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Abstract. Numerical studies of the initial boundary-value problem of the 
semilinear wave equation u , , - u = + u 3 = O  subject to periodic boundary 
conditions u(t, O) = u(t, 2n), u,(t, O) = u,(t, 2r0 and initial conditions u(0, x) 
=u0(x), u,(O,x)=vo(x), where Uo(X ) and Vo(X) satisfy the same periodic 
conditions, suggest that solutions ultimately return to a neighborhood of the 
initial state Uo(X), vo(x) after undergoing a possibly chaotic evolution. In this 
paper an appropriate abstract space is considered. In this space a finite measure 
is constructed. This measure is invariant under the flow generated by the 
Hamiltonian system which corresponds to the original equation. This enables 
one to verify the above "returning" property. 

O. Introduction 

During the Sixth I. G. Petrovskii memorial meeting of the Moscow Mathematical 
Society in January 1983 Professor V.E. Zakharov proposed the following 
problem. Numerical experiments demonstrated that the equation 

u, , -uxx  + u 3 =0 (0.1) 

with periodic boundary conditions u( t, O) = u( t, 2n), u,( t, O) = u~( t, 2rt) possesses the 
"returning" property, i.e. solutions appear to be very close to the initial state u(0, x) 
=Uo(X), u,(0, x)= Vo(X), where the initial functions satisfy the above boundary 
conditions, after some time of rather chaotic evolution. The problem is to explain 
this phenomenon. According to the classical Poincar~ theorem every flow which 
preserves a finite measure has the returning property modulo a set of measure zero. 
The aim of this paper is to build such a measure for the flow 

Vo(X))= (u(t, x),  v(t, x)) , 

where u(t, x) is the solution of (0.1), v(t, x )=  ut(t, x), where the solution u satisfies 
the initial data u(0, x)= u0(x), ut(O, x )=  Vo(X). The Eq. (0.1) can be rewritten as a 
Hamiltonian system 

u, = 6H/av'~ 
(0. 2) 

v,= - 6 H / a u J  
# 
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with the Hamiltonian 
2~ 

H(u, v) = S (v2/2 + u~/2 + ug/4)dx. (0.3) 
0 

Our starting point is the desired formula 

~ F(u, v)d#(u, v)= ~ F(u, v)e -n(u'v) 1--[ du(x)dv(x) (0.4) 
x e S  1 

for some class of "good" functionals F. 
The right-hand side of (0.4) is the partition function. It can be determined by 

finite dimensional approximations (2.3). Roughly speaking the measure d# is the 
"canonical symplectic measure" [-[dudv multiplied by the function e -tx of the 
Hamiltonian and is invariant under the flow (0.2). However, the correct definition 
of the d# involves some technical problems and the expression l~dudv does not 
have any meaning without the factor e -n. The Hamiltonian H is the sum of 

2~ 2~e 

H,(u)= S (u~/2+u4/4)dx and H2(v)= ~ (vZ/Z)dx, 
0 0 

so the measure dp is the Cartesian product of the measures 

d#l=e-nl~")l-ldu(x ) and d#z=e-n~(V)l-Idv(x ) . 

The d#l is correctly defined by finite dimensional distributions p(x1 . . . . .  Xk; 
~1 . . . . .  ~k): 

dlal {u(x): (u(x 0 . . . . .  U(Xk) ) e M} = ~ p(x, ~)d~ 
M 

which are proportional to partition functions 

e-H~(u)I-Idu , (0.5) 
~j = u(xj) 

which are calculated in Sect. 2. In order to formulate the result we introduce some 
notation. Let x < y be two real numbers. U(x, 4; Y, rl; z) is the solution of the 
equation U,~ = U 3 in the segment Ix, y] with the boundary conditions U(x) = 4, 
U(y) = r/. Let 

hi(x, ¢; y, rt)= I [U~(x, ~; y, ~/; z)/2 + U4(x, 4; Y, rl; z)/4]dz 
X 

and let D(x, 2; y, tl) be regularized determinant of the operator, see [4], 

- d2/dz 2 + 3 U2(x, ~; y, rl; z), (0.6) 

in the segment [x, y] with the Dirichlet boundary conditions. The operator (0.6) is 
the operator of second variation of the functional 

(u~/2 + u4/4)dz ; u(x) = 4, u(y) = rl 
X 

in the neighborhood of the extremum U. Then 

c(x) 
p(x, 4) = ~/1-[O(xj, ~j; xj+ ,, 4j+ 1~ exp {-~_,h~(xj, ~;  x j+ ~, ~+ 0}- (0.7) 
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The function c is determined from the condition 

~p(x, ~)d~ = 1 

and is equal to 
k 

O'(2~Z) -k/2 1-[ (Xj+ 1 - - X  j ) -  1/2 (0.8) 
j = l  

with some constant a. The measure d#, is absolutely continuous with respect to the 
classical Wiener measure; so its support belongs to the space Lip =, 0 < ~ <  1/2. 
After replacing the functional Hi(u) with ~ (ug/2)dx the construction will lead us 
exactly to the classical Wiener measure. The d#z is a realization of the abstract 
Wiener measure and it will be described in Sect. 3. 

In Sect. 1 we investigate the determinant of the operator (0.6). In particular, we 
prove the formula 

det (A o + F(x)) = det (A o) det (I + A o 1F(x)), (0.9) 

where Ao is the operator -dZ/dx  2 with the Dirichlet boundary conditions and 
F(x) is a nonnegative smooth function. The determinants of A o + F(x) and A o are 
equal to exp(-( ' (0)) ,  where ((z) is the (-function of an operator; det (1 + A o 1F(x)) 
is well defined because the operator A o l F  is nuclear, A o ~F ~ ~ .  The formula 
(0.9) is not used in our constructions but we think it is interesting by itself. In 
Sect. 2 we calculate the partition function (0.5), in Sect. 3 we give the correct 
definition of the measure d# and finally in Sect. 4 we prove the main result: 

Theorem. The measure dkt is invariant under the f low (0.2). 

1. The Determinant of the Sturm-Liouville Operator 
with the Dirichlet Conditions 

We investigate properties of the functional determinants by finite dimensional 
approximations. The key lemma is 

Lemma 1. Let F(x) e C°[O, a], Q >0,  and let A o be the operator -d2 /dx  2 with the 
Dirichlet conditions. Consider ( N -  1) x ( N -  1) matrices 

2 - 1  0 ... 0 
N 2 - 1  2 - 1  ... 0 

and f~ = [Ifm ijll, 

where 

a + 2fl = 1 and 

[ ~F(j/N) + r~ ) if i =j ,  

r ]flF(]/N)+r~N+) 1 j if i = j + l ,  

JN;iJ=tfloF((j--1)/N)~r~N_)I, i if i = j - i  
if i i - - j i> l ,  

lira max lr~)[ = O. 
N"* co t ,J 
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Then 
det(I + A o 1F) = lira det (I + 6;  lfN ) . 

N - * o o  

Proof. Consider the orthonormal basis E~(x)= 2~ja  sin (nkx/a) of the eigenfunc- 
tions of the operator A o : AoE k =,%Ea with 2k =7~zkZ/a z, k = 1, 2, . . . .  Denote by H~ 
the scale of Sobolev spaces which are generated by Aol/Z'llEk(x)lLs=2~/2. The 
operator 6 n is defined on C N- 1; its eigenvalues 

• 2 7 d £  2 (n)- 4Na sm ~-~, k = 1, ..., N -  t 
k - -  a 2  

the corresponding eigenvectors 

e{N)_t.(m o(m ~ with e~)=V-2-~sinOrks/N ) k , s =  l, . , N - 1  k - \ ~ k l  , • • . ,  r - k N -  1 1  ~ • • • 

We normalize e~ N) by the condition 
a N - I  

r~kX - -  j~ . 

Let l~ be the space G n-  ~ with the norm I' I and let h~v be the same space with the 
norm lyl~= 16~2yl. Now we introduce the interpolation operator i n : l ~ L 2 [ O ,  a] 
and the restriction operator jn : L2[0, a] ~l~: 

iNe(k m = Ek(X ) , k = 1 . . . .  , N - 1, 

{;~m if k = l , . . - , N - 1 ,  
j~Ek(x) = if k > N. 

We split the segment [0,a] into N equal parts by the points 0=Xo<Xl 
< ... < X N _ l < x N = a ;  x i= ja /N .  The iN is the operator of trigonometrical 
interpolation of the values at x j; ]N = rNP~, where PN is the ortho-projector onto 
the subspace spanned by El,. . . ,  EN-1 and 

rNG = (G(a/N), ..., G ( ( N -  1)a/N)). 

First of all we notice that the norms of/N andjN as operators which map h) into H,  
and H,  onto h) correspondingly are bounded by constants which do not depend 
on N because 

1 _-_6 2k/2~ m = (~k/2N)2/sin 2 (r~k/2N) <__ rc2/4; k = 1, ..., N -  1. 

Consider the finite-dimensional operator 

TN = iN6[q l fNj N " /-,2[0, a]--*L2[0, a] . 

Clearly, 
det(I + TN)= det(I + 6n- ~fN). 

So the convergence of T N to T = A o l F  in the space ~1 of nuclear operators 
implies the assertion of the lemma, see [5]. We split the proof of convergence 
into the following steps. The operators 

(i) TN are uniformly bounded in the space ~ ( L  2, H,) of linear operators 
2 s L --*H.. 
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(ii) T N ~ T  in the space ~ ( L 2 , L  2) with the strong topology. Let ~b be a 
trigonometrical polynomial. Then 

TN(9 -- T(~ = iN6~ ~[fNJN--JNF(x)]~ + iN6~ ~jN(I -- Pk)F(x)(~ 

+ (in6~ ~Jn -- A o 1)PkF(X)~ -- A o ~(I - Pk)F(x)~. (1.1) 

The second and the fourth terms on the right-hand side of (1.1) converge to 0 
uniformly with respect to N when k - ~ .  Operators (iN~nljN--do1)Pk have 
orthonormal basis of eigenfunctions E~(x). The corresponding eigenvalues are 
equal to 

a2/(4N 2 sin z (n j /2N))-  a2/(zc2j 2) N-, o~ , 0 if j < k -  1 and 

0 if j>=k; 

therefore, the third term in (1.1) converges to 0 when N ~  oo and k is fixed. Let 

[f~,rn_ rsF(x)]~(x ) = ¢,,(m ,,(n) ~..Vl , ' " ~ Y N - 1 I "  

Then 
y~m= f lF((]-  1)a/N)~((j - 1)a/N) + r~]_ lO((J- 1)a/N) 

+ aF(ja/N)~b(ja/N) + r~(gja/N) + flF(ja/N)qk((j + 1)a/N) 

+ r~]+ ,q)((j + 1)a/N) - F(ja/N)~b(ja/N) 

and lim max ]y~m t =0.  Thus [~NrN--rNF)[~O in l z. Further, (rN--js)FqJ-rO when 
N ~  j 

N ~  ~ and rn~ =jN~b if N is sufficiently large. So the first term on the right-hand 
side of (1.1) converges to 0 when N ~  co. Combining the results above we obtain 
that Ts~b ~ T~b. The set of T N is bounded and trigonometrical polynomials are dense 
in L2; hence T N ~ T  in strong topology. 

(iii) Tt~T~ T in the space Xe~(L 2, H2,), by virtue of (i), (ii) and Banach-Steinhaus 
theorem. 

(iv) TN~ T in the space ~ ( H ~ ,  Hz.), s > 0, by virtue of (iii) and the compactness 
of the imbedding H ,  % L 2. 

The space ~ 2 ~ ( H , , H , )  belongs to ~I(H~)  when s <  1, see [6]. Hence T N ~ T  
in ~ ( H , ) ;  0 < s < l .  [] 

Lemma 2. Let F(x) ~ C2[0, a] and let A(x) be the solution of  the equation 

A"(x)=F(x)A(x)  

with the boundary conditions 

A(a) = O, A'(a) = - to~a, 

where A~ N), v = 0, 1,..., N, N = 2, 3,. . . ,  satisfies the difference equation 

(NZ/a 2) ( A ~  ~ - 2A~ N) + A ~  ) = F((N -- v)a/N) 

with 

Then 
A g)=O, 

A(0)  = l i m  A ~  ) . 
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and 

L. Friedlander 

Let R ~  ) = A ~  ) - A((N - v)a/N) and _~C~m _- ~-~°(m _ ~-~°~m- 1 • Then 

2 2 (~O (N) (N) (N) (N) (N /a ) ( R , + ~ - 2 R ,  + R , _ O = F ( ( N - v ) a / N ) R  ~ +b, (1.2) 

(N2/a 2) (C(~1 - C~ N)) = F((N - v)a/N) ~ C (m 4- h(m (1.2') • , J j  ~ v v 
j = l  

with R~o m = O, R~ m = C~ N) + O(N-  3) and b~ m = O(X-  2) uniformly with respect to v. 
Clearly, C~ m are bounded by the solutions of the equation of the type (1.2') with 
F ( ( N - v ) a / N ) ,  b~ N) and C~ m replaced by Ct=suplF(x)l ,  C2/N 2 and C3/N 3, 
respectively. Hence R~ m are bounded by the solution of the following difference 
equation, 

(n2/a 2) ( r ~  1 . t s ) . . ( s )  ~ _ Clr(m + C2/N 2 ; r~o s) = O, r~ m = Ca/N 2 
- -  t v - r -  t v -  1 1  - -  

The general solution of this equation is 

r ~ I )  = _ C2/(C1/2) + a~m[)3+m ] ,  + fl(m[2~)]~ 

with 2~ ') = 1 + C4/N +. . .  and 2~)2~_ m = 1. According to the initial conditions 

a~N) + ~ N )  = C d N  2 ' :(~)2(+N) +/~(N)2~) = C j N  2 " 

Hence 

~(m = ((C32~))/N 3 _ C5/N2)/(2~) ~ _ 1) = O(N-  1), fl(m = O(N-  ') .  

Therefore, 

r~)~Cs/N2+C6(I+CT/N)N/N<=Cs/N and R ~ ) = O ( N - ~ ) .  [] 

Theorem 1. Let F(x) e C2[0, a] and let A(x) be the solution of the equation 

A"(x)=F(x)A(x)  

with the boundary conditions A(a) = O, A'(a) = - I/a. Then det (I + Ao IF) = A(0). 

Proof. Let fN=diag(F(a /N) , . . . ,F ( (N-1)a /N) )  be the diagonal matrix. By 
Lerama 1 

det (1 + A o ~ F) = lira det (1+ 6ff ~ fN) 
N--~ oo 

= lira det - 1  2 ... 0 
N--~ 00 . . . . . . . . .  

0 0 ... 2 

2+aZF(a/N)/N 2 - 1  ... 0 

- - 1  , . .  

• det . . . . . . . . . . . . . . . . . . .  

0 - 1  
0 ... - 1  2 + a 2 F ( ( N - 1 ) a / N ) / N  2 

= lim N -  1 detDN. 
N---~ oo 
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Above we have used the relation 

det 

which can be proved easily. 

2 - 1  ... 0 

- 1  2 ... 0 

0 0 ... 2 

= N ,  

The value 

with 

v i = 2 + a2F(ja/N)/N 2 - 1~v j_ 1, 

Our aim is to find N - % 1  "'" vN-1. Let 

_ J(m, ,  + B(m; N - l V N _ v ' " V N -  I - - ~ v  v N -  v 

It follows from (1.3) that 

vl = 2 + aZF(a/N)/N 2 . (1.3) 

A (m = N -  1, B(1 m = 0. 

2 2 (N) (N) (N) (N) (N /a ) (A~+I-2A~ + A ~ _ O = F ( ( N - v ) a / N ) A  , 

A(om = 0, A~m=I/N.  

N - 1  A~,r~ _ a ( N )  ,, . B ( N )  ,~'-,~'N-- ~N- 1~1 -- N-a = A ~  ) 

converges to A(0) when N ~ o o  by Lemma 2. The theorem is proved. [] 

Now we shall prove the formula (0.9). Let us recall the definition of the de- 
terminant of a positive unbounded operator A. Assume that A - ~ ¢  Ca for some 
positive a. One can define the function (a(z) = Tr(A-=) which is regular in the half- 
plane Re z > o'. In some cases (e.g. if A is a pseudodifferential operator) this function 
has the meromorphic continuation. It may happen that 0 is a regular point of this 
(-function. In this case we say that A has a determinant and detA = exp(-(~(0)) .  
This definition is a generalization of the finite-dimensional determinant. 

Theorem 2. Let S > Co > 0 be a positive operator in a separable Hilbert space ~ ,  let 
S-~  ~ ~1 for some a, 0 < a <  1 and detS be defined. Let T be a bounded operator. 
Then there exists a constant C which depends upon Co and []T[I only, such that 
det A(e) = det (S + e T) is defined when l el < C and is equal to det S det (I + eS-  1 T). 

Proof. One has the following integral representation on the strip 0 < R e z <  1, 
see [7]: 

A_~(8) = sin~z_____~z ~ t_~(ti + A(Q)-  ldt 
o 

= S-Z + sin ~----!z ~ t -~ ~ ( -  l)%k[(tI + S)-1T]~(t i  + S) -  ldt.  
/[ 0 k = l  

By elementary transformations the matrix DN can be transformed into 

vx - 1  0 . . .  0 [ 

0 V 2 --1 ... 0 

0 0 0 ... VN--1 
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If e < co/ll T II we can change the order of summation and integration: 

A _ z ( o _ S _ ~ _  sinnz ~ ( _ l ) % k ~ t _ : [ ( t i + S ) _ ~ T ] k ( t l + S ) _ l d t .  (1.4) 
k = l  0 

Let us show that all terms on the right-hand side of (1.4) are nuclear operators and 
estimate their ~ l -norms  which will be denoted by I[1" III. One has 

lll[(tl + S ) -  ~ T]k(tI  + S ) -  1tl1 
5 IllS- ~111 II [(tI + S ) -  1T]k(ti  + S ) -  tS" II 

( a~t l - aP - ~t ~- 1 
__<lllS-~llt-llTllk(t+co)-k~ ' .  ' 

(Co/(t + Co) 
Therefore, 

if t > C o ( 1 - a ) / a  

if t < C o ( 1 - a ) / a .  

t -  - 1 Tk(t i  - ldt Z( t l  + S) + S) 

_-< IllS- ~111 • ti T[]k{(1 --  o ' ) a -  1(1 --  Rez)-" leo*+'+~ -R¢: 

+ o-~(1 - - a ) 1 - q ( R e z T k - - a ) - l C o k + ~ - R e z } .  

Thus the series (1.4) is ~l-convergent when e < Co/ll TII and it defines the ~l-val-  
ued regular function on the strip a -  1 < Rez < 1. Hence ~A(~)(Z) has the meromor- 
phic extension to the half-plane Rez > or-  1 and 0 is a regular point of this func- 
tion: 

(~(~)(0) -- ~}(0) = ~. (--  1)ke k ~ Tr { [(tI + S) - x T]k(tI  + S) -1 }dt . 
k = l  0 

Note that 

_ _  k - 1  

d [(tI  + S) -~ T] k = - Z [(tI  + S) -1 T] ' ( t I  + S) -1 [(tI + S) -1 T]k -i  
dt i=o 

Hence 

and 

Thus 

1 d Tr  [(tI + S)- 1T]k, Tr { [(t/+ S)- 1 r ] k ( t i  + S ) -  1} = _ 

G(~)(o)- Cb(o)= k = l  k + l  ~k (--1) ~ _ ! d  Tr ([(tI + S ) - I T ] k d ,  

( -  1)gekk - ~ Tr (S -1T)*  = - Tr  log(I + ~S- l T)  . 
k = l  

det A(e)/det S = exp { - [(i(.)(0) - ff~(O)] } 

= e x p T r l o g ( I + e S - 1 T ) = d e t ( I + e S - 1 T ) .  [] 

Corollary. Let S be the same operator as in Theorem 2 and let T be a non-negative 
bounded operator. Then det(S + T) is defined and 

det(S + T) = detS det(I + S -  1T). 



An Invariant Measure 9 

Proof. Note that S + eT > Co for every e > 0. So we can apply Theorem 2 N times if 
N is sufficiently large and obtain 

N-1  
det (S + T) = det S r I  det (I + N - 1 (S + j N -  ~ T) - ~ T). 

j=O 

The product 1~ in the last formula is equal to the det(I + S- t T), as follows from the 
identity 

d e t ( I + e l S - ~ T ) d e t ( l + s z ( S + e ~ T ) - l T ) = d e t ( I + ( e ~ + e z ) S - ~ T ) .  (1.5) 

In order to prove this identity we introduce R = S-1T and obtain 

(I + e ,S -  i T ) ( I  + e2(S + ei T ) -  l T)  

= I + e~R + e2(I + elR ) -  ~R + exe2R(I + e~R)- 1R 

= I + eiR + e2(/+ e ~R)- 1R + ez(/+ elR) ( /+  elR)- 1 R -  ,~2(/ + e iR) -  i R 

= I + ( e l  +e2)R. 

Now (1.5) follows from the well known formula 

det (I + A~) det (I + A2) = det (I + A 1) (I + A2) 

with A1, A2 s ~l ,  e.g. see [5]. [] 

Formula (0.9) follows from the Corollary. Note that 

~ao(Z)=(n/a)-Z~(2z) and detAo=(n/a)e -2~'(°), 

where ~(z) is the Riemann ~-function. 

2. Calculation of the Partition Function 

S(x,~; y,q)= ~ exp ' - I (uZ/2+u4 /4 )dz~  1-[ du(z). (2.1) 
u(x) = ~ ( x ) z e Ix, y] 
u(y) = rt 

Let us split the interval [x,y] into N equal parts X = X o < X x <  ... <xN=y .  
Consider the finite-dimensional approximation of S 

I 1 SN=fexp - 2 h(a/N,~j - l ,~ j )  d~l ... d~N-i 
j = l  

with a = y - x ,  ~o = ~, ~N=t/; the definition of the function h is given in the 
introduction. The invariance of the equation u,~ = u 3 under the transformation u(z) 
~ N  ~ l u ( N - t z )  leads us to the homogeneity property 

Therefore, 

h(a/N, ¢j-1, ~j) = N3h( a, ~j- l~ N, ~JN) .  

I N - 2  SN=NN-I~exp - N  3 h(a ,~ /N,~O+ 
j=2  

' 

h(a, ~j_ a, ~j) 

(2.2) 

(2.3) 
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We can apply the Laplace method to the integral in (2.3). The function 
I(41, ..., 4N- 1) in the square brackets has the unique stationary point (40 ..... 4 °_ ~) 

C ° = N  -1U(x, C; Y, tl; x +ja/N). 

This point is the point of its strong minimum. 

SN = (2~r) tN - ~)nD;, 1 / 2 N -  (x,, - ~ n  e -  N~.~ o ..... ~ -  '~(1 + O ( N -  1)) ,  

where 
D r = get l] I"(~ ° .. . . .  ~o_ 1)11. 

By the homogeneity property (2.2) 

gaI(4°, ..., C °_ ~) =N3h(Na, 4IN, tl/N) = h(a, 4, tl) 

and 

with 

Finally, 

Dt~.= N- tN-  I)LN= N-C,~- I) de t ,, IIJ (C1 . . . . .  ~ -  1)11 

N 

J :  Y'. h(a/N, 4j- 1, 4j), 4~ : N4 °. 
j = l  

Sn = (2n) iN- 1)/2L} 1/2e -hCa, ¢'~)(1 + O(N-  1)). 

Proposition 1. When N ~oo 

LN = (NN/a N- 1) det (I + 3A o 1 U2(x, C; Y, t/; z)) (1 + o(1)). 

Corollary. 
lim (2rca) ¢1 - N)/2NN/2S N = [det (I + 3 A O- 1U2(x, 4; Y, t/; z))] - 1/2e- h ( y  - x ,  ¢.tt). 

N-* a0 

The expression on the right-hand side of the last formula will be called the partition 
function S. 

Proof of Proposition 1. Let ,, 1 Lij=J¢~j(41, ..., 4~-1). From the definition of J it 
follows that 

Ljj = t~2h 1 t 02h 1 1 
(~, ~j- ~, Ci ) + - ~  (~, 4~, ¢j ÷ ~), • = a/N;  

O2h 
L j j+I=Lj+I  j . . . . . . . .  (z, 1 1 ' ' ~40~  4 j , 4 j ÷ ~ ) ,  

LU=0 when I i - j l > l .  

a) Calculation of Ljj. By the definition of the function h 

Lz-OC2a2 i u~(4j-l," 1 ~,41+1;z)2+2 --4 dz,=,) ,  

where u is the solution of the Euler-Lagrange equation u"=  u 3 for the energy 
functional, with the conditions u( - z) = 4jl- 1, u(0) = 4, u(z) = ~J+ 1. By the formula 
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for the second variation 

Lj~ = i [ v'2 + 3u~v2] dz , 

1 1 . where Uo = u(~J_ t, ~j, ~j+ 1, z), v is the solution of the equation 

v" = 3uZov, v(~) = v ( -  z) = O, v(O) = 1. 

Integrating by parts and taking into account the relation u~ = Uo 3, we obtain 

L z = v ' ( - O ) - f f ( + O ) =  - [v'](O). 

Let us split v into the sum of Vo and w: 

v; = 3 ( 0 % °  ; 

w " -  3u2w = 3[u 2 - (~J)2]v o ; (2.5) 

Vo(O = Vo(-  ~) = w ( -  ~) = w(0) = w(O = 0 ,  Vo(0) :  1. 

The first equation in (2.5) has the solution 

Vo(Z)=sha(~c - tzl)/sh~, ~=V~I¢~I. 

The solution of the second equation in (2.5) has the representation 

w(z) = 3 ~ ( -  1) j+ l (3Ku2jK[u 2-(¢j)z]vo,  (2.6) 
j = l  

where K is the inverse to - d2/dx z with zero conditions at the points _+ z and 0. It is 
an integral operator with the kernel 

[Ixl(T-lYl)/v if Ixl<ly[, s ignx=s igny ,  
K(x ,y )=l l y l ( v - l x t ) / r  if [xl>lyl, s ignx=s igny ,  

to if s ignx#s igny .  

The series (2.6) is asymptotic with respect to r ~ 0  because K is of order z. Hence 

- [wq (0) ~ (3K(u~ - (¢~)2)Vo)' 

= -- 3 i (~ -- z)she(v- z) (uZ(z) _ u2 ( _  z))dz = 0('~3). 
o sha~ 

2 2 2 3 
- [v ' ] (0 )=2ac thc~z= - + ~a  ~+O(T ). 

I :  

Further, 

Finally, 

L#=~+2(~J)2~+O(z3) .  (2.7) 
T 

b) Calculation of L j, j + 1- By definition 

LJ'J+1= a--~ 2 u41 m dz 
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with u({, q; z) = U(0, ~; "c, q; z). As above one can easily check that  Lj,~+ i = v'(z), 
where v (0  is the solut ion of the equat ion  v" = 3uZv with the bounda ry  condit ions 
v ( 0 ) = l ,  v ( z )=0 ;  Uo=U(#),#)+,;z). Splitting v into the sum of  vo(z) 
= s h e ( r - I z l ) / s h a r  and w(z) we obtain  that  

0~2-C 
v;(~) = - ~ + - g  + 0 ( ~ ) ,  

and finally, 

Lj j + l  = - -  - -  + (~1)2,~ . .~ 0(1S2), 
' T 

N o w  it remains to apply Lemma  t with 

F(z)=3UZ(x, ~; Y, ~1; x +z) ,  e=213  and ,6=113. Z) 

(2.8) 

3. The Measure d# 

Let us fix points x 1 < x 2 < . • .  < X k <~ X 1 -~-2rr on the circle• Consider  the funct ion 

S(x, ~)~--S(Xl, ~1; x2, ~2)S(x2, ~2; x3, ~3)••• S(Xk, ~k; X1 --~ 2~, ~1)• 

Proposition 2. Let x 5= (xl  . . . .  , ~j , . . . ,  x0 ,  ~5= ({1, ..., ~ ,  -.., ~k) (the sign ~ means 
that the corresponding variable is omitted). Then 

IS(x, ~)d~ - (2~z) 1/2 ]/ (x j+,  --xi)(xj--x  j_ 1) St x, ~5). (3.1) 
J -  V j-+1- ' 

We assume that xo = x k -  2re, xk + 1 = x l  + 2re, {o = Ck, {k + 1 = ~1. 

Proof. Let all ratios (Xm+I--Xm)/(X,+I--X.) be rat ional ;  x , ,+ l - xm=N, , r .  By 
Propos i t ion  1 

f S(x, ~)d~j = l i m  (27~)k/2(27Z) ( - m/2)~.N~(m/,c)(m/2)~ lvi 

k d¢(m) 
• 11 (x~ +1 - x,)1/21 exp { -- Eh(z /m,  ~=), ~ 1 ) }  

de} "*'=1 

where x 1 =x{,")<x(2=)< ... is the par t i t ion  of  the circle into equal segments of  
length z/m. On the other  hand,  

k 
S(x), {5) = l im (2re) (*- 1)/z(2r0-(,,t2)=N, 1-I (x~+ 1 - xd 1/2 

t~"+ O0 V=I 

~ /  x j  +, - x j _ ,  ~ d{  ~'~ 
exp { Z h(z/m, ~ ) ,  

• ( x j + l - x j ) ( x j - x ~ _ O  - ~+1. d~ 5 • 

The  relat ion (3.1) follows from the last two formulas. In the general case, it is valid 
because of  the cont inui ty  of  bo th  sides. 

Corollary 1. 
k 

5 S(x, {)d{ = a -  1 (2rt),/2 1--[ (x~ + 1 - x ~) 1/2 (3.2) 
v=l 
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with some constant ~. Actually, 
k 

IS(x, Od~i =(2~) ~k- 2~/2 H (x~+l -x0112S(0, 41; 2~c, 41). 
V = I  

Simple estimates show that 

a -  i = ~SS(O,  ~; 2re, ¢)d~ < ~ .  

Corollary 2. The functions 

p ( x ,  4) = ~ (2~ )  - k/2 H (x~ + 1 - x 3 - 1 / 2 S ( x ,  ~) (3.3) 

are finite-dimensional densities of a probability measure d#l. Indeed, they are 
continuous and satisfy the aoreement and the normalization conditions. 

Let dw be a conditional Wiener measure, see [8], in the space of continuous 
functions which vanish at some fixed point x0 on the circle: 8( f )= f ( xo )=  0, and 

d~ = dw x (2re)- t/2 e x p ( -  82/2)d6 

is the measure in the space of all continuous functions. 

Proposit ion 3. d#1 is absolutely continuous with respect to dw and 

d d ~ ( f ) = a ( 2 7 r ) - l / 2 e x p { - l s f 4 ( x ) d x + ~ f Z ( x o )  } . (3.4, 

Proof. Let us choose a function f ,  a partition xo < x~ < ... <Xk <Xo + 2re of the 
circle and a set 

k 

M ( I-I (f(xj) - e, f (xj)  + e). 
j = O  

We assume that Ix~+ t -x j t<e , j=O,  ...,k. By (3.3) 

dpl {J/} = d#t {u: (U(Xo) . . . . .  U(Xk) ) ~ M} 
k 

= a(2rC)-~k +t) /2  y ,  (X~ + 1 - -  X~) - 1/Z ~ S ( x ,  { ) d 4 .  
v = O  M 

Using the definition of h and Theorem 1 we can obtain after simple computations 
that 

S(x, 4) = exp - j~=o (4j+1 - 4j)z/2(xj+1 - x j ) -  ~f4dx (1 + o(1)) 

when e~0.  Thus 

d#1{Jg}=a(2rO-* /Zexp{~ fZ(Xo) - l ' f4dx}d~(J l l ) ( l+o(1) ) .  

Corollary. The measure d#l has a support in the space Lip ~, e < 1/2. 

For the definition of the d#2 we consider functionals Aj and B~: 

v = A o +~.(Ajcos jy+ B~ sinvy). 
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Let M C R  2N+ a. Then by definition 

d#2{v: (Ao . . . . .  AN; B1 .. . . .  B N ) ~ M }  

The d#2 is a realization of the abstract Wiener measure. It has a support in the 
space of generalized functions 

Lip-  ~/2-~ = Const + d Lip~/2-~, e > 0 .  

4. lnvarianee of the d# 

Let ~(t) be the flow defined by (0.1). First of all we intend to prove its continuity. 

Lemma 3. ~(t) maps continuously the space Lip~(S 1) x L i p ' - l ( S  1) into itself, 
0 < ~ <  1/2. 

Proof.  Consider two Cauchy problems 

{U~t --  + U 3 = 0 Uxx 

ult = o = Uo(X) ~ Lip',  

and 

If 0< t< rc ,  

U,[, = o = Vo(X) ~ Lip ' -  1 

Wtt--Wxx=O, Wlt=o=Uo, wtlt=o=Vo • 

w(t,  x)  = u°(x  + t) +2 u°(x  - t) + 21 ~+tS vo(y)dy.  
X - - I  

Clearly, w ~ Lip', wt ~ Lip ~- 1, and (w, w0 depends continuously on (Uo, Vo). Let 
r(t, x)  = u - v. Then 

rtt--rx~+(r+w)3=O, rlt=o =r~l~=o=0, 

and according to the Duhamel principle 

r(t, x)  = - i dr S O ( x -  y + t -  z) - O(x - y -  t + ~) o 2 [r(y, ~) + w(y,  ~)]3dy, (4.1) 

where 0 is the Heaviside function. The expression on the right-hand side of (4.1) is a 
contraction operator in a ball in C([0,t],  Lip ") when t is sufficiently small. 
Therefore, (r, r t )~Lip~xLip ~-I for sufficiently small t, and hence (u, ut) 

Lip ~ x Lip ~- 1. Now the assertion of the lemma follows from the group property 
of q~(t) and its invariance under the transformation t ~ - t .  [] 

Now we shall build the finite-dimensional approximation of ~(t). Let us divide 
the circle into 2N + 1 equal parts by the points yj = 2rcj/(2N + 1), j = 0, ..., 2N. Let 
~, t/i, j = 0  . . . .  ,2N, be some real numbers. We denote by uN(~, x) the solution of the 
equation u~x= u 3 which satisfies the conditions u~(~, )3)= ~ ;  

N 
v~(tl, x)  = A o + ~, (Aj  cosjy + Bj sinjy) 

j = l  
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is an interpolation trigonometrical polynomial, that is 

N 

tIj = Ao + 2 (A, cos(2rcj/(2g + i)) + B~ sin(2~j/(2N + 1)). 
v = l  

Clearly, 

Let 
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(4.2) 

1 ~ u L  , x) 4 
HN(~, q) = ~ j~=o tlj + S + dx.  

By ~N(t) we denote the Hamiltonian flow with the Hamiltonian HN: 

~j = aHN/~lj = tlj; ~lj = -- OHN/c3~j" (4.4) 

Let u(x) e Lip ~, v(x) e Lip ~- 1, 0 < ~ < 1/2. For a finite-dimensional approximation 
of these functions we take vectors 

¢N(u(x)) = (u(yo) . . . . .  u(yzN)) and tlu(V(X)) = (tlo . . . . .  tlzN), 

with t/j defined by (4.2); A and B are Fourier coefficients of v. By r~v we denote the 
restriction operator rN(u,v)=(¢N(u),rlN(v)); iN is the interpolation operator, 
iN({, r/) = (uu({, x), vN(t/, x)). 

Lemma 4. Let u(x) e C z and v(x) e C*. Then 

iNCbN(t)rN(u,v)~(t)(u,v) when N + o o  

in the space C*OC. 

Proof. Using the formula of the variation of a functional with a free end, we obtain 
that 

2 N +  1 
O H N / ~ J =  2re [U~(~,yj)].  

The function u satisfies the equation u} = u 3 = ~ + O(1/N). Solving this equation 
without the term O(1/N) and estimating the remainder, we can easily obtain that 

~ j  = - (2zc/(2N + 1)) 2 + ~ + O(1/N). 

Thus (4.4) can be rewritten in the form 

~j+~-2~i+¢J-~ 3 
~j=tlj, OJ= (2r((ZN+ 1)) 5 - ~ j  +O(I /N) .  (4.4') 

The initial conditions are ~j(0)= u(yj) and tt~(0)= v(N)(yj), where v (m is the partial 
sum of the Fourier series of v. We have that v(m(yj)-v(y)= O(N-I+~), e>0,  
uniformly with respect to j because v e C t. The system (4.4') with such initial 
conditions is a difference approximation for the problem 

u , -  u ~  + u 3 = O, u(O, x)  = u ( x ) ,  u,(O, x)  = v (x ) .  

N N 
~2 q} = ( 2 N +  1)Ao 2 + ( 2 N +  1)/2 E 2 2 (Aj + B~). (4.3) 

j = 0  j = l  



t 6 L. Friedlander 

To finish the proof, we must apply a standard technique, in order to prove the 
convergence of the solutions of the difference equation to the solution of the 
differential equation. [] 

Consider a continuous non-linear functional ~- on H~GH ~-1 (H is the 
Sobolev space) such that Iff(u, v)l _-< 1. Then 

S f f  (u, v)d# = lim dNf ~[un(~, x), vN(tl, x)] exp(--2rcHN/(2N + 1))d~dAdB . 
N-.+ oo 

The coordinates (A, B) and t/are linearly dependent, therefore, dAdB = cNdt l. From 
the invariance of the measure d¢dtl under the flow (4.4) it follows that 

dN~ ~ [  ~N(t)(UN( ~), VN(t/))] exp( -  ZrtHN/(2N + 1))d¢dAdB 

= dN~ ~-[(uN(~), vu(t/)] exp(-- 2rtHN/(2N + 1))d~dAdB. (4.5) 

The expression on the right-hand side of (4.5) converges to ~ ( u ,  v)dl~ when 
N--+oo. By the same technique as in Lemmas 1 and 3 (the spaces h a and the 
Duhamel formula) it is easy to verify that i~.~u(t)rN are uniformly continuous with 
respect to N as operators from Lip~®Lip ~- 1 into H~OH ~- 1, 0 < e < I/2. Taking 
into account Lemma 4, 

~,~[~N(t)rN(u, V)] -+~-[~(t)(u, V)], (U, V) ~ Lip~® Lip ~- 1. 

By the Lebesque theorem, the left-hand side in (4.5) converges to ~ ~-[~b(t)(u, v)]d# 
when N-+oo. Therefore, 5~(u, v)d#=S~[~(t)(u, v)]d#. The last formula means 
the invariance of d# under ~(t). 

Note. After sending the paper to the publisher, we discovered that the main results 
of Sect, 1 - Theorem 1 and the formula (0.9) - were proved simultaneously, 
independently and by different methods by Wodzicki [9]. 
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