¢ = ~, L-aAb. (140) 
b C B ( c - ) u B ( c +  ) 

The constant C] depends on d and L. A composition of k operators Q is the 
operator Qk. The operators Q" do not compose in a simple way, but if we introduce 
an operator Q~ by the formula 

(Q'k'A)c = Z qdA b , c C ~2 (k) , (141) 
b CBk(c  - ) u B k ( c  + ) 

then we have the inequality 

tQ"Q)'AI £ Q"Q)'tAI < 2dQ)'+ 1 tAI. (142) 

Now we will prove by induction the bound 

2C" ~ tU-)2Q"IAI, j ~ k  (143) IQj(Uo)A[<=QjIAI+ 1 o,, ,i j 
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assuming that Uo satisfies the bound (52). Forj  = 1 it is a consequence of(139). We 
assume (143) for j < k  and we have 

IQj+ I(U0)AI = IQ(UJo)Qi(Uo)AI < QIQ~(Uo)AI + c i  2%(Uy) 2 Q"IQj(Uo)AI 
_-< Q(Q~IAI + 2c~ ~o(/J~/) 2 QjIAI) + C~ 2%(/J,i) 2 

• Q"(QjlAI + 2c~ ~o(IJt/) 2 QTIAI) 
t j 2 tt = Q~ +1 IAI + 2C1 ao(/Z r/) QQj IAI + 2C~ %(/Jr/) 2 Q"QjIAI 

t 2  2 j 4 H // +4C1 ao(Lt/) Q QjlAI (144) 

by (139) and Proposition 2. Further using the inequalities (142), QQ~IA] 
<2Q~+llA], and Q"QjlAI<Q~+IIAI, we get 

IQj+ I(U0)A[ < Qj+ 11a[ + 2C~ a0(Z J+ lt/)2 QT+ a IAI-(2L -2 + L- 2 + 4dC'~ %L-4). 
Because (145) 

2L- 2 + L- 2 + 4dC'1%L-'* < ¼ + 4dC'IL- 4% < 1 

if 16dC'~L-4%< 1, so the bound (143) is proved for a l l j<k .  F o r j = k  we have 

IQk(Uo)AI < QklAI + 2C1%Q, IAi = (1 + 2C 1%) Qk IAI (146) 

and this bound implies the required property, namely 

6 
bah (Qk(U°)h)c = Qk(Uo;c, b), IQk(U0; c, b)l ~ 1 + 2C~%. (147) 

Now we will generalize it to the whole function Qk. It is enough to prove it for Ck. 
For one-step renormalization transformation we have the bound 

(6C~OA, A) , bA) < C'~ IA1Q"I,~AI (148) 

following easily from general properties of the function C(Vo, A). The constant C~ 
depends on d and L. We will prove that a similar bound holds for the functional 
derivative of Cj(Uo, A) for arbitrary j <  k. We will prove by induction that 

(~--~Cj(Uo, A),bA) <C31AIQ}'I3AI, (149) 

where the configurations A are considered on L-t-lattice and C3 is a positive 
constant satisfying conditions which will be written later. 

From the definition of the functions Qj(Uo, tlA) we have 

Qj+ l (Uo, ~lA) = Q(UJo, Q/Uo, tlA)) , 
Qj(Uo, ~lA) = IJ~IQ/Uo)A + C~(Uo, L#IA), (150) 

hence 

Qj+,(Uo, tlA)= LQ(UJo)Qj(Uo, tIA) + C(UJo, Q_i(Uo, ~IA)) 
= L j+ l~lQ(UJo) Qj(Uo)A + LQ(UJo) Cj(Uo, L#lA ) 

+ c(UJo, Q/Uo, ~a)) 
=LJ+ ~IQj+ ~(Uo)A + Cj+ ~(Uo, L J+ ~tIA), (151) 
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and 

Cj+~(Uo, A)=LQ(UJo)Cj(Uo, L-~A)+ -j -1 C(Uo, L Qj(Uo)A + Cj(Uo, L- 1A)), 
(152) 

A is a field configuration considered on L- ~ + 1 ) Z a, [At < L j + ~ rlc~ 1. Differentiation of 
the above equality gives 

/ ~ C  Uj 
+ ~ ( o, L- 1Qj(Uo)A + Cj(Uo, L- 1A)), L- 1Qj(Uo)6A 

x 

+ L - I < ~ ( U o ,  L- IA) ,6A) ) .  (153) 

Using (143), (148), (149) we obtain the following bound: 

( ~ C j +  I(Uo, A), 6A> ~ QC3L- IIA[Q~'I6A[ 
+ CI2%(Ur/) 2 Q"CaZ- 11AI Qj 16AI 

+ C7 IE  ~ Q/Uo) A + Cj(Uo, L- ~ A)I 

• Q" L-~Qj(Uo)6A+L-a<bb-~(Uo, L-~A),6A> 

__< C3(2 -  L- 1)L- l lAI Q.~'+ x t,~AI ,, 
+ C'~C32%2d(LJq) 2 L- 11AI Qj + ~ 16At 

C"L -2 A + 1 (Qjl [+2C'~ao(LJq)2Q'jIA[+CzL-1IAI2) 

• Q"(QilfA[ + 2c'~ao(lJq)ZQ~'lbAI + C3L- ~IAiQ~'I6At) 

<C A ~" 16AI[1-L-Z+4dC'~%L -3] = 3 ~j+ 1 

+ C~L-Z(1 +4dC'~%L -2 + C2L- ~1) 

• IAI (1 + 4df'~%L- 2 + 2dC3L-, ~ )  Q~+ 11~AI 

"" I - 2  ,- - 3  C~ L - 2  
1--L +4dCl%L -4 < Ca IA[ Q i+ 116A1 t_ C3 

• (1 + 4dC'~%L- 2.4_ C2 L -  l tz  1 .q_ 2dC3 L- ~ ~1)2J. (154) 

This bound implies the inequality (149) for j +  1 if 

4dC,x~toL_ 1 + __C~ +4dC]~oL-2 + C2 L- l~q +2dC3L- 1~1)2 < 1 (155) 
C3(  1 -- . 

This inequality is satisfied if C 3 > C~ and c~ o, cq are sufficiently small, e.g., we may 
take C3=6C~ and C~o, ~i satisfying 4dC'1~o L-1 <=½, (C2L -1 + 12dC'~L-1)~l < 2 
Thus we have proved 
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Proposition 5. The functional derivative of Qk(U o, tlA) is a bounded function for c%, 
al sufficiently small, and we have the bounds 

c) <_ Qk(Uo, qA, -1+2C1~o+C3[A1<1+2C'1~o+C3~1," (156) 

6~--~bCk(Uo, < C3 ]A[ < C3o[  1 • (157) A, C) 

E. Analyticity Properties of the Averaging Operations 

In this section we will prove some simple analyticity results for the averages. Let us 
begin with the average t7 k. Formally, it is defined for all configurations, but we 
have good control over it for configurations U satisfying the regularity condition 
(52). We will prove that [7 k is an analytic function of U on this domain. In fact, we 
will prove a little bit stronger result. Let us take a configuration Uo satisfying (52) 
and U = U'Uo, U ' =  e ina', IA'I bounded by a small constant a r  Such configurations 
U do not necessarily satisfy (52), so we get a neighborhood of Uo which is larger 
than neighborhoods of U 0 in the domain. This neighborhood may be also 
described by the conditions 

I U -  Uol = I UUo a _ 11 < ~ZI~ ,  ( 1 5 8 )  

cq is a sufficiently small number. 
We will prove that U k = U-TU-~o k is an analytic function of A' and Uk(U~) - ~ is 

close to 1; the difference may be estimated by a constant proportional to e~. We 
have 

--k --k - 1 u~(Uo)~ = (C-~o)~( tT~o) ;  ~ = ( t73~ 

=Vk(b-)(u'k)bRko,bVkl(b+), bcf2 (g) , (159) 

where 

vk(x) = (Ro xU3 (Ro xU'). to--k- 1 ~ , k -  , , . . . .  k*"O,x ~.* 1 ) ,  

From Proposition 4, and especially from (131), we get 

~log = IQj(Uo, nA' ) I  < 2 a ~ / J n ,  
O 'J  

hence 

l log( /~ ,~U4)  = x~,xL-dllog(RJo,~U4)(F~,,) 

< 8a~dl_]+ 1~ e2~dV+ 1, < O(1) ~ U +  hi,  

and 

x e 0 (k) . (160) 

(161) 

j=O,  1 . . . . .  k - 1  (162) 

k - 1  

Irk(x)- II <O(1)cq Z Li+lr /50(1)cq 
j = O  

(163) 

for a 1 sufficiently small. Moreover, Proposition 4 implies that the functions of A in 
(159) are analytic. We get the following 
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Proposition 6. I f  U o satisfies (52), then U--7-~o k is an analytic function of 

A' = 1 log U" for A" with values in the complexified algebra, and satisfying IA'I < ~ .  
ttl 

Moreover, we have a bound 

IU----Z-uok(~7~)- t _ 11 < O(1)Cq. (164) 

Of course, we assume that %, ~ are sufficiently small. 
Another analyticity result we will need is an analyticity of Qk(Uo, tlA) with 

respect to U 0. We will understand it in a similar way as for ~7 k. We take U'Uo 
instead of U0, U'= e i"a', IA'I < ~x, and we consider the function Qk(U'Uo, tIA). We 
want to prove that it is an analytic function of both variables A" and A, and that 
Proposition 4 holds uniformly with respect to A'. 

Let us analyze the proof of Proposition 3 first. The bounds depend on bounds 

quantities Yx = I log Vo(Fc, x u ( -  c)). Previously we had I Yxl = O(L2%), of the but 

now we allow complex perturbations V'Vo of V 0, and for these we have 
I Y~I = O(L2% + La 0. Thus Proposition 3 holds unifirmly for V'Vo instead of Vo and 
with the only change in the inequality (126), where the constant e °(~)L2~° on the 
right-hand side is replaced by e °(1)(L~°+L~l), Similarly we repeat the reasoning 
connected with Proposition 4, but with U~ replaced by U'UoJ= fJ'JUJo. Because of 
the bound (164), we have to replace the factors e °(~)L~J÷'"~° by 
e °(~(L~c~+~>"~°+Lj+~"~*), but this change is easily incorporated into the consider- 
ations and the estimates. We get the same results as before for %, a~ sufficiently 
small, uniformly in A', and additionally, we get the analyticity of Qk with respect to 
A'. Let us formulate these results in 

Proposition 7. For Uo satisfying (52) and U'= e inA', IA'I < ~1, %, ~1 sufficiently 
small, the function Qk(U'Uo, rlA) is analytic in complex variables A', A, and 
Proposition 4 holds uniformly in A'. 

Similarly, Proposition 5 may be extended to include analyticity and uniformity 
statements. The formulations are obvious. 

F. Averaging Operations for Gauge Transformations 

In the last section of the paper we will study the averaging operations for gauge 
transformations, given by (61), (78)-(80). A natural analog of the regularity 
condition (52) would be the condition 

t(Ovou)(b)l=lR(Uo,b)u(b+)-u(b_)l<%q, bCO. (165) 

We will consider functions u satisfying this condition, but we have to consider also 
the functions u given by the formulas (104)-(106). They appear naturally in our 
considerations and generally they do not satisfy the regularity condition (165), but 
they satisfy other conditions following from (107), (108) if the configuration U1 is 
small, i.e., I U 1 - l l < a d l ,  cq small. We define: 
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A k ( U o ,  53) is a set of gauge transformations u defined on O, 

and satisfying the conditions 

](R~J)(xj)-- l [<~3,  x ~ f 2  ~), j = 0 ,  1 . . . . .  k,  (166) 

](R--o --ffJ) - 1(x j+ 1) (/~,:,j + 1RouO (x )  - 11 < a3L J+ l r/, 

xj+IUQO+I),xjEB(xj+I) ,  j = 0 , 1  . . . . .  k - 1 .  (167) 

F rom this it is obvious that  for u ~ Ak(Uo, ~3) and 53 small, all operations needed to 
define R-~0 uk are done always in a case where proper expressions are small. More 
exactly, we have to calculate a logarithm of the expression in (167) and this 
expression is small. 

We need to consider a product  of two gauge transformations satisfying (166), 
(167), so we would like to know that it also satisfies similar conditions• Let us 
consider at first the following situation: we have functions v, vl, v2 defined on a 
lattice f2' and a gauge field configuration Vo, and we assume that 
v(x) = v a (x)v2(x)e i'(:O, Ir(x)l < cl,  IvF i (y) (Ro,yVi) (x)-- 11 < c2, i = I, 2, x e B(y), 
y e f2 '(1). We will find relations between R~ov and Rovl, Rov2, and bounds satisfied 
by Roy. We have 
v- l(y) (Ro,rV) (x) = e-i'(r)v; 1 (y) Vl- l (y)  (Ro,yV 0 (x) 

• (Ro, rv2) (x) e i(R°,'r)(x) 

= e-i '(r)R(v/l(y)) [vi- l(y) (R0,yVl) (X)] 

• t~2- l (y)  (Ro,yV2) (x)  e "R°, ') txl 

=exp 

+ l o g q  +/(Ro,, ,)  + + (16S) 

hence 

(Roy) (y) = v(y) exp [i 52 L- d log V- l(y) (Ro, yv) (x)] = v l (y) v2(Y) 
L x~n(y) J 

• exp [ir(y) +i  2 L-a logv-  l(y) (Ro,rV) (x) + O((c 1 + ca)2)] 
k xsB(y) J 

= vl(Y)V2(y ) exp [ix,~y)L-aR(v ~ l(y))1 logv~-l(y)(Ro,yVl)(x) 

+ i  Y. L - e l l o g v 2  ~(y) (Ro,yV2) (x) 
xeB(y) 1 

--1 

2 L-d(Ro,r r) (x) + 0((cl + c2)2)l +i 
x~B(y) A 

I dl 1 ] =vl(y)v2(y)R(vZl(y))exp i Z L-  _logv~- (y)(R o yvO(x) 
x~B(y) Z 

d 1 J. 
• e x p [ i  ~ L-71ogv~-(y)(Ro,yV2)(x)]  

L x~BO,) t J 

• exp[i  E L-a(Ro yr ) (x )+O((q  +c2)2)] 
L x~B~y) A 

= ( vO (y) (ROY2) (Y) e i~(y), If(Y)[ < cl + O((c~ + c2)2). (169) 
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Let us denote the constant in the above bound by C3, so we have 

(ROY) (y) = (R--o~l) (y) ( R ~ )  (y) e ~y), If(y)[ < cl + C3(c~ + c2) 2 , y e O '(1). (170) 

Now let us take two gauge transformations ul, u2 satisfying (166), (167). 
Applying the above result to u = u l u  2, we get 

(R--~oU) (xO = (~oU~) (xO (~oU~) (xO e ' '~ ') ,  lra(x,)l < C3(%Lrl) 2 (t 71) 

for xl e f2 it). Next applying it to Rou, Roul, Rou2, we get 

( R ~  2 ) (x2) = (R--0~ 2) (x2) (RoU-Ez 2 ) (x2) e irz(x2) , 

[r2(x2) [ < C3(0~3L/~) 2 q- C3(C3(0~3Lrl) 2 + ~3L2/'/) 2 

C3(0~3L2/~) 2 [1 +L2(1 + C3~3) 2] (172) 

for x2 ~ 0 t2). We can prove by an easy induction that 

(RoW) (x j) = (~oU~ j) (x j) (R--~2 j) (x j) e %(~j) , xj ~ f2 ti) , 

Ir~(xi)l < C3(~Jdq) 2 [1 + L- 2(1 + C3~3) 2 + . . .  + (L- 2(1 + C3~3)2) j -  ~] 

< 2C3(0~3/Jq) 2 (173) 

for c~ 3 sufficiently small, i.e., such that L- 2(1 + C3~3) 2 < ½. From this it follows that 

I(~UoUJ)(xj)-l[<2ct3+2C3(~aL~tl)2<2~3+2C3 ~2, j = 0 ,  1 . . . . .  k, 

I ( R ~  j) - ~(xj+ 1) (R~, ~ + ~R~0u j) (x~) - 11 < 2 ~ L  j+ ~ + 4Ca(~LJ . )  ~ 

<(2a3+2Caa2)U+~tl,  j = 0 , 1  . . . . .  k - 1 .  (175) 

We can formulate these results in 

Proposition 8. I f  ul, u2 ~ Ak(Uo, c%) and a3 is sufficiently small, i.e., ~3 < c6 for some 
C6, then u =ulu2 ~ Ak(Uo, 2~3 + 2C3c~ 2) and we have (173). 

We will need to consider regular configurations u' in the sense that the 
following conditions are satisfied: 

[u'(x) - 11 < 0~4, X e f2, (176) 

]u ' - l (b_)Ro,bu' (b+)- l l<~zj1,  b o O .  (177) 

We would like to know that if u' is such a configuration and u~ belongs to a class 
Ak(~3), then the product u'u~ belongs to some class Ak(O(1) (~3 + a4)) also. Because 

we want some analyticity properties of ~ l o g R 0 u ~  ~, we will consider configu- 
4 

l 
rations u' with values in the comptexified group G ~, i.e., u' = e ~ and 2 has values in 
the complexified algebra go. We will consider the averages 

~,~ = Rou, u~ (Rou j ) -  1. (178) 

As in the case of averages tT'~, it can be easily seen that they may be defined 
inductively as 

ffl = i f =  R0--U-~x ( R - ~ ) -  ~, t7 '~+~ = / ~ ' J R - ~ J ( / ~  ~ ~) -~ (179) 
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We will prove that the configuration ff'J for j < k satisfy the regularity conditions 
(176), (177) on proper scales and with different constants. As usual, we start with a 
careful analysis of a one-step operation. Let us assume that we have a gauge field 
configuration Vo satisfying the regularity condition IVo(~p)-11 < ~o, P C f2', and 
two gauge transformations v', vl satisfying the conditions 

Iv ' -  iI <~4, Iv'-~(b-)Ro,bv'(b+) - 11 <c~ ,  (18o) 
Iv1 - i I < ~3, Ivi- l(y) (Roy1) ( x ) -  I I < L0~;, 

x ~ B(y), y ~ f2 "m. We assume that  the constants are sufficiently small, so that  we 
can apply proper theorems and estimates. We will find a bound for 
g'- l(c_)Ro,cg'(c+)- 1. We have 

( ~ )  (y) = v '(y) v~ (y) 

• exp[ix~n,,,Z L-al log(v 'va)- l (Y)(Ro.yvO(x)] ,  (181) 

(v'vO- ~(y) (Ro,yvo  (x) = R(v; ~(y)) Iv'- l(y) (Ro,rV3 (x)] 

• v;  a(y) (Ro,rVl) (x), (182) 

and Iv'- l(y) ( R o , y )  (x) - l I< [Fr, xl ~'4 elr''xl~a = O(L~'4) by (180), hence 

1. log(v'v0- ~(y)(Ro,,¢v0 (~)= R(~; l(y))1, log~,-l(y) 
l l 

1 1 • (Ro,rV') (x) + 71ogv;  (y) (Ro,rVl) (x) + O(LZ~;e~). (183) 

A constant in the bound above is an absolute constant. Using (41) and (181), (183) 
we get 

g'(y) = v'(y)vl(y ) exp [ i  Z L-dR(v; a(y))1, logv'-  l(y) 
k xen(r) t 

• ( R o , y )  (x) + 0 (L2a ;~)  + (L2c~2)J v ;  l ( y )  

, [- a l  , , 
= v ( y ) e x p | i  2 L- _logv-~(y)(Ro,rV)(x)  

/ x~B(y) l 

+ O(L2(e; + c~) e~) / . (184) 
d 

Let us denote 

Vb'=v'-l(b_)Ro,bv'(b+), then [Vb'--ll<ce~e =a, 

V b ' = e  iAb , [Abl < 2 ~  , . (185) 

Using this we can write 

v'-  l(y) (Ro,rV,) (x) = 1-[ R(Vo(Fy.b_))Vi=(Ro,yV')(I~y.~,), (186) 
bCFy,x 
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and we have 

1. log (Ro,y V') (Fy, ~) = (R o, r A ) (r,.,) + o 
l 

Now using this and the representation (184), we have 

g ' - ~ ( c _ ) R o , f i ' ( c + ) = e x p [ - i  Z L-a(Ro,¢_A)( F . . . .  ) 
k xeB(c  - ) 

Let us recall that  

hence 
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(187) 

Ro,cV'(c + ) = R(go(c))v'(c + ) + o(g2%lv'(c + ) - l I) 

= R(Vo(c))v'(c +) + O(L2otoa4). 

Similarly, 

(go,cRo,~ + A) (V . . . .  ,) = (R(Vo(c))Ro,c+ A) (F . . . .  ,) + O(L2ctoa'4) . 

Further  we can write 

v'-  1(c_) R (Vo(c)) v'(c +) = (Ro,~_ V3 (c) 

= 1 + i(Ro, c_ A) (c) + O((L.:,)2), 

and this implies the following representation 

g ' - * ( c _ ) g o , ~ f f ( c + ) - l = - i  Y~ L-a(Ro,~_A)(F~_,x) 
x~B(c - ) 

+i (Ro,~_A)(c)+i  Y, L-a(R(Vo(c))Ro,c+A)(F¢+,x,) 
x '~B(c  + ) 

+ 0 (L2(~0~4 + ~0~ + ~;~Z~ + ~2)). (189) 

We will transform the linear terms in A on the right-hand side of (189). Let us 
notice that by the definition (185) of A and by the identity logv-  * = - l o g v  we have 

- -Ab= -- 1 l °gu ' - "  l ( b - )R°  ' bu'(b+)= l t°g(R°i ' bu'- l(b+))u'(b-) 

= R o , b ~ l O g u ' -  l(b+)Ro, _ b U ' ( b _ )  

= Ro,b ~ logu ' -  l ( ( -b ) - )Ro , -bU ' ( ( - -b )+) ,  

g o c = e x p [ i  Z L-allogB)(F~xw(-c))]Vo(c)=e'°(L2=°'Vo(c)  
' xEB(c - ) i ' 

+ O(L2(¢a + ~) <0] ¢- 1(t-)go, f(c +) 

• exp I i ,,,~B(c ~-" + ) L-e(R°'  cRo,¢ + A) (F . . . .  ') + 0 (L2(~t; + e:,)e:0]. 

(188) 
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hence 

- - A b = R o , b A _  b . (190) 

For the term (No,c_A)(c), we have for x e B(c_), 

(Ro,~_A) (c)= Z R(Vo([ c-, b- ] ) )Ab=  - Z R(Vo([C-, b+]))A-b 
bCc bCc 

=-- Z R(Vo(c~(-Fc,x)))R(Vo(Fc, xu[c+,b-]))Ab 
bC - c  

= -  Z R(Vo(r~,xuEc+,b-]))&+O(L~o~;); (191) 
bE -c 

similarly for the third term on the right-hand side of (189). Taking this into 
account, we have 

g' - t (c- )Ro,Y(c+)- l=i  Z L-a(Ro,~_A)([x,x'-]) 
x~B(c  - ) 

- i  if2 L-d(Ro,¢_A)(Fc,:,u(-c)) 
x~B(c  - ) 

+ 0(L2(c~00~4 -1- aoO~ + ~ ; ~  + 0~2)). (192) 

Let us now estimate the terms (Ro, ~_ A) ( F ~ , . u ( -  c)). They almost vanish because 

by the definition (185) A is almost equal to the derivative of 2 = -~ logv' .  We will 
l 

prove in fact that they are small. Similarly, as in (187) we have 

(no,c_ A) (Fc ,~u( -  c)) = 1 log(Ro,~ V') (F~ , .w( -  c)) + O((Le~)2), (193) 

and 

(Ro,c_ V3 (L, x u ( -  c)) = v'- ~(c_)R(Vo(L, xU( - c)))v'(c_ ) 
= 1 + v'-l(c_) [R(Vo(F~,x~(-c)))- 1] (v'(c_)- 1) 

= 1 + 0(L20~0~4), (194) 

hence 

(Ro,c_ A) (L ,x~( -c ) )  = 0(L2(~o~4 + .;2)). (t95) 

This gives us finally 

F-l(c_)Ro,cg'(c+) - 1  =i Z L-a(Ro,c-A)([x,x']) 
xEB(c)  

+ 0(L2(~o~4 + ~o~  * + , , ,z % e 4 + e 4 ) ) .  (196) 

From this we easily get a bound if we notice that 

Ab = l (v'- l(b-)Ro,bV'(b + ) -  1) + O(a~2). 

This implies t&l < c~; + 0(~2), and 

< LO~ 4 + O(L (%~4 + C~oa4 + %a4 + % ))- (197) Ig'-l(c-)Ro,cg'(c + ) -  11 ' 2 . . . .  z 
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From representation (184) we obtain also 
s ! ,~ f tg'(Y) - 1t < e4 + O ( L A 4 )  + 0 (L2(o~; q- ~4) c~4) = ~4 q- O(L~4) • (198) 

Let us formulate these results in 

Proposition 9. There exist positive constants C'4, C5; c 6" such that for arbitrary 
functions Vo, v', vl satisfying (180) with c%, ~3, ~'3, cq, ~'4 <= c'6, the following bounds 
hold: 

If'- 1@_) Ro, cg'(c +) - 11 < Le~ + C;L2(~ZoC~4 -t- (~;0~ + 0~2), (199) 

If'(Y)- 11 < ~4 + C'sLA4. (200) 

In these bounds we have assumed that e ;  = O(c~4), which will always be true here 
and in forthcoming papers. 

Let us apply this result to configurations Uo, u', ul many times. We assume that 
Uo satisfies (52), u satisfies (176), (177), and ul satisfies (166), (167). When we apply it 
the first time, we get bounds 

Iff- 1@_)Ro,cff(c +) - 1[ < e4Lt/+ C~(c~0e4 + e3c~4 + c~) (Lt/) 2 , (201) 

Iff(Y) - 11 < ~4 + C'5°~4Ltl • (202) 

Let us denote/~ =eoC~4 + e3e4 + 0~, C5 = 1 + 4C;, C4 = 8C~C5. We will prove by 
induction that 

l(tT,j) - 1@_) I~Jo,ca,J(c +) _ 11 < cz4ZJtl -t- C41~ ( / i n )  2 , C Q ~-~(J), (203) 

IffJ(y) -- 11 < ~4 + 2C'5o~4Lrl + ... + 2C5~4Lr/,' J y 6  f2 (j) . (204) 

Let us notice that 

c~4LJt/+ C4fl(Ur/) 2 < e4Ut/( 1 + C4(~0 ~- ~3 -{- ~4)) ~ 2~4LJt/~ 2e4 

for c~ o, e3, e4 sufficiently small, so the condition e ;  = O(e4) mentioned above is 
satisfied indeed. The inequalities (203), (204) hold fo r j  = 0, 1. We assume them for 
some j and we will prove them for j + 1. We apply Proposition 9 with Vo = U~, 
v '=f f  j, vl =RoulL We have So replaced by 2eo(Ut/) 2, c~; replaced by e3/Jt/, cq 
replaced by the right-hand side of (204), which can be bounded by 
e4(1 + 4 C ; ) =  C5e4, and e~ replaced by the right-hand side of (203), which can be 
bounded by 2e4. The conditions of the proposition are satisfied if, e.g., 2e o, e3, 
C5c~4, 2~4=c6, SO we can apply it and we get 

1(~7,a + 1)- l/,~ a ~ +  1 a,~+ ~(c+) - I I < ~4/2 + ~t/+ LC4fl(Z~tl) 2 \ t . - - ] . t~ ,O,  c 

+ C;(2eoCse 4 + e32c¢4 + 4e~) (/J + ~r/) z 

< a , g  ~+ ~1 + C4fl( U+ 1~/)2 [g -~  + CX4Cs[ 
C,  J 

~4 Lj+ 'I, I -]- C4fl(j~ + lt])2, (205) 

lff3+ l(y) _ I I < (~4 -~" 2C;a4Lrl +. . .  + 2C'5~4LJ~1 -I- 2C'5~4L j + l r  I . (206) 

Thus we have proved the following 
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Proposition 10. There exist positive constants C4, C5, c6 such that for arbitrary 
configurations U o, u 1, u 1 satisfying (52), (176), (177), (166), (167) with %, a 3, %=<% 
the bounds (203), (204) hold for j < k. 

This result implies in particular that the configuration u' belongs to the class 
Ak(C5% ). The assumptions (176), (177) can be reformulated in terms of the 

functions 2 = ~logu'. If we assume 
4 

1 

I(Dbo2)(b)l <~4, 12(x)l<a4, 2(x) ~ 9 =, 
% sufficiently small, (207) 

then assumptions (176), (177) are satisfied with a constant 4~ 4 instead of a4- It is 
obvious from the definition of the averaging operations that ~'J are analytic 
functions of 4, and 

1 ,. 
Qj(ul, 2) = ? l o g a  s , j < k ,  (208) 

are analytic functions of 2 also. We want to calculate a linear term in an expansion 
of this function. In fact, we will be satisfied with a good approximation of this term. 
From (184), (187), we have for v'=e i;" 

• " - - 4  t ] ¢ - ]  if(y) = exp [t2(y) + t ~ L (Ro,rA) (Fy, x ) + O(~4La4) + O(L2(~ + ~4)%) • 
I_ x~n(y) 

(209) 
By definition of A, 

A b = .~-loge-i;~(b-)eiRo,b.~(b+) 
l 

1 12b t2b  +tDv,  2 b = _ l o g e - '  ( -)e" ( - )  "¢ o )~ ) 
1 

= (Ovo 2) (b) + O(a4a" 4 + a:,2), (210) 

hence 

~logff(y) = 
t 

L-~(Ro,r2)(x)+O(a4La~ + L2~'3~'4+ L2~'42 ) . (211) 
x~B(y) 

I u By (179) the function Q j( i, 2) is a composition of one-step functions and from the 
above formula we can easily see that 

j - 1  
O~(ul, 2, y)= Y L-~g(Vo(r~))2(x) + Z 

x~BJ(y) 1 = 0 

• O(Csa42c~4/Jt/+ ~32~,(/_Jt/) 2 + 4a](Lttl)2), (212) 

hence 

Q~(u 1, 2, y) = (Q}2) (y) + C~(ut, 2, y), 

[C~(u 1, 2, y)l = O((aacz4 + cc])IJrl). 

(213) 

(214) 
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